Check for
Updates

Federated Boosted Decision Trees with Differential Privacy

Samuel Maddock®

University of Warwick

Carsten Maple

University of Warwick

ABSTRACT

There is great demand for scalable, secure, and efficient privacy-
preserving machine learning models that can be trained over dis-
tributed data. While deep learning models typically achieve the
best results in a centralized non-secure setting, different models can
excel when privacy and communication constraints are imposed. In-
stead, tree-based approaches such as XGBoost have attracted much
attention for their high performance and ease of use; in particular,
they often achieve state-of-the-art results on tabular data. Conse-
quently, several recent works have focused on translating Gradient
Boosted Decision Tree (GBDT) models like XGBoost into feder-
ated settings, via cryptographic mechanisms such as Homomorphic
Encryption (HE) and Secure Multi-Party Computation (MPC). How-
ever, these do not always provide formal privacy guarantees, or
consider the full range of hyperparameters and implementation
settings. In this work, we implement the GBDT model under Differ-
ential Privacy (DP). We propose a general framework that captures
and extends existing approaches for differentially private decision
trees. Our framework of methods is tailored to the federated setting,
and we show that with a careful choice of techniques it is possible to
achieve very high utility while maintaining strong levels of privacy.

CCS CONCEPTS

« Security and privacy — Privacy-preserving protocols; - Com-
puting methodologies — Boosting.

KEYWORDS

Gradient Boosting, Differential Privacy, Federated Learning

ACM Reference Format:

Samuel Maddock, Graham Cormode, Tianhao Wang, Carsten Maple, and Somesh
Jha. 2022. Federated Boosted Decision Trees with Differential Privacy. In
Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS ’22), November 7-11, 2022, Los Angeles, CA, USA. ACM,
New York, NY, USA, 15 pages. https://doi.org/10.1145/3548606.3560687

* Author correspondence to s.maddock@warwick.ac.uk
fWork was done while part-time at Meta Al

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA.

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9450-5/22/11...$15.00
https://doi.org/10.1145/3548606.3560687

2249

Graham Cormode
Meta Al

Tianhao Wang"

University of Virginia

Somesh Jha'

University of Wisconsin-Madison

1 INTRODUCTION

It is well known that machine learning models can leak private in-
formation about individuals in the training set [14, 58]. Differential
privacy (DP) [21] is a popular definition that has been developed to
mitigate such privacy risks and has become the dominant notion
of privacy in recent years. Much of the current research on private
machine learning is focused on training deep learning models with
differential privacy [1, 35, 41, 60]. DP is often combined with feder-
ated learning, where data resides on client devices, and only small
information about model updates is collected from clients, in order
to further minimize the privacy risk [36].

While deep learning models are powerful for a range of real-
world tasks in a centralized setting, they are sometimes beaten by
“simpler” models on tabular datasets. One such competitor is Gradi-
ent Boosted Decision Trees (GBDTs) [22, 31, 59] [32]. GBDT meth-
ods build an ensemble of weak decision trees that incrementally
correct for past mistakes in training to improve predictions. Many
GBDT frameworks such as XGBoost [16], LightGBM [38], and Cat-
Boost [19] have seen widespread industry adoption [6, 11, 40, 44].
GBDT methods are an attractive alternative to deep learning due
to their speed, scalability, ease of use, and impressive performance
on tabular datasets.

Recent works have studied GBDT implementations such as XG-
Boost under secure training in the federated setting [17, 18, 24, 48].
These methods typically rely on cryptographic techniques such
as Homomorphic Encryption (HE) or Secure Multi-Party Compu-
tation (MPC). While this allows secure joint training of a GBDT
model without any participant directly releasing their data, the
end model may not necessarily be private and will not guarantee
formal differential privacy (DP) [23]. For instance, in the case of
decision trees, split decisions in a tree can directly reveal sensitive
information regarding the training set. Moreover, such reliance on
heavyweight cryptographic techniques such as HE or MPC often
makes methods computationally intensive or require a large num-
ber of communication rounds, making them impractical to scale
beyond more than a few participants [17, 42].

In parallel, many works have studied decision tree models under
the central model of DP [25, 52, 65]. Most studies focus on training
random forest (RF) models and there has been little research to
explore trade-offs between gradient boosting and DP; those that do
often use central DP mechanisms that cannot easily be extended to
federated settings [33]. It therefore remains an open problem to im-
plement GBDTs in the federated DP setting, and show how to obtain
utility comparable to their centralized non-private counterparts.

Our focus is on DP-GBDT methods that operate within the fed-
erated setting via lightweight MPC methods such as secure aggre-
gation [7, 10]. This setting has recently risen to prominence, as it

https://doi.org/10.1145/3548606.3560687
mailto:s.maddock@warwick.ac.uk
https://doi.org/10.1145/3548606.3560687
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3548606.3560687&domain=pdf&date_stamp=2022-11-07

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA.

promises an attractive trade-off between the computational effi-
ciency of central DP techniques and the security of cryptographic
methods. Recent federated works that consider GBDTs have pro-
posed methods under the local model of DP, but due to the use of
local noise, incur a significant loss in utility [43, 61, 62].

In this paper, we bring together existing methods under a unified
framework where we propose techniques to satisfy DP that are
well suited to the federated setting. We find that by dissecting the
GBDT algorithm into its constituent parts and carefully considering
the options for each component of the algorithm we can identify
specific combinations that achieve the best balance of privacy and
utility. We also emphasise variants that can train such private GRBDT
models in only a small number of communication rounds, which is
of particular importance to the federated setting.

Our high-level finding is that it is possible to achieve high perfor-
mance with GBDT models, even comparable to that of non-private
methods. In order to do so, one must allocate privacy budget to
the quantities that are most important for the learning process. For
example, we show that spending such budget on computing split
decisions of trees is not as important as spending it on the leaf
weights. Using our findings under the efficient privacy accounting
of Rényi Differential Privacy (RDP) leads to performance that is far
closer to the non-private setting than seen in previous works.

Our main contributions are as follows:

o A clear and concise framework for differentially private gra-
dient boosting with decision trees. We deconstruct the GBDT
algorithm into five main components, showing how to fed-
erate each component while satisfying Rényi Differential
Privacy (RDP). We present a unifying approach, capturing
recently proposed DP tree-based models as special cases.

A new set of techniques for improving the utility of private
federated GBDT models. For example, we propose a private
method for discretising continuous features that makes as
much use of the private training information as possible,
incurring little additional privacy cost. Additionally, we ex-
plore batching weight updates, showing it is possible to
maintain competitive model performance while reducing
the number of communication rounds needed.

An extensive set of experiments on a range of benchmark
datasets exploring the trade-offs between various options
in our framework. By evaluating the choices in each of the
components of our framework,we find a clear dominant ap-
proach is formed by adapting and simplifying the GBDT
algorithm while combining it with our improved split candi-
date method. We show it is possible to achieve higher utility
than state-of-the-art (SOTA) DP-RF and DP-GBDT methods
on a range of datasets with reasonable levels of privacy.
We provide open-source code at https://github.com/Samuel-
Maddock/federated-boosted-dp-trees

Roadmap. In Section 2 we outline technical preliminaries required
to understand differentially private GBDTs before covering related
works in Section 3. In Section 4 and 5 we describe our framework
for DP-GBDTs, fitting existing methods within this and proposing
combinations to study. In Section 6 we provide extensive experi-
mental evaluations, comparing our methods to existing baselines
within our framework before concluding with Section 7.

2250

Samuel Maddock, Graham Cormode, Tianhao Wang, Carsten Maple, & Somesh Jha

2 PRELIMINARIES
2.1 Gradient Boosted Decision Trees (GBDT)

Tree-based ensemble methods form a collection of T decision trees
that predict g; for each input x;:

gi = f(xi) = T 1y fe(xi)

For a specific tree f; let L; denote the number of leaf nodes. Each
leaf node of a tree contains a weight, which will be the output of
the tree for observations that are classified into that leaf. We denote
w() € RLt as the vector of leaf node weights for a tree f;.

GBDT methods train trees sequentially making use of past pre-
dictions to correct for mistakes. This is in contrast to random forest
(RF) methods that train T trees in parallel, averaging the weights
of trees for the final prediction.

For a set of examples D = {(x;,y;)}}; with corresponding
predictions {;}}; the GBDT objective function is defined as

L(f) = Xy 0 i) + 21, Q) 1)

where ¢ is a twice-differentiable loss function, typically the cross-
entropy loss (binary classification) or squared-error loss (regres-
sion). The term Q(f;) = yL; + ’%Hw(t) | |% is a form of regularisation
such that y > 0 penalises the size of the tree and 1 > 0 penalises
the magnitude of weights. This regularisation term is present in
the popular XGBoost algorithm but is often omitted in other GBDT
variants; we adopt it for our experimental study.

Equation (1) evades direct optimization. Rather, GBRDT models
are trained sequentially based on previous models. At step t we can
define the model prediction 9" = X! _ fi(x;) = """ + fi(xy).
The objective for optimising f; becomes

LOF) =2 eyn ™ + fi(x)) +Q(f))

Yi
For step t we are concerned with finding a tree f; that minimises
(2). Since f; is not differentiable we can use a Taylor approxima-
tion. Taking the first-order approximation leads to the standard
Gradient Boosting Machine (GBM) method. Taking a second-order
approximation leads to Newton boosting as used by XGBoost [16].
When taking a first-order approximation we obtain

L(t)(ﬁ) ~ ?:1 ([(yi,ﬁ(t_l)) +g§t)ft(xi)) +0

(0 _
where g; " = 77
at the start of step t. By considering the index sets of examples
mapped to leaf node [i.e., I; = {i|x; belongs to leaf [of f;} one can

show by expanding the above and differentiating with respect to

el
t-1)

t(yi, Ql.(t_l)) is the gradient of the loss function

Wl(D that the optimal leaf weight is

) _ Zier 9"

Wi S T A

®)

We denote this as a gradient weight update. Taking a second-order
approximation of (2) instead gives

2(x;
LOG) ~ Ty (g0 + gl frtxn + D L5) 4 ()

where hlw = #Z_l))zf(yi, yAi(tfl)) is the Hessian of the loss at the

start of step t. As before one can show that the optimal weights

https://github.com/Samuel-Maddock/federated-boosted-dp-trees
https://github.com/Samuel-Maddock/federated-boosted-dp-trees

Federated Boosted Decision Trees with Differential Privacy

this time are

(2)
w(t) — Ziell 9;

s 4)
! Ziell h,(-t)‘*'/l

which we denote as a Newton weight update. Substituting optimal
weights from either the first or second-order approximation into
Equation (2) leads to quantities that can be used to measure a split
score. In other words, when considering a split option that partitions
examples into disjoint index sets I = I; U I, the split score is a
measure of how useful a split is for classification. The split score
for Newton updates can be computed as

1| Siery 9007

4 (Zielz gi)z _ (Ziel gi)2
2 | Yier, hitd

ier, hitAd Xier hitd

§S(I.I2) = -r
In practice to form such split options, GBDT methods often dis-
cretize continuous features (e.g., via quantiles) into Q split candi-
dates. In order to handle categorical features, GBDT methods like
XGBoost typically transform them e.g., via a one-hot encoding. In

either case, this leads to splits of the form I< = {i : x;; < sé}

for a split candidate s{z. Equation (5) can then be used to greedily
choose the feature split-candidate pair with the largest score when
growing the tree structure during training.

2.2 Differential Privacy

Differential Privacy (DP) is a formal definition of privacy that guar-
antees the output of a data analysis does not depend significantly
on a single individual’s data item. Such a definition can be based
on the notion of privacy loss.

Definition 2.1 (Privacy Loss Random Variable). Given arandomised
mechanism M : X — Y we define the privacy loss random vari-
able L p(. 5~ over “neighbouring” datasets x, x" € X as

M) (X))
Pmxy (X)

where X ~ M(x) and ppq(.) is the density of the mechanism
applied to the respective dataset.

LM,x,x/ = log (

We take neighbouring datasets x, x” € X to mean that x and x’
differ on a single individual. The privacy loss allows us to succinctly
describe differential privacy.

Definition 2.2 (Differential Privacy in terms of privacy loss [5]). We
say that a randomised mechanism M : X — Y satisfies (¢, §)-DP
if for any adjacent datasets x, x” € X

IP)(L/'\/(,x,x' >€)<$

The privacy parameter € is referred to as the privacy budget. When
0 = 0, we say that M satisfies e-DP. In this work we only consider
privacy guarantees where § > 0 i.e., the case of approximate-DP.

While (e, §)-DP is a useful definition of privacy it does not allow
us to tightly quantify the privacy loss from the composition of mul-
tiple mechanisms [37]. This is particularly important in machine
learning where we wish to use mechanisms many times over the
same dataset to train models. Instead, the notion of Rényi Differ-
ential Privacy (RDP) provides a succinct way to track the privacy
loss from a composition of multiple mechanisms by representing
privacy guarantees through moments of the privacy loss.

2251

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA.

Definition 2.3 (Rényi Differential Privacy [49]). A mechanism
M : X — Y is said to satisfy (e, 7)-RDP if the following holds for
any two adjacent datasets x,x” € X

E [L<“‘1>

M,x,x’] <exp((a—-1)7)

One of the simplest and most widely-used mechanisms to guar-
antee (@, 7)-RDP is the Gaussian mechanism.

FACT 2.1 (GAUSSIAN MECHANISM [21, 49]). The Gaussian mecha-
nism M : X — R™ of the form

M(x) = q(x) + N(0, A2(q)*0%Im)

satisfies (a,)-RDP with t = ZL and

o2
Az(q) = maxyex [lq(x) — q(x)l;

The quantity Ay (q) is the Ly-sensitivity of the query q. The above
shows that in order to make a real-valued query q differentially
private we just need to add suitably calibrated Gaussian noise.

An attractive property of this formulation of DP is that it is easy
to reason about the privacy of an analysis where mechanisms are
used multiple times on the same dataset.

FAcT 2.2 (PARALLEL COMPOSITION). Given a dataset X, a disjoint
partition X = X1 U Xy --- U X and a mechanism M that satisfies
(@, 7)-RDP. Then the mechanism M’(X) = (M(Xy),..., M(Xy))
satisfies (a, r)-RDP.

FacT 2.3 (SEQUENTIAL COMPOSITION). If My and My are (o, 11)-
RDP and (e, 2)-RDP respectively then the mechanism that releases
(M1(), Ma(+)) is (a, 71 + 72)-RDP.

FAcT 2.4 (PosT-PROCESSING). If M is an (a, r)-RDP mechanism
and f is any function that does not depend on any private data then
f(M(-)) is also (a, 7)-RDP.

Sequential composition tells us that using a mechanism multiple
times on the same data leads to an increase in privacy loss. In the
case of composing k Gaussian mechanisms, we must increase the
noise added through o by the order of Vk under RDP.

In practice, we care about obtaining the more meaningful notion
of (¢, §)-DP. When working with RDP we can rely on conversion
lemmas such as those presented in [13] to convert between («, 7)-
RDP and (e, §)-DP. In our implementations, we use the analytical
moment accountant developed by Wang et al. to provide tight
numerical accounting of the privacy loss under RDP [63].

It is common to fix the privacy parameters (e, d) before the
analysis and then minimises o over a range of « values to obtain the
smallest such noise needed to guarantee the chosen level of privacy.
We use the autodp package! to verify our accounting provides the
correct (¢, §)-DP guarantee. An additional benefit of working with
RDP is then that our framework easily extends to other mechanisms
that satisfy RDP such as the Skellam mechanism which may be
more suited to distributed settings [2].

!https://github.com/yuxiangw/autodp

https://github.com/yuxiangw/autodp

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA.

Samuel Maddock, Graham Cormode, Tianhao Wang, Carsten Maple, & Somesh Jha

Table 1: Summary of our Private Federated GBDT Framework

Component Methods Privacy Cost (in terms of ks, K4y, K¢)
(C1) Split Method « Histogram-based (Hist) (§4.3.1) ks = Tmd
« Partially Random (PR) (§4.3.2) ks = Tmd, does not require construction of a histogram
« Totally Random (TR) (§4.3.2) ks =0
(C2) Weight Update « Averaging (§4.4.1) If using a Hist or PR k,, = 0 otherwise k,, =T
« Gradient (§4.4.2)
« Newton (§4.4.3)
(C3) Split Candidate « Uniform, Log (§4.5.1) Data-independent, k. = 0

« Quantiles (non-private) (§4.5.1)
« Iterative Hessian (IH) (§4.5.2)

N/A
If using Hist, k. = 0. If using TR, with s rounds of IH, k. = sm

(A1) Feature Interactions « Cyclical k-way (§5.1)

« Random k-way (§5.1)

If using Hist or PR, x5 = Tkd, if k = 1 then ks = T.
If using TR with IH then k. = sk

(A2) Batched Updates « B =1 (Boosting) (§5.2)

« B = T (RF-type predictions) (§5.2)
«B=p T forsomep € (0,1) (§5.2)

Post-processing, no effect on privacy

2.3 The Federated Model of Computation

Federated Learning (FL) has become a popular paradigm for large-
scale distributed training of machine learning models [36]. In this
work, we consider the horizontal setting, where a set of participants
each hold a local dataset over the same space of m features. We
assume that there are n data items in total and we consider the
problem of training a differentially private GBDT model over the
distributed dataset. A powerful tool is secure aggregation, which
allows the computation of a sum without revealing any intermediate
values [7, 10]. Specifically, when each participant P, has a number
Xy € Z, secure aggregation computes the result)} x securely
without any participant directly sharing their x.

Our focus is on a framework that combines secure aggregation
with DP to securely and privately train GBDT models. For the
rest of this paper, we present algorithms as if the data were held
centrally, with the understanding that all the operations we use
can be performed in the federated model (with rounding to fixed
precision)?. This means that we avoid techniques designed for
central evaluation such as the exponential mechanism [33, 45, 65].

Threat Model: In this work, in common with many other works
in the federated setting, we assume an honest-but-curious model,
where the clients do not trust others with their raw data. We study
the aggregating server’s knowledge based on the information gath-
ered from clients. While there is potential for clients to attempt to
disrupt the protocol, we leave the detailed study of more malicious
threat models and model poisoning to future work. In order to com-
bine secure aggregation with DP, we act as if there were a trusted
central server that securely aggregates quantities and adds the re-
quired DP noise before sending the updated (private) model back to
participants (as assumed in [47]). In practice, we can eliminate the
need for a central server by well-established implementations of
secure computation that rely on techniques from secure multi-party
computation, either among a small number of honest-but-curious
servers, or via clients working with small groups of neighbors and

2The rounding introduces a small amount of imprecision in representing values, but
this is overwhelmed by the noise added for privacy.

2252

a single untrusted server [7]. Sufficient noise for DP guarantees
can be added by honest-but-curious servers, or introduced by each
client adding a small amount of discrete noise, such that the total
noise across clients adds up to the desired volume [8, 9, 15, 53-57].

3 RELATED WORK

Differentially private decision trees have been well studied in the
central setting with a strong focus on random forest (RF) models [25,
27, 65]. However, the boosted approach (i.e., private GBDT models)
has been less well-explored. Recently, federated XGBoost models
have been presented, with most works focused on secure training
via cryptographic primitives such as Homomorphic Encryption
(HE) and Secure Multi-Party Computation (MPC) and with no DP
guarantees [17, 18, 24].

Some related works (e.g., [61]) study XGBoost in a federated
setting with local DP (LDP) guarantees. The closest work to ours
in this regard is the FEVERLESS method [62], which translates
the XGBoost algorithm into the vertical federated setting using
secure aggregation and the Gaussian mechanism. In particular,
FEVERLESS securely aggregates gradient information into a private
histogram which is used to compute split scores and leaf weights
(Equations (4) and (5)). A certain subset of the participants are
chosen as “noise leaders” to add Gaussian noise to their gradients
information before aggregating to achieve an overall DP guarantee
after securely aggregating across all participants. As we will see, the
main disadvantage of directly translating the XGBoost algorithm
in this way is the high privacy cost of repeatedly computing split
scores. This results in having to add more noise into split score/leaf
weight calculations and a lower utility model.

To reduce this privacy cost, one can consider making split de-
cisions independently of the data. These so-called totally random
(TR) trees have been studied in both the non-private and private
settings with random forests [26, 29]. In the private setting, pro-
posed methods often use central DP mechanisms that are hard to
federate [3, 27]. For example, Fletcher and Islam [27] propose a DP-
RF method that utilises the exponential mechanism to output the

Federated Boosted Decision Trees with Differential Privacy

majority label in leaf nodes under the notion of smooth sensitivity,
which is unsuited to the federated setting.

In this work, we also consider TR trees as an option under our
framework but for a federated and private GBDT model. To the
best of our knowledge, the only other work that considers private
boosting with random trees is that of Nori et al. [51]. They consider
a central DP setting with a focus on training private explainable
models via Explainable Boosting Machine (EBMs). We compare the
technical differences in Section 5.1 and empirically in Section 6.6.

4 PRIVATE GBDT FRAMEWORK

In this section, we perform a comprehensive investigation of the
main components needed to train GBDT models in the federated
setting. We propose a framework of methods for training DP-GBDT
models by identifying three main components that require DP noise
and two additional components that interact with these. The full
framework is summarized in Table 1.

We explain the various options in each component and how
they affect privacy guarantees and conclude by instantiating re-
lated work into the framework before empirically evaluating meth-
ods in Section 6. A particular strategy we highlight is replacing
data-dependent choices with random or uniform choices. Although
counter-intuitive, it often holds that the privacy “cost” of fitting
the choices to the data is not made up for by the utility gain, and
picking among a set of random options is sufficient for good results.
This is evaluated in our experimental study.

For simplicity, we assume that each participant holds a single
data item (x;, y;) with n participants (data items) in total. We ad-
ditionally assume that we have (publicly) known bounds on each
feature. All of these assumptions can be easily removed, potentially
with some additional privacy cost.

4.1 A General Recipe

In order to train the GBDT algorithm outlined in Section 2.1 we only
need to specify a few core choices: How to pick split candidates
(for discretizing continuous features), calculate the split scores at
each internal node, and compute the leaf weights for prediction.
One can note from Equations (4) and (5) that the leaf weights and
split scores only depend on the sum of gradients and Hessians at
an internal or leaf node of a decision tree. It is therefore natural to
utilise secure aggregation as a tool to federate the GBDT algorithm.
In Algorithm 1 we present the general GBDT algorithm assuming
these quantities can be gathered. Looking closely at Algorithm 1,
the only time we need to directly query participants’ data is when
we compute the three quantities just mentioned.

Based on this we divide the general algorithm into 3 core com-
ponents that require some form of DP noise: Split Methods (C1),
Weight Updates (C2), and Split Candidates (C3). These are the core
components required for training a GBDT model. We also consider
two additional aspects to specify when training a GBDT model: Fea-
ture Interactions (A1) and Batched Updates (A2). These are aspects
that interact with the core components but do not require any addi-
tional noise. To reason about the privacy guarantees of our GBDT
framework, we introduce some variables to count the number of
queries needed when training a GBDT model with T trees. Let k.
denote the number of queries needed to calculate split candidates;

2253

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA.

Algorithm 1 General GBDT

Input: Number of trees T, maximum depth d, number of split
candidates Q, privacy parameters €, §

For each feature j = 1,...,m generate Q split candidates
Sj = {s{s]Q} (C3)

2: Initialise the forest 7« 0

3: fort=1,...,T do

For each (x;,y;) € D compute the required gradient
information (gj, h;) based on ﬁl.(tfl) (C2)

1:

4:

Choose a subset of features F(!) C {1,...,m} with
|[F(D| = k for the current tree fi (A1)
6: while depth of the current node (in f;) is < d do

o

Choose a feature split candidate pair (j, sé) from F(*)
(C1)

Split current node with observations I into child nodes
with index sets I< = {i : xj; < sé} and I, =T\ I<

9 Repeat (6)-(9) recursing separately on the child nodes

For each leaf I calculate a weight w® from the examples
in the leaf according to the chosen update method (C2)

Update predictions g;t) or batch updates (A2)
Add the tth tree f; to the ensemble, 7 =7 U {f;}

13: return the trained forest 7~

ks for the queries needed to calculate inner node splits; and «,,
for the queries to calculate leaf weights. Counting the number of
queries needed for each component is enough to give a privacy
guarantee for Algorithm 1.

THEOREM 4.1. Suppose that each mechanism for the framework
components satisfies (e, 7¢), (a, 7s), (@, Tvy) -RDP respectively. Then
the GBDT algorithm satisfies (c, T)-RDP with T = Kk¢Te +KsTs + Ky Toy-

The above simply follows from the sequential composition prop-
erties of RDP. In our experimental study we utilise the Gaussian
mechanism for each core component, hence 7 = (k¢ + ks + k) 2%"‘2
and so 0 = O¢ (/K¢ + Ks + Kqy). This shows that if we can minimise
the number of queries that each main component requires, then we
reduce the amount of noise we add to the learning process while
still maintaining privacy. Various methods affect the privacy cost
in different ways. The privacy implications for different choices in
terms of k., ks, Ky are shown in Table 1.

4.2 Federating GBDTs

At the start of building the t-th tree, each participant calculates
gradient information (gi(t), hgt)) for their examples. Throughout
the training of a single tree, to calculate the desired components we
can rely on querying data in the form gq(I) = (Ziel glm, Diel hlm)
over some set of observations I, e.g., all observations in a specific
tree node. To do this securely, we can apply secure aggregation to

aggregate gradient information at the various stages that require it
in Algorithm 1 (C1- C3).

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA.

In order to apply the Gaussian mechanism, we must bound the
sensitivity of such a query function. In this case, we need bounds
on the gradient quantities ggt), hlm. Our focus in this paper is
on binary-classification problems. In binary-classification our loss
function is of the form #(y;, ;) = yilog(y;) + (1 — y;) log(1 —
;i) (i.e., binary cross-entropy) and has gradients g; € [—-1,1] and
Hessians h; € [0, %]. Hence the sensitivity of aggregating gradient

= V17

information is Az(q) = i 7 If the chosen loss function

Ji+t &=
has unbounded gradient information (e.g., regression problems) we
can employ gradient clipping (similarly to DP-SGD) to obtain a
bounded sensitivity [1].

The computational and communication costs of these steps are
low. Decision tree-based methods are often preferred for their ease
of construction, and this translates to the federated setting: each
client computes its local updates (e.g., gradients and Hessians) and
shares these through secure aggregation. The communication costs
are linear in the size of the updates computed, which are fairly low
dimensional: we quantify this in the subsequent sections.

4.3 Component 1: Split Methods

4.3.1 Greedy Approach: Histogram-Based. As described in Section
2.1, the standard GBDT algorithm will calculate Q split-scores for
every feature j. This forms feature-split pairs (J, sé) and at each in-
ternal node the pair with the highest score is chosen to grow the tree.
This split score depends on aggregating gradient and Hessian values.
The most suitable way to do this in a federated setting is to form a
histogram over the split candidates for every feature. This requires
(securely) aggregating the gradient and Hessian values into bins

partitioned by the split candidate values. Hence the g-th gradient
(@)

histogram bin for feature j contains Gé = Zie{i:sé_1<x,~j <si} 9; >
and similarly for Hessians.

We can apply our generic aggregation query q(I) with I = {i :
SZI _ <Xxij < sé} to aggregate bins of both the gradient and Hessian
histograms. Each participant’s data item will fall into exactly one
histogram bin, so via parallel composition we just need to count
the number of times a histogram is computed during training. At
each internal node of a tree, we must compute split-scores and thus
gradient histograms. When considering all m features per split, this
requires ks = Tmd queries for a model with T trees of maximum
depth d. This incurs a high privacy cost for large ensembles®. Each
client can quickly compute and send their histograms of size Q for

each feature considered for a split.

4.3.2 Randomised Approach: Partially and Totally Random. In [29],
Geurts et al. initiate the study of “Extremely Randomised Trees”
(ERTs) in the non-private setting. In ERTs the idea is to add ran-
domness into the split choices when growing the tree. The moti-
vation was to show that accuracy comparable to that of greedy
tree-building models could be obtained for large enough ensem-
bles. ERTs are potentially much faster to train as there is no need
to compute split scores for each internal node. This leads to two
pragmatic choices for splitting nodes:

3Default XGBoost parameters take d = 6 and T = 100 which implies a high privacy
cost on any dataset with a moderate number of features m

2254

Samuel Maddock, Graham Cormode, Tianhao Wang, Carsten Maple, & Somesh Jha

e Partially Random (PR): For each feature j pick a split candidate
s‘JI € Sj uniformly at random, where S; is the set of split candi-

dates for j. The split score of (j, St]l) is computed for each feature
and the pair with the highest score is chosen. This still requires
ks = Tmd queries but does not require building histograms.

e Totally Random (TR): Pick a feature j € [m] and a split can-
didate s{], both uniformly at random. This does not require any
queries for internal nodes (ks = 0) as it is data independent.

Since TR trees do not access data to build tree structure they
are attractive from a privacy perspective. All trees in the ensemble
can be pre-computed by choosing random splits, which can be
communicated to clients at a cost linear in the size of the tree. Hence
building a TR ensemble requires far fewer queries than histogram-
based methods. However, a TR ensemble often requires a much
larger number of trees to achieve similar model performance as
histogram-based counterparts. We explore such trade-offs between
TR and histogram-based methods in Section 6.2.

4.4 Component 2: Weight Updates

Once a tree has been built, the records in the dataset will be par-

titioned among the leaf nodes of the tree. In the following we
(®)
1

records Ilm = {i € [n] : i belongs to leaf [of tree t}. Each client
needs to compute and send the weights of leaf nodes, at cost pro-

consider the [-th leaf of tree t with weight w,”’ which contains

portional to the number of leaves, 2¢ if there are d binary splits.
Both RF and GBDT methods update these leaf nodes with a weight
that contributes to prediction. As we noted in Section 2.1, taking a
first-order or second-order approximation to Equation (2) leads to
two different weight updates. Note that by setting h; = 1 in both (4)
and (5) we recover the gradient weight update of Equation (3) and
also obtain a split score for gradient updates. Hence when h; = 1
both approaches are equivalent and so Newton updates can be seen
as generalising the standard gradient approach. While RFs do not
calculate gradient information, we can still view them as a special
case within our framework. RF trees typically compute the class
probabilities in leaf nodes which are averaged across all trees in the
ensemble. This leads to three main weight updates: zeroth-order
(Averaging), first-order (Gradient), and second-order (Newton).

4.4.1 Averaging Updates. For random forests the leaf nodes store
the class distribution. For regression problems this is the average
value of y in the leaf node. With binary classification, the weight
update is simply the proportion of positive examples in the leaf
Ly My =1}

Although RF models do not compute gradients we can still utilise
our generic aggregation query by having participants send g;
1{y; = 1} and h; = 1. In this case },;cy g; counts the number of
class 1 examples and }};¢; h; counts the number of examples in a
node. This changes the sensitivity of our query to A(q) = V2.

In RF models the trees are independent from one another with
final predictions formed from the average of weights across all trees.
We denote this as an averaging update from now on.

node i.e., w B %
! I

4.4.2 Gradient Updates. Each participant calculates g; aig»f (yi, 9i)

and h; = 1 and uses this in the weight update defined in Equation (3),

Federated Boosted Decision Trees with Differential Privacy

i.e., the weights are the average negative gradient values in the leaf
node. This can be viewed as a gradient descent step over the batch
of observations in leaf node j. The sensitivity of the query also
changes to A(q) = V2.

4.4.3 Newton Updates. Participants calculate both first-order and
o

a(1:)*

_ 9 o
ayigl

second-order gradients of the form g; and use

the weight update in Equation (4).

In classification problems the total weight across trees for an
observation i is aggregated and the sigmoid function o (+) is applied.
It is also standard in GBDT methods to perform post-processing
on leaf weights. In practice we consider updates of the form -7 -
max{wl(t), ﬂ'sgn(wl(t))} where 1 > 0 is the learning rate and f > 0
is a clipping factor to control the magnitude of updates.

For histogram-based splitting, the final gradient histograms from
the parent of a leaf node can be used to calculate weights, meaning
Kk = 0. For TR splitting, participants do not calculate histograms
so they must directly aggregate the required gradient information
in each leaf node. This is a single query per leaf node that happens
once per tree, and so ky, = T.

4.5 Component 3: Generating Split Candidates

One major step needed to train GBDT models is to identify split
candidates for each (continuous) feature. In traditional GBDT mod-
els such as XGBoost, split candidates are chosen by computing the
quantiles of a feature. Computing quantiles is a succinct way to
describe a feature’s distribution but can be slow in practice for large
datasets. The original XGBoost paper proposes a weighted quantile
sketch to make this process faster, using the Hessian information as
weights. While this is suitable in non-private settings, it is difficult
to calculate such quantiles (or quantile sketches) accurately without
incurring an appreciable privacy cost. Existing work on DP-GBDTs
has computed split candidates either with LDP quantiles in the local
setting [43], DP quantiles in the central setting [33] or with MPC
methods (without DP guarantees) in distributed settings [61].

4.5.1 Data-Independent Split Candidates. The simplest and cheap-
est (from a privacy perspective) approach is to propose split candi-
dates independently of the data, such as via uniform splits. For a
feature j with values in [a, b], one can generate a split candidate for
each g € [Q] uniformly over [a, b] as sf] =a+(q-1)(b-a)/(Q-1).
As we assume bounds on features are public knowledge, we do not
need to query participants’ data, and hence k., = 0.

A disadvantage of this approach arises when features are heavily
skewed as uniform splits are unlikely to cover important areas of
the feature’s distribution. One possible approach would be to take a
log transform of skewed features and then split uniformly over the
transformed feature. In the non-private setting, one can manually
check features or use statistical skewness tests to determine when
to transform features. This poses a problem in the private setting as
we may not know a priori which features are skewed and privately
computing such a test may be expensive privacy-wise.

4.5.2 lterative Hessian (IH) Splitting. We propose an alternative
method based on making use of information that is usually calcu-
lated during the training process. We will verify for datasets with

2255

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA.

heavily skewed features that we can achieve similar AUC to opti-
mal non-private split candidate methods for little to no additional
privacy cost. Specifically, the Hessian information in Newton boost-
ing captures the certainty of predictions and is often used in the
non-private setting to guide quantile finding. We can take a similar
approach in the private setting provided we estimate aggregated
Hessian values at each split candidate bin i.e., a Hessian histogram.
We propose the following intuition to propose new split candidates
at each round:

e Merge bins with low (or zero) Hessian since this indicates a split
is too fine-grained to be useful.

o Split bins that have large Hessian value as this indicates a large
number of observations lie in the bin. To refine a bin we can split
by taking the midpoint of adjacent bin edges.

In practice, we split a bin if its Hessian value is greater than the
total Hessian uniformly divided over the Q bins. If at the end of a
round we end up with fewer than Q bins, then we fill the remaining
bins by uniformly splitting. Carrying out IH splitting is a form of
post-processing on the Hessian histogram and thus has no extra
privacy cost beyond the cost to compute the histogram. However,
the choice of split method may incur additional privacy cost:

e Hist: In histogram-based methods, a Hessian histogram is com-
puted at the start of every tree for all features. We can use the
previous tree’s Hessian information to inform our split candi-
dates for each new tree. We incur no additional privacy cost and
hence k. = 0

Totally random: As TR trees are built independently of the data,
Hessian histograms are never computed. We propose to calculate
a Hessian histogram for the first s rounds of training and thus the
number of queries we need for split candidates is x, = sm. For
the first s rounds we refine our split candidates using IH, after
which we use the final set of candidates found in round s for the
remaining T — s trees.

5 ADDITIONAL CONSIDERATIONS

5.1 Feature Interactions

Explainable Boosting Machines (EBMs) are a popular method for
training GBDTs to ensure explainability of the resulting model [46].
The main idea is to construct an additive model of the form f(x) =
Zj."zl ajfj(x) where each fj(x) is a boosted decision forest with
trees that are trained only on the j-th feature. Nori et al. [51] con-
sider the problem of training DP-EBM models in the central set-
ting. Their method relies on training many very shallow trees with
totally-random (TR) splits. In order to ensure explainability, each
tree of the ensemble is restricted to a single feature at a time. This
results in a “cyclical” boosting method where tree ¢ is trained only
on feature j = t mod m. Although the focus of our work is not
on explainability, Nori et al. note that the cyclical training method
of EBMs actually results in more accurate models (with DP) when
compared with models that can freely split on all features per tree.
This presents another design decision—whether to train trees cycli-
cally (so that each tree only splits on a single feature at a time), or to
train trees that consider a subset of k features to choose from when
splitting a node. We define k-way feature splitting as considering k
features at a time per tree. This can be done in two different ways:

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA.

1. Cyclical k-way: Consecutive trees train on a subset of the
next k features and repeat in cycles every m/k trees.

2. Random k-way: The k features are chosen randomly at the
start of each tree.

When k = 1 with cyclical training we recover the method used in
EBM. When k = m we recover the standard GBDT splitting method.
The choice of k determines the maximum number of feature inter-
actions that are possible within a tree. We note that the random
k-way method is also commonly used in the non-private setting
to reduce computation time and act as model regularisation [28].
The computation and communication costs for each client scale
proportionally to k. For histogram-based methods with k > 1 the
number of queries required to form internal node splits for k-way
splitting is ks = Tkd. When k = 1 this reduces to ks = T and k., = 0
since gradient histograms can be computed once at the root node
and this same histogram can be used to calculate split-scores for
every level in the tree. For totally-random trees the value of k does
not affect the number of queries and ks = 0 remains.

5.2 Batched Updates

One advantage of random forests (RF) in distributed settings is
that trees can be trained in parallel. In the case of totally random
(TR) trees the model orchestrator can precompute the structure
of all trees and participants can compute gradient statistics for
leaf weights over the entire forest in a single round of communica-
tion. On the other hand, gradient boosting methods are inherently
sequential—results of the previous ensemble determine the gradi-
ent calculations for the next tree. This is a bottleneck for weight
updates. One way to parallelise this is to consider batching updates.

Suppose we use a batch size of B and are training T trees. A

batched update is of the form
R Dy
where we abuse notation to let wl.(k) denote the weight of the leaf
in tree k that x; is partitioned into.

Batched updates require participants update their predictions
every B rounds based on the average leaf weight of the trees in the
batch. At the start of the (B + 1)-th round the gradient information
is recomputed so that the next batch is boosting predictions from
the previous batch. One can think of this as boosting a set of B-sized
random forests. When B = T we recover RF-type predictions but
l(t) uses gradient or Newton weights then the model
updates are different from averaging updates (which instead use
class probabilities as weights). Batching updates also has no extra
privacy cost as it is a form of post-processing.

If we wish to train T trees with a batch size B then the communi-
cation rounds of the boosting process reduce from O(T) to O(T/B)*
In Section 6.5 we consider batching gradient and Newton updates
for different batch sizes and compare to DP-RF which requires O(1)
rounds of communication [26].

note that if w

5.3 Instantiating the GBDT Framework

5.3.1 Instantiating Components. In the previous sections, we have
deconstructed the GBDT algorithm into various core components

4Ignoring the constant number of rounds required for secure aggregation.

2256

Samuel Maddock, Graham Cormode, Tianhao Wang, Carsten Maple, & Somesh Jha

that require us to add noise to guarantee DP. We also noted two
additional considerations that interact with the core components.
When instantiating our framework in experiments we will com-
bine the options for each component as listed in Table 1. A key
contribution of this work is in the comprehensive study of both
existing (Section 5.3.2) and new (Section 5.3.3) methods as follows:
(C1) Split Methods: The histogram over split candidates is how
centralized algorithms like XGBoost structure the problem [16].
It is also friendly to federation and has been used by prior works
so forms a natural baseline [17, 24, 62]. Totally random trees have
been widely used in non-private RF models but have not been well-
studied in private, federated and GBDT settings [29]. DP-EBM is
the only prior example we are aware of here [51]

(C2) Weight Updates: We consider standard update methods used
in GBDTs/RFs noting that Hessian updates have not been as well-
studied under privacy or the federated setting.

(C3) Split Candidates: Data-independent splits have been largely
overlooked in central DP settings with effort put into calculating DP
quantiles. We advocate it as a good option for the federated setting
since the (privacy) cost of finding quantile splits is not repaid in
practice. We introduced the Iterative Hessian (IH) approach based
on refining candidates over a number of rounds which helps when
features are particularly skewed.

(A1) Feature Interactions: The idea of (maximum) feature interac-
tions generalizes the Explainable Boosting Machines (EBM) method
which considers a single feature per tree [51].

(A2) Batched Updates: The idea of batching updates has not been
studied in the private and federated setting. It can be viewed as
boosting individual RFs which is sometimes done in non-private
settings. Our focus here is on reducing communication rounds
while still maintaining accuracy.

5.3.2 Instantiating Related Work. In Table 2 we outline how SOTA
DP-GBDT models can be expressed in our framework. These act
as the primary baselines in our experiments. We note that many
of these methods were originally proposed to use pure e-DP in the
central setting and often rely on basic composition results. We have
re-implemented all methods to use tighter RDP accounting and
guarantee (€, §)-DP so they are not disadvantaged. To summarise:

e DP-EBM [51] is a DP variant of the EBM model. It uses Gaussian
Differential Privacy (GDP) but as this is known to under-report
€ values [30], we use RDP in our experiments. DP-EBM uses TR
splits with gradient updates, where each tree only considers a sin-
gle feature. The split candidate method is a central DP histogram
that attempts to uniformly distribute observations among bins.
We replace this with uniform split candidates in our experiments.
DP-RF [26] is a central DP method that builds a RF via TR splits.
The method was originally proposed for categorical features and
later extended to continuous features [27]. The Laplace mecha-
nism is used to perturb leaf weights we re-implement this using
the Gaussian mechanism under RDP accounting. In our federated
framework, DP-RF corresponds to using TR splits, the averaging
weight update, and uniform split candidates (with k = m, B = T).
FEVERLESS [62] corresponds to a Hist split method with New-
ton weight updates. FEVERLESS uses a quantile sketch which is
non-private in our horizontally partitioned setting; we replace
this with uniform splits to make FEVERLESS fully private.

Federated Boosted Decision Trees with Differential Privacy

Table 2: Related works under our framework

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA.

Table 3: Datasets, p is the proportion of class 1 samples

DP-EBM [51] FEVERLESS [62] DP-RF [25]
C1: Split Method TR Hist TR
C2: Weight Update Gradient Newton Averaging
C3: Split Candidate Uniform (DP Hist) Quantile Sketch N/A
Al: Feature Interactions Cyclical (k = 1) m-way m-way
A2: Batched Updates B=1 B=1 B=T
Ko+ Ks + Kqy 0+0+Tm 0+Tmd+0 0+0+T
e DP-EBM ¥ DP-TR Newton IH EBM
* DP-GBM FEVERLESS (uniform)
® DP-RF * XGBoost (Non-private)
v DP-TR Batch Newton IH EBM (p=0.25)
0.9 ey
¥
»rver
0.8 iere
s 1%
= v
€0, % ol
0.6
Adult Credit 1 Credit 2 Higgs

Dataset

Figure 1: Snapshot of results for rep-
resentative methods studied in Sec
6.6. T € [25,300], € = 0.5,d = 4.

In our final comparisons in Section 6.6 we compare to an LDP
baseline. This baseline has each user add Gaussian noise before
releasing their gradient information. Such noise only needs to be
scaled by the number of trees (T) since each user can release noised
gradients at the root node, and the server can use this to construct
the tree. While LDP does not strictly fall into our framework, it is a
useful benchmark to compare against distributed DP counterparts.

5.3.3 Instantiating Other Methods. We end Section 6 with an end-
to-end comparison of the baselines against new combinations ex-
pressed under our framework. These methods are:

DP-EBM Newton, the DP-EBM method with Newton updates
instead of Gradient updates. We also do not train Tm trees but
only T. The total privacy cost here is k¢ + ks + kyy =0+ 0+ T
DP-TR Newton, the TR spit method, uniform split candidate
and Newton updates. The privacy cost is the same as DP-EBM.
DP-TR Newton IH EBM, a DP-TR Newton with EBM feature
interactions (i.e., cyclical k = 1). The privacy cost is k¢ + ks +Kyw =
0+ 0+ T + sm where s is the number of rounds IH is performed.
DP-TR Batch Newton IH EBM (p = 0.25,p = 1), i.e., DP-TR
Newton IH EBM with batched updates with p = 0.250r p = 1,
the privacy cost is the same as DP-TR Newton IH EBM.

6 EMPIRICAL EVALUATION

Sections 4 and 5 introduced our framework for the private and
federated training of GBDT models. In this section we perform a
thorough experimental evaluation of the components in our frame-
work. Our main goal is to answer the following questions:

1. In terms of model performance, what are the best options for
each component under our framework?

2. Under privacy, does batching updates improve performance?

2257

Dataset No. Samples (n) No. Features (m) p
Credit 1 [34] 120,269 10 0.07
Credit 2 [64] 30,000 23 0.22

Adult [39] 32,651 14 0.24
Nomao [12] 34,465 10 0.28
Bank Marketing [50] 45,211 16 0.11
Higgs (subset) [4] 200,000 28 0.47

3. Can a combination of choices in our framework result in methods
that improve over the SOTA baselines discussed in Section 5.3.2?

Figure 1 shows a snapshot of our findings. We display for a subset
of datasets and methods, the average test AUC while fixing the
privacy budget € = 0.5. Full results across all datasets are discussed
in Section 6.6. We represent baseline methods plotted as circles and
new combinations within our framework as triangles. Each point
is formed from varying T € [25,300] in increments of 25 and is the
average test AUC® over 5 runs. We observe that on most datasets
we significantly improve over existing methods. In some cases we
match the nearest competitor, but often with additional benefits
such as reducing the number of rounds of communication.

These experimental results, along with others in this section,
show that it is possible to train accurate, private and lightweight
federated GBDT models with only a small gap behind their non-
private counterparts. This conclusion is reached by answering our
questions as follows:

1. In Sections 6.2—6.4 we evaluate the choices within each compo-
nent. We find that the totally-random strategy provides a significant
reduction in privacy cost and outperforms all other choices. For
weight updates we find that utilising Hessian information usually
gives better performance with no additional cost, which is similar
to the non-private setting. Finally, for split candidates, we find our
IH method achieves performance that matches that of (non-private)
quantiles with little extra privacy cost.

2. In Section 6.5 we study batching updates to help reduce the
number of communication rounds. We find this is not the only
benefit of batching and in fact, for very high-privacy regimes (¢ <
0.5), batching updates often gives better model performance than
performing boosting for the full T rounds.

3. In Section 6.6 we combine the best individual components and
compare against our SOTA baselines. We find combining the best
options found in each component also results in the best model
overall. Specifically, combining batched updates, the IH split candi-
date method, TR splits and Newton updates often achieves better
performance than the most competitive baseline (DP-EBM) and in
fewer rounds of communication.

6.1 Experimental Setup

In our experiments, we use a range of real-world datasets from
Kaggle [34, 64] and the UCI repository [20]. Datasets used are
displayed in Table 3. The Higgs dataset has been subsampled to n =
200, 000 for computational reasons. We often show experiments on
Credit 1 but results for other datasets are presented in the Appendix

>Due to class imbalance, measures such as accuracy are not useful to test performance.

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA.

Samuel Maddock, Graham Cormode, Tianhao Wang, Carsten Maple, & Somesh Jha

0.80

e
~
a

0.80

(&} O O
20.70 SEIE Mothod 2 o074 Split Method 2 070 Split Method
2 —— DP-TR Newton z —— DP-TR Newton e —— DP-TR Newton
=065 DP-PR Newton B o2 DP-PR Newton = DP-PR Newton
) —— DP-Hist Newton ~—— DP-Hist Newton 0.65 —— DP-Hist Newton
Type 0.70 Type ' Type
0.60 — Test — Test — Test
---- Train 0.68 ---- Train 0.60 ---- Train
5 10 25 50 100 150 200 250 300 2 3 4 5 6 0.2 0.4 0.6 0.8 1.0
Number of trees (T) Maximum Depth (d) Privacy Budget (&)
(a) Varying T withd =4,e =1 (b) Varying d (c) Varying €
Figure 2: Split Methods on Credit 1
Table 4: Weight update methods across the datasets fixing ¢ = 0.5,d = 4
Bank Credit 1 Credit 2 Adult Nomao
Hist (T = 25) Gradient 0.6282 +- 0.0688 0.5748 +- 0.0852 0.6288 +- 0.0569 0.6749 +- 0.0524 0.8483 +- 0.0138
Averaging 0.7249 +- 0.0274 0.6769 +- 0.058 0.6751 +- 0.0246 0.6373 +- 0.0457 0.8885 +- 0.0038
Newton 0.7562 +- 0.0337 0.7522 +- 0.0162 0.6575 +- 0.0486 0.8013 +- 0.0225 0.8758 +- 0.0075
PR (T =25) Gradient 0.676 +- 0.0376 0.7094 +- 0.0312 0.6239 +- 0.0486 0.7688 +- 0.0253 0.8766 +-0.0072
Averaging 0.7803 +- 0.0309 0.7165 +- 0.0337 0.6864 +- 0.0249 0.8281 +- 0.0183 0.8904 +- 0.0055
Newton 0.7998 +- 0.0203 0.7676 +- 0.0196 0.6882 +- 0.0207 0.8416 +- 0.0108 0.88 +- 0.0072
TR (T = 300) Gradient 0.8508 +- 0.0061 0.7847 +- 0.0097 0.7392 +- 0.008 0.8737 +- 0.0056 0.8965 +- 0.0047
Averaging 0.8382 +- 0.0116 0.7846 +- 0.0106 0.7285 +- 0.0109 0.8666 +- 0.0043 0.8875 +- 0.0055
Newton 0.8486 +- 0.0075 0.7983 +- 0.0062 0.7344 +- 0.0088 0.8718 +- 0.0049 0.8883 +- 0.007

of the full version of this paper. All experiments are repeated 3 times
over 5 different 70-30 train-test splits resulting in 15 iterations. We
measure model performance by the AUC-ROC on the test-set. For
all boosting experiments we fix the learning rate and regularization
parameters = 2, = 0.3, ¢ = 0 which generally performed well
across all chosen datasets, and do not tune these any further. We
take Q = 32 split candidates unless otherwise stated. The effect
of the number of split candidates is explored in Section 6.4. In all
experiments we use RDP to satisfy (e, §)-DP fixing § = 1/n. Tests
were run with a Ryzen 5 3600 3.6GHz CPU and 16GB of RAM. Code
for our framework and experiments is open-sourced .

6.2 Split Methods

We begin by exploring the initial trade-off between the main split-
methods: Histogram-Based (Hist), Partially Random (PR), and To-
tally Random (TR). We study these split methods as we vary parame-
ters that have the largest effect on the AUC of DP-GBDT algorithms:
T, d, and e. For now we fix our weight update method to Newton
and fix the split candidate method to uniform. We consider the
effects of these components separately in Sections 6.3 and 6.4.
Figure 2a shows the effect of varying the number of trees T
while fixing € = 1,d = 4 on the Credit 1 dataset, and visualises the
key differences between the main split methods. Other datasets
using the same parameter setup are considered in the full version
of this paper. Recall that histogram-based and PR are methods that
compute split-scores under DP. Because they compute split-scores

Shttps://github.com/Samuel-Maddock/federated-boosted-dp-trees

2258

they often “converge” to their best test AUC before TR methods
in the non-private setting. We can observe that a similar effect
occurs in the private setting. We see that PR and Hist peak around
T = 25 — 50 whereas it takes TR T = 300 trees to achieve its best
test AUC.

In the non-private setting this peak is typically caused by overfit-
ting as T gets larger. For the private setting this is not quite the case
as we can observe little difference in train and test AUC. Instead,
for large T the privacy cost of training a histogram-based GBDT
model requires a large amount of noise to be added at each step
and this severely impacts performance.

Recall that both Hist and PR split methods require Tdm queries
to train the full model compared to just T for TR. The advantage of
TR’s minimal privacy cost can be clearly seen from Figure 2a as it
achieves higher AUC than the other two methods.

In Figure 2b we fix € = 1 and set T = 25 for Hist/PR and T = 300
for TR as we vary the maximum depth d € {2,3,4,5,6} on Credit 1.
We observe only a small difference in AUC across Hist method and
only a minor decrease in performance across TR and PR methods for
larger depths. For PR and Hist the depth d does increase the privacy
cost of each tree but for TR the privacy cost is independent of the
depth. We observe a small decrease in AUC for TR as d increases
and this is likely because training very deep trees can lead to nodes
with only a few observations. This results in gradient information
with magnitude smaller than the noise being added, and hence any
meaningful information is lost.

Federated Boosted Decision Trees with Differential Privacy

0.85

o
@
S

0.75

Test AUC
Test AUC

IH (s=5)

IH (s=10)
IH (s= 20)
TH (s= 30)
IH (s=100)

0.

9
=]

0.65 I
100

0.2 0.4 0.6

Privacy Budget (¢)

0.8 1.0

(a) Varying s with T = 100,d = 4

(b) Varying T withd =4,e =1

-—

-

mmm [terative Hessian
I ——— —

200
Number of trees (T)

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA.

Test AUC

\
0.76 i
Uniform —— Uniform
Log 074 Log
Quantiles 0.72 —— Quantiles

(s=5) —— Iterative Hessian (s=5)

300 20 40 60 80 100

Number of Split Candidates (Q)

120

(c) Varying Q with T =100,d =4,e =1

Figure 3: Split Candidate Methods on Credit 1

In Figure 2c we vary € € {0.1,0.25,0.5,0.75, 1} while fixing d =
3. We set T = 300 for TR and T = 25 for Hist and PR. We can
immediately make two observations. First, there is still a clear gap
in performance between TR and Hist/PR. Second, for large €, PR
outperforms the Hist method but for small € the picture is less clear.
This is likely due to the additional random variation due to the PR
method picking random split candidates.
Summary. We recommend using TR splits as it clearly outperforms
methods that calculate split scores. This usually results in larger
ensembles which can be prohibitive in federated settings. In Section
6.5, we discuss how we can batch updates to get around this.

6.3 Weight Update Methods

We start this section by asking whether boosted decision trees
under DP provide any additional model performance over DP-RFs.
Table 4 shows the test AUC across all datasets varying the weight-
update method (Gradient, Averaging and Newton) for each split
method. In these experiments we fix € = 1,d = 4 and use T = 25 for
PR/Hist and T = 300 for TR methods. The highest AUC for each
split method is highlighted in bold.

We can observe that boosting does provide an advantage over
the traditional averaging method on these datasets, although it is
not completely clear cut. Focusing first on the Hist methods we can
see that Newton updates perform the best across three of the five
datasets — although results on Credit 2 and Nomao show averaging
performs the best. However, Newton updates certainly show clearer
advantages on Credit 1, Adult, and Bank over both gradient and
averaging updates. This pattern is also present for PR methods
with Newton updates performing better than averaging except for
Nomao where averaging performs the best. For TR methods we
observe Gradient updates achieve higher AUC on 4 out of 5 of the
datasets, although is within random variation of Newton for all
datasets except Credit 1, where Newton performs best. We also
note that the gap in performance between TR and Hist/PR observed
in Section 6.2 also holds across all the datasets we are considering.
The impact in performance between Newton and the other weight
update methods for TR splits is also less marked than its impact with
Hist/PR splits, since the performance of TR with Newton differs by
at most 0.014 AUC when compared with gradient or averaging.
Summary. We recommend using Newton updates as it exceeds
or performs very similarly to Gradient updates and in most cases

2259

Table 5: Split candidate methods T = 100,d = 4,0 =32,e =1

IH (s=5) Quantiles Log Uniform
Bank 0.8749 0.8695 0.8698 0.8734
(0.0066) (0.0087) (0.0087) (0.0074)
Credit1 0.8462 0.8367 0.8339 0.7822
(0.0035) (0.0045) (0.0058) (0.0247)
Credit2 0.7377 0.738 0.7495 0.7461
(0.0084) (0.0083) (0.008) (0.0092)
Adult 0.8888 0.8823 0.8848 0.8862
(0.0035) (0.0047) (0.0054) (0.0034)
Higgs 0.7211 0.7352 0.688 0.6449
(0.0181) (0.0082) (0.0141) (0.0293)
Nomao 0.9026 0.8987 0.9003 0.9021
(0.0041) (0.0052) (0.0061) (0.005)

beats averaging across the split methods. We note that averaging
methods are certainly still competitive and discuss this further in
Section 6.5 when we study batched updates.

6.4 Split Candidate Methods

In this section we explore the split candidate methods introduced
in Section 4.5. We are interested in comparing the Iterative Hessian
(IH) method against the private baseline of uniform splitting and the
non-private method of quantiles. We mentioned in Section 4.5 that
Log splits are a viable alternative if we know the skew of features.
We will assume that we have prior knowledge about skew and thus
Log splits have no extra privacy cost. We will show IH can achieve
similar or better results than Log splits with the additional benefit
that this prior knowledge is not required.

6.4.1 Varying s. One disadvantage of ITH splitting when using a
TR ensemble is that we must specify the number of split candidate
rounds s where budget is spent to produce a Hessian histogram.
Figure 3a shows the effect of s € {5, 10, 20, 30, 100} on the Credit 1
dataset with T = 100 trees while varying e € [0.1, 1] with DP-TR
Newton. For higher values of € there is not so much difference
between calculating a Hessian histogram for each round (s = 100)
compared to calculating a Hessian histogram for only s = 5 rounds.
Although there is a clear trend that on Credit 1 only ~ 5 rounds of TH
are needed. As € decreases this difference becomes more apparent.

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA.

When € = 0.5 we see a 0.04 difference in AUC between s = 5 and
s = 100. At € = 0.1 spreading the already thin privacy budget to
compute Hessian information at each tree results in drastically
worse performance with s = 100. Hence when ¢ is small, spending
more of it on the Hessian histogram results in similar models to
using uniform split candidates and we lose the benefits of more
informed split candidates.

6.4.2 Comparison of methods. In Figure 3b we fix s = 5 for IH
and compare the performance on Credit 1 against the other split
candidate methods: Uniform, Log, and Quantiles. We vary T €
{100, 200,300} and fix € = 1. Consistently across the different pa-
rameter settings the Log splits perform well. This is because Credit
1 contains many skewed features. However, IH with s = 5 (our pri-
vate variant) can indeed match and in some cases exceed Log splits.
This indicates that proposing and refining split candidates around
(noisy) Hessian histograms is a useful method when datasets have
skewed features. We also note that uniform split candidates perform
the worst out of all split candidate methods on Credit 1. We also
observe here that quantiles (the common choice for non-private
boosting methods such as XGBoost) do not lead to the best AUC
under DP. In particular, there is a large gap for T = 200, 300. Yet for
T = 100, quantiles perform similarly to Log and IH candidates.

In Table 5 we compare the split candidate methods across all the
datasets using the same parameter setting. Our IH method shows a
clear advantage over uniform on Credit 1 and Higgs where features
are particularly skewed. On Credit 2 our IH method achieves the
worst performance. However, it does match quantiles in perfor-
mance. This suggests that quantiles do not produce the best split
candidates for Credit 2. It is also likely that because Credit 2 has
a large number of categorical features that the repeated splitting
in IH serves no additional benefit and could be detrimental to per-
formance. On other datasets none of the features have any notable
skew and all split candidate methods perform equally well.

6.4.3 Varying Q. The advantage of the IH method is its more in-
formed split candidates for very skewed features. One may think
that we can circumvent the issues of uniform splitting by increasing
the number of split candidates, thus considering more fine-grained
candidates. In Figure 3c, we fix T = 100,d = 4,¢ = 1 and vary
Q €{2,4,8,16,32, 64,128} on Credit 1. We can immediately observe
further issues with uniform split candidates when combined with
TR splits. While proposing more candidates results in fine-grained
split choices, the variance from choosing such splits completely at
random results in very variable performance when using > 32 split
candidates. The experiment supports our choice of Q = 32 in other
experiments, and also shows that the IH method is relatively robust
to the initial number of split candidates.

Summary: We recommend using the IH method to iteratively
refine split candidates over a small number of rounds, finding that
s = 5 usually works the best. Other private split methods like
Uniform and Log are competitive depending on the dataset.

6.5 Batched Updates

In Section 5.2 we discussed that boosting is an inherently sequential
process and so can take a large number of communication rounds
in distributed settings. This is exacerbated by the TR method that

2260

Samuel Maddock, Graham Cormode, Tianhao Wang, Carsten Maple, & Somesh Jha

DP-TR Newton (B=1)
DP-RF (B=200)
DP-TR Batch Newton (B=10)
DP-TR Batch Newton (B=20)
DP-TR Batch Newton (B=50)
DP-TR Batch Newton (B=100)
=== DP-TR Batch Newton (B=200)
— —
0.1 05
Privacy Budget (¢)

Figure 4: Batched updates, T = 200,d = 4

Table 6: Batched updates fixing T = 200,¢ = 0.1,d = 4.

Bank Credit1 Credit2 Adult Nomao
Batch (B=10) 0.7876 0.7585 0.719 0.8438 0.8859
(0.0233) (0.0147) (0.0156) (0.0086) (0.0056)
Batch (B=20) 0.819 0.7591 0.7199 0.86 0.8929
(0.0108) (0.0194) (0.0164) (0.0057) (0.0055)
Batch (B=200) 0.7752 0.7578 0.71 0.8443 0.8858
(0.0143) (0.0194) (0.0146) (0.0065) (0.0061)
DP-RF (B=200) 0.7663 0.7441 0.7106 0.8382 0.8852
(0.0127) (0.0196) (0.0106) (0.0105) (0.0058)
Newton (B=1) 0.7866 0.7693 0.695 0.8371 0.8669
(0.0224) (0.016) (0.0134) (0.0148) (0.00838)
0.85 0.87
0.80 --- DPEBM
0.86 DP-EBM Newton
075 = e gy --- DP-GBM
e Tl -=- DP-RF
o7 g0 [— THEBM (ro03%)
H 7 S) =S ___ DPTRBatch Newton
& y & IH EBM (p=1)

0.65]
I 0.84 DP-TR Newton IH

1 —— DP-TR Newton IH EBM
FEVERLESS (uniform)
/ LDP

/ B XGBoost (Non-

0.55 ¢ ~77 private)

100 200
Number of Trees (T)

300 100 200

Number of Trees (T)

300

Figure 5: Comparison of DP-GBDT methods and LDP baseline
on Credit 1, d = 4, ¢ = 1; Left (all methods), Right (zoomed)

often requires a large number of trees (rounds) to achieve good per-
formance. We proposed the idea of batching updates by averaging
weights across multiple trees before performing a boosting round.
In Figure 4 we vary € = 0.1,0.5 and fix T = 200, d = 4 on the Credit
1 dataset. We compare the Newton method which takes T = 200
rounds and the averaging method which only takes 1 round. We
then consider batched updates, varying the size of the batch as
B=p-Tforp e {0.050.1,0.25,0.5,1}.

Focusing first when € = 1 we observe that the Newton model
achieves the best performance. This is followed by batched updates
that perform some amount of boosting (i.e, B < 200). As an example
taking B = 100 results in only 2 rounds of boosting. A surprising
observation is that limiting to 2 rounds of communication achieves a

Federated Boosted Decision Trees with Differential Privacy

Table 7: Average rank of methods across datasets—rank 1 for
highest AUC. (x) indicates new methods in our framework

Methods 0.1 0.5 1.0
DP-EBM 5.83 4.5 3.5
DP-EBM Newton (x) 4.0 3.33 3.17
DP-GBM 9.0 9.0 9.0
DP-RF 4.5 6.67 7.0
DP-TR Batch Newton IH EBM (p=0.25) () 1.17 2.33 3.33
DP-TR Batch Newton IH EBM (p=1) (*) 2.0 3.5 4.67
DP-TR Newton IH () 533 45 3.83
DP-TR Newton IH EBM () 5.17 3.17 2.67
FEVERLESS (uniform) 8.0 8.0 7.83

very similar performance to the full Newton model that requires 200
rounds of boosting. When € = 0.1 Newton boosting still performs
the best but we observe batched updates with B = 20, 50 and thus
only a small number of boosting rounds perform very similarly.
To study this more closely, we present a similar experiment in
Table 6, fixing € = 0.1 We vary the batch size B and compare to
averaging and Newton boosting across all the datasets. We consider
TR trees, uniform split candidates, and T = 200, d = 4. We still ob-
serve that batched updates is a surprisingly competitive alternative
to the full boosting procedure across all datasets. We note as in
Figure 4 that all methods on Credit 1 are roughly within random
variation of one another. The difference in methods is more striking
on other datasets with batched updates of size B = 20 performing
better than Newton. This suggests that under a setting where more
noise is added to the training process, boosting is a more unreliable
method as it attempts to correct mistakes from previous rounds and
can lead to overcompensating for noise. By batching updates we
help to average out noise and boost a smoothed update. Generally,
batched methods with B = 20 or B = 50 achieve the best perfor-
mance with 10 and 5 rounds of boosting respectively. In most cases
taking B = 200, resulting in a single round of communication (and
no actual boosting) only loses at most 0.04 AUC compared to other
batched update methods.
Summary. We recommend batching Newton updates to reduce
communication rounds and have shown it loses little in perfor-
mance. Under high privacy, small batches (p = 0.25 — 0.5) seem to
give the best performance and even beat private Newton boosting.

6.6 End-to-end Comparisons

We conclude with comparisons between baseline methods and those
formed from selecting the best options found in previous sections.
Summary across datasets In Table 7 we display the average rank
of a method across each of the 6 datasets when ranked in terms
of their mean test AUC, where a rank of 1 indicates the highest
AUC. We fix T = 100 and vary € € {0.1,0.5,1}. We observe that
most baseline methods underperform and rank consistently in the
lower half. The closest competitor DP-EBM performs well when
€ = 1 but is beaten by DP-TR Newton IH EBM which consistently
ranks higher across datasets. When € is small, our batch boosting
variant consistently ranks the best across all datasets.

2261

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA.

Discussion on Credit 1 To investigate further, we fix e = 1,d =
4 and vary T on Credit 1 in Figure 5. These results are best bro-
ken down into four main observations which reflect conclusions
from previous sections. The first observation is the performance of
histogram-based methods. DP-GBM performs the worst followed
by FEVERLESS. This shows (as in Section 6.3) that Newton updates
when combined with histogram-based methods do increase model
performance over normal gradient updates, but in either case, train-
ing a large tree with many features entails adding a large amount
of noise into the training process and generally poor models.

The second remark concerns the performance of the TR methods.
We see a clear performance gap between the DP-RF and DP-TR
Newton methods which indicates that boosting does enhance per-
formance when compared to DP-RF. This was confirmed in Sec-
tion 6.3 where we observed Newton updates under DP generally
provided better performance than gradient and averaging updates.

Thirdly, while DP-EBM is very competitive, we can achieve
similar AUC by using Newton updates and not training for the
full Tm rounds as in [51]. In Figure 5 DP-EBM trains Tm trees,
corresponding to 10T on Credit 1. Instead our DP-EBM Newton
variant uses Newton updates and trains T trees. This shows that we
can get the same performance as DP-EBM with far fewer trees when
using Newton updates, while reducing communication rounds.

Finally, we note the performance of batched methods when com-
bined with EBM and IH split candidates. We see batched methods
with p = 0.25,1.0 essentially match the performance of DP-TR
Newton IH and achieve similar performance to the top methods
on this dataset. When compared to the full 200 rounds needed for
DP-TR Newton IH there is a negligible loss in performance (< 0.01
AUC) but a dramatic reduction in communication rounds.
Summary. By combining the best options in each component (TR,
Newton updates, IH, EBM, and batches with p = 0.25) we achieve
competitive performance that often outperforms our baselines.

7 CONCLUSION

We have proposed a framework for the differentially private train-
ing of GBDT models in the federated setting. By evaluating different
options at each stage of our framework we have found a dominant
approach based on random splits, Newton updates, cyclical training
and our iterative Hessian (IH) method. Our approach often outper-
forms SOTA methods on a range of datasets and results in models
close in performance to non-private counterparts. When combined
with batching updates, one can train models in only a small number
of communication rounds for little loss in performance.

ACKNOWLEDGMENTS

This work is supported by the UKRI Engineering and Physical
Sciences Research Council (EPSRC) under grants EP/W523793/1,
EP/R007195/1, EP/V056883/1, EP/N510129/1 EP/W037211/1 and
EP/S035362/1. This material is also based on work supported by
DARPA under agreement number 885000, Air Force Grant FA9550-
18-1-0166, ARO with grant W911NF-17-1-0405 and the National Sci-
ence Foundation (NSF) with grants 1646392, 2039445, CNS-2220433,
CNS-2213700, CCF-2217071, CCF-FMitF-1836978, SaTC-Frontiers-
1804648 and CCF-1652140.

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA.

REFERENCES

(1]

(2]

&

[9

=

[10]

[11

[12

[13]

[14

[15]

[16

[17

[18]

[19]

™
=

[21

[22]

[23

[24

[25

[26]

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,
Kunal Talwar, and Li Zhang. 2016. Deep learning with differential privacy. In
ACM SIGSAC conference on computer and communications security. 308-318.
Naman Agarwal, Peter Kairouz, and Ziyu Liu. 2021. The skellam mechanism
for differentially private federated learning. Advances in Neural Information
Processing Systems 34 (2021).

Vahid R Asadi, Marco L Carmosino, Mohammadmahdi Jahanara, Akbar Rafiey,
and Bahar Salamatian. 2022. Private Boosted Decision Trees via Smooth Re-
Weighting. arXiv preprint arXiv:2201.12648 (2022).

Pierre Baldi, Peter Sadowski, and Daniel Whiteson. 2014. Searching for exotic
particles in high-energy physics with deep learning. Nature communications 5, 1
(2014), 1-9.

Borja Balle and Yu-Xiang Wang. 2018. Improving the gaussian mechanism for
differential privacy: Analytical calibration and optimal denoising. In International
Conference on Machine Learning. PMLR, 394-403.

Bank of England. 2019. Machine learning in UK financial services. https://www.
bankofengland.co.uk/report/2019/machine-learning-in-uk-financial-services
James Henry Bell, Kallista A Bonawitz, Adria Gascon, Tancréde Lepoint, and
Mariana Raykova. 2020. Secure single-server aggregation with (poly) logarithmic
overhead. In ACM SIGSAC Conference on Computer and Communications Security.
1253-1269.

Jonas Béhler and Florian Kerschbaum. 2020. Secure multi-party computation of
differentially private median. In USENIX Security Symposium. 2147-2164.

Jonas Bohler and Florian Kerschbaum. 2021. Secure Multi-party Computation of
Differentially Private Heavy Hitters. In ACM SIGSAC Conference on Computer
and Communications Security. 2361-2377.

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan
McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017. Practi-
cal secure aggregation for privacy-preserving machine learning. In ACM SIGSAC
Conference on Computer and Communications Security. 1175-1191.

Philippe Bracke, Anupam Datta, Carsten Jung, and Shayak Sen. 2019. Bank of
England: Machine learning explainability in finance: an application to default
risk analysis. https://www.bankofengland.co.uk/working-paper/2019/machine-
learning- explainability- in-finance-an-application- to- default-risk-analysis
Laurent Candillier and Vincent Lemaire. 2012. Nomao Dataset. UCI Machine
Learning Repository. http://archive.ics.uci.edu/ml/datasets/nomao

Clément L Canonne, Gautam Kamath, and Thomas Steinke. 2020. The discrete
gaussian for differential privacy. arXiv preprint arXiv:2004.00010 (2020).
Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and
Florian Tramer. 2021. Membership Inference Attacks From First Principles. arXiv
preprint arXiv:2112.03570 (2021).

Jeffrey Champion, Abhi Shelat, and Jonathan Ullman. 2019. Securely sampling
biased coins with applications to differential privacy. In ACM SIGSAC Conference
on Computer and Communications Security. 603-614.

Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A scalable tree boosting system.
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
13-17-August-2016 (2016), 785-794. https://doi.org/10.1145/2939672.2939785
arXiv:1603.02754

Kewei Cheng, Tao Fan, Yilun Jin, Yang Liu, Tianjian Chen, Dimitrios Papadopou-
los, and Qiang Yang. 2021. Secureboost: A lossless federated learning framework.
IEEE Intelligent Systems (2021).

Kevin Deforth, Marc Desgroseilliers, Nicolas Gama, Mariya Georgieva, Dimitar
Jetchev, and Marius Vuille. 2021. XORBoost: Tree boosting in the multiparty
computation setting. Cryptology ePrint Archive (2021).

Anna Veronika Dorogush, Vasily Ershov, and Andrey Gulin. 2018. CatBoost: gra-
dient boosting with categorical features support. arXiv preprint arXiv:1810.11363
(2018).

Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository. http:
//archive.ics.uci.edu/ml

Cynthia Dwork, Aaron Roth, et al. 2014. The algorithmic foundations of differ-
ential privacy. Found. Trends Theor. Comput. Sci. 9, 3-4 (2014), 211-407.

Shereen Elsayed, Daniela Thyssens, Ahmed Rashed, Hadi Samer Jomaa, and Lars
Schmidt-Thieme. 2021. Do we really need deep learning models for time series
forecasting? arXiv preprint arXiv:2101.02118 (2021).

Wenjing Fang, Derun Zhao, Jin Tan, Chaochao Chen, Chaofan Yu, Li Wang, Lei
Wang, Jun Zhou, and Benyu Zhang. 2021. Large-scale Secure XGB for Vertical
Federated Learning. In ACM International Conference on Information & Knowledge
Management. 443-452.

Zhi Feng, Haoyi Xiong, Chuanyuan Song, Sijia Yang, Baoxin Zhao, Licheng Wang,
Zeyu Chen, Shengwen Yang, Liping Liu, and Jun Huan. 2019. Securegbm: Secure
multi-party gradient boosting. In IEEE International Conference on Big Data. IEEE,
1312-1321.

Sam Fletcher and Md Zahidul Islam. 2015. A Differentially Private Decision
Forest. AusDM 15 (2015), 99-108.

Sam Fletcher and Md Zahidul Islam. 2015. A differentially private random decision
forest using reliable signal-to-noise ratios. In Australasian joint conference on

2262

Samuel Maddock, Graham Cormode, Tianhao Wang, Carsten Maple, & Somesh Jha

[27

(28]
[29]

[30

[31

(32]

[33

(34

(35]

(36]

[37

[38

[39

[40]

[41

[42]

[43]

[44

[45

[46

[47

(48

[49

[50

[51

(52]

[53

artificial intelligence. Springer, 192-203.

Sam Fletcher and Md Zahidul Islam. 2017. Differentially private random decision
forests using smooth sensitivity. Expert systems with applications 78 (2017),
16-31.

Jerome H Friedman. 2002. Stochastic gradient boosting. Computational statistics
& data analysis 38, 4 (2002), 367-378.

Pierre Geurts, Damien Ernst, and Louis Wehenkel. 2006. Extremely randomized
trees. Machine learning 63, 1 (2006), 3—42.

Sivakanth Gopi, Yin Tat Lee, and Lukas Wutschitz. 2021. Numerical composition
of differential privacy. Advances in Neural Information Processing Systems 34
(2021).

Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. 2021.
Revisiting deep learning models for tabular data. Advances in Neural Information
Processing Systems 34 (2021).

Léo Grinsztajn, Edouard Oyallon, and Gaél Varoquaux. 2022. Why do tree-
based models still outperform deep learning on tabular data? arXiv preprint
arXiv:2207.08815 (2022).

Nicolas Grislain and Joan Gonzalvez. 2021. DP-XGBoost: Private Machine Learn-
ing at Scale. arXiv preprint arXiv:2110.12770 (2021).

Kaggle. 2012. Give Me Some Credit Competition Dataset. https://www.kaggle.
com/competitions/GiveMeSomeCredit/data?select=cs-test.csv

Peter Kairouz, Brendan McMahan, Shuang Song, Om Thakkar, Abhradeep
Thakurta, and Zheng Xu. 2021. Practical and private (deep) learning without
sampling or shuffling. arXiv preprint arXiv:2103.00039 (2021).

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Ben-
nis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode,
Rachel Cummings, et al. 2021. Advances and open problems in federated learning.
Foundations and Trends® in Machine Learning 14, 1-2 (2021), 1-210.

Peter Kairouz, Sewoong Oh, and Pramod Viswanath. 2015. The composition
theorem for differential privacy. In International conference on machine learning.
PMLR, 1376-1385.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. 2017. Lightgbm: A highly efficient gradient boosting
decision tree. Advances in neural information processing systems 30 (2017).
Ronny Kohavi and Barry Becker. 1996. Adult dataset. UCI Machine Learning
Repository. http://archive.ics.uci.edu/ml/nomao

KPMG. 2020. Fighting Fraud with a Model of Models.
/[www.nets.eu/solutions/fraud-and-dispute-services/Documents/Nets-
KPMG-Fighting-Fraud- with-a-model-of-models- whitepaper- 2020.pdf
Alexey Kurakin, Steve Chien, Shuang Song, Roxana Geambasu, Andreas Terzis,
and Abhradeep Thakurta. 2022. Toward Training at ImageNet Scale with Differ-
ential Privacy. arXiv preprint arXiv:2201.12328 (2022).

Andrew Law, Chester Leung, Rishabh Poddar, Raluca Ada Popa, Chenyu Shi, Oc-
tavian Sima, Chaofan Yu, Xingmeng Zhang, and Wenting Zheng. 2020. Secure col-
laborative training and inference for xgboost. In Workshop on privacy-preserving
machine learning in practice. 21-26.

Nhan Khanh Le, Yang Liu, Quang Minh Nguyen, Qingchen Liu, Fangzhou Liu,
Quanwei Cai, and Sandra Hirche. 2021. FedXGBoost: Privacy-Preserving XGBoost
for Federated Learning. arXiv preprint arXiv:2106.10662 (2021).

Darvish Lee Shadravan. 2022. Understanding the Differentiating Capabilities and
Unique Features of Salesforce Einstein Discovery within the Machine Learning
Space.

Qinbin Li, Zhaomin Wu, Zeyi Wen, and Bingsheng He. 2020. Privacy-preserving
gradient boosting decision trees. In AAAI Conference on Artificial Intelligence,
Vol. 34. 784-791.

Yin Lou, Rich Caruana, and Johannes Gehrke. 2012. Intelligible models for classi-
fication and regression. In ACM SIGKDD international conference on Knowledge
discovery and data mining. 150-158.

H Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. 2017. Learning
differentially private recurrent language models. arXiv preprint arXiv:1710.06963
(2017).

Xianrui Meng and Joan Feigenbaum. 2020. Privacy-preserving xgboost inference.
arXiv preprint arXiv:2011.04789 (2020).

Ilya Mironov. 2017. Rényi differential privacy. In IEEE Computer Security Founda-
tions Symposium. 263-275.

Sérgio Moro, Paulo Cortez, and Paulo Rita. 2014. A data-driven approach to
predict the success of bank telemarketing. Decis. Support Syst. 62 (2014), 22-31.
https://doi.org/10.1016/j.dss.2014.03.001

Harsha Nori, Rich Caruana, Zhiqi Bu, Judy Hanwen Shen, and Janardhan Kulkarni.
2021. Accuracy, interpretability, and differential privacy via explainable boosting.
In International Conference on Machine Learning. PMLR, 8227-8237.

Santu Rana, Sunil Kumar Gupta, and Svetha Venkatesh. 2015. Differentially
private random forest with high utility. In IEEE International Conference on Data
Mining. 955-960.

Edo Roth, Karan Newatia, Yiping Ma, Ke Zhong, Sebastian Angel, and An-
dreas Haeberlen. 2021. Mycelium: Large-Scale Distributed Graph Queries
with Differential Privacy. In ACM Symposium on Operating Systems Principles.
https://doi.org/10.1145/3477132.3483585

https:

https://www.bankofengland.co.uk/report/2019/machine-learning-in-uk-financial-services
https://www.bankofengland.co.uk/report/2019/machine-learning-in-uk-financial-services
https://www.bankofengland.co.uk/working-paper/2019/machine-learning-explainability-in-finance-an-application-to-default-risk-analysis
https://www.bankofengland.co.uk/working-paper/2019/machine-learning-explainability-in-finance-an-application-to-default-risk-analysis
http://archive.ics.uci.edu/ml/datasets/nomao
https://doi.org/10.1145/2939672.2939785
https://arxiv.org/abs/1603.02754
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://www.kaggle.com/competitions/GiveMeSomeCredit/data?select=cs-test.csv
https://www.kaggle.com/competitions/GiveMeSomeCredit/data?select=cs-test.csv
http://archive.ics.uci.edu/ml/nomao
https://www.nets.eu/solutions/fraud-and-dispute-services/Documents/Nets-KPMG-Fighting-Fraud-with-a-model-of-models-whitepaper-2020.pdf
https://www.nets.eu/solutions/fraud-and-dispute-services/Documents/Nets-KPMG-Fighting-Fraud-with-a-model-of-models-whitepaper-2020.pdf
https://www.nets.eu/solutions/fraud-and-dispute-services/Documents/Nets-KPMG-Fighting-Fraud-with-a-model-of-models-whitepaper-2020.pdf
https://doi.org/10.1016/j.dss.2014.03.001
https://doi.org/10.1145/3477132.3483585

Federated Boosted Decision Trees with Differential Privacy

[54]

[55]

[56]

[57]

[59]

Edo Roth, Daniel Noble, Brett Hemenway Falk, and Andreas Haeberlen. 2019.
Honeycrisp: Large-scale Differentially Private Aggregation Without a Trusted
Core. In ACM Symposium on Operating Systems Principles.

Edo Roth, Hengchu Zhang, Andreas Haeberlen, and Benjamin C. Pierce. 2020.
Orchard: Differentially Private Analytics at Scale. In USENIX Symposium on
Operating Systems Design and Implementation.

Amrita Roy Chowdhury, Chenghong Wang, Xi He, Ashwin Machanavajjhala,
and Somesh Jha. 2020. Crypte: Crypto-assisted differential privacy on untrusted
servers. In ACM SIGMOD International Conference on Management of Data. 603~
619.

Elaine Shi, TH Hubert Chan, Eleanor Rieffel, Richard Chow, and Dawn Song.
2016. Privacy-Preserving Aggregation of Time-Series Data. In NDSS.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017. Mem-
bership inference attacks against machine learning models. In IEEE symposium
on security and privacy. IEEE, 3-18.

Ravid Shwartz-Ziv and Amitai Armon. 2022. Tabular data: Deep learning is not
all you need. Information Fusion 81 (2022), 84-90.

2263

(60

[61

[62

[63

(65

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA.

Pierre Stock, Igor Shilov, Ilya Mironov, and Alexandre Sablayrolles. 2022. De-
fending against Reconstruction Attacks with Rényi Differential Privacy. arXiv
preprint arXiv:2202.07623 (2022).

Zhihua Tian, Rui Zhang, Xiaoyang Hou, Jian Liu, and Kui Ren. 2020. Federboost:
Private federated learning for gbdt. arXiv preprint arXiv:2011.02796 (2020).

Rui Wang, Oguzhan Ersoy, Hangyu Zhu, Yaochu Jin, and Kaitai Liang. 2021.
FEVERLESS: Fast and Secure Vertical Federated Learning based on XGBoost for
Decentralized Labels. (2021).

Yu-Xiang Wang, Borja Balle, and Shiva Prasad Kasiviswanathan. 2019. Subsam-
pled rényi differential privacy and analytical moments accountant. In Artificial
Intelligence and Statistics. PMLR, 1226-1235.

I-Cheng Yeh and Che-hui Lien. 2009. The comparisons of data mining techniques
for the predictive accuracy of probability of default of credit card clients. Expert
systems with applications 36, 2 (2009), 2473-2480.

Lingchen Zhao, Lihao Ni, Shengshan Hu, Yaniiao Chen, Pan Zhou, Fu Xiao, and
Libing Wu. 2018. Inprivate digging: Enabling tree-based distributed data mining
with differential privacy. In IEEE INFOCOM. 2087-2095.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Gradient Boosted Decision Trees (GBDT)
	2.2 Differential Privacy
	2.3 The Federated Model of Computation

	3 Related Work
	4 Private GBDT Framework
	4.1 A General Recipe
	4.2 Federating GBDTs
	4.3 Component 1: Split Methods
	4.4 Component 2: Weight Updates
	4.5 Component 3: Generating Split Candidates

	5 Additional Considerations
	5.1 Feature Interactions
	5.2 Batched Updates
	5.3 Instantiating the GBDT Framework

	6 Empirical Evaluation
	6.1 Experimental Setup
	6.2 Split Methods
	6.3 Weight Update Methods
	6.4 Split Candidate Methods
	6.5 Batched Updates
	6.6 End-to-end Comparisons

	7 Conclusion
	Acknowledgments
	References

