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Abstract

We present a theory for pitch, a matrix property which is linked to the coupling of rotational

and translational motion of rigid bodies at low Reynolds number. The pitch matrix is a

geometric property of objects in contact with a surrounding fluid, and it can be decomposed

into three principal axes of pitch and their associated moments of pitch. The moments of

pitch predict the translational motion in a direction parallel to each pitch axis when the

object is rotated around that axis, and can be used to explain translational drift, particularly

for rotating helices. We also provide a symmetrized boundary element model for blocks of

the resistance tensor, allowing calculation of the pitch matrix for arbitrary rigid bodies. We

analyze a range of chiral objects, including chiral molecules and helices. Chiral objects

with a Cn symmetry axis with n > 2 show additional symmetries in their pitch matrices.

We also show that some achiral objects have non-vanishing pitch matrices, and use this

result to explain recent observations of achiral microswimmers. We also discuss the small,

but non-zero pitch of Lord Kelvin’s isotropic helicoid.
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I. INTRODUCTION

Screws are simple machines which are universally used to join parts together and to provide

secure enclosures for containers. We often draw a distinction between mechanical screws, which

move through solid media, and screws which move through a fluid medium, such as self-propelled

swimmers. In all cases, the function and efficiency of the screw is associated with the translation-

rotation coupling in the medium, which converts rotation around an axis to linear motion along

that axis. The translation-rotation coupling is quantified by the screw’s pitch, which is the distance

the screw translates upon completing one revolution. This is an intuitive approach for screws that

involve contact between two solid surfaces.1 For example, a nut advancing through consecutive

threads of a screw travels exactly the distance between threads in a single 2π-radian revolution.

For swimmers and other hydrodynamic screws, where physical threads are not explicit, pitch

may be an empirically-measured quantity that is challenging to obtain.2 When the screw operates

in a fluid, like a propeller operating in seawater, the translation-rotation coupling decreases because

of slip along the screw’s surface.3 Schamel et al.4 and Patil et al.5 observed this fact when studying

helical systems moving in liquid media: the translational motion of the helices in a 2π-revolution

was less than the standard pitch definition for a helix, which is the distance between consecutive

helical turns.

Translational motion can be generated either by rotating the screw itself or induced by rotating

the medium around the screw. Howard et al. first observed the translational motion of macro-

scopic chiral objects induced by the vorticity of a fluid.6 In their experiment, they suspended

dextro-tartaric acid crystals on one side of a drum that was filled with Isopar H (isoparaffinic hy-

drocarbons). Then, they rotated the drum and observed the migration of the crystals due to the

vorticity of the fluid. Although tartaric acid crystals do not look like traditional screws, left- and

right-handed crystals exhibit opposite signs of the translational-rotational portion of their resis-

tance tensors, which govern frictional forces and torques experienced by a body in a fluid. This

behavior can be used to separate bodies of opposing handedness, since they move in opposite di-

rections in response to rotations. In an earlier paper, we explored the link between parts of the

resistance tensor and the translational-rotational coupling, and derived a geometric quantity we

called “scalar pitch”.7 The scalar pitch is a rotational invariant for rigid bodies, describing how the

object will translate in response to rotations.

In this paper, we extend the concept of pitch that was developed in Ref. 7 into a matrix form,
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and we investigate the physical properties of the characteristic eigenvalues and eigenvectors of

this pitch matrix. This results in a method in which chiral (and achiral) objects can be assigned

principal axes of pitch, and three associated moments of pitch for motion around those axes. In

previous work, the method used for computing resistance tensors was aimed at studying pitch in

molecules, so spherical beads representing the atoms were the primary hydrodynamic elements.7

In this paper, we develop a symmetrized boundary element method using triangular surface patches

to evaluate resistance tensors for arbitrary shapes.

II. FORMALISM

A. Resistance and Mobility Tensors

Consider an arbitrarily shaped rigid body moving in a fluid at low Reynolds number. This rigid

body will feel a force and torque in response to its velocity and angular velocity in the fluid. For

example, a propeller placed in a flowing fluid experiences a torque, while a screw rotating through

a quiescent medium experiences a linear force.

We define a coordinate system whose origin, O, is moving with the body. From Brenner’s

fundamental work on hydrodynamics,8,9 the relationship among net force (f), torque (τ ), velocity

(v) and angular velocity (ω) at O is: f

τ

 = −Ξ
 v

ω

 , where Ξ =

 Ξtt Ξrt
O

Ξtr
O Ξ

rr
O

 . (1)

Ξ is a 6 × 6 hydrodynamic resistance tensor that provides details on how the body couples to

the surrounding medium. The four blocks of Ξ represent the translational (tt), rotational (rr),

translation-rotation (tr) and rotation-translation (rt) coupling of the body to the medium. The (rt)

coupling is the matrix transpose of the (tr) coupling, Ξrt
O =

(
Ξtr

O

)T
, and the subscript O indicates the

quantities which depend on the location of the reference point O.

The inverse of the resistance tensor is known as the mobility tensor,10

µ =

 µtt
O µ

rt
O

µtr
O µ

rr

 = Ξ−1 . (2)

µ also comprises four blocks that are analogous to the blocks of the hydrodynamic resistance ten-

sor Ξ defined in Eq. (1). Multiplying the mobility tensor by kB T yields the diffusion tensor, which

is a generalization9,10 of Einstein’s relation,11 connecting the resistance and diffusion tensors.
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B. The Pitch Matrix

Imagine a simple screw advancing through a material. Because it is coupled to the surrounding

medium, if the screw rotates by an angle ϕ around its long axis (z), it moves linearly along the

same rotation axis,

∆z =
P
2π
∆ϕ. (3)

This defines the pitch P of the screw in terms of a full 2π rotation in ϕ.

For continuous rotation in a medium, we can similarly define the pitch in terms of linear and

angular velocities of the screw as it rotates around a single axis (z),

vz =
P
2π
ωz (4)

More generally, the screw may be moving with a (space-fixed) angular velocity vector (ω) and

the resultant motion may also be a linear velocity vector (v). In this case, the relationship between

ω and v is mediated by a 3×3 pitch matrix,

v =
P
2π

ω (5)

Modeling a rigid body as a power screw (which is driven solely by an imposed torque) implies

a net force f = 0 in Eq. (1).12,13 We can then equate the drag force from translational motion to the

rotational contribution of the force on the object,

Ξtt v = −Ξrt
O ω (6)

We can then use the definition of the pitch matrix in Eq. (5), and obtain an expression in terms of

two blocks of the resistance tensor,

Ξtt v = Ξtt PO

2π
ω = −Ξrt

O ω (7)

which implies
PO

2π
= −

(
Ξtt

)−1
Ξrt

O (8)

where
PO

2π
can be seen as a quantity that also depends on the point O.

It is also possible to write an equivalent expression for the pitch matrix in Eq. (8) using two

blocks of the mobility tensor. From Eq. (2), the relation between the resistance and mobility

tensors can be rewritten as

Ξµ =

 I 0

0 I

 , (9)
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where I is the 3× 3 identity matrix and 0 is the 3× 3 null matrix. In terms of the mobility tensor

blocks, the pitch matrix is:
PO

2π
= µrt

O
(
µrr)−1 (10)

Note that Eqs. (8) and (10) are equivalent forms.

We note that when a rigid body is settling under an external force, so that translational motion

generates all rotation, we must invoke a different process than a power screw, as the force on the

body is no longer zero. In this case, we have no external torque (τ = 0) and ω = Lv, where L

is a 3× 3 matrix that mediates the generation of angular velocity from linear velocity. Using the

resistance or mobility tensors,

L = −
(
Ξrr

O

)−1
Ξtr

O = µ
tr
O

(
µtt

O

)−1
, (11)

which can be related to the pitch matrix defined in Eqs. (8) or (10),
PO

2π
=

(
Ξtt

)−1
LT

(
Ξrr

O

)
= µtt

O LT (
µrr)−1 . (12)

Ekiel-Jeżewska and Wajnryb14 studied this process using a three-sphere (trumbbell) model settling

under gravity in a viscous fluid and concluded that the trumbbell rotates as it settles. In Sec. III C,

we consider a similar example using an isotropic helicoid falling through a fluid, where its linear

velocity induces a small angular velocity.

C. Center of Pitch

The translational (tt) and rotational (rr) blocks of the resistance (Eq. (1)) and mobility (Eq. (2))

tensors are symmetric matrices for any point O. However, the blocks which couple translation and

rotation are only symmetric at the center of resistance (CR) for the resistance tensor,7–9 and at the

center of diffusion (CD) for the mobility tensor.7,9 Therefore, the pitch matrix is not generally a

symmetric matrix. However, at one special point, which we call the center of pitch (p), the pitch

matrix does become symmetric.

For the resistance tensor, the translation-rotation couplings at a point M (separate from the

origin) will include a portion of the translational block along the line connecting the origin O to

M, while the translation-rotation couplings for the mobility tensor will include a portion of the

rotational block.7–9 We can express the new couplings,

Ξtr
M = Ξ

tr
O − UMΞ

tt (13)

µtr
M = µ

tr
O + µ

rr UM (14)
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where UM is a skew-symmetric matrix whose elements are set by the vector from point O to point

M,

UM =


0 −zOM yOM

zOM 0 − xOM

−yOM xOM 0

 . (15)

Note that (UM)T = −UM.

Left-multiplying the transpose of Eq. (13) by
(
Ξtt

)−1
, or right-multiplying the transpose of

Eq. (14) by (µrr)−1, we can see how to transform a pitch matrix computed at a point O to another

point M,
PM

2π
=

PO

2π
− UM (16)

To find the center of pitch, or the point p where the pitch matrix is symmetric, we set the right

side of Eq. (16) equal to its transpose and we find the coordinates of the vector rp connecting the

center O to p:

rp =
1

4π


(PO)zy − (PO)yz

(PO)xz − (PO)zx

(PO)yx − (PO)xy


where the subscripts indicate the entries of the PO matrix. The supplementary material (Sec. I)

provides an additional proof that the center of pitch is unique to each body.

The symmetric pitch matrix can be found without knowing the center of pitch,

Pp =
1
2

[
PO + PT

O

]
. (17)

However, this relation does not provide the location of the center of pitch.

D. Pitch Axes, Moments of Pitch, and The Pitch Coefficient

From the original definition of pitch (Eq. (5)), we can diagonalize15 the symmetric pitch matrix

and write

A−1
(
Pp

2π

)
A =


λ1 0 0

0 λ2 0

0 0 λ3

 (18)

where the three eigenvalues (λi) are moments of pitch — each associated with a pitch axis, αi —

which is one of the column vectors making up A = [α1,α2,α3]. This decomposition into principal
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axes and moments of pitch is a direct analogy to the decomposition of a moment of inertia tensor

into principal axes and moments of inertia. For the pitch matrix, however, moments of pitch may

be negative if rotating the body counterclockwise around axis αi results in translation along the

negative αi direction.

It is useful to define a rotational invariant which will provide information on the average trans-

lational motion exhibited when the body has a random orientation in the fluid. We can define a

scalar pitch coefficient which is the simplest rotational invariant of the pitch matrix, providing

λ3 = - 0.187 Å / rad λ3 = 0.187 Å / rad 

λ2 = 0.096 Å / rad 

λ1 = 0.096 Å / rad

λ2 = - 0.096 Å / rad 

λ1 = - 0.096 Å / rad 

Λ-[Ru(bpy)3]2+ Δ-[Ru(bpy)3]2+
(a)

λ3 = - 0.181 Å / rad λ3 = 0.181 Å / rad 

λ1 = 0.091 Å / rad 

λ2 = 0.091 Å / rad λ2 = - 0.091 Å / rad

λ1 = - 0.091 Å / rad

(b)

FIG. 1. The pitch axes and the moments of pitch for the Λ and ∆ enantiomers of the [Ru(bpy)3]2+ ion. In

the upper panel (a), spheres with radii from the OPLS-AA force field16 were used to compute the resistance

tensor, while in the lower panel (b), a triangulated surface mesh was utilized. The two enantiomers have

opposing signs for all three of their moments of pitch. Note that two moments of pitch are degenerate,

indicating that a linear combination of the corresponding pitch axes will also form a basis along the xy-

plane (the pink and blue lines or the pair of dotted lines in the lower panel, for example). The pitch axis

along the z-axis is aligned with the C3 axis of the molecule. The scalar pitch coefficient for this molecule is

|P|/2π = 0.133 Å/rad.
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equal contributions from rotation around all three axes of pitch,

|P|
2π
=

√
1
3

∑
i

λ2
i (19)

The derivation of the scalar pitch coefficient is available in Sec. II of the supplementary material.

Note that this is functionally equivalent to a pitch coefficient that was demonstrated in our previous

paper,7 where the eigenvalues of the (tt) and (tr) blocks were used separately to compute |P|/2π.

Figure 1 displays the principal axes of pitch and their associated moments for the Λ and ∆

enantiomers of the [Ru(bpy)3]2+ ion. If there are degeneracies in the moments of pitch, a lin-

ear combination of the corresponding pitch axes will also form a basis for understanding the

translation-rotation coupling of the object.

E. Pitch Properties of Enantiomers and Achiral Objects

Consider a left- and right-handed pair of enantiomers, whose structures are related by a reflec-

tion through the origin. For enantiomers, the (tt) and (rr) blocks of the resistance and mobility

tensors will be identical, while the (tr) and (rt) blocks flip sign.7 Using this mirror image property,

we can deduce the following property of the pitch matrix for the two enantiomers:(
PO

2π

)left

= −

(
PO

2π

)right

(20)

At the center of pitch, Eq. (20) implies that the moments of pitch (eigenvalues) of the pitch

matrix for the left- and right-handed objects have the same magnitude, but flip signs. The pitch

axes (eigenvectors), however, are identical for both objects.

For an achiral object, which is identical with its own mirror image, the characteristic eigen-

values of the left and right pitch matrices must be the same, and there are two ways for this to

happen:

1) λ1 = λ2 = λ3 = 0

In this case, the achiral object has a pitch matrix which is the null matrix, and thus does not

exhibit displacement due to rotation. This situation occurs in objects with a high degree of

internal symmetry, e.g., spheres and ellipsoids.

2) λ1 = 0 and λ2 = −λ3 , 0

In this case, the achiral object has a pitch matrix which is non-zero. These objects can
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exhibit displacement due to rotation, and this property helps explain the recent observation

of achiral microswimmers which can be propelled through a fluid via rotation17 (see Fig. 2).

For chiral objects, there are two additional cases to consider:

3) λ1 = λ2 , λ3 (two degenerate eigenvalues).

This class of objects is a chiral body in the Cn or Dn point groups with n ≥ 3.

4) λ1 , λ2 , λ3

This is the general case for most chiral objects without higher symmetry axes.

σ

σ

λ3 = 0 μm / rad 

λ3 = 0 μm / rad 

λ2 = - 0.097 μm / rad  

λ3 = 0 μm / rad  

λ3 = 0 μm / rad  

θ

(a)

(b)

λ1 = 0.097 μm / rad 

λ1 = 0.097 μm / rad 

λ2 = - 0.097 μm / rad  

λ1 = 0.091 μm / rad  

λ2 = - 0.091 μm / rad  

λ1 = 0.091 μm / rad 

λ2 = - 0.091 μm / rad  

FIG. 2. Achiral swimmers, like the three bead arrangement shown here, can exhibit non-zero pitch matrices

and two moments of pitch with opposite signs. This means that rotation of these swimmers can result in

translation through a fluid. In this collection of particles, each of the three beads has a radius of σ = 2.2 µm

and an angle θ = 120◦. This corresponds to class 2 in the classification of achiral objects. In the upper

panel (a), spheres were used to compute the resistance tensor, while in the lower panel (b), a triangulated

surface mesh was utilized.
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To explore the pitch matrix properties of chiral objects, we can consider the chiral point groups

Cn and Dn.18 Table I shows the moments of pitch (the eigenvalues of the pitch matrix) for a set

of representative molecules that belong to the Cn and Dn point groups.19–21 To compute these

moments of pitch, we first constructed the molecular resistance tensors, representing atoms with

spheres with appropriate van der Waals radii. The molecular resistance tensors were computed

using the methods described in Ref. 7. The pitch matrix for each molecule was then constructed

and diagonalized to obtain the molecular pitch axes (eigenvectors) and the associated moments of

pitch (eigenvalues).

When the symmetry axis of the point groups has n ≥ 3, we find that two of the moments of pitch

are always degenerate (see table I). When this degeneracy occurs, the non-degenerate moment

of pitch is associated with a pitch axis that points directly along the Cn axis of the molecule.

This property is expected from the character tables of the Cn and Dn point groups,22 since one

coordinate (e.g., z) forms a basis for a non-degenerate irreducible representation, and the other

two coordinates (e.g., x and y) span a doubly-degenerate representation.

TABLE I: Moments of Pitch for representative molecules from the chiral point groups Cn and Dn.19–21 To

compute molecular resistance tensors, atoms were represented with spheres with appropriate van der Waals

radii, and resistance tensors were computed using the methods described in Ref. 7. Degenerate moments of

pitch are indicated in bold type.

Point Group Molecule
Moments of Pitch (× 10−4 Å rad−1)

λ1 λ2 λ3

C1

1-bromo-1-chloroethane -229.32 11.07 223.36

2,3-dihydrofuran -210.45 -17.25 240.34

bromochlorofluoromethane -156.89 22.91 134.06

D-alanine -404.01 60.99 375.02

D-serine -384.40 2.37 338.14

SOClBr -119.43 -14.30 133.58

C2

1,3-dichloroallene -477.66 -25.93 583.70

2,3-pentadiene -250.60 -182.19 405.21

cis-[Co(en)2Cl2]+ -306.88 91.10 145.42

hydrazine -324.38 -16.05 256.58

hydrogen peroxide -273.39 -199.04 408.42

Mo(acac)2O2 -1323.32 4.85 1266.70

titanium dimer -366.93 -212.78 600.78

Continued on next page
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TABLE I – continued from previous page

Point Group Molecule
Moments of Pitch (× 10−4 Å rad−1)

λ1 λ2 λ3

C3

tris-aminomethane -119.09 -119.09 178.09

triethylamine -110.35 36.66 36.66
triphenylmethane -1071.89 -1071.89 2056.39

triphenylphosphine -857.58 -857.58 1645.00

C4 tetra-aza copper(II) -85.70 -85.70 110.43

C5 Fe(Me5-Cp)(P5) -13.70 11.47 11.47
C6 alpha-cyclodextrin -9.79 -9.79 34.49

D2

biphenyl -1730.16 605.84 1144.82

trans-[Co(en)2Cl2]+ -153.73 79.32 90.63

twistane -92.72 20.74 40.50

D3

guanidinium cation -39.67 81.99 81.99
tris(en)cobalt(III) -176.32 -176.32 328.17

tris(oxalato)iron(III) -402.24 -402.24 953.13

D4 tetrathiacyclododecane -218.66 325.53 325.53

D5
twisted ferrocene -14.26 10.73 10.73

YbI2(THF)5 -180.88 -180.88 356.50

D6 bis(benzene)chromium -4.43 3.51 3.51

F. Hydrodynamic Model: Determining the Resistance Tensor from Triangulated Surfaces

The exterior surface of any rigid body moving through a fluid can be described as a surface

mesh comprising small, flat triangular patches. Surface triangulation is a widely-researched topic,

and we assume here that the object of interest has been expressed in this form. When viscous

forces are dominant, i.e., at low Reynolds number, the velocity of triangle i (vi) is related to the

unperturbed velocity of the fluid (u) via hydrodynamic interaction tensors (Bij), which connect

triangular plate i to the forces experienced by all of the triangular plates comprising the surface of

the rigid body,23

vi = u−
∑

j

Bij F j (21)
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Because the hydrodynamic interaction is reciprocal,24 we introduce a symmetrized version of B

which integrates over both triangular patches to obtain coupling between triangular elements,

Bij = Bji =
1
2

 1
Aj

∫
S j

T (xi, y) dy+
1
Ai

∫
Si

T(x j, y)dy
 (22)

These are integrals over the surfaces S j and S i of triangles j and i, respectively, and xi is the

centroid (or barycenter) of triangle i. The area of triangle j can be similarly expressed as a surface

integral,

Aj =

∫
S j

dy . (23)

The symmetrized form of B is essential for maintaining the known properties of the resistance

tensor (Sec. II C).

The Oseen tensor connecting points a and b,23,24

T (a, b) = T (b, a) =
1

8πη |a − b|

[
I +

(a − b) ⊗ (a − b)
|a − b|2

]
(24)

provides the coupling through a surrounding fluid with dynamic viscosity η. The ⊗ symbol indi-

cates the outer (tensor) product of two vectors, in this case, (a−b) with itself.

The surface integrals in Eq. (22) can be calculated numerically using a surface quadrature:

1
Aj

∫
S j

T(xi, y)dy ≈
1
Aj

Aj

∑
k

wk T(xi, yk j)


≈

∑
k

wk T(xi, yk j) , (25)

where wk is a weight associated with the quadrature point yk j on triangle j, and xi is the centroid

of triangle i. Using quadrature points and weights, we can therefore rewrite Eq. (22) as:

Bij =
1
2

∑
k

wk
[
T(xi, yk j) + T(x j, yk i)

]
(26)

If not stated otherwise, we employ a 6-point Gaussian quadrature developed by Cowper25

which exactly integrates polynomials of degree 3 and whose points and weights are available

in Quadpy.26 Because the centroid is not a point in this quadrature, there is no singularity in the

self interaction (Bii).

Using all of the 3×3 Bij matrices, we can construct a 3N ×3N B supermatrix, where N stands

for the total number of triangular plates, and rewrite Eq. (21) as,

V−U = −BF . (27)
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where V, U, and F are 3N-dimensional vectors representing the triangles’ velocities, unperturbed

fluid velocity, and forces on all of the triangles. The solution of Eq. (27) to find the force requires

the inverse, C = B−1,

F = −C (V−U) , (28)

and is equivalent to the translational block of the resistance tensor in Eq. (1), after summing over

all the triangles to yield the net translational force on the object,

f = −

∑
i j

Cij

v

= −Ξtt v

where Cij are the 3×3 blocks of the C matrix, and we have assumed that the assembly of triangles

is a rigid body, so all triangles have the same velocity relative to the fluid,
(
vj −u

)
= v. This allows

us to identify the translational resistance tensor,27–29

Ξtt =
∑

i j

Cij (29)

From the Brenner relations for the (tr) and (rr) blocks of the resistance tensor in a discrete, matrix

form,7–9 we also have

Ξtr
O =

∑
i j

Ui Cij ,

Ξrr
O = −

∑
i j

Ui Cij U j

(30)

where Ui is the skew-symmetric matrix defined in Eq. (15) whose entries xOi, yOi and zOi are the

components of the vector between the origin O and the centroid of the triangle i.

Note that in contrast to bead models,7,28–30 a boundary element method does not require a

volume correction to the rotational block of the resistance tensor, since the boundary element

method computes interactions using hydrodynamic elements that have no volume.

With the blocks of the resistance tensor computed at point O, it is possible to reconstruct the

blocks at another point M. The (tt) block is invariant to choice of origins, the (tr) block follows

Eq. (13), and the (rr) block requires coupling to the other blocks of Ξ,7–9

Ξrr
M = Ξ

rr
O + Ξ

tr
O UM − UM

(
Ξtr

O

)T
− UMΞ

tt UM (31)

In Sec. III of the supplementary material, we apply the boundary element method developed

here to objects whose blocks of the resistance tensor are known analytically. The boundary element

method shows good agreement with the analytical values.
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III. RESULTS

Applying the triangulated surface boundary element method described in the previous section,

we have computed the principal axes of pitch and moments of pitch for a wide array of objects.

These objects include common chiral entities like helices, achiral swimmers, and one object of his-

torical curiosity: Lord Kelvin’s Isotropic Helicoid. These objects are swimming at low Reynolds

number and, if not stated otherwise, we shifted the center of pitch to the origin of the coordinate

system. Wherever possible, we compare the predictions from the pitch matrix to experimental re-

sults for similar objects in similar fluid conditions. For Lord Kelvin’s Isotropic Helicoid, we also

investigate two feasible experiments to assess its rotation-translation coupling.

A. Chiral Objects

1. Helices

The hydrodynamic properties of helices have been studied widely because of their importance

in the motion of living cells. Chwang and Wu31 and Higdon32 used a helix connected to a spher-

ical head to model the swimming of microorganisms and to find optimum design parameters for

efficient propulsion under low Reynolds numbers. Purcell33 approximated the blocks of the resis-

tance tensor in Eq. (1) as scalars, reducing the 6×6 resistance tensor to a 2×2 tensor, and explored

the relation between these scalar values in the coupling of translational and rotational motions of

helical systems. To study the swimming properties of Escherichia coli bacteria, Chattopadhyay et

al.34 utilized the same scalar approach as Purcell and estimated the reduced 2×2 resistance tensor

using optical tweezers to trap a sample of swimming E. coli. Recently, Maffeo et al.35 have looked

at using rotating nucleic acid double helices as turbines, using electric fields to drive the motion of

these molecules.

The work on helical molecules is at a length scale where the theory of pitch may help guide

design parameters for molecular machines. To test these ideas, it is important to determine if the

pitch matrix can reproduce previous work on helical systems in general. In this section, we first

discuss the pitch matrix properties of a single microhelix using the hydrodynamic model developed

in Sec. II F to compute the 6×6 resistance tensor. In the following section, we apply this work to

three primary structures of DNA double helices.

To test the pitch matrix properties for a simple helix, we constructed a 3 µm right-handed helix
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with an outside diameter of 0.5 µm and a thickness of 0.2 µm using spherical beads. The helix

was constructed through a procedure outlined in the Supporting Information of Ref. 7, where the

centers of consecutive beads are 0.049 µm apart. To triangulate the surface mesh (see Fig. 3)

and compute the resistance tensor and pitch matrix for the helix, we used the MSMS algorithm36

with a probe radius large enough (0.2 µm) to smooth the helical surface. Figure 3 presents the

principal axes of pitch and the associated moments of pitch for motion around these axes. None of

the principal axes of pitch lie along the long axis (z-axis) of the helix. Therefore, a rotation around

the helical z-axis will result in translational drift, whose direction is indicated by the vector v in

Fig. 3(b).

Using the pitch matrix computed at the center of pitch, we can predict the resulting motion for

this helix as it rotates around the z-axis. With an angular velocity ω = (0,0,1) rad s−1 and using

Eq. (5), the resulting translational velocity for this helix is v = (0.00970,0.0120,0.0242) µm s−1.

The translational motion of the helix will be along the vector v, and the projected distance of

travel,

d = |v| × t =
|v|
|ω|

× |ω| t (32)

where t is the total time.

From Chasles’ theorem,37 which states that rigid body motion can be decomposed into rotation

along an axis and translation parallel to that axis (a screw displacement), the term |v|/|ω| in Eq. (32)

may be interpreted as the pitch projected along the vector v. For the helix in Fig. 3, |v|/|ω| =

0.0287 µm rad−1, and thus it will travel a distance d= 180 nm after one complete revolution around

the z-axis. Because the helix is moving through a fluid, rather than a solid, the distance d is smaller

than the designed pitch of the helix, which is 1 µm per turn. (As in physical screws, the designed

pitch of a helix will only be equivalent to the travel from one rotation when the helix is advancing

through a solid substrate.)

The constructed helix in Fig. 3 is similar to the microhelices propelled with a magnetic field

by Patil et al.5 We note that this group observed the microhelices drifting and estimated an exper-

imental projected pitch of 250 nm. In Sec. IV of the supplementary material, we also provide data

on three helices which approximate those in the Patil et al. experiments5 and find projected pitch

values from 138–280 nm.

To make a direct comparison to experiments, we can use the scalar pitch coefficient, a rotational

invariant defined in Eq. (19), which includes contributions from all three pitch axes. In the helix

in Fig. 3, the scalar pitch coefficient is calculated to be 125 nm. For helices with flagellar widths
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λ3 = 0.031 μm / rad

λ1 = - 0.013 μm / rad
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ωz
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(a) (b) (c)

λ2 = - 0.008 μm / rad 

FIG. 3. Pitch of a Right-handed Helix: (a) The principal axes of pitch (pink, blue and orange lines) and the

three associated moments of pitch for motion around those axes. (b) Design parameters and the velocity

vector v due to rotation around the z-axis with an angular velocity ωz. (c) The distance d traveled by this

helix after rotating around the z-axis. This distance can be computed by Eq. (32).

ranging from 0.1–0.25 µm, we find scalar pitch coefficients from 95.5–194 µm. We also note

that the scalar pitch coefficients are all ∼70% of the largest of the three moments of pitch, so

we can infer that the helix tends to align to the axis of pitch associated with the largest of the

three moments. Drifting was also observed by Ceylan et al.38 in their experiments with helical

microswimmers.

2. Double Helices: A-, B-, and Z-DNA

To study a biologically relevant set of helices, we analyzed molecular structures representing

the A, B, and Z forms of DNA. The A-DNA sample is a dodecamer with 3 consecutive CpG steps

(PDB code 5MVK),39 the B-DNA sample is a Dickerson-Drew dodecamer (PDB code 4C64),40

and the Z-DNA sample is also a dodecamer (PDB code 4OCB).41 These three DNA structures are

all derived from experimental crystal structures.

To triangulate the surface of the DNA samples, we represented the atoms as spheres with appro-
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ωz  = 1 rad / s

|v| = 0.021 nm / s

(a) (b) (c)

FIG. 4. The three DNA samples: (panel a) A-DNA, (panel b) B-DNA and (panel c) Z-DNA. The principal

axes of pitch and their moments of pitch are in the upper panels. The ribbon diagram and the resulting

velocity vector caused by a rotation around the z-axis are in the lower panels. The ribbon diagram denotes

the sugar-phosphate backbones (helices) of the DNA and were generated using the CCP4mg.44

priate van der Waals radii and used the MSMS algorithm36 with a probe radius of 1.41 Å to mimic

the surrounding water molecules.42 We computed the resistance tensor employing the triangulated

surface method described in Sec. II F.

In Fig. 4, the upper panels display the pitch axes along with the associated moments of pitch for

the three DNA samples and the lower panels, the resulting translational velocity due to a rotation

around the z-axis (ωz = 1 rad s−1). The three DNA samples manifest translational drift coupled

to the rotation around the z-axis. From Eq. (32), we can compute the pitches projected along

the vector v displayed in the lower panels,
|v|
|ω|

×2π = 0.13 nm (A-DNA), 0.23 nm (B-DNA) and

0.14 nm (Z-DNA). These values are smaller than the average structural pitch (per turn) associated

with DNA which are: 2.82 nm (A-DNA), 3.38 nm (B-DNA), and 4.50 nm (Z-DNA).43 Because

the DNA samples are moving in a fluid (and not through a solid substrate), we expect the moments

of pitch to be significantly smaller than the structural pitch, since the fluid slips along the surface

of the DNA molecules.

In a stationary liquid, using the Einstein relation between mean square displacement and the
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TABLE II. Translational diffusion coefficients Dtt and scalar pitch coefficients |P|/2π (Eq. (19)) for dode-

camers of the three helical forms of DNA. The translational diffusion coefficients are based on dilute water

solutions at 298.15 K with a viscosity of 0.89 mPa·s.45 Conditions when translation-rotation coupling over-

takes translational diffusion are also provided (Eq. (34)).

Structure (PDB code) Dtt
(
108 nm2 s−1

)
|P|/2π

(
nm rad−1

)
|ω|2 × t

(
1012 rad2 s−1

)
A-DNA (5MVK) 1.70 0.023 > 1.9

B-DNA (4C64) 1.65 0.028 > 1.3

Z-DNA (4OCB) 1.66 0.020 > 2.5

translational diffusion coefficient Dtt,11

⟨ (δr(t))2 ⟩ = 6 Dtt t , (33)

we can estimate when the translation-rotation coupling will overcome diffusion. This will happen

when the ratio of the distance squared in Eq. (32) to the mean square displacement in Eq. (33) is

greater than 1,

|ω|2 t > 6 Dtt

(
|P|
2π

)−2

(34)

where we substituted the term |v|/|ω| in Eq. (32) for the scalar pitch coefficient |P|/2π in Eq. (19).

The diffusion coefficient is calculated as Dtt=
1
3

Tr Dtt
CD ,9,29 where the matrix Dtt

CD= (kB T ) µtt
CD is

defined in Eq. (2) and CD stands for the center of diffusion (see Sec. II C). The term |ω|2 t is a

threshold value which can aid in the design of propulsion experiments.

Table II shows the diffusion coefficients for the DNA samples and the angular velocity con-

ditions for when the translation-rotation coupling overcomes translational diffusion. The transla-

tional diffusion coefficients are computed in dilute water solutions at 298.15 K and η = 0.89 mPa·s.45

From the angular velocity conditions in Table II, a 11.6-day experiment requires angular veloci-

ties, |ω|, that exceed 1.4×103 rad s−1 (A-DNA), 1.1×103 rad s−1 (B-DNA), and 1.6×103 rad s−1

(Z-DNA) to overcome translational diffusion. In longer experiments, as long as rotations are

continuous, translation-rotation coupling can overcome diffusion with smaller angular velocities.

In comparison with the DNA samples in Table II, the 3 µm single helix in Sec. III A 1 has

Dtt = 4.39× 105 nm2 s−1 when suspended in the same dilute water conditions, with a pitch coef-

ficient of |P|/2π = 19.9 nm rad−1. The |ω|2 t threshold value points to the minimum frequency

of rotation |ω| that the helix must have to overcome translational diffusion. This parameter,

|ω|2t > 6.65× 103 rad2 s−1, is also dependent on the time scale (t) for the experiment. In a 100-
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second experiment, the helix will overcome diffusion when its frequency is held constant at a

minimum of 1.30 Hz. For the same helix, in a 10-second experiment, the helix will overcome

diffusion when its frequency is held constant at 4.10 Hz. In an experiment with similar helices

and solvent conditions, Patil et al.5 applied a rotating magnetic field with frequencies in the range

5–15 Hz to propel their microscopic helices, which are well above the predicted minimum thresh-

old frequencies to observe propulsion. Patil et al.5 also reported that their helices could overcome

diffusion when the rotation frequency was 2 Hz.

B. Achiral Swimmers

In Sec. II E, we showed that achiral objects can be divided into two groups by their moments

of pitch. The first group consists of achiral objects for which all moments of pitch are zero, i.e.,

the pitch matrix is a null matrix. As a result, objects in this group exhibit no translation-rotation

coupling and rotation will not produce displacement. Examples of these achiral non-swimmers

are well-known; e.g., spheres, ellipsoids, tetrahedra, and cubes. Interested readers are encouraged

to consult Sec. V of the supplementary material for more details.

The second group consists of achiral objects with a special symmetry, where one moment of

pitch is zero, while the other two have the same magnitude, but opposite signs. For these objects,

the pitch matrix is non-zero and translation-rotation coupling persists. These objects have previ-

ously been called achiral swimmers because they produce displacements due to rotation. Figure 2

displays an achiral microswimmer: an arrangement of three beads that was experimentally tested

by Cheang et al.17 In their work, Cheang et al. reported that a non-vanishing (rt) block of the mo-

bility tensor is required for swimming and, from the symmetry investigations conducted in Ref. 8,

concluded that achiral swimmers are real.

To triangulate the surface of the three-beads arrangement in Fig. 2, we used the MSMS

algorithm36 with a probe radius of 10−6 µm and a triangulation density of 20 vertices/µm2.

In Fig. 2, we also found the principal axes of pitch and their associated moments employing the

Bead Model developed in Ref. 7 in addition to the boundary element approach developed in this

work (Sec. II F). As expected, with both methods of finding the resistance tensor, one moment of

pitch is zero and the other two have the same magnitude with a flipped sign.

Utilizing the bead and the boundary element models, Table III presents the translational dif-

fusion and the scalar pitch coefficient for the three-bead achiral swimmer along with the angular
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TABLE III. Translational diffusion coefficients and scalar pitch coefficients for the achiral three-beads swim-

mer in Fig. 2. The translational diffusion coefficients are calculated at 298.15 K with a viscosity of 1.0 mPa·s

to mimic the conditions in Ref. 17. Conditions when translation-rotation coupling overtakes translational

diffusion are also provided (Eq. (34)).

Hydrodynamic Model Dtt
(
104 nm2 s−1

)
|P|/2π

(
nm rad−1

)
|ω|2 × t

(
rad2 s−1

)
Bead (Ref. 7) 6.07 79 > 58

Boundary Element (Sec. II F) 5.80 74 > 64

velocity condition for when the translation-rotation coupling surpasses diffusion. Translational

diffusion coefficients were computed at 298.15 K and η = 1.0 mPa·s, reproducing the experimental

conditions of Cheang et al.’s work17 for a NaCl solution. In the first second of an experiment, the

translation-rotation coupling of the immersed three-bead swimmer will overtake diffusion when

the angular velocity, |ω|, exceeds 7.6 rad s−1 (Bead Model) and 8.0 rad s−1 (Boundary Element

Model). These are equivalent to rotational frequencies that exceed 1.3 Hz, and are comparable

to the rotating magnetic field frequencies of 1–8 Hz applied by Cheang et al.17 to propel their

swimmers. The scalar pitch values in Table III and the moments of pitch in Fig. 2 can be used to

generate similar swimming speeds reported in Fig. 3(b) of Ref. 17.

Translational drift is expected when the axes of rotation are not the principal axes of pitch.

This translational drift can be seen clearly in the supporting videos17 displaying the motion of the

three-beads swimmers. Hermans et al.46 also reported translational drift in an experiment with a

rotating achiral swimmer. In a Taylor–Couette device, Hermans et al.’s achiral swimmer had one

orbital radius when rotating clockwise and another when rotating counterclockwise.

C. Lord Kelvin’s Isotropic Helicoid

An isotropic helicoid is an object for which the blocks of the resistance tensor are isotropic at

the center of resistance (CR). That is, the four blocks may be written:8

Ξtt = ξtt I

Ξrt
CR = Ξ

tr
CR = ξ

tr I (35)

Ξrr
CR = ξ

rr I
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FIG. 5. Generalization of Lord Kelvin’s Isotropic Helicoid. (a) Vanes are placed midway between the

intersection points of three circles around a sphere. (b) The vanes are tilted at an angle θ relative to the

circles, and this angle defines the handedness of the isotropic helicoid. The dimensions of (c) the sphere

and (d) the semi-oblate vanes used in our examples.

where ξtt, ξtr and ξrr are scalars and I is the 3× 3 identity matrix. The only difference between

these objects and spherically isotropic bodies (i.e., spheres, cubes and tetrahedra) is that helicoids

have non-zero rotation-translation coupling (ξtr , 0).8

In 1871, Sir William Thomson (widely known as Lord Kelvin) proposed one design for an

isotropic helicoid using a sphere with 12 projecting vanes arranged in a systematic way.47 A gen-

eralization of his approach is shown in Fig. 5 and is described below:48,49

1. Center a sphere at the origin, and locate three circles at the intersections of the sphere with

the xy-, yz- and xz-planes (Fig. 5(a)).

2. Using the six intersection points of the three circles, place the centers of semi-oblate vanes

midway between these intersection points. In the end, there will be 4 semi-oblate vanes per

circle (Fig. 5(b)).

3. The orientation angles θ of the vanes are related to their positions in the circles and defines

the handedness of the isotropic helicoid. The isotropic helicoid is right-handed for 0◦ < θ <

90◦ and left-handed for −90◦ < θ < 0◦. This definition comes from the sign of the angular

velocity ω in Eq. (37) and the direction of rotation of a right-handed screw.

We constructed three left-handed isotropic helicoids (θ =−30◦,−45◦,−60◦) and two spherically

isotropic bodies (θ = 0◦,−90◦) utilizing the procedure in Ref. 48. Each of these isotropic objects

are composed of a sphere with 12 semi-oblate vanes whose dimensions are displayed in Fig. 5(c)
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and (d). Triangulation of these objects was performed in OpenSCAD,50 and we analyzed them

employing the boundary element method described in Sec. II F with a 120-point quadrature devel-

oped by Xiao and Gimbutas.51 This quadrature exactly integrates polynomials of degree 25 and its

points and weights are available in Quadpy.26 Figure 6 shows the pitch axes and the moments of

pitch for these isotropic objects.

For all five objects in Fig. 6, both the center of resistance and the center of pitch are located

at the origin. For the two spherically isotropic bodies, Ξrt
CR = Ξ

tr
CR = 0. From Eq. (8), this implies

that the pitch matrix itself is zero and no translation-rotation coupling is possible. The isotropic

helicoids (θ=−30◦,−45◦,−60◦) have non-zero moments of pitch, but our calculations indicate that

these are quite small. From the definition of the pitch matrix, these small moments of pitch are

related to small rotation-translation coupling values (ξtr), and we can use these moments of pitch

to demonstrate rotation-translation coupling of isotropic helicoids. For example, in an experiment

where an isotropic helicoid from Fig. 6 with θ =−45◦ is suspended in a viscous fluid and a rotation

frequency of 10 Hz is imposed along one of the pitch axes, the helicoid will move 6.3 cm in a 100 s

observation time. On the other hand, the spherically isotropic bodies (θ = 0◦,−90◦) will not move

at all, since there is no rotation-translation coupling. In the supplementary material (Sec. VI), we

compute pitch axes and moments of pitch for a related set of left-handed isotropic helicoids, and

we show the pitch coefficients as a function of the vane angle (θ).

Table IV presents the scalar values associated with the blocks of the resistance tensor (Eq. (35))

for the isotropic objects in Fig. 6. These scalar values were computed in silicon oil with η =

490 mPa·s52 and employing the triangulation and boundary element method described above. For

θ = −30◦, −45◦ and −60◦, the scalar values are related to the isotropic helicoids where ξtr , 0. For

θ = 0◦ and −90◦, the scalar values are related to the spherically isotropic bodies where ξtr = 0.

Rotation-translation coupling can also be demonstrated if we allow an isotropic helicoid or

spheroid to fall through a quiescent fluid. The force and torque on the body are:8,52

 f
τ

 = −  Ξtt Ξrt
CR

Ξtr
CR Ξ

rr
CR

  v
ω

 + (
mb − mf

)  g
0

 , (36)

where mb and mf are the masses of the body and the displaced fluid, respectively, g is the gravita-

tional vector field and 0 is the null vector. The term mb g represents the gravitational force and the

term −mf g , the force due to buoyancy.

Considering that the body is falling along a single axis, and using the isotropy definitions in
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FIG. 6. Moments of pitch (in cm/rad) for isotropic helicoids with different vane angles as described in

Fig. 5. When the vanes are at 0◦ or − 90◦ (panels (a) and (e)), the objects are non-swimmers and do not

couple rotation to translation. Pitch axes and moments of pitch indicate that all other vane angles generate

non-zero rotation-translation coupling. Here, we show helicoid moments of pitch when the vanes are at

−30◦, −45◦, or −60◦ (panels (b), (c) and (d)).

Eq. (35), we can compute the terminal velocity and angular velocity,8

v =
ξrr

(
mb − mf

)
g

ξtt ξrr − (ξtr)2 and ω =
−ξtr

(
mb − mf

)
g

ξtt ξrr − (ξtr)2 . (37)

For chiral objects, we know from our previous work in Ref. 7 that only ξtr will reverse sign.

This implies that v in Eq. (37) is the same for both a helicoid and its mirror image, but the angular

velocity ω will flip sign for the mirror image (enantiomeric) version of the object.

For the angular velocity in Eq. (37), Brenner8 employed the standard definition of ω > 0 for

counterclockwise rotations, following the right-handed rule.12 This implies ξtr < 0 for right-handed

isotropic helicoids, since the scalars ξtt , ξrr and
[
ξtt ξrr −

(
ξtr

)2
]

are always positive.8 We note that

this definition is the opposite of the one employed by Gustavsson and Biferale49 and Collins et

al.52
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TABLE IV. Scalar parameters for the translational (tt), translation-rotation (tr), and rotational (rr) blocks

of the resistance tensor for isotropic helicoids with different vane angles (θ). The moments of pitch for

these objects can be obtained from −ξtr/ξtt . Also shown are the terminal velocities, v, and terminal angular

velocities, ω, for these bodies as they fall through a viscous fluid. Using the experimental conditions in

Ref. 52, the terminal angular velocities are small, corroborating experimental observations.

Angle
ξtt ξtr ξrr v ω(

kg/s
) (

kg m/(s rad)
) (

kg m2/(s rad2)
)

(cm/s) (rad/s)

0◦ 0.284 0 3.73×10−4 46.8 0

−30◦ 0.283 2.65×10−6 3.73×10−4 47.0 −3.34×10−3

−45◦ 0.283 2.72×10−6 3.73×10−4 47.0 −3.42×10−3

−60◦ 0.283 1.89×10−6 3.73×10−4 47.0 −2.38×10−3

−90◦ 0.283 0 3.73×10−4 47.0 0

Table IV also provides the terminal velocities and terminal angular velocities for the bodies

in Fig. 6. To compute these values, we used g = 9.81 m/s2 and the experimental conditions in

Ref. 52, i.e., body density ρb = 1.16 g/cm3 and fluid density ρf = 0.98 g/cm3 (silicon oil). The

mass contributions to the gravitational and buoyant forces can be calculated from the volume of the

rigid body, Vb = 75.267 cm3, which is the combined volume of the sphere and the 12 semi-oblate

vanes in Fig. 5. The spherically isotropic bodies will not manifest angular velocities because their

scalar ξtr = 0. We predict that the left-handed isotropic helicoids will manifest an angular velocity

on the order of 10−3 rad/s in a clockwise direction.

The scalar friction values, ξtt, ξtr and ξrr scale as ηL, ηL2 and ηL3, respectively, where L is

the length of the rigid body. Since the volume Vb scales with L3, we conclude that the terminal

velocity v and angular velocity ω in Eq. (37) will scale as L2/η and L/η, respectively. To compare

with Collins et al.’s helicoid,52 we can scale the size of our isotropic helicoid (θ = −45◦) by 0.348

in the same fluid, and obtain a scaled v′ = (0.348)2 v = 5.69 cm/s, and a scaled ω′ = 0.348 ω =

−1.19×10−3 rad/s. Collins et al.52 reported v′ = 4.74 cm/s and ω′ = −0.003 rad/s. Since ω′ from

Collins et al. has 1% uncertainty, our calculation reveals that more sensitive instruments would be

required to measure rotation-translation coupling of Collins et al.’s helicoid.
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IV. CONCLUSION

We have presented a general theory for the pitch of objects which are interacting with a fluid

medium at low Reynolds number. The pitch matrix, defined in Eq. (5), is diagonalized to yield

three pitch axes along with their associated “moments of pitch”. The pitch axes and moments

arise out of the geometry of the objects’ surfaces, and they have a number of important properties.

First, the symmetry of the object defines the number of degenerate and non-zero moments of pitch.

Second, chiral objects (molecules, helices) couple rotational and translational motion in the fluid,

and will move in the opposite direction from their enantiomers (mirror images) under the same

rotation. Third, the pitch matrix also provides an explanation for the rotation-translation coupling

that allows achiral swimmers to migrate when they rotate in a fluid. This theory also helps us

to understand the translational drift of rotating helical objects. There are many potential uses of

this theory, but the primary interest to chemists is to develop an efficient method for separating

enantiomers without costly synthetic pathways currently in use.

One of our primary observations is that chiral objects with a Cn axis of symmetry have two

degenerate moments of pitch when n ≥ 3, and there is no drift for rotations around that axis of

symmetry. This appears to be the case for propeller-shaped molecules, and this observation points

to a general and efficient design principle.

There are many ways to approximate the hydrodynamic resistance tensor, and we have de-

veloped a boundary element method which obeys the symmetry properties of the blocks of the

resistance tensor. This was also true of earlier methods that use small beads or atomic spheres

to represent the surface of an object or the surface of a molecule, but the method for triangulated

surfaces given here is generally applicable to rigid bodies of arbitrary shapes.

Our theory of pitch has been tested against some experiments on microswimmers, and our

predictions agree well with experimental observations of translational-rotational coupling. We

also show results for an object of historical curiosity, Lord Kelvin’s isotropic helicoid, which

can exhibit a small angular velocity as it falls through a fluid. For the collective behavior of a

multi-molecule system, consider Ref. 7, where a competition model was developed to study the

separation of chiral molecules in solution. Note that even in racemic mixtures, separation can be

achieved under sufficiently large solution vorticities.

There are many potential uses of this theory. Projection of molecular dipoles onto the pitch

axis with the largest moment of pitch can help design polarized microwave methods which sep-
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arate enantiomers through molecular rotation in the fluid (instead of rotating the fluid around the

enantiomers). Additionally, this method also now allows us to identify geometries of achiral swim-

mers from the eigenvalue structure of the pitch matrix. We also now have a firmer understanding

of non-axial drift of chiral objects due to projections of angular velocity onto the axes of pitch.

V. SUPPLEMENTARY MATERIAL

See the supplementary material for additional properties of the pitch matrix and the pitch co-

efficient, as well as applications of the theory of pitch in isotropic helicoids, achiral swimmers,

non-swimmers, and analytically-solvable objects. The supplementary material also develops a

relationship between pitch and the moment of inertia for a sphere, and this is used to analyze

translation-rotation coupling in spheres rotating in non-Newtonian fluids. An accompanying set

of text files provide molecular geometries for the enantiomers and DNA structures, as well as tri-

angulated surfaces for the helix, achiral swimmers, and isotropic helicoids. Code which computes

the blocks of the resistance tensor and pitch matrices for these objects is also included.
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