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1 INTRODUCTION
1.1 Context

Runtime verification is a technique where a monitor process determines whether or not the current
execution of a system under inspection complies with its formal specification. The state-of-the-art
runtime verification methods exhibit the following shortcomings. Either they classically employ
a central monitor, or they employ several monitors but assume a fault-free setting, where each
individual monitor is resilient to failures [9, 13, 14, 21, 25-27, 31]. Relaxing the latter assumption,
that is, handling several monitors subject to failures, poses significant challenges as these monitors
would become unable to agree on the same perspective of the execution, due to the impossibility of
consensus [17]. Thus, it is unavoidable that these monitors emit different individual verdicts about
the current execution, so that a consistent global verdict with respect to a correctness property
can be constructed from these verdicts. Concretely, the two truth values of Boolean logic may be
insufficient for allowing each monitor to express a wide spectrum of individual verdicts.

The necessity of using more than just the two truth values of Boolean logic is actually a known
fact in the context of runtime verification, even with a single monitor. For instance, the linear
temporal logic (rTL) [28] has been one of the most widely used specification languages to express
the requirements of computing systems!. While rTL is a widely accepted language to reason
about infinite execution traces, its three-valued semantics (denoted by L113) [8] is a logic on finite
execution traces with three truth values in:

Bs ={T, 1,7}

These truth values respectively express whether, given the finite trace observed so far, an LTL formula
is permanently satisfied, or permanently violated, or whether the observation is inconclusive.
Likewise, RvV-LTL [7] has four truth values in

By ={T, L, Tp Lp}.

These values respectively identify cases where a finite execution permanently satisfies, permanently
violates, presumably satisfies, or presumably violates a given LTL formula. For example, consider a
request/acknowledge property, where a request r should be eventually responded to by acknowl-
edgment a, and a should not occur before r. Formally, an LT1 formula for the request/acknowledge
property is

pra=0(man=-r) V [(ma UTr) Aal (1)

This formula holds if either (O(—a A —r) holds (i.e., there is no request and no acknowledgment), or
(maUr)A (< a) holds (ie., arequest is made at present or some future state and an acknowledgment
is made after this request in the future). In Rv-LTL, a finite execution containing r, and ending
in a (i.e., the request has been acknowledged) yields the truth value “permanently satisfied”,
whereas an execution containing only r (i.e., the request has not yet been acknowledged) yields
“presumably violated”. Although RV-LTL can monitor ¢,, in a centralized setting (see Fig. 1 for its
monitor automaton), it is not powerful enough to monitor a conjunction of two such formulas in a
framework of two asynchronous unreliable monitors:

Praz = (D(ﬂal A=ry) Vo [(mag U r) A <>a1]) A (D(ﬂaz/\ﬂrz) V [(maz U rz) A <>612])~

1We refer the reader to [16], where the author formalized 54 commonly used requirements as LTL formulas. We also note
that the area of runtime verification mainly focuses on specification languages that are trace-based. This is due to the fact
that at runtime, monitors can realistically observe only a finite execution trace. The semantics of temporal logics such as
CTL is based on computation trees and is not suitable for runtime monitoring.
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Indeed, the set of verdicts emitted by the monitors is not sufficient to distinguish executions that
satisfy the formula from those that violate it. Intuitively (we will formally establish this result
further in the text), this is because each monitor has only a partial view of the system under scrutiny,
and after a finite number of rounds of communication among monitors, still too many different
perspectives of the global system state remain. For instance, the case where a monitor M; has
observed a partial trace containing only r; (for which it should output 1, € By) is distinct from the
case where M; has observed a partial trace containing only a;. However, M; should not output L in
this latter case (of course, it should not output either T or T,) because it may well be the case that
another monitor M, has observed ry, yet M; is not aware of this observation, because of asynchrony
and unreliability.

{r} {
{r}
-
{a} (@r) {a}
true true

Fig. 1. Rv-LTL monitor of ¢@,.

In fact, it was recently proved in [20] that even deciding whether a single system state satisfies
some given Boolean predicate, using a distributed set of asynchronous crash-prone monitors,
requires that the individual verdicts be taken from a set whose size depends on the predicate under
scrutiny. Although this size cannot exceed the number n of monitors, it is proved that, for any
k € [0, n], there are Boolean predicates on system states that require verdicts taken from a set
of size at least k + 1. A matching upper bound is also presented in [20]. In this paper, we extend
the preliminary results in [20] to the setting of distributed monitoring execution traces whose
correctness is expressed by LTL formulas, and we provide distributed monitors defined in terms of
finite automata corresponding to multi-valued logics.

1.2 Our Results

In this paper, we propose a framework for distributed fault-tolerant runtime verification, where
the monitors are asynchronous and subject to crash. A monitor that crashes stops executing its
code and does nothing afterwards. To this end, we introduce a multi-valued temporal logic. This
new logic is a refinement of rRv-LTL. More specifically, we propose a family of (2k + 4)-valued
logics, denoted by prTL, for distributed LTL. In particular, DLTL with k = 0 coincides with Rv-LTL.
The syntax of DLTL is identical to the one of LTL, and its semantics is based, as Rv-LTL, on both
FLTL [24] and LTL3 [8], which are two LTL-based finite trace semantics for runtime monitoring. For
each k > 0, the kth instance of the family prTL has 2k + 4 truth values

Bok+a = {T, L, To, Lo, Too L1y oo, Tho Lic )

The index i of a logical value intuitively represents a degree of certainty that the formula is satis-
fied (T;) or not (L;). In a nutshell, we characterize the formulas that can be monitored at runtime
by a in DLTL, but cannot be distributedly monitored in DLTL_;.
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More specifically, our first contribution (Theorem 5.2) is a lower bound on the cardinality of the
set of values used by each monitor for expressing its local verdict. We revisit the result in [20],
and show that this lower bound can be expressed in terms of a particular characteristic of the L1
formula under consideration, called its alternation number. Roughly, the alternation number of
an LTL formula ¢ is the maximum, taken over all finite traces ¢ = oyt - - - tp,, that the valuation
of ¢ can alternate in the finite semantics of LTL. In other words, the alternation number of ¢ is
the maximum number of times ¢ can change its truth value in FLTL by gaining more and more
information about the truth values of the atomic propositions characterizing the current system’s
global state a,,. As opposed to [20], this number of changes depends not only on the current state a,
of the system, but also on the sequence of preceding states (i.e., those in a). We show that, for every
k > 0, there is an LTL formula ¢ with alternation number k that cannot be distributedly monitored
by monitors emitting verdicts from a set of cardinality smaller than k + 1.

Our second contribution (Theorem 6.5) is a concrete mechanism for fault-tolerant distributed
runtime verification. Each monitor gets a partial view of the system’s global state, communicates
with the other monitors, and then emits a verdict in DLTL using 2[k/2] + 4 truth values, where
k is the alternation number of the LTL formula under scrutiny. The sets of verdicts collectively
provided by the monitors are in one-to-one correspondence with the Rv-LTL verdicts that would
be computed by a centralized monitor with a full view of the system. In view of our lower bound,
our algorithm is essentially optimal in terms of the number of verdicts emitted by the distributed
monitors (up to a small additive constant). Our mechanism is concrete in the sense that we present
a monitor construction algorithm that generates a finite-state Moore machine which, for any rT1
formula ¢, computes the alternation number k of ¢, and constructs the DLTL automaton enabling
to distributedly monitor ¢ using 2[k/2] + 4 logical values.

We emphasize that we do not make an assumption on whether the system under scrutiny is
centralized or distributed. In fact, this has no impact on our results and, hence, the type of the
system is abstracted away.

We note that there is long literature on what is monitorable. The classic definition [29] is that an
LTL formula is monitorable if any prefix can be extended to some other finite prefix which evaluates
to a permanently false or true verdict. In this sense, all safety and co-safety formulas are monitorable.
However, not all monitorable formulas are either safety or co-safety. On the other hand, a liveness
formula such as [J< p is not monitorable, intuitively because one cannot observe p infinitely often
within a finite prefix at run time. Having said this, the above notion of monitorability is not relevant
to our results in this paper. First, observe that the request/acknowledgment formula is neither
safety no co-safety but is monitorable. The issue here is that even for such a formula Rv-LTL is not
sufficient to consistently monitor the formula due to the partial observability of the monitors.

1.3 Related Work

While there has been significant progress in sequential monitoring in the past decade, there has
been less work devoted to distributed monitoring. Lattice-theoretic centralized and decentralized
online predicate detection in distributed systems has been studied in [13, 25]. This line of work
does not address monitoring properties with temporal requirements. This shortcoming is partially
addressed in [27, 30], but for offline monitoring. In [31], the authors design a method for monitoring
safety properties in distributed systems using the past-time linear temporal logic (pLTL). In such a
work, however, the valuation of some predicates and properties may be overlooked. This is because
monitors gain knowledge about the state of the system by piggybacking on the existing communi-
cation among processes. That is, if processes rarely communicate, then monitors exchange little
information and, hence, some violations of properties may remain undetected. These techniques,
however, assume perfect monitors that are not subject to faults.
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Runtime monitoring of LTL formulas for synchronous distributed systems where processes share
a single global clock has been studied in [9, 14]. In [10], the authors introduce parallel algorithms
for runtime verification of sequential programs. Our work is inspired by the research line initiated
in [18-20]. The paper [19] pioneered the investigation of distributed decision in the context of
asynchronous fault-tolerant distributed computing, and characterized the Boolean predicates on
system states that can be distributedly monitored with verdicts chosen from sets of two or three
values. The follow up contribution [20] extended this characterization to verdicts chosen from a set
of k values, for any k > 2, and [18] analyzed the specific case of monitoring the Boolean predicates
on system states corresponding to checking the correctness of k-set agreement tasks.

1.4 Organization

The rest of the paper is organized as follows. Section 2 presents the preliminary concepts. We
introduce our model of computation for distributed monitoring in Section 3. Then, in Section 4, we
show why the power of Rv-LTL is insufficient to deal with fault-tolerant distributed monitoring.
The notion of alternation number is presented in Section 5, while its impact on the design of DLTL is
discussed in Section 6. Finally, we make concluding remarks and discuss future work in Section 7.

2 BACKGROUND

We recall basic concepts related to LTL and its finite semantics for runtime verification.

2.1 Linear Temporal Logic (LTL)

Let AP be a set of atomic propositions and ¥ = 2" be the set of all possible states. A trace is a
sequence Sps; - - -, where s; € X for every i > 0. We denote by X* (resp., ) the set of all finite
(resp., infinite) traces. We denote the empty trace by €. For a finite trace & = sgs; - - - Sk, || denotes
its length, that is, its number of states, i.e., k + 1. Also, for a = sps;1 - - - s¢, by o', we mean trace
SiSiy1 -+ - Sk of .

The syntax and semantics of linear temporal logic (LTL) [28] are defined for infinite traces. The
syntax is defined by the following grammar:

e:=pl o loVe|OploUy
where p € AP, and where O and U are the ‘next’ and ‘until’ temporal operators. We view other
propositional and temporal operators as abbreviations, that is, true = p V —p, false = —true,
¢ =Y ==20VY oAy ==(2pVy), So = true U ¢ (finally ), and Qg = =< =g (globally ¢).
The infinite-trace semantics of LTL is defined as follows. Let o = sps1s2 - - - € X, leti > 0, and let
= denote the satisfaction.

oiEp = pPES

o,i E o — o, i =g

oiEp Ve & o,ifF @1 or o,iF @

o,iEOp — oi+lEg

ogiFp U Jk>i:o0 k@, and Vj € [i,k):0,j E ¢

Also, 0 = ¢ holds if and only if 6,0 |= ¢ holds. For instance, the request/acknowledgment LTL
formula in Eq. (1) specifies that, first, if a request r is emitted, then such a request should eventually
be acknowledged by a, and, second, an acknowledgment happens only in response to a request.

2.2 Logics for Runtime Verification

In the context of runtime verification, the semantics of LTL is not fully appropriate as it is defined
over infinite traces. Before we delve into the details, we note that many distributed programs are
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not-terminating (e.g., databases, internet services, blockchains, web servers, content delivery, etc).
However, the goal of runtime monitoring is to evaluate the health of a system by only observing
finite behaviors of the system. In some cases, the monitor is able to issue a verdict that generalizes
to any infinite extension (e.g., permanently false and true verdicts). In this sense, the monitor can
inspect the health of a program regardless of whether it is terminating or non-terminating.

2.2.1 Finite LTL. Finite LTL (FLTL for short) [24] allows us to reason about finite traces for verifying
properties at runtime. The syntax of FLTL is identical to that of rTL. The semantics of FLTL for both
atomic propositions and Boolean operators are identical to those of LTL. FLTL employs two truth
values to evaluate a formula with respect to a finite trace, denoted by B, = {L, T}. We now recall
the semantics of FLTL for the temporal operators. Let ¢, ¢;, and ¢, be LTL formulas, let & = s¢s1 - - - 55
be a non-empty finite trace, and let |- denote satisfaction in FLTL. We have:

1 e 1
[aleO(P]:{E_a Frol ifa" #e€

otherwise,
and

T if3ke[0n]: ([a Er @] =T) A (VL€ [0,k), [a Er 1] =T)
1 otherwise.

[0!|=F<.0171<.02]={

To illustrate the difference between LTL and FLTL, consider formula ¢ = < p and finite trace
a = soS1-Sp. If p € 5; for some i € [0,n], then we have [« |=r ¢] = T. However, if p ¢ s; for
every i € [0,n], then [@ |FF ¢] = L, and this holds even if « is extended to another finite sequence
including a state where p holds.

2.2.2 Three-Valued Semantics for LTL. As illustrated in the previous subsection, FLTL ignores the
possible future extensions of finite traces when evaluating a formula. Three-valued 1L (LTL3) 8]
also evaluates LTL formulas for finite traces, but with an eye on possible extensions. In LTL3, the
set of truth values is B; = {T, L, ?}, where T (resp., 1) denotes that the formula is permanently
satisfied (resp., violated), no matter how the current trace extends, and “?’ denotes an unknown
verdict — i.e., there exists an extension that can falsify the formula, and another extension that can
truthify the formula. Let @ € ¥* be a non-empty finite trace. The truth value of an 113 formula ¢
with respect to a, denoted by [« =5 ¢], is defined as follows:

T if Voe3?:ac kg
[aEspl=4L if VoeI?:ac g
? otherwise.

For example, consider formula ¢ = (Jp and a finite trace @ = s¢s1---s,. If p ¢ s; for some
€ [0,n], then [ |=3 ¢] = L. That is, the formula is permanently violated. Now, consider formula
¢ =< p and a finite trace o = sps1 -+ - 5. If p € s; forall i € [0, n], then [@ |3 @] =?. This is because
there exist infinite extensions to « that can satisfy or violate ¢ in the infinite semantics of LTL.
Definition 2.1. The LTL; monitor for a formula ¢ is the unique deterministic finite-state machine
M =(Z,0,90,6,4),

where Q is the set of states, g is the initial state, § : Q X ¥ — Q is the transition function, and
A : Q — Bj is a function such that

Md(qo, @) = [a |3 ¢]

for every finite trace @ € X*.
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For example, Fig. 2 shows the monitor automaton for formula ¢ = a U b. The function A for
this automaton is as follows : A(qo) =?,A(q.) = L,and A(g7) = T.

{a}
()
{ {a, b}, {b}
true true

Fig. 2. LTL3 monitor for ¢ =a U b.

2.2.3  Four-Valued Semantics for LTL (RV-LTL). The four-valued logic Rv-LTL [7] refines the truth

value 7" into L, and T,. That is, its set of verdicts is By = {T, Tp, L, L}. More specifically,

evaluation of a formula in Rv-LTL agrees with LTL;3 if the verdict is L or T. Otherwise, (i.e., when

the verdict in LTL; is ?), Rv-LTL utilizes FLTL to compute a more refined truth value. Let a € X be

a finite trace. The truth value of an rRv-LTL formula ¢ with respect to «, denoted by [« |4 ¢], is

defined as follows:

T ifl[aksel=T

L if[aksel=1

Ty if[abEsel=? A laEre]l=T

1p if[aksel=2 A [akrel=1

Definition 2.2. The Rv-LTL monitor of a formula ¢ is the unique deterministic finite-state machine
M= (3,0,q0.6,4),

where Q is the set of states, g is the initial state, § : Q X ¥ — Q is the transition function, and
A : Q — By is a function such that

[a 4 @] =

A(8(qo, @) = [a |4 9]
for every finite trace ¢ € 3.
An algorithm that takes as input an LTL formula and constructs as output the Rv-LTL monitor is

described in [8]. For example, Fig. 1 shows the Rv-LTL monitor for the request/acknowledgment
formula in Eq. (1).

Remark. We note that the sizes of Rv-LTL and LTL3 monitors are exponential in the size of the
input 1L formula. However, since the size of formulas is typically small, the size of corresponding
monitors after determinization and minimization is not expected to be large (usually a handful of
states).

3 DISTRIBUTED FAULT-TOLERANT MONITORING

In this section, we present a general computation model for asynchronous distributed fault-tolerant
monitoring.
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3.1 General Objective

Throughout the rest of the paper, the system under inspection produces a finite trace & = sos; - - - S,
and is inspected with respect to an LTL formula ¢ by a set M = {M;, My, ..., M,} of monitors.
The monitors run asynchronously and are subject to crash failures. When a monitor crashes, it
stops functioning, i.e., does not perform any computation step, and will never recover. For the sake
of simplifying the presentation, we assume that the monitors exchange information by atomic
read/write accesses to a shared memory. Indeed, our focus is to measure the impact of distributed
monitoring, not to deal with the subtleties of complex communication media, and hence we choose
the wait-free distributed computing model which is well understood [6]. Moreover, this model is
known to be equivalent, with respect to task computability, to the message-passing model, under
the weak assumption that fewer than half the monitors can crash [3].

In order to compare the power and limitations of distributed monitoring with those of centralized
monitoring, we assume that the monitors perform their observation of the system, their computation,
and their emission of verdicts reflecting their vision of the current trace a = s - - - g W.r.t. some
LTL formula ¢, before the trace is extended to asg4;. In other words, the distributed monitors have
time to observe, compute, and output in between any two global steps of the system execution. This
allows us to compare the behavior of the distributed monitor with the behavior of a centralized
event-triggered monitor observing the global execution of the system.

Informally, we aim at designing distributed monitors whose outputs enable to infer the verdicts
that would be produced by a centralized monitor on the same execution trace. Specifically, we will
compare our distributed monitors with a centralized monitor producing verdicts in Rv-LTL. That
is, assuming that the distributed monitors choose their verdicts from a set V, they must be able
to map the sets of verdicts produced by the monitors to the truth values in By = {T, T, L,, 1}
produced by a (centralized) Rv-LTL automaton monitoring the system, and this mapping

/JZZV—>B4

must guarantee the soundness condition that, for every finite trace «, if the distributed monitors
produce a set m € 2V of verdicts for @, then

p(m) = [a |4 o] (2)

Note that m is a set of verdicts. Indeed, each monitor observes and maintains only a partial view of
the system, and so two monitors may have different perspectives on the correctness of the system.
Moreover, since the monitors run asynchronously, different read/write interleavings are possible,
where each interleaving may lead to a different collective set m of verdicts emitted by the monitors
for the same system state.

In the remaining of the section, we formally specify distributed fault-tolerant monitoring.

3.2 LTL on Partial Traces

In the centralized setting, recall from Section 2 that a state of the system is an element of 2", We
will use the notation {true, false} P!, specifying which atomic propositions are satisfied, and which
ones are not satisfied in a given state. However, in a distributed setting, each monitor in M has only
a partial view of the system under inspection, and it may be able to observe the truthfulness of only
a subset of atomic propositions, so that the value of the remaining propositions are unknown to the
monitor. This leads us to the definition of partial states, and partial traces (see also [11, 12]). We fix
the notation s[p] to denote the “value” of proposition p in state s (i.e., from the set {true, false}).
We use the same notation for partial states and propositions.
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Definition 3.1. Let s = {true, false, §} P! where fj denotes an unknown value. A partial state is
an element of 3, and a partial trace is an element of X* U X“. Given a partial state §, a state s is a
completion of § if, for every p € AP, s[p] € {true, false}, and

Glpl #b8) = (slp] =3[pD).

A trace « is a completion of a partial trace & if || = |&| and, for every i > 0, the ith state of @ is a
completion of the ith partial state of 4.

We denote by cmpl(&) the set of all traces a completing the partial trace &. Then, for every finite
partial trace &, we set

T if Ya € cmpl(d),Yo € Z® :ao E ¢
[@Es 9] =q9L if Yaecmpl(@),Yo eI ao ¢ (3)

?  otherwise.

When a state s is reached in a finite trace, each monitor in M takes a sample from s, which
results in obtaining a partial state. In a sample, if the value of an atomic proposition is known, then
the sampled value is consistent with state s, so that the actual state is a completion of any of its
samples.

Definition 3.2. A sample of a state s € X is a partial state § € 3 such that, for every p € AP,

Glpl #8) = Glpl =slpD.

We assume that two monitors M and M’ cannot take inconsistent samples. That is, if § and §’
are two samples of a state s by monitors M and M’, respectively, then we assume that, for every
p € AP,

Glpl #5'[p) = Glpl=h Vv &[pl =1).

We say that a set of monitors covers a state if the collection of partial views of these monitors
covers the value of the all atomic propositions in s. A set M of monitors satisfies state coverage for
a state s if, for every p € AP, there exists M € M whose sample § satisfies §[p] # §i. Unfortunately,
distributed monitoring with monitors subject to crash failures is subject to an important limitation:
state coverage cannot be guaranteed. Indeed, even if it is guaranteed that M initially satisfies state
coverage, the presence of crashes may result in this property no longer being true during the course
of execution of the system. This follows from the fact that M’ = {M; | i € I} may not satisfy state
coverage for I C [1,n], evenif M = {M; | i € [1,n]} satisfies state coverage, because the monitors
M;, where i € [1,n] \ I, have crashed.

Since state coverage cannot be guaranteed, one must also specify the correctness of partial traces
in FLTL so that monitors can emit non-trivial verdicts even on partial traces. In this paper, we do so
via an extrapolation function allowing to associate a Boolean value with each atomic proposition,
even if its truth value is unknown.

Definition 3.3. An extrapolation function is a function x = (X,),eap, Where
X, : {true, false,li} — {true, false}
satisfies x, (true) = true and x, (false) = false.
Given an extrapolation function x, for every finite (partial) trace & = $¢$; - - - §¢, we define

[& Frx o] = [x(50)x(51) - - - x(8) EF o] 4)
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In the following, we assume that all the monitors in M are using the same extrapolation function

x. Note that, once LTL; and FLTL have been both extended to partial traces, the extension of Rv-LTL
to partial traces directly follows:

T if [dEse] =

. 1 if [k ] =

[ 4 0] = -
T, if [@Fse] =
Ly if [aFs el =

Having extended LTL3 and FLTL to partial traces, we can therefore refine our objective by revisiting
Eq. (2), rephrased as

p(m) = [& =4 @]
where & is the partial trace of an actual trace a = s¢s1s; - - - Sk, defined as the sequence of partial
states §; of s; resulting from the unions of all the samples of s; taken by the monitors, M =
{My1, M, ..., My}, and m is the set of verdicts returned by the monitors after having observed sy.

Remark. The choice of the extrapolation function x used to extend FLTL to partial traces has no
impact on our setting. Therefore, in the following, for simplifying the notations, and for the sake of
improving readability, we shall no longer use the “*” symbol for distinguishing traces from partial
traces, and we shall no longer specify extrapolation using x. The reader must solely remember that,
from this point on, any mention of LTL; refers to the semantics of Eq. (3), and any mention of FLTL
refers to the semantics of Eq. (4).

3.3 A Generic Algorithm for Distributed Monitoring

3.3.1 Wait-free Computing. Each monitor is a process, and the monitors run in the standard
asynchronous read/write shared memory model [6]. Each monitor runs at its own speed, that may
vary along with time, and may fail by crashing (i.e., halt and never recover). We assume no bound
on the number of monitors that can crash, and thus a monitor never “waits” for another monitor
since this may cause a livelock (a process waiting for an event that will never occur). This model of
computation is thus often referred to as wait-free shared memory computing. Every monitor that
does not crash is required to output, i.e., in the context of this paper, to emit a monitoring verdict. A
distributed algorithm in this setting consists, for each process, of a bounded sequence of read/write
accesses to the shared memory, at the end of which an output is produced, i.e., a verdict is emitted.
If the number of possible inputs is bounded (which is the case in the setting of monitoring an rTL
formula as every state is of bounded size), the lengths of such read/write sequences are bounded.
We thus assume, without loss of generality, that each monitor accesses the shared memory a fixed
arbitrarily large number of times before emitting a verdict (see [22] for more details).

3.3.2  Wait-free Snapshots. Consider an array SM of single-writer/multi-reader registers, where
process (monitor) M; can write to SM[i], and can read the register SM[j] of any other processes M;.
Programming using such an array can be significantly simplified, using instead snapshot operations.
A process M; can still write only to SM[i], but it can read all the array SM in a single atomic
snapshot operation. If it would be possible to stop all other processes temporarily, to allow M; to
read one-by-one all registers, then M; could obtain a snapshot SM. However, in a wait-free system,
this is not allowed.

Remarkably, it is possible to implement a snapshot operation wait-free, allowing all other
processes to continue executing their operations, possibly even writing and reading concurrently.
Many wait-free atomic snapshot implementations have been proposed, on top of read/write registers,
e.g. [1, 2, 5, 23]. Furthermore, implementations of snapshots on top of a message passing system
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have also been proposed [4, 15]. Such implementations have a computationally cost, but the main
purpose of this paper is to study feasibility, not efficiency. Our algorithms could be implemented by
simply replacing the snapshot operation by the read/write algorithm implementing the snapshots
(or potentially even the implementation on top of a message passing system as mentioned above),
without compromising the correctness of the results in the rest of the paper.

Thus, for the sake of simplifying the presentation, all our algorithms use atomic snapshot
operations. That is, we assume that a monitor can acquire the entire memory SM in a single atomic
“global read” instruction. A view of the shared memory SM is merely the result of a snapshot.

Using snapshots does not artificially strengthen the power of distributed monitoring, but con-
siderably simplifies the presentation of the algorithms and their analysis. Indeed, snapshots are
ordered by inclusion, because they return the contents of the shared memory that existed at some
point in time, between the invocation of the snapshot operation, and the moment the operation
returns. Thus, two snapshot operations may return the same view, if they took effect simultaneously.
Otherwise, one returns a view at some point in time, and the other a view of the contents of the
shared memory at a later time. In this sense, we have the following statement.

LEMMA 3.4 (ATTIYA ET AL. [5]). The snapshots are ordered by inclusion, i.e., for any two monitors
M; and M;, and any two snapshots of these monitors returning two views w; and w; of the shared
memory, we have either w; C w; or w; 2 w;j.

3.3.3 A Generic RV Algorithm. As mentioned earlier, RV is concerned with verifying finite traces.
Distributed monitoring works as follows. Let sys;53 - - - sg be a finite trace under scrutiny. We perform
a sequence of phases, where each phase j € [0, k] consists in evaluating the correctness of the trace
$0S1 - .. sj. That is, at phase j, each monitor receives a sample from state s;, which forms its input,
then performs a fixed number R of access to the shared memory, after which it produces its verdict
regarding the trace sos; - - - s;. We now describe this process in more detail.

Each monitor M; € M, where i € [1,n], is provided with a local memory, Im;. The shared
memory is denoted by SM. For the sake of establishing a strong lower bound, we consider protocols
that are not subject to any constraints in terms of how much data can be stored, and how much
data can be transferred at once during a read (snapshot) or a write. In other words, we consider full
knowledge protocols [22]. (Note, however, that our upper bound will be shown efficient in terms of
both memory storage and bandwidth utilization.)

Both the shared memory and the local memories are organized in levels, where, for every
J € [0,k], both the jth level SM[j] and Im;[j], i € [1, n] store data used when considering state s;
of the monitored trace. Moreover, the jth level of the shared memory is organized in R - n registers,
where n is the number of monitors, and R denotes the number of rounds of read/write instructions.
Specifically, SM[j][r, i] stores data written by M; during its rth write. Similarly, the local memory
of M; is organized in R+ 2 registers, where Im[ j][0] stores the sample of s; by M;, and, for1 < r <R,
Im[j][r] stores data extracted by M; from the shared memory during its rth read. (An extra level
Im[j][R + 1] is used for synchronization, as explained below.) We assume that all variables are
initialized to b.

Each monitor M; € M, i € [1,n], runs Algorithm 1 that we detail next. First, before sampling s;,
each monitor takes a snapshot of the shared memory. This is to make sure that all the monitors share
the same information about the partial trace resulting from the global observation of s¢s1 - - - sj_1.
Indeed, recall that it is assumed that all non-faulty monitors sample, compute, and emit their verdict
in between every two consecutive steps of the system. Thus, when M; starts considering s;, all
non-faulty monitors have emitted their verdict about sys; . .. s;_1. In particular, the values of all the
atomic propositions of s;_; that are covered by the set of non-faulty monitors have been written in
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Data: rTL formula ¢ and state sj, j > 0
Result: a verdict from some fixed set V
if j > 0 then

=

2 L Im;[j— 1][R+1] « SM[j —1]; /* M; snapshots the (j — 1)th level of shared memory */
3 Im;[j][0] < sample;(s;); /% M; takes sample from states; */
4 forr=1to Rdo

5 SM[jl[r,i] « Im;[j][r —1]; /% M; writes its current knowledge in shared memory */
6 | Imi[jllr] < SMLJjl; /% M; takes a snapshot of the shared memory */

7 emit a verdict in V; /* M; decides based on the knowledge accumulated in Im; */

Algorithm 1: Generic behavior of Monitor M;, for i € [1,n].

shared memory when M; samples s;. The instructions performed in Lines 1 and 2 allow M; to get
all such values. As a consequence, for any two monitors M; and My monitoring sos; . .. s;, it holds

vp e [0,j 1], Imi[p][R+1] = Imy[p][R+1].

That is, they agree on sos; - - - §j_1.

For any given new state s;, monitor M; takes a sample from state s; (cf. Line 3), which is stored in
local memory Im;[j][0], at the Oth level. (Recall that the value of an atomic proposition in a sample
is either true, false, or §.) After sampling, each monitor M; executes a sequence of write/snapshot
actions (cf. Lines 5 and 6) for some a priori known number of times R. More precisely, in Line 5, at
the rth iteration, M; atomically writes all its knowledge accumulated so far, i.e., during the r — 1
previous rounds of read/write instructions. This knowledge is stored at the rth level of the shared
memory, in the register dedicated to data from monitor M;. In Line 6, M; reads all the registers in
SM[j], and copies them into Im;[j][r], in a single atomic step.

The R iterations of the for-loop allow M; to collect information about the current state s;. After
R iterations, the for-loop ends, and M; emits a verdict based all the knowledge accumulated in its
local memory. For our lower bound, we impose no restriction on the way this verdict is computed.
However, for our upper bound, this verdict will be computed solely based on evaluating ¢ on the
partial trace accumulated by M;. Note that, even for a large R, M; may still not be aware of all
the atomic propositions of s;, simply because the monitors which were covering these atomic
propositions may be slow, and may have not yet reported their samples in the shared memory. Also
note that there is no point in waiting for the slow monitors, since it may well be the case that they
have actually crashed, and waiting for them would yield a livelock.

A distributed-monitoring algorithm is an instantiation of the generic algorithm depicted in
Algorithm 1. A concrete example of such an instantiation is provided in Section 4. Note that the
generic Algorithm 1 takes full advantage of the total power of distributed wait-free computing.

3.4 Statement of the Problem

For any state s;, when a set of monitors execute Algorithm 1, different interleavings, and hence
different sets of verdicts, are possible. Global consistency is the property enabling to map the set
of verdicts of the distributed monitors to the verdict of a centralized monitor that has the view of
states identical to the cumulated views of the monitors. More specifically, given a state s;, the cover of
s; is the partial state §; such that, for every p € AP, §[p] # b if and only if p is in the sample of s; by
some non-faulty monitor M;. From this point on, any reference to an execution trace a = ss; - - - 5
actually refers to the sequence of states covered by the monitors.
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A monitor trace for an execution trace @ = sys1 - - - Sg 1S a sequence m = mom; - - - my, where, for
every j € [0,k], mj C V for some verdict set V, and each element of each m; is the verdict of some
monitor M; € M emitted when considering state s;. Let ¢ be an LTL formula, and let o = sps1 - - - s
be a finite (partial) trace corresponding to the sequence of (partial) states covered by the monitors.

Definition 3.5. A monitor trace m = momy ... my with verdict set V satisfies global consistency
for o with interpretation
p:2V > By
if, for every 0 < j < k, if no monitors crash between the time when the system enters state s; and
the time when the system leaves state s;, then

p(m;) = [sos1--+s; F4 @]

Note that p € AP might be in the sample of a monitor observing the system in state s;, but this
monitor may crash before reporting this sample to the shared memory, or may report this sample
in the shared memory before crashing, but does it so late that no other monitors can see this sample
(because asynchrony and failures prevent any monitor from waiting for any other monitor). This is
why global consistency is required to hold only if no monitors crash when monitoring state s;.

Definition 3.6. Let A be an instantiation of Algorithm 1 for an LTL formula ¢ with verdict set V.
Algorithm A is sound for Rv-LTL, if there exists a function y : 2V — By such that, for every finite
(partial) trace a € X* covered by the monitors, and for every monitor trace m produced by A for «,
m satisfies global consistency for « with interpretation .

The problem: Given an rTL formula ¢, design an instantiation A of Algorithm 1 that correctly
monitors ¢, with monitors emitting verdicts picked from a small set V of values.

In particular, is any LTL formula ¢ correctly distributedly monitorable using B4 as verdict set for
the monitors? The next section shows that the answer to this question is negative. However, further
ahead in the text, it will be shown that, for every rTL formula ¢, there is a distributed algorithm
that correctly monitors ¢ with verdicts picked from the set of logical values of a multi-valued
logic extending Rv-LTL, whose cardinality is related neither to |AP| nor to | M|, but to a specific
characteristic of the formula ¢.

4 DISTRIBUTED MONITORING USING RV-LTL

In this section, we pursue two goals. First, in Section 4.1, we modify Algorithm 1, so each monitor
emits a verdict in By, that is, truth values of Rv-LTL. This constructs Algorithm 2, that we describe
in detail. Then, in Section 4.2, we provide a concrete example of how distributed monitors can
successfully monitor an LTL formula using Algorithm 2. In Section 4.3, we discuss our second goal
and show that Algorithm 2 cannot monitor any LTL formula while ensuring soundness. In Section 5,
we generalize this negative result to an impossibility result for fault-tolerant monitoring.

4.1 Distributed Monitoring with Verdicts in RV-LTL

As in the generic case, the local memory Im; of monitor M; is organized in levels, one for each state
of the monitored trace. The same holds for the shared memory. For every k > 0, Im;[k] stores a
partial state, i.e., an |AP|-dimensional vector with values in {true, false, §}. For every k > 0, and
every i € [1,n], SM[k][i] stores a partial state, i.e., SM[k][i][p] € {true, false, j} stores the value
in si of the atomic proposition p € AP, as written by monitor M;. Every monitor M; also uses an
auxiliary storage variable Im; for local computation, which has the same format as one level of the
shared memory, i.e., Im] stores one partial state for each monitor M;. Again, we assume that all
variables are initialized to b.
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Data: L1L formula ¢ and state s, k > 0

Result: a verdict from By

if k > 0 then
Im; « SM[k —1]; /* M; snapshots the (k — 1)th level of shared memory */
for every p € AP do

N

w

4 L if (Im;[k —1][p] =) A (3j € [1,n] : Im][j][p] # b) then

5 L Im;[k = 1][p] :== Imi[j][p]; /* M; completes its view of sp—1 */
6 Im;[k] « sample;(sk); /% M; takes sample, and gets some p € AP for s, */
7 SM[k][i] « Im;[k]; /* M; writes its current view of s in shared memory */
8 Im; « SMI[k]; /* M; takes a snapshot of the shared memory */
9 for every p € AP do

10 if (Im;[k][p] =) A (3j € [1,n] : Im][j][p] # b) then
L Im; [k][p] = Im![jl[p]; /* M; gets propositions that were not in its sample */

12 emit [Imi[O]lmi[l] - Im;[k] |4 <p] ; /* M; evaluates trace Im;[0] - - - Im;[k] in Rv-LTL */

Algorithm 2: Behavior of monitor M;, i € [1,n], using RV-LTL.

Algorithm 2 proceeds as follows. As in Algorithm 1, Lines 1-5 allow all non-faulty monitors
observing si to share the same information about the partial trace resulting from the global
observation of sgs; - - - sg—1. That is, for any monitor M; and sampling s in Line 6, it holds

Im;[0]Im;[1] - - - Im;[k — 1] = sos1 - - Sk—1.

Let us now focus on the core of the algorithm. In Line 6, the monitor takes a sample of the
current state sg. This sample gives M; the value of some atomic propositions p € AP, in which
case Im;[k][p] € {true, false}, but M; may not become aware of some other atomic propositions
p’ € AP, in which case Im;[k][p’] = b. Then, only one round of the generic algorithm is run. That
is, M; writes its partial view of si (Line 7), and takes a snapshot of the shared memory (Line 8) with
the objective of getting the values of atomic propositions of si that it is missing in its view. If there
is indeed such a proposition p in its snapshot, then M; adds this value in its partial view of s, in
Line 11.

For emitting its verdict, monitor M; evaluates trace Im;[0] - - - Im;[k] in Rv-LTL, that is, its verdict
is the truth value in B4 equal to:

Im; [0]Im; [1] - - Im;[k] =4 o]

Algorithm 2 is probably the most natural way of providing fault-tolerant distributed monitoring.
However, as we show in the next subsection, Rv-LTL is far from being sufficient, and even simple
LTL formulas cannot be evaluated using distributed monitors using Rv-LTL.

4.2 A Positive Example for Distributed Monitoring using RV-LTL

Let M = {Mj, My}, and let us consider monitoring the aforementioned request-acknowledgment
formula

Ora=0(maA=r)V ((maUr)Aa).
We represent a (partial) state in a finite trace for ¢,, as a vector

X
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where the propositions range over {true, false, j}. Let us assume that atomic proposition § is
extrapolated to false (we will show that the choice of extrapolation does not matter). Using a central
monitor, evaluation in Rv-LTL should return the following verdicts:

r false true false true
a false false true true

verdict Tp 1y L T

where each column represents a trace of length one (i.e., a single state). In a distributed setting, a
monitor may observe the following corresponding partial states and return verdicts in Rv-LTL:

o) | ) | o | ot | (5] | ) | ) | (%) ) | ()

verdict | Tp Tp L Tp Tp L 1p 1y T

Thanks to Lemma 3.4, the sets of possible verdicts returned by a collection of distributed monitors
observing the system are, for the four possible scenarios:

r false true false true
a false false true true

verdict sets ‘ {Tp} ‘ {Lp}or {Tp, Lp} ‘ {1} or {Tp, L} ‘ {T}or {T,Tp}or {T, Lp} or {T, L} ‘

Let us define the following interpretation function. For every non-empty m C By = {T, 1, T, L},

T ifTem

1 ifT¢mandLem

1, ifmn{T,L}=0and1,em
T, otherwise.

p(m) =

With such an interpretation function, we do have

ﬂ(m) =[s k4 (Pm];

as desired. This analysis can be extended to traces, and to monitor traces, establishing that Algo-
rithm 2 correctly monitors ¢, in RV-LTL.

4.3 A Counterexample to Distributed Monitoring Using RV-LTL

Let M = {M;, Mz} and let us consider the LTL formula for two requests and two acknowledgments:

O = (D A=) V [(may U 1) A Ganl) A (D(maz A=) V(U ) A Gaal).

4.3.1 Negative Example of Monitoring ¢,,,. Figure 3 shows a concrete finite trace « and its cor-
responding monitor trace resulting from running Algorithm 2, where f stands for false, and ¢
stands for true (in this example too, I is extrapolated to false). It also shows the content of the local
memories of two monitors M; and M, monitoring «, as well as their individual evaluations of ¢4
with respect to the observed trace. For instance, for sy, let:

true true
true

sample, (sp) = false sample, (sp) = h
false false

where each vector shows the value of propositions ry, aj, r2, and a,. Then, when M; and M, perform
the write-snapshot instructions of Lines 7 and 8 of Algorithm 2, Fig. 3 illustrates an execution in
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& = 50515283
A
v N
so={ri,a1} s1={r} sy ={ri,a,r2} s3 = {ri,rp,a1,az2}
[so FF @ra2] =T [sos1 FF @ra2]l =T [s0s152 FF @ra2] = L [s0515283 FF @raz] = T
Imy [0] Im,[0] Im; [1] Ima[1] Im; [2] Imz[2] Im; [3] Imz[3]
M, | M, M; | M, M, | M, M; | M, M, | M, M, | M, M, | M, M, | M,
o[t b t t t b b 2 b t b t t b B b
a | g b g t g g b g b t b t t t b t
| f |k 1 | r b f t b b h b t b t
a | f |4 flr flh b b fls b h b t b t
J‘P TP TP TP ‘LP TP T T
~ A N A ~ 7/
~ ~~ ~~ ~
mo={1p, Tp} my={Tp} my={1lp,Tp} ms = {T}
~ /

m = mom;myms

Fig. 3. A monitor trace as computed by Algorithm 2.

which M; does not get any new information (M; took the snapshot before M, wrote), while M,

gets the partial trace sampled by M;. As a result,

true true
true

m, [0] = false Im, [0] = false |
false false

It follows that M; emits

Lp = [Im1[0] E4 @raz].
while M, emits

Tp = [|m2 [0] 4 G”raz]-

Since [so F4 @ra2] = T, it must be case that the set of verdicts mg = {T,, L,} is interpreted as T,

ie.,

p(mo) = Tp.

A contradiction can be observed when considering M; and M, observing s¢s;s2. Indeed, in
this case too, the set of verdicts emitted by the monitors can be my; = my = {T, L,} for some
interleaving of the write-snapshot instruction. However, [sos152 F4 @raz] = Lp. Therefore, we get

p(ma) # 505152 Fa @razl.

That is, Algorithm 2 does not correctly monitor ¢,g.

4.3.2  Negative Result on Monitoring a Single State for ¢,,,. We show that Algorithm 2 does not
even correctly monitor ¢,4, on a single state. Figure 4 shows different execution interleavings of

monitors M; and M, when running Algorithm 2 from two different states

So = {r1, 611},
and

56 ={r, as, r2}.
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Again, let us represent a state in a partial trace for @rq2 as a vector

r
ay
r2
az

with entries in {true, false, li}. In case of sy, after executing Line 6 of Algorithm 2, monitors’ samples
consist of

true true

b true

Im{[0] = false | and Im,[0] = h
false false

Likewise, for state s;, Fig. 4 shows different local snapshots by M; and M,. The verdict depends on
the different interleavings of write/snapshot. In Fig. 4, M;, M, (resp., Mz, M;) denotes the case where
monitor M; (resp., M) executes a write-snapshot instructions (Lines 7-8 of Algorithm 2) before
monitor M, (resp., M;) does, and M; || M, denotes the case where monitors M; and M, execute their
write-snapshot actions concurrently.

Figure 4 shows that Rv-LTL is unable to consistently monitor ¢,.2. More precisely, observe that,
in the figure, the shaded collective verdicts m, and my, for trace sy and trace s;, respectively, are
identical, both equal to {1, T}, while [so F4 @raz] # [s F4 @raz]. Specifically, let us consider the
following scenarios.

Scenario 1: Starting from state s, with M;, M; interleaving, we have [Im;[0] 4 ¢r2] = 1,
and [Im;[0] =4 @ra2] = Tp. That is, the collective set of local verdicts is mg = {_L,, T,}.
Scenario 2: Starting from state s), with M,, M; interleaving, we have [Im{[0] 4 ¢y, ] = L,
and [Im}[1] |54 @re,] = Tp. That is, the collective set of local verdicts is m{ = {1, T»}.
Therefore, although the valuations of ¢,,, for two finite traces sy and s; are different in rRv-LTL (i.e.,
T, and L, respectively), the collective set of verdicts emitted by monitors M; and M, in the above
two scenarios are identical (i.e., {1, T,}). That is,

[s0 4 @ra,] # [ 4 0ray),

but 1(mg) = p(my) for any p, and, thus, ¢4 is not correctly monitored, even on traces consisting
in a single state.
We summarize the discussions in this section by the following:

PROPERTY 4.1. Not all LTL formulas can be consistently monitored by a 1-round distributed monitor
with traces in Rv-LTL. In particular, the LTL formula ¢,,, cannot be monitored by a 1-round distributed
monitor with traces in Rv-LTL, even on traces consisting of a single state, even if monitors satisfy state
coverage, and even if no monitors crash during the execution.

The above results yield several questions. Do they hold only because Algorithm 2 does not
perform sufficiently many communication rounds? Do they hold because the monitors exchange
only partial states? Do they hold because the four possible individual verdicts are interpreted
as logical values in B4? In the next section, we answer all these questions negatively: even the
full-information Algorithm 1 cannot distributedly monitor LTL formula ¢,,, with a verdict set of
cardinality 4, independently from its number of rounds R > 1.

5 DISTRIBUTED MONITORING REQUIRES LARGE VERDICT SETS

In this section, we introduce a parameter that will be shown to have a strong impact on distributed
monitoring, namely the alternation number of an LTL formula. In particular, in this section, we show
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Fig. 4. Monitors M; and Mz monitoring formula ¢,g from two different states sy and 56.

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.



Decentralized Asynchronous Crash-Resilient Runtime Verification 0:19

that, for every k > 0, there is an LTL formula ¢ with alternation number k that cannot be distributedly
monitored by monitors emitting verdicts from a set of cardinality smaller than k + 1. This lower
bound is an adaption of the lower bound in [20], which deals with states whose correctness is
specified by Boolean logic, to execution traces whose correctness is specified by linear temporal
logic. In the next section, we shall show that the alternation number also essentially determines an
upper bound on the number of truth values needed to ensure consistency in distributed monitoring,
using truth values from a properly defined multi-valued logic.

5.1 Alternation Number

Let a € X be a finite trace, and let &’ be the longest proper prefix of @, i.e., @ = a’s, where @’ € ¥*
and s € 2. Let ¢ be an LTL formula. We set the alternation number of ¢ with respect to «, denoted
by altern(¢, ), as follows. First, for full generality, we do not define the alternation number of ¢
solely for traces, but also for partial traces. That is, in state s, proposition p € AP can be true, false,
or unknown (). Given two partial states s and s’, we set
s’ <s

if the following two conditions hold:

e Vp e AP : (s'[p] € {true, false} = s[p] =s"[p]);

o dpe AP : (s'[p] =8 A s[p] € {true,false}).
We denote by sf the partial state in which all atomic propositions are unknown.

Definition 5.1. The alternation number of an LTL formula ¢ with respect to a finite partial
trace a = a’s with ¢’ € ¥* and s € ¥, denoted by altern(¢, ), is the maximum integer £ > 0,
such that there exists a sequence of partial states sos; - - - sp with s = st s, = s, and, for every
ie{0,1,....,6-1},

(si < Si+1) A ([a’si Fr ol # ['sin ErF qo])-
The alternation number of an LTL formula ¢ is altern(¢) = max {altern(go, a)|ae Z*}.

It directly follows from this definition that, for any LTL formula ¢, its alternation number is
bounded by its number of atomic propositions, i.e.,

altern(¢p) < |AP|.

On the other hand, the alternation number can be much smaller than the number of atomic
propositions. For instance

Q=X1 ANXog N+ NXp
satisfies |AP| = t and altern(¢) = 1 (assuming that the evaluation of a partial trace is performed by
replacing all ij by false). Let us consider a few examples.

e altern(Odp) = 1, since once p is false, the formula can never evaluate to T.
e altern(Od(r — <a)) = 2, as witnessed by the partial states

o= %))

which evaluate to T, L, T, respectively, in FLTL, when we extrapolate all jj to false.
e altern(¢,,) = altern(O(=a A =r) V [(=a U r) A $al) =2 with

r\ _(BY( b \[true
a) ~ \#/\true/\true
which evaluate to T, L, T, respectively, in FLTL, when we extrapolate all j to false.
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o altern(¢,qe) = 4 with

r b true true true true
a | | & b true true true
ro || h b b true true

az b b b s true

which evaluates to T, L, T, L, T, respectively, in FLTL, when we extrapolate all j to false.

5.2 The Impact of Alternation Number on Distributed Monitoring

The following result extends Property 4.1 to any distributed monitoring algorithm. It also extends
the lower bound in [20] to execution traces whose correctness is specified by means of linear
temporal logic.

THEOREM 5.2. For every k > 0, there is an LTL formula ¢ with altern(¢) = 2k that cannot be
correctly monitored by n > 2k distributed monitors using verdict set V if |V| < altern(¢).

Proor. For the purpose of proving this lower bound, we concentrate on the following variant of
the request/acknowledge property. For every integer k > 1, let 14 be defined over the set of atomic
propositions {r1, ..., k41, @1, - - -, Ak41 }- AS In @y, an acknowledgment must not appear before the
corresponding request. However, it is no longer required that every request be acknowledged, but
instead that at least one, and at most k requests be acknowledged. That is,

Y = \/ A(("aiﬂri)/\oai)/\ /\ O-a;

SC[1Lk+1],5+0 \ i€S ie[k+1]\S

LeEMMa 5.3. altern(yy) = 2k.

For establishing the lemma, let R;, A; be the following sequences of vectors in {true, false, h}k“,

with 0 < j < 2k + 2. For every j € [0,2k +2] and i € [1,k + 1], we set

1 true ifi < [j/2]; 1 Jtrue ifi < [j/2];
Ryli] = { s otherwise. Ajlil = b otherwise.

Thatis, Ag = (b,...,§) =Ry =Rj,andfor1 < j < k+1,

Agj_1 = Agj = (true,.. ., true,lj, ..., h)
J

and

Ryj = Ryjy1 = Agj-1.
A pair s; = (R, A;) defines a partial states as follows. For each i € [1,k + 1], the value of the
atomic proposition r; is R;[i], and the value of the atomic proposition a; is A;[i]. Observe that
S0 < 81 < ... < $2j42. For every j € [1, 2k + 2], the following holds.

L ifj=0
ifjisoddand1 < j <2k+1
if jisevenand 2 < j < 2k
if jis even and j = 2k + 2

[sj EF Vil =

e

This is because:

e If j = 0, no request is acknowledged in s,.
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e For j = 2j'+1,0 < j° <k, ay,...,a5 are true but rj is false in s;. Hence, there is an
acknowledgment without the matching request. Hence [s; |=r Y] = L.
e For j =2j',1 < j' <k, every request ry,...,r; is acknowledged, and there is no acknowl-

edgment missing its matching request. Hence [s; Fr ¢x] = T.
o Finally, in sy (as in syg41), there are k + 1 acknowledgments, and thus [sy1 Fr ¥i] =
[S2k+2 FF Y] = L.
It follows that the alternation number altern(y, soS2 - - - S2k+1) = 2k. Therefore, altern(yy) > 2k.
Now, we prove the second part of Lemma 5.3, that is, altern(yx) < 2k. Let as’ be a partial trace,
such that
altern(x, as”) = x.

That is, there exist partial states s| = s < $; < ... < sy such that, for every j =0,..., 2k,

[as) b= Y] # [as)u, F il

As above, each partial state s can be represented by a pair of vectors

(A", R)) € {true, false, §}**! x {true, false, j}**'.
j

Let ack(j) denote the number of atomic propositions a; whose value is true in the partial trace as’,
ie,
ack(j)=|{i:3s € as]’- such that a; = true in s}|

Denote by £ and m the smallest (respectively, the largest) j,0 < j < x, such that ¥ is satisfied in
as;. That is,

p— 3 ’ |— —
t= Ogljlgx[asj Fkl=T

f— ’ |— [
m= Ogagx[asj Fl=T

Note that £ € {0,1} and m € {x — 1, x}.

Since, for satisfying i/, it is required that the number of acknowledged requests is at least one,
and at most k, we have 1 < ack(?) and ack(m) < k. Now, observe that if [as]’. E Yr] = T and
[ocs;.Jrl E Yr] = L, then ack(j) < ack(j + 1). Indeed, in ocs;., for each acknowledgment, there is
a matching request, and the number of acknowledgments is at most k. Hence, in order to have
[0(5}r1 = ¢x] = L, it must be the case that A}[i] = and A}+1 [i] = true for some i,1 < i < k+1.
It follows that ack(s,) + [mT_1'| < ack(m — 1). Since ack(m — 1) < ack(m) < k, and s(£) # 0, we
derive fmT_l'I < k — 1, from which it follows that m < 2k — 1. Asm € {x — 1, x}, we have x < 2k,
and thus altern(yy, a(s’) < 2k.

We conclude that altern(yx) = 2k, which completes the proof of Lemma 5.3. O

In [18], the authors study a collection of distributed tasks 7 (n, k, £) defined for n processes,
where k, ¢ are integers. In each task in 7 (n, k, £), the possible inputs for each process p; are the
pairs (¢,d) € {1,...,k + 1} x {1,...,k + 1}. The possible outputs form a set U of size ¢, called
the opinion set. Any partition (Y,N) of the multisets of at most n elements of U defines a task
Tyn € T (nk,U) as follows. In a distributed shared memory execution, we say that a process
participates if it writes to the shared memory. For any set P C {1,...,n} of participating processes,
let ;1 denote the multiset of the output values of these processes. The task Ty is then specified as
follows.

o If1 <|{d;:ieP} <kand{d;:iec P} C{c; :ie€ P},itisrequired that p € Y;
e Otherwise, it is required that € N.
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A wait-free protocol solves tasks Tyn € 7 (n, k, U) whenever there is a constant B such that, for
every participating set P C {1,...,n}, and for every execution e with participating set P, if every
process i € P has taken at least B steps in e, then every process produces an output value, and the
outputs satisfy the requirement above.

Intuitively, the input of each process p; represents the view of p; as the outcome of an election:
¢; is a candidate ID, and d; is an elected ID. Election is valid if all elected IDs are candidates (i.e.,
{d; :i € P} C{c;:i € P}),and at least 1 and no more than k IDs are elected (i.e., |{d; : i € P}| < k).
By outputting a value u; € U, process p; expresses its opinion regarding whether or not the election
is globally valid. The processes must collectively be able to distinguish between valid and invalid
elections. Indeed, when the inputs of the participating processes represent a valid election, it is
required that the multiset of opinions belong to Y, and, otherwise, that multiset must belong to N.

The main result in [18] is a characterization of the wait-free solvability of the tasks 7 (n, k, ).

LEMMA 5.4 ([18]). For any integers n, k, with 1 < k < n, no task in T (n, k, £) is wait-free solvable
if ¢ < min(2k, n).

To complete the lower bound, we show that monitoring ;. with a verdict set of size £ implies
that some tasks in 7 (n, k, £) are wait-free solvable. Suppose that {4 can be monitored with a set
of verdicts V of size £. Let M be such a monitor and let i : 2V — B, be its interpretation (cf.
Definition 3.6). We show how M can be used to solve a task T € 7 (n, k, £). The opinion set of T is
V. The partition (Y, N) is induced by p. Given a multiset x, let x denote its underlying set. We set:

x€Y &= p(x) €{T), T}

Algorithm 3 solves wait-free the task Ty N € T, k.-

Data: (¢;,d;) € {1,...,k+1} x{1,...,k+1}
Result: an opinion from set V
Aj — B R — R /* Construct a partial state according to the input (c;, d;) */
for j=1tok+1do
if ¢; = j then
L Ri[j] « true
if d; = j then
L A;[j] « true

N O

[

~N

si — (A, Ry); v; «— M(s) ; /* gets a verdict from the monitor algorithm */
return v;

=]

Algorithm 3: Solving a task T € T (n, k, £) using a monitor with verdict set of size {.

Algorithm 3 is wait-free since the underlying monitor M is wait-free. Consider an execution
with participating set P in which every participating process produces an output (at line 8). Let x
denote the multiset formed by the outputs, and let x its underlying set. Let s = (A, R) denote the
partial state covered by the partial states computed by the participating processes, that is, for every
1<j<k+1,

true if 3i € P, A;[j] = true

- true if 3i € P,R;[j] = true
ALl = { b otherwise

and R[j] = { h otherwise

We consider two cases according to the inputs of the participating processes:
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o The inputs of the participating processes represent a valid election. That is,
1< |{dll€P}| Sk, and {d,lEP}Q{c,leP}

Hence, in s = (A, R), there are at most k acknowledgments, and each of them has a matching
request. Recall that the extrapolation function sets the value of each undefined atomic
proposition in s to false. Therefore [s =4 Y] = T, (as the trace can extend with k + 1
acknowledgments in total ). Hence y(x) = T, from which we derive x € Y.

o The inputs of the participating processes represent a invalid election. That is,

|{d; : i € P}| € {0,k + 1}, or there exists k € Ps.t. di ¢ {c; : i € P}.

In s = (A R), there are no acknowledgments, or k + 1 acknowledgments, or some ac-
knowledgments without any matching requests. Therefore [s =4 k] € {Lp, L}, and thus
p(x) € {1,, L}, from which we derive x € N.

We conclude that Algorithm 3 solves the task Ty wait-free. As Tyn € 7 (n,k, £), it follows
from Lemma 5.4 that £ > min(n, 2k). By Lemma 5.3, altern(yx) = 2k. Therefore, if the number of
monitors is larger than altern(iy ), any correct monitor algorithm for 4 will require a verdict set
of size larger than altern(yy). O

6 MULTI-VALUED LTL FOR CONSISTENT DISTRIBUTED MONITORING

In this section, we introduce a novel multi-valued logic, called prtL for distributed LTL, and we
relate this logic to the notion of alternation number. We establish our main result in this section.
That is, we show that, for every ¢ > 0, and for every LTL formula ¢ with alternation number ¢,
there are distributed monitors using a verdict set of cardinality 2[£/2] + 4 that correctly monitor ¢,
where each monitor uses an automaton for evaluating ¢ in DLTL, i.e., DLTL with all truth values in

Bares2144 ={T, L, To, Loy - - -5 Tres2)s Lie/21 )

which can be automatically synthesized from ¢.

6.1 Semantics of DLTL

6.1.1  Definition. pLTL is directly motivated by distributed monitoring. In some sense, DLTL extends
RV-LTL to more than four logical values with an eye on the alternation number. However, as opposed
to Rv-LTL, which is motivated by refining the uncertainty regarding what could occur in the future,
DLTL is motivated by refining the uncertainty caused by asynchrony and failures.

For instance, let us consider a monitor M running Algorithm 2, and assume that M eventually
collected a partial state s after having sampled a trace o with |a| = 1, and after having exchanged
information with other monitors. Let us assume that [s |=3 ¢] = ? and [s Ff ¢] = T. In Rv-LTL,
such a monitor M would output T, as verdict, by Line 12 of Algorithm 2. The objective of pLTL
is to refine such a verdict by providing a level of certainty. Indeed, it may well be the case that
some other monitor M’ collected a partial state s’ < s, with [s’ |z3 ¢] = ? and [s” FF ¢] = L,
yielding a verdict L, from that monitor. With rRv-LTL verdicts, i.e., verdicts in {T, Ty, Lps L}, the
set of verdicts emitted by these two monitors M and M" would be {Tp, J_p}, while the T, verdict
emitted by M is somehow more relevant than the verdict 1, emitted by M’, because M has more
information about the system than M’. The objective of DLTL is that M emits a verdict T; while
M’ emits a verdict L, with i > j, where i and j are non-negative integers reflecting the degree of
certainty of the verdicts. That is, a verdict T; is viewed as more certain than a verdict L ; whenever
i>].

Choosing the right level of certainty at which a verdict must be emitted is at the core of the
definition of DLTL below.
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Definition 6.1. Let @ = ’s be a finite partial trace in X%, i.e., s € X = {true, false, j}, and a’ € =*.
The truth value in prTL of an LTL formula ¢ with respect to «, denoted by [a Ep ¢], is defined as
follows:

T if [akEqs0]l=T

1 if [aFagl=1

To if [abs@]l=Tp A (V" <s:[a’s" Ep @] = To)

L if ok gl = Ly A (V' <5 [o's Ep p] = Lo)

leEo @l =10 00 i e o] = T, A (3 <s: [’ Ep ¢l = Lis)

AV <s,Tj<i:a’s" Ep el €{T;,L;}U{Ti})

L i>0 if [abkgspl=1p A (3’ <s:[a's" Ep @] =Ti1)
AN(Vs" <s,Tj<i:[a’s" Ep el €e{Tj,L;}u{Li})

For £ > 0, DLTL, is the restriction of DLTL, with all truth values in B, = {T, 1, To, Lo,..., T¢, Lo}

Hence, in the case discussed above of two monitors M and M’ having collected the partial states
s and s’, respectively, with s’ < s, M can evaluate s in DLTL instead of Rv-LTL, leading it to output
a verdict T;, while evaluating s” in DLTL leads M’ to output a verdict L ;, with i > j. Indeed, the
existence of s” demonstrates that there exists a partial state s” < s such that [s’ Fr ¢] # [s EF ¢],
so M emits a verdict with more certainty than M’. The level i is actually the length of the longest
sequence sy < s; < --- < s; where s; = s, such that, for every j € {0,...,i — 1}, we have
[s; EF ¢] # [sj+1 EF ¢]. Formally, we have the following:

LEMMA 6.2. Let a # € be a finite partial trace. The alternation number of an LTL formula ¢ with
respect to a satisfies

0 if l[aFp el €{T,1}

altern(g, a) = {[ if [a Ep ¢] € {Le, Te} for somet >0

Proor. Let ¢ be an LTL formula, and let a # € be a finite partial trace. Also, let ¢ = a’s with
o' € ¥ ands € 2. If [a Fp ¢] € {T,L, Ty, Lo}, then altern(p, &) = 0 because the value of
[a’s” EF @] is the same for all s" < s, and thus there are no alternances. The rest of the proof
is by induction on £. Let £ > 0, assume that the lemma holds for £ — 1, and let us show that
it holds for ¢. If [a Ep @] = Ty, then let s’ < s such that [e’s” Ep ¢] = L,-;. By induction,
we get that altern(g, a@’s’) = £ — 1. Moreover, [a's’ Fr ¢] = 1, and [a’'s Er ¢] = T, with
s” < s. It follows that altern(p, a’s) > ¢. Moreover, altern(p, a’s) < ¢ because for every s’ < s,
[a's” Ep @] € {T}, L;} for some j < ¢, which implies by induction that altern(p, a’s’) = j < £. 1t
follows that altern(¢, a’s) = £, as claimed. The proof for the case [« [Ep ¢] = L, is analogous. O

6.1.2  Reducing the number of logical values in DLTL. Lemma 6.2 provides the intuition that, using
DLTL, distributed monitoring an 1L formula with alternation number ¢ > 0 could be done using
verdicts in B, = {T, L, To, Lo,..., T¢, Lr}, i.€., using 2¢ + 4 logical values. While we shall prove
in the next section that this is indeed the case, one can reduce the number of logical values by a
factor of 2. Indeed, let us revisit the case of request-acknowledgment. As we have seen in Section 5,
altern(¢,,) = 2, and, as we have seen in Section 4.2, monitoring ¢,, using Rv-LTL can be done using
verdicts in By = {T, L, Tp, 1,}. Instead, Lemma 6.2 suggests that using pLTL would require eight
values. This is because DLTL defines the relative certainty of verdicts L; and T; only for i > j or
Jj < i. One can halve the number of logical values in DLTL by imposing an arbitrary order also
between the certainties of L; and T;. This yields two variants of DLTL, respectively called prTL*
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and pLTL™, depending on whether one imposes T; more certainty than L;, or T; less certainty than
1, respectively. More formally, these logics are defined as follows.

Definition 6.3. Let & = s be a finite partial trace in 2*, i.e., s € X = {true, false, j}, and a’ € =*.
The truth value in pLTL* of an LTL formula ¢ with respect to «, denoted by [« [Ep+ ¢], is defined
as follows:

T if [afFap]l=T

L if [alFgp]l=1

To if [abksp]l=Tp A (V' <s:[a’s" Ep+ @] € {To, Lo})
(ot Eps o] = 1o if [abksp]l=1, A (V" <s:[a’s" Ep+ @] = Lo)

T i>0 if [aksp]l=Tp A (3" <s:[a's" Ep+ @] € {Ti, Li})

A (Vs <s,dj<i:[a’s" Ep @]l €{T),L;})
1; i>0 if [(X |=4 (p] =1, A (33’ <s: [O{,S/ |=D+ (p] = Ti—l)
A (VS’ <s, 3] <i: [[X/S, |=D+ (p] € {Tja J_J} U {J—l})

Similarly, the truth value in DLTL™ of an LTL formula ¢ with respect to @, denoted by [« [Ep- ¢], is
defined as follows:

T if [aFg0]l=T
L if [aFipl=1
To if [aFs@l=Tp) A (V' <s:[a’s" Fp-¢]) =Ty
[ Ep- o] = Lo if [asel=1p A (V" <s:[a’s" Ep- @] € {To, Lo})
T i>0 if [akspl=Tp A (3" <s:[a’s" Ep- @] = Liny
A (Vs <s,Jj<i:|a’s" Ep- @] € {T;,L;}U{T:})
L i>0 if [abkse]l =1p A (3" <s:[a's’ Fp- @] €{Ti, Li}))
A(Vs' <s,dj<i:[a’s" Ep- o] €{Tj,L;})

It follows from these definitions that pLTL* induces the following order between the logical
values:

o< To< L1 <T1 < <Tj1 <L <T; <Ljy1 <...
while pLTL™ induces
To<Llo<Ti <L < <L <T; <L; <Tipx1 <...

The following lemma illustrates the gain in terms of the number of logical values with respect to
the alternation number, in comparison with Lemma 6.2. Recall that s% denotes the partial state in
which none of the atomic propositions is known.

LEMMA 6.4. Leta = a's, witha’ € ¥ and s € %, be a finite partial trace. The alternation number
of an LTL formula ¢ with respect to a satisfies the following two equalities:

0 if [a Fp+ @] € {T, 1}
2041 if ([a Fp @] = To) A ([&'s" Fr o] = 1)
altern(e, @) = 2¢ if (([a Fps @] =Te) A ([a's" Fr @] = T))
V (([a Epr ] = Lo) A ([&'s% Fr 9] = 1))
201 if ([a Fp ¢l = L) A ([@'s" Er o] =T)
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0 if [a Ep- @] €{T, L}
2041 if ([aEp- @l =1¢) A ([@'s? F @] =T)
altern(g, ) =< 2¢ if ([« Ep- @]l =L¢) A ([a's" EF ] = 1))
V ((la Ep- @l =Te) A (['s7 EF @] =T))
20-1 if ([aEp- @l =Te) A ([2's? Fr @] = 1)

Proor. Let ¢ be an LTL formula, and let @ = a’s be a finite partial trace. We first consider the
statement for pLTL". If [a |Ep+ @] € {T, L}, then altern(¢, ) = 0 because the value of [a’s’ |=F ¢]
is the same for all s < s, and thus there are no alternances. From this point on, we assume that
[a Ep+ @] ¢ {T, L}. The rest of the proof is by induction on #, where the reasoning below applies
both to the base case £ = 0, and to the inductive case for £ > 1. Let £ > 0.

If [ Ep+ @] = Ty, then let s’ < s such that [a’s” Ep+ ¢] € {T¢, L¢}, and s” is minimal for
this property, i.e., for every s’ < s’, we have [a’s” Ep+ ¢] ¢ {T¢, L,}. Minimality implies that
[a’s” Ep @] = L,. Thus, let s” < s” such that [@’s” |Ep ¢] = T,—1. By induction, we get that
altern(g, a’s”) = 2¢ — 1 or 2¢ — 2, depending on whether [a’s? [Er ¢] = L or T, respectively.
Moreover, [a's” = o] = T, [@'s’ Er ¢] = 1, and [a’s FF @] = T, with s < s’ < s. It follows
that altern(g, a’s) > 2¢ + 1 if [a’s" Er @] = L, and altern(g,a’s) > 2¢if [a’s? EF ¢] = T.
Moreover, altern(¢, a’s) cannot be strictly greater than these respective bounds because, for every
s’ < s, there exists j < ¢ such that [a’s” |Ep+ ¢] € {T;, L;}, which implies that ¢ cannot alternate
more than 2¢ + 1 (resp., 2¢) times with respect to @ when [a’s? |=F ¢] = L (resp., [a's? [=F @] = T).

If [« Ep ¢] = L, then let s’ < s such that [a’s’ |Ep+ ¢] = T,—1. By induction, we get that
altern(o, a’s’) = 2¢ — 2 or 2¢ — 3, depending on whether [a’s® EF @] = Tor L, respectively.
Moreover, [a’s’ Er ¢] = T, and [a’s [FF ¢] = L, with s’ < s. It follows that altern(¢p, a’s) > 2¢ if
[a’s? |=F @] = L, and altern(g, a’s) > 2¢ — 1if [a’s? F @] = T. Moreover, since, for every s’ < s,
there exists j < ¢ such that [a’s” |Ep+ ¢] € {T;, L;}, it follows that ¢ cannot alternate more than
2¢ (resp., 2¢ — 1) times with respect to & when [a’st [£r @] = L (resp., [a’s? EF ¢] = T).

This completes the proof for pLTL*. The proof for DLTL™ is analogous, and thus omitted. O

As shown in Section 5.1, we have altern(¢,,) = 2 with the sequence

o) = EHeme) )

which evaluate to T, L, T, respectively, in FLTL (assuming every atomic proposition b is extrapolated
to false). Also, we have seen in Section 4.2 that ¢, can be distributedly monitored using Rv-LTL.
For this, we used an interpretation function y that returns 1, when applied to the set {T,, L,}.
This can be put in correspondence with using DLTLj, with an interpretation function y that simply
returns the logical value with highest certainty in DLTL™, i.e., L, for the set {Tg, Lo}. We use such
type of interpretation functions in our main theorem, stated in the next section.

6.2 Monitorability and Monitor Synthesis for DLTL

We have now all the ingredients to present our main result.

THEOREM 6.5. For every £ > 0, and for every LTL formula ¢ with altern(¢) = ¢, there are distributed
monitors using verdict set By[r/2144 = {L, T, Lo, To, ..., Le/27, Trej21) that correctly monitor ¢. Each
monitor uses an automaton for evaluating ¢ in DLTLF[/Z], which can be automatically synthesized
from ¢.

Proor. Let £ > 0, and let ¢ be an LTL formula with altern(p) = £. We first show that ¢ can
be correctly monitored by a set of monitors using prTL. Later in the proof, we will show how to
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reduce the number of logical values, by using prTL". (Using DLTL™ would also achieve this, and we
have chosen pLTL" arbitrarily — see discussion after the proof.) The algorithm performed by each
monitor is given in Algorithm 4. This algorithm performs the same instructions as Algorithm 2,
but evaluates the collected partial trace in DLTL instead of Rv-LTL.

Data: LTL formula ¢ with altern(¢) = ¢, and state si, k > 0

Result: a verdict from By
1 perform instructions of Lines 1-11 in Algorithm 2 ; /* sample, write, read, and update */
2 emit [Im;[0]lm;[1] ---Im;[k] Ep @] ; /* M; evaluates trace Im;[0] - - - Im;[k] in DLTL */

Algorithm 4: Behavior of Monitor M;, i € [1, n], using DLTL.

Let Boo = {T, L} U (Uj»o{Ti L;}). The interpretation function
M ZBm — By

interprets any finite set m € 28~ of logical values in DLTL returned by the monitors as the truth
value of RV-LTL corresponding to the highest index i for which m N {T;, L;} # 0 — we will show
that, for every i, L; and T; cannot be both in m, and that 1L and T cannot be both in m. More
specifically, for every finite set m C 25~ we define

T ifTem
1 iflem
Ty ifmﬂ{T,J_}z(Z),and(EliZO:TiEm,andeZO,J_jem=>j<i);
1, ifmN{T,L}=0,and (Fi>0:1L;€mandVj>0,T;em= j<i).

p(m) =

Let us show that, for every finite partial trace a = sos; - - s with k > 0, if m is a set of values
returned by the monitors for @, then

p(m) = [a Fs o]

Recall that every state s; in @ might be a partial state, defined as the partial state covered by all the
non-faulty monitors during the ith execution of Algorithm 4 (i.e., the execution of the algorithm on
soS1 - - - Si). Also recall that, at the beginning of each execution of Algorithm 4, say at phase i, every
monitor takes a snapshot of the shared memory in order to get the entire partial state s;_;. That is,
when the monitors start executing Algorithm 4 for state s, they all agree on the trace spsq - - - Sg_1.
On the other hand, the monitors may get different samples of si, and, because of asynchrony, may
have to emit a verdict based on different perspectives on the state si. To sum up, for every i # j,
we have

[m; [0]Im;[1] - - -Im;[k = 1] = Im; [0]Im;[1] - - - Im [k — 1] = sos1 - - - Sk—1,

while it may be the case that
Im;[k] # Imj[k] # sk.

On the other hand, by Lemma 3.4, the monitor M; that performs the snapshot last (i.e., the snapshot
in Line 8 of Algorithm 2) satisfies

Im;[k] = sk.
The verdict of this monitor is [Im;[0]Im;[1] - - Im;[k] Fp ¢], that is, precisely

[3051 c Sk |=D (P]~
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By definition of prTL, this verdict agrees with Rv-LTL, in the following sense:

[sos1- sk Fa@l=T = [sosi--skEFpo]l=T
[sos1-- Sk Fa @] =L & [sos1 sk Fpo]l=1
[sos1- Sk Fa@pl =T, & [sos1---sxEpe]l=T;withi>0
[sos1 sk Fapl=1, < [sos1---sxEpe]l=1;withi>0

Moreover, by the extensions of LTL; and FLTL to partial traces in Section 3.2, if

[sos1---sk Fp @] =T

’

then there are no s; < si such that [sos; - - s, Ep ¢] = L. Similarly, if [sos1 - - - sk Ep @] = L then

there are no s; < sg such that [sos; - -s; Fp ¢] = T. Also, by definition of prTL, if

[sos1- sk Fp @] = Ti
then, for every 31,< < sk, we have either
[sos1--- s Fp @] = Tior [sos1---s. Fp ¢l € {1, T;}
for some j < i. Similarly, if [sos;---sx Ep ¢] = L;, then, for every s]’C < Sk, we have either
[sos1---s, Fp @] = L;or [sosi---s; Fp @] € {L;, T;} for some j < i. It follows that u(m) =
[a 4 @], as desired.

By Lemma 6.2, if ¢ satisfies altern(¢) = £, then all verdicts are in By/.4. Reducing the number of
logical values, from 2 altern(¢)+4 to 2[altern(¢)/2]+4 is achieved by replacing the evaluation of the
trace in DLTL at each monitor, by an evaluation in prTL*. By Lemma 6.4, if ¢ satisfies altern(¢) = ¢,
then all verdicts are in By[s/2744-

To complete the proof, we show how, given any LTL formula, each monitor can evaluate a partial
finite trace a = sps1 - - - , S, in DLTLY. Let

M =(%,0,90,6,1)

be the RV-LTL automaton for ¢. We have

A(6(qo, @) = [a 4 ¢]
for every finite trace « € X* (see Fig. 1 for an example of such an automaton). In other words, the
prefix a’ = sgsy - - -, sk—1 of the execution is fully encoded in the state §(qo, @’) reached in M after
having executed the k transitions induced by «’. In particular, for any two f; € %, i € {1, 2}, if
8(qo, P1) = 6(qo, P2) then, for any s € X,

altern(¢, f1s) = altern(g, ss).

Therefore, to let monitors evaluate [a’s; [Ep+ @], it is sufficient to provide each monitor with a
table A containing |Q| X |2| entries in {0, 1, ..., [altern(¢)/2]}, where we define:

Alg, s] = altern(g, Bs)

for any f € X" satisfying 5(qo, ) = ¢. Indeed, for a = sos1 - - - sg and &’ = sgs7 - - - Sg—1, let
q =6(qo,a) and ¢’ = 6(qo, @").

Then we have
AMq) ifA(q) €{T, L}
[a Ep+ @] =1 T2 ifA(g) = Tp, where £ = Alq’, si]
L2y ifA(q) = Lp, where £ = Alq’, si]
In other words, given the rv-LTL automaton for ¢, and given the lookup table A, every monitor can
evaluate every trace « in prTLY. O
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Remarks. 1t is worth pointing out that the number of logical values used by the monitors in
Theorem 6.5 can be further reduced, but by an additive factor only, under some specific conditions,
including the following scenarios. We also note that one significance of Theorem 6.5 is that safety
formulas can be efficiently monitored with only four truth values. In general, formulas with only
one temporal operator need this many truth values to be consistently monitored. We should also
mention that the size of a DLTL monitor is the size of its corresponding Rv-LTLmonitor times ¢ (one
RV-LTL monitor per alternation).

e Let us consider an rTL formula ¢, with altern(¢) = ¢ odd. Let us also assume that, for every
finite trace & such that there exists a sequence sy < s; < - -+ < sy of partial states satisfying
[as; Er @] # [asis1 EF ¢] for every i € {0,...,f — 1}, we have [as? =r ¢] = L. Then
the number of truth values used by prTL? is not 2[£/2] + 4 but only 2| ¢/2] + 4. Similarly, if
[ast EF @] = T for every finite trace « such that there exists a sequence sy < s; < --- < s¢
of partial states satisfying [as; |=r @] # [asi1 EF @] forevery i € {0,...,¢ — 1}, then, using
DLTL™ instead of DLTL* yields using only 2| £/2] + 4 truth values, instead of 2[¢/2] + 4.

o Let us consider an LTL formula ¢, with altern(¢) = ¢ even. Let us also assume that, for every
finite trace @ such that there exists a sequence sy < s; < - -+ < sy of partial states satisfying
lasi EF @] # [asiv1 EF @] for every i € {0,...,£ — 1}, we have

[as Er @] = L, and [as; 3 @] =T

for all such sequences (note that the evaluation of as, is performed in LTL3). An example of
such a situation is ¢,,. Its alternation number is 2, and every sequence sy < s; < s3 alternating
twice satisfies [asy EF @rq] = L with s = (E) and [as; |3 @ra] = T with s, = (17¢). In such
a scenario, the truth values of highest certainty, T, and L,, can be discarded whenever using

DLTL™ instead of DLTL", saving two truth values. That is, one can restrict the truth values to be

inByjor2 = {T, L, To, Lo, ..., Tej2-1, Le/2-1}. In the particular case of ¢,,, one can therefore
restrict the truth values to be in By = {T, L, To, Lo}, as it was previously established in
Section 4.2.

7 CONCLUSION

We have established a tight (up to a small additive constant) bound on the cardinality of the set
of verdicts from which a collection of asynchronous crash-prone monitors pick their individual
verdicts for monitoring an rTL formula ¢ in a distributed manner. This cardinality is related
to the alternation number, altern(¢), of the formula. We showed that, for every ¢ > 0, every
LTL formula ¢ with altern(¢) = ¢ can be monitored by distributed monitors with verdicts in
Baresz1 = {L, T, Lo, To,-- ., Tare/2], Lare/21)> and each verdict results from evaluating the observed
partial trace in the multi-valued logic prTL*. The bound on the size of the verdict set is (almost)
tight, in the sense that, for every ¢ > 0, there exists an LTL formula ¢ with altern(¢) = £ such that,
for every set V with |V| < ¢, ¢ cannot be monitored by distributed monitors with verdicts in V.
For establishing these results, we impose two restrictions. First, we assume that all operations
performed by the distributed monitors (sampling the current state, exchanging information with
the other monitors, and producing the verdict) can be performed between two changes of states by
the monitored system. Second, we specify distributed monitoring by imposing global consistency
of the set my of verdicts with respect to the centralized evaluation of the actual trace sps; - - - s in
RV-LTL, by requiring equality u(my) = [sos1 . .. Sk 4 ¢] between the interpretation p(my) and the
evaluation of sys; - - - s¢ in Rv-LTL, only for verdicts produced in the absence of crashes during the
monitoring of si. This latter restriction appears natural, and perhaps even unavoidable because,
otherwise, the distributed monitors and the centralized monitor deal with different traces, which
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are inherently incomparable. On the other hand, it might be desirable to relax the former restriction
because such an assumption might not always be satisfied in practice, in particular by rapidly
evolving systems. Getting rid of this assumption seems however challenging, as one would have to
deal not only with issues caused by asynchrony between monitors with different partial views of
a same state, but also with issues caused by asynchrony between monitors with partial views of
different states. Reconciliation of such views looks difficult. Nevertheless, this opens a challenging,
but rewarding direction for future work.

Another challenging problem in the context of fault-tolerant distributed monitoring is to consider
other types of faults, namely, Byzantine faults. These faults may arbitrarily change the output of
individual monitors, i.e., their verdicts. It is unclear how a collection of faulty monitors that may
misrepresent their partial view of the system can be transformed into a sound single verdict that a
correct centralized monitor would produce. This problem can also open an entirely new line of
research to deal with distributed monitoring in the presence of faults and security attacks.
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