
Decentralized Asynchronous Crash-Resilient Runtime
Verification∗

BORZOO BONAKDARPOUR†,Michigan State University, U.S.A.
PIERRE FRAIGNIAUD‡, Université de Paris and CNRS, France
SERGIO RAJSBAUM§, Universidad Nacional Autónoma de México, México
DAVID A. ROSENBLUETH, Universidad Nacional Autónoma de México, México
CORENTIN TRAVERS¶, University of Bordeaux and CNRS, France

Runtime veri�cation is a lightweight method for monitoring the formal speci�cation of a system during its
execution. It has recently been shown that a given state predicate can be monitored consistently by a set of
crash-prone asynchronous distributed monitors observing the system, only if each monitor can emit verdicts
taken from a large enough �nite set. We revisit this impossibility result in the concrete context of linear-time
logic (���) semantics for runtime veri�cation, that is, when the correctness of the system is speci�ed by an
��� formula on its execution traces. First, we show that monitors synthesized based on the 4-valued semantics
of ��� (������) may result in inconsistent distributed monitoring, even for some simple ��� formulas. More
generally, given any ��� formula i , we relate the number of di�erent verdicts required by the monitors
for consistently monitoring i , with a speci�c structural characteristic of i called its alternation number.
Speci�cally, we show that, for every : � 0, there is an ��� formula i with alternation number : that cannot
be veri�ed at runtime by distributed monitors emitting verdicts from a set of cardinality smaller than : + 1.
On the positive side, we de�ne a family of logics, called distributed ��� (abbreviated as ����), parameterized
by : � 0, which re�nes ������ by incorporating 2: + 4 truth values. Our main contribution is to show that,
for every : � 0, every ��� formula i with alternation number : can be consistently monitored by distributed
monitors, each running an automaton based on a (2d:/2e + 4)-valued logic taken from the ���� family.

CCS Concepts: • Theory of computation! Veri�cation by model checking; Distributed computing
models; • Computing methodologies! Distributed algorithms.

Additional Key Words and Phrases: Runtime veri�cation, Distributed computing, Fault-tolerant veri�cation,
Wait-free tasks, Distributed monitoring, Model checking, Temporal logic, Linear-time logic

ACM Reference Format:
Borzoo Bonakdarpour, Pierre Fraigniaud, Sergio Rajsbaum, David A. Rosenblueth, and Corentin Travers.
0. Decentralized Asynchronous Crash-Resilient Runtime Veri�cation. J. ACM 0, 0, Article 0 (0), 31 pages.
https://doi.org/0
∗An extended abstract of a preliminary version of this paper appeared in the proceedings of the 27th International Conference
on Concurrency Theory (CONCUR), August 23–26, 2016, Québec City, Canada.
†Supported by NSF FMitF Award 2102106 and SHF Award 2118356.
‡Supported by the ANR projects DESCARTES and FREDDA, and by the INRIA project GANG.
§Supported by the UNAM-PAPIIT IN106520 grant.
�Supported by the ANR projects DESCARTES and FREDDA.

Authors’ addresses: Borzoo Bonakdarpour, Michigan State University, U.S.A.; Pierre Fraigniaud, Université de Paris and
CNRS, France; Sergio Rajsbaum, Universidad Nacional Autónoma de México, México; David A. Rosenblueth, Universidad
Nacional Autónoma de México, México; Corentin Travers, University of Bordeaux and CNRS, France.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and
the full citation on the �rst page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.
© 0 Association for Computing Machinery.
0004-5411/0/0-ART0 $15.00
https://doi.org/0

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

https://doi.org/0
https://doi.org/0

0:2 Bonakdarpour, et al.

1 INTRODUCTION
1.1 Context
Runtime veri�cation is a technique where a monitor process determines whether or not the current
execution of a system under inspection complies with its formal speci�cation. The state-of-the-art
runtime veri�cation methods exhibit the following shortcomings. Either they classically employ
a central monitor, or they employ several monitors but assume a fault-free setting, where each
individual monitor is resilient to failures [9, 13, 14, 21, 25–27, 31]. Relaxing the latter assumption,
that is, handling several monitors subject to failures, poses signi�cant challenges as these monitors
would become unable to agree on the same perspective of the execution, due to the impossibility of
consensus [17]. Thus, it is unavoidable that these monitors emit di�erent individual verdicts about
the current execution, so that a consistent global verdict with respect to a correctness property
can be constructed from these verdicts. Concretely, the two truth values of Boolean logic may be
insu�cient for allowing each monitor to express a wide spectrum of individual verdicts.

The necessity of using more than just the two truth values of Boolean logic is actually a known
fact in the context of runtime veri�cation, even with a single monitor. For instance, the linear
temporal logic (���) [28] has been one of the most widely used speci�cation languages to express
the requirements of computing systems1. While ��� is a widely accepted language to reason
about in�nite execution traces, its three-valued semantics (denoted by ���3) [8] is a logic on �nite
execution traces with three truth values in:

B3 = {>,?, ?}.

These truth values respectively express whether, given the �nite trace observed so far, an ��� formula
is permanently satis�ed, or permanently violated, or whether the observation is inconclusive.
Likewise, ������ [7] has four truth values in

B4 = {>,?,>? ,?? }.

These values respectively identify cases where a �nite execution permanently satis�es, permanently
violates, presumably satis�es, or presumably violates a given ��� formula. For example, consider a
request/acknowledge property, where a request A should be eventually responded to by acknowl-
edgment 0, and 0 should not occur before A . Formally, an ��� formula for the request/acknowledge
property is

ira = (¬0 ^ ¬A) _ [(¬0 U A) ^ 0] . (1)

This formula holds if either (¬0 ^ ¬A) holds (i.e., there is no request and no acknowledgment), or
(¬0UA)^(0) holds (i.e., a request is made at present or some future state and an acknowledgment
is made after this request in the future). In ������, a �nite execution containing A , and ending
in 0 (i.e., the request has been acknowledged) yields the truth value “permanently satis�ed”,
whereas an execution containing only A (i.e., the request has not yet been acknowledged) yields
“presumably violated”. Although ������ can monitor ira in a centralized setting (see Fig. 1 for its
monitor automaton), it is not powerful enough to monitor a conjunction of two such formulas in a
framework of two asynchronous unreliable monitors:

ira2 =
⇣

(¬01 ^ ¬A1) _ [(¬01 U A1) ^ 01]
⌘
^

⇣
(¬02 ^ ¬A2) _ [(¬02 U A2) ^ 02]

⌘
.

1We refer the reader to [16], where the author formalized 54 commonly used requirements as ��� formulas. We also note
that the area of runtime veri�cation mainly focuses on speci�cation languages that are trace-based. This is due to the fact
that at runtime, monitors can realistically observe only a �nite execution trace. The semantics of temporal logics such as
CTL is based on computation trees and is not suitable for runtime monitoring.

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

Decentralized Asynchronous Crash-Resilient Runtime Verification 0:3

Indeed, the set of verdicts emitted by the monitors is not su�cient to distinguish executions that
satisfy the formula from those that violate it. Intuitively (we will formally establish this result
further in the text), this is because each monitor has only a partial view of the system under scrutiny,
and after a �nite number of rounds of communication among monitors, still too many di�erent
perspectives of the global system state remain. For instance, the case where a monitor "1 has
observed a partial trace containing only A1 (for which it should output ?? 2 B4) is distinct from the
case where"1 has observed a partial trace containing only 01. However,"1 should not output ? in
this latter case (of course, it should not output either > or >?) because it may well be the case that
another monitor"2 has observed A1, yet"1 is not aware of this observation, because of asynchrony
and unreliability.

>???

> ?

{A }

{0}

{}

{0, A }

{A }

{0}

truetrue

Fig. 1. ������ monitor of ira.

In fact, it was recently proved in [20] that even deciding whether a single system state satis�es
some given Boolean predicate, using a distributed set of asynchronous crash-prone monitors,
requires that the individual verdicts be taken from a set whose size depends on the predicate under
scrutiny. Although this size cannot exceed the number = of monitors, it is proved that, for any
: 2 [0,=], there are Boolean predicates on system states that require verdicts taken from a set
of size at least : + 1. A matching upper bound is also presented in [20]. In this paper, we extend
the preliminary results in [20] to the setting of distributed monitoring execution traces whose
correctness is expressed by ��� formulas, and we provide distributed monitors de�ned in terms of
�nite automata corresponding to multi-valued logics.

1.2 Our Results
In this paper, we propose a framework for distributed fault-tolerant runtime veri�cation, where
the monitors are asynchronous and subject to crash. A monitor that crashes stops executing its
code and does nothing afterwards. To this end, we introduce a multi-valued temporal logic. This
new logic is a re�nement of ������. More speci�cally, we propose a family of (2: + 4)-valued
logics, denoted by ����, for distributed ���. In particular, ���� with : = 0 coincides with ������.
The syntax of ���� is identical to the one of ���, and its semantics is based, as ������, on both
���� [24] and ���3 [8], which are two ���-based �nite trace semantics for runtime monitoring. For
each : � 0, the :th instance of the family ���� has 2: + 4 truth values

B2:+4 = {>,?,>0,?0,>1,?1, . . . ,>: ,?: }.
The index 8 of a logical value intuitively represents a degree of certainty that the formula is satis-
�ed (>8) or not (?8). In a nutshell, we characterize the formulas that can be monitored at runtime
by a in ����: , but cannot be distributedly monitored in ����:�1.

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

0:4 Bonakdarpour, et al.

More speci�cally, our �rst contribution (Theorem 5.2) is a lower bound on the cardinality of the
set of values used by each monitor for expressing its local verdict. We revisit the result in [20],
and show that this lower bound can be expressed in terms of a particular characteristic of the ���
formula under consideration, called its alternation number. Roughly, the alternation number of
an ��� formula i is the maximum, taken over all �nite traces U = U0U1 · · ·U= , that the valuation
of i can alternate in the �nite semantics of ���. In other words, the alternation number of i is
the maximum number of times i can change its truth value in ���� by gaining more and more
information about the truth values of the atomic propositions characterizing the current system’s
global state U= . As opposed to [20], this number of changes depends not only on the current state U=
of the system, but also on the sequence of preceding states (i.e., those in U). We show that, for every
: � 0, there is an ��� formula i with alternation number : that cannot be distributedly monitored
by monitors emitting verdicts from a set of cardinality smaller than : + 1.
Our second contribution (Theorem 6.5) is a concrete mechanism for fault-tolerant distributed

runtime veri�cation. Each monitor gets a partial view of the system’s global state, communicates
with the other monitors, and then emits a verdict in ���� using 2d:/2e + 4 truth values, where
: is the alternation number of the ��� formula under scrutiny. The sets of verdicts collectively
provided by the monitors are in one-to-one correspondence with the ������ verdicts that would
be computed by a centralized monitor with a full view of the system. In view of our lower bound,
our algorithm is essentially optimal in terms of the number of verdicts emitted by the distributed
monitors (up to a small additive constant). Our mechanism is concrete in the sense that we present
a monitor construction algorithm that generates a �nite-state Moore machine which, for any ���
formula i , computes the alternation number : of i , and constructs the ���� automaton enabling
to distributedly monitor i using 2d:/2e + 4 logical values.
We emphasize that we do not make an assumption on whether the system under scrutiny is

centralized or distributed. In fact, this has no impact on our results and, hence, the type of the
system is abstracted away.

We note that there is long literature on what is monitorable. The classic de�nition [29] is that an
��� formula is monitorable if any pre�x can be extended to some other �nite pre�x which evaluates
to a permanently false or true verdict. In this sense, all safety and co-safety formulas are monitorable.
However, not all monitorable formulas are either safety or co-safety. On the other hand, a liveness
formula such as ? is not monitorable, intuitively because one cannot observe ? in�nitely often
within a �nite pre�x at run time. Having said this, the above notion of monitorability is not relevant
to our results in this paper. First, observe that the request/acknowledgment formula is neither
safety no co-safety but is monitorable. The issue here is that even for such a formula ������ is not
su�cient to consistently monitor the formula due to the partial observability of the monitors.

1.3 Related Work
While there has been signi�cant progress in sequential monitoring in the past decade, there has
been less work devoted to distributed monitoring. Lattice-theoretic centralized and decentralized
online predicate detection in distributed systems has been studied in [13, 25]. This line of work
does not address monitoring properties with temporal requirements. This shortcoming is partially
addressed in [27, 30], but for o�ine monitoring. In [31], the authors design a method for monitoring
safety properties in distributed systems using the past-time linear temporal logic (����). In such a
work, however, the valuation of some predicates and properties may be overlooked. This is because
monitors gain knowledge about the state of the system by piggybacking on the existing communi-
cation among processes. That is, if processes rarely communicate, then monitors exchange little
information and, hence, some violations of properties may remain undetected. These techniques,
however, assume perfect monitors that are not subject to faults.

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

Decentralized Asynchronous Crash-Resilient Runtime Verification 0:5

Runtime monitoring of ��� formulas for synchronous distributed systems where processes share
a single global clock has been studied in [9, 14]. In [10], the authors introduce parallel algorithms
for runtime veri�cation of sequential programs. Our work is inspired by the research line initiated
in [18–20]. The paper [19] pioneered the investigation of distributed decision in the context of
asynchronous fault-tolerant distributed computing, and characterized the Boolean predicates on
system states that can be distributedly monitored with verdicts chosen from sets of two or three
values. The follow up contribution [20] extended this characterization to verdicts chosen from a set
of : values, for any : � 2, and [18] analyzed the speci�c case of monitoring the Boolean predicates
on system states corresponding to checking the correctness of :-set agreement tasks.

1.4 Organization
The rest of the paper is organized as follows. Section 2 presents the preliminary concepts. We
introduce our model of computation for distributed monitoring in Section 3. Then, in Section 4, we
show why the power of ������ is insu�cient to deal with fault-tolerant distributed monitoring.
The notion of alternation number is presented in Section 5, while its impact on the design of ���� is
discussed in Section 6. Finally, we make concluding remarks and discuss future work in Section 7.

2 BACKGROUND
We recall basic concepts related to ��� and its �nite semantics for runtime veri�cation.

2.1 Linear Temporal Logic (LTL)
Let AP be a set of atomic propositions and ⌃ = 2AP be the set of all possible states. A trace is a
sequence B0B1 · · · , where B8 2 ⌃ for every 8 � 0. We denote by ⌃⇤ (resp., ⌃l) the set of all �nite
(resp., in�nite) traces. We denote the empty trace by n . For a �nite trace U = B0B1 · · · B: , |U | denotes
its length, that is, its number of states, i.e., : + 1. Also, for U = B0B1 · · · B: , by U8 , we mean trace
B8B8+1 · · · B: of U .

The syntax and semantics of linear temporal logic (���) [28] are de�ned for in�nite traces. The
syntax is de�ned by the following grammar:

i ::= p | ¬i | i _ i | i | i U i

where p 2 AP, and where and U are the ‘next’ and ‘until’ temporal operators. We view other
propositional and temporal operators as abbreviations, that is, true = ? _ ¬? , false = ¬true,
i ! k = ¬i _k , i ^k = ¬(¬i _¬k), i = true U i (�nally i), and i = ¬ ¬i (globally i).

The in�nite-trace semantics of ��� is de�ned as follows. Let f = B0B1B2 · · · 2 ⌃l , let 8 � 0, and let
|= denote the satisfaction.

f, 8 |= p () p 2 B8
f, 8 |= ¬i () f, 8 6|= i
f, 8 |= i1 _ i2 () f, 8 |= i1 or f, 8 |= i2
f, 8 |= i () f, 8 + 1 |= i
f, 8 |= i1 U i2 () 9: � 8 : f,: |= i2 and 89 2 [8,:) : f, 9 |= i1

Also, f |= i holds if and only if f, 0 |= i holds. For instance, the request/acknowledgment ���
formula in Eq. (1) speci�es that, �rst, if a request A is emitted, then such a request should eventually
be acknowledged by 0, and, second, an acknowledgment happens only in response to a request.

2.2 Logics for Runtime Verification
In the context of runtime veri�cation, the semantics of ��� is not fully appropriate as it is de�ned
over in�nite traces. Before we delve into the details, we note that many distributed programs are

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

0:6 Bonakdarpour, et al.

not-terminating (e.g., databases, internet services, blockchains, web servers, content delivery, etc).
However, the goal of runtime monitoring is to evaluate the health of a system by only observing
�nite behaviors of the system. In some cases, the monitor is able to issue a verdict that generalizes
to any in�nite extension (e.g., permanently false and true verdicts). In this sense, the monitor can
inspect the health of a program regardless of whether it is terminating or non-terminating.

2.2.1 Finite LTL. Finite ��� (���� for short) [24] allows us to reason about �nite traces for verifying
properties at runtime. The syntax of ���� is identical to that of ���. The semantics of ���� for both
atomic propositions and Boolean operators are identical to those of ���. ���� employs two truth
values to evaluate a formula with respect to a �nite trace, denoted by B2 = {?,>}. We now recall
the semantics of ���� for the temporal operators. Let i , i1, and i2 be ��� formulas, let U = B0B1 · · · B=
be a non-empty �nite trace, and let |=� denote satisfaction in ����. We have:

[U |=� i] =
(
[U1 |=� i] if U1 < n

? otherwise,

and

[U |=� i1 U i2] =
(
> if 9: 2 [0,=] : ([U: |=� i2] = >) ^ (8✓ 2 [0,:), [U ✓ |=� i1] = >)
? otherwise.

To illustrate the di�erence between ��� and ����, consider formula i = p and �nite trace
U = B0B1 · · · B= . If p 2 B8 for some 8 2 [0,=], then we have [U |=� i] = >. However, if p 8 B8 for
every 8 2 [0,=], then [U |=� i] = ?, and this holds even if U is extended to another �nite sequence
including a state where p holds.

2.2.2 Three-Valued Semantics for LTL. As illustrated in the previous subsection, ���� ignores the
possible future extensions of �nite traces when evaluating a formula. Three-valued ��� (L��3) [8]
also evaluates ��� formulas for �nite traces, but with an eye on possible extensions. In ���3, the
set of truth values is B3 = {>,?, ?}, where > (resp., ?) denotes that the formula is permanently
satis�ed (resp., violated), no matter how the current trace extends, and ‘?’ denotes an unknown
verdict — i.e., there exists an extension that can falsify the formula, and another extension that can
truthify the formula. Let U 2 ⌃⇤ be a non-empty �nite trace. The truth value of an ���3 formula i
with respect to U , denoted by [U |=3 i], is de�ned as follows:

[U |=3 i] =
8>>><
>>>:

> if 8f 2 ⌃l : Uf |= i

? if 8f 2 ⌃l : Uf 6|= i

? otherwise.

For example, consider formula i = ? and a �nite trace U = B0B1 · · · B= . If p 8 B8 for some
8 2 [0,=], then [U |=3 i] = ?. That is, the formula is permanently violated. Now, consider formula
i = ? and a �nite trace U = B0B1 · · · B= . If p 8 B8 for all 8 2 [0,=], then [U |=3 i] =?. This is because
there exist in�nite extensions to U that can satisfy or violate i in the in�nite semantics of ���.

De�nition 2.1. The L��3 monitor for a formula i is the unique deterministic �nite-state machine

M = (⌃,&,@0, X, _),
where & is the set of states, @0 is the initial state, X : & ⇥ ⌃ ! & is the transition function, and
_ : & ! B3 is a function such that

_
�
X (@0,U)

�
= [U |=3 i]

for every �nite trace U 2 ⌃⇤.

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

Decentralized Asynchronous Crash-Resilient Runtime Verification 0:7

For example, Fig. 2 shows the monitor automaton for formula i = 0 U 1. The function _ for
this automaton is as follows : _(@0) = ?, _(@?) = ?, and _(@>) = >.

@?

@0

@>

{0}

{} {0,1}, {1}

true true

Fig. 2. L��3 monitor for i = 0 U 1.

2.2.3 Four-Valued Semantics for LTL (RV-LTL). The four-valued logic ������ [7] re�nes the truth
value ‘?’ into ?? and >? . That is, its set of verdicts is B4 = {>,>? ,?? ,?}. More speci�cally,
evaluation of a formula in ������ agrees with ���3 if the verdict is ? or >. Otherwise, (i.e., when
the verdict in ���3 is ?), ������ utilizes ���� to compute a more re�ned truth value. Let U 2 ⌃⇤ be
a �nite trace. The truth value of an ������ formula i with respect to U , denoted by [U |=4 i], is
de�ned as follows:

[U |=4 i] =

8>>>>><
>>>>>:

> if [U |=3 i] = >
? if [U |=3 i] = ?
>? if [U |=3 i] = ? ^ [U |=� i] = >
?? if [U |=3 i] = ? ^ [U |=� i] = ?

De�nition 2.2. The ������monitor of a formula i is the unique deterministic �nite-state machine

M = (⌃,&,@0, X, _),
where & is the set of states, @0 is the initial state, X : & ⇥ ⌃ ! & is the transition function, and
_ : & ! B4 is a function such that

_(X (@0,U)) = [U |=4 i]
for every �nite trace U 2 ⌃⇤.

An algorithm that takes as input an ��� formula and constructs as output the ������ monitor is
described in [8]. For example, Fig. 1 shows the ������ monitor for the request/acknowledgment
formula in Eq. (1).

Remark. We note that the sizes of ������ and L��3 monitors are exponential in the size of the
input ��� formula. However, since the size of formulas is typically small, the size of corresponding
monitors after determinization and minimization is not expected to be large (usually a handful of
states).

3 DISTRIBUTED FAULT-TOLERANT MONITORING
In this section, we present a general computation model for asynchronous distributed fault-tolerant
monitoring.

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

0:8 Bonakdarpour, et al.

3.1 General Objective
Throughout the rest of the paper, the system under inspection produces a �nite trace U = B0B1 · · · B: ,
and is inspected with respect to an ��� formula i by a set M = {"1,"2, . . . ,"=} of monitors.
The monitors run asynchronously and are subject to crash failures. When a monitor crashes, it
stops functioning, i.e., does not perform any computation step, and will never recover. For the sake
of simplifying the presentation, we assume that the monitors exchange information by atomic
read/write accesses to a shared memory. Indeed, our focus is to measure the impact of distributed
monitoring, not to deal with the subtleties of complex communication media, and hence we choose
the wait-free distributed computing model which is well understood [6]. Moreover, this model is
known to be equivalent, with respect to task computability, to the message-passing model, under
the weak assumption that fewer than half the monitors can crash [3].

In order to compare the power and limitations of distributed monitoring with those of centralized
monitoring, we assume that themonitors perform their observation of the system, their computation,
and their emission of verdicts re�ecting their vision of the current trace U = B0B1 · · · B: w.r.t. some
��� formula i , before the trace is extended to UB:+1. In other words, the distributed monitors have
time to observe, compute, and output in between any two global steps of the system execution. This
allows us to compare the behavior of the distributed monitor with the behavior of a centralized
event-triggered monitor observing the global execution of the system.

Informally, we aim at designing distributed monitors whose outputs enable to infer the verdicts
that would be produced by a centralized monitor on the same execution trace. Speci�cally, we will
compare our distributed monitors with a centralized monitor producing verdicts in ������. That
is, assuming that the distributed monitors choose their verdicts from a set + , they must be able
to map the sets of verdicts produced by the monitors to the truth values in B4 = {>,>? ,?? ,?}
produced by a (centralized) ������ automaton monitoring the system, and this mapping

` : 2+ ! B4

must guarantee the soundness condition that, for every �nite trace U , if the distributed monitors
produce a set< 2 2+ of verdicts for U , then

` (<) = [U |=4 i] . (2)

Note that< is a set of verdicts. Indeed, each monitor observes and maintains only a partial view of
the system, and so two monitors may have di�erent perspectives on the correctness of the system.
Moreover, since the monitors run asynchronously, di�erent read/write interleavings are possible,
where each interleaving may lead to a di�erent collective set< of verdicts emitted by the monitors
for the same system state.

In the remaining of the section, we formally specify distributed fault-tolerant monitoring.

3.2 LTL on Partial Traces
In the centralized setting, recall from Section 2 that a state of the system is an element of 2AP. We
will use the notation {true, false} |AP | , specifying which atomic propositions are satis�ed, and which
ones are not satis�ed in a given state. However, in a distributed setting, each monitor inM has only
a partial view of the system under inspection, and it may be able to observe the truthfulness of only
a subset of atomic propositions, so that the value of the remaining propositions are unknown to the
monitor. This leads us to the de�nition of partial states, and partial traces (see also [11, 12]). We �x
the notation B [?] to denote the “value” of proposition ? in state B (i.e., from the set {true, false}).
We use the same notation for partial states and propositions.

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

Decentralized Asynchronous Crash-Resilient Runtime Verification 0:9

De�nition 3.1. Let b⌃ = {true, false, §} |AP | where § denotes an unknown value. A partial state is
an element of b⌃, and a partial trace is an element of b⌃⇤ [b⌃l . Given a partial state B̂ , a state B is a
completion of B̂ if, for every p 2 AP, B [p] 2 {true, false}, and

(B̂ [?] < §)) (B [?] = B̂ [?]) .

A trace U is a completion of a partial trace Û if |U | = |Û | and, for every 8 � 0, the 8th state of U is a
completion of the 8th partial state of Û .

We denote by cmpl(Û) the set of all traces U completing the partial trace Û . Then, for every �nite
partial trace Û , we set

[Û |=3 i] =
8>>><
>>>:

> if 8U 2 cmpl(Û),8f 2 ⌃l : Uf |= i

? if 8U 2 cmpl(Û),8f 2 ⌃l : Uf 6|= i

? otherwise.
(3)

When a state B is reached in a �nite trace, each monitor in M takes a sample from B , which
results in obtaining a partial state. In a sample, if the value of an atomic proposition is known, then
the sampled value is consistent with state B , so that the actual state is a completion of any of its
samples.

De�nition 3.2. A sample of a state B 2 ⌃ is a partial state B̂ 2 b⌃ such that, for every p 2 AP,

(B̂ [p] < §)) (B̂ [p] = B [p]).

We assume that two monitors " and " 0 cannot take inconsistent samples. That is, if B̂ and B̂ 0
are two samples of a state B by monitors" and" 0, respectively, then we assume that, for every
p 2 AP,

(B̂ [?] < B̂ 0[?])) (B̂ [?] = § _ B̂ 0[?] = §).
We say that a set of monitors covers a state if the collection of partial views of these monitors
covers the value of the all atomic propositions in B . A set M of monitors satis�es state coverage for
a state B if, for every p 2 AP, there exists" 2M whose sample B̂ satis�es B̂ [?] < §. Unfortunately,
distributed monitoring with monitors subject to crash failures is subject to an important limitation:
state coverage cannot be guaranteed. Indeed, even if it is guaranteed that M initially satis�es state
coverage, the presence of crashes may result in this property no longer being true during the course
of execution of the system. This follows from the fact that M 0 = {"8 | 8 2 � } may not satisfy state
coverage for � ⇢ [1,=], even if M = {"8 | 8 2 [1,=]} satis�es state coverage, because the monitors
"8 , where 8 2 [1,=] \ � , have crashed.

Since state coverage cannot be guaranteed, one must also specify the correctness of partial traces
in ���� so that monitors can emit non-trivial verdicts even on partial traces. In this paper, we do so
via an extrapolation function allowing to associate a Boolean value with each atomic proposition,
even if its truth value is unknown.

De�nition 3.3. An extrapolation function is a function x = (xp)p2AP, where

x? : {true, false, §}! {true, false}

satis�es x? (true) = true and x? (false) = false.

Given an extrapolation function x, for every �nite (partial) trace Û = B̂0B̂1 · · · B̂: , we de�ne

[Û |=� ,x i] := [x(B̂0)x(B̂1) · · · x(B̂:) |=� i] . (4)

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

0:10 Bonakdarpour, et al.

In the following, we assume that all the monitors in M are using the same extrapolation function
x. Note that, once ���3 and ���� have been both extended to partial traces, the extension of ������
to partial traces directly follows:

[Û |=4 i] =

8>>>>><
>>>>>:

> if [Û |=3 i] = >
? if [Û |=3 i] = ?
>? if [Û |=3 i] = ? ^ [Û |=� ,x i] = >
?? if [Û |=3 i] = ? ^ [Û |=� ,x i] = ?

Having extended ���3 and ���� to partial traces, we can therefore re�ne our objective by revisiting
Eq. (2), rephrased as

` (<) = [Û |=4 i]
where Û is the partial trace of an actual trace U = B0B1B2 · · · B: , de�ned as the sequence of partial
states B̂8 of B8 resulting from the unions of all the samples of B8 taken by the monitors, M =
{"1,"2, . . . ,"=}, and< is the set of verdicts returned by the monitors after having observed B: .

Remark. The choice of the extrapolation function x used to extend ���� to partial traces has no
impact on our setting. Therefore, in the following, for simplifying the notations, and for the sake of
improving readability, we shall no longer use the “ ˆ ” symbol for distinguishing traces from partial
traces, and we shall no longer specify extrapolation using x. The reader must solely remember that,
from this point on, any mention of ���3 refers to the semantics of Eq. (3), and any mention of ����
refers to the semantics of Eq. (4).

3.3 A Generic Algorithm for Distributed Monitoring
3.3.1 Wait-free Computing. Each monitor is a process, and the monitors run in the standard
asynchronous read/write shared memory model [6]. Each monitor runs at its own speed, that may
vary along with time, and may fail by crashing (i.e., halt and never recover). We assume no bound
on the number of monitors that can crash, and thus a monitor never “waits” for another monitor
since this may cause a livelock (a process waiting for an event that will never occur). This model of
computation is thus often referred to as wait-free shared memory computing. Every monitor that
does not crash is required to output, i.e., in the context of this paper, to emit a monitoring verdict. A
distributed algorithm in this setting consists, for each process, of a bounded sequence of read/write
accesses to the shared memory, at the end of which an output is produced, i.e., a verdict is emitted.
If the number of possible inputs is bounded (which is the case in the setting of monitoring an ���
formula as every state is of bounded size), the lengths of such read/write sequences are bounded.
We thus assume, without loss of generality, that each monitor accesses the shared memory a �xed
arbitrarily large number of times before emitting a verdict (see [22] for more details).

3.3.2 Wait-free Snapshots. Consider an array SM of single-writer/multi-reader registers, where
process (monitor)"8 can write to SM[8], and can read the register SM[9] of any other processes" 9 .
Programming using such an array can be signi�cantly simpli�ed, using instead snapshot operations.
A process "8 can still write only to SM[8], but it can read all the array SM in a single atomic
snapshot operation. If it would be possible to stop all other processes temporarily, to allow"8 to
read one-by-one all registers, then"8 could obtain a snapshot SM. However, in a wait-free system,
this is not allowed.
Remarkably, it is possible to implement a snapshot operation wait-free, allowing all other

processes to continue executing their operations, possibly even writing and reading concurrently.
Manywait-free atomic snapshot implementations have been proposed, on top of read/write registers,
e.g. [1, 2, 5, 23]. Furthermore, implementations of snapshots on top of a message passing system

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

Decentralized Asynchronous Crash-Resilient Runtime Verification 0:11

have also been proposed [4, 15]. Such implementations have a computationally cost, but the main
purpose of this paper is to study feasibility, not e�ciency. Our algorithms could be implemented by
simply replacing the snapshot operation by the read/write algorithm implementing the snapshots
(or potentially even the implementation on top of a message passing system as mentioned above),
without compromising the correctness of the results in the rest of the paper.

Thus, for the sake of simplifying the presentation, all our algorithms use atomic snapshot
operations. That is, we assume that a monitor can acquire the entire memory SM in a single atomic
“global read” instruction. A view of the shared memory SM is merely the result of a snapshot.

Using snapshots does not arti�cially strengthen the power of distributed monitoring, but con-
siderably simpli�es the presentation of the algorithms and their analysis. Indeed, snapshots are
ordered by inclusion, because they return the contents of the shared memory that existed at some
point in time, between the invocation of the snapshot operation, and the moment the operation
returns. Thus, two snapshot operations may return the same view, if they took e�ect simultaneously.
Otherwise, one returns a view at some point in time, and the other a view of the contents of the
shared memory at a later time. In this sense, we have the following statement.

L���� 3.4 (A����� �� ��. [5]). The snapshots are ordered by inclusion, i.e., for any two monitors
"8 and " 9 , and any two snapshots of these monitors returning two views F8 and F 9 of the shared
memory, we have eitherF8 ✓ F 9 orF8 ◆ F 9 .

3.3.3 A Generic RV Algorithm. As mentioned earlier, RV is concerned with verifying �nite traces.
Distributedmonitoring works as follows. Let B0B1B2 · · · B: be a �nite trace under scrutiny.We perform
a sequence of phases, where each phase 9 2 [0,:] consists in evaluating the correctness of the trace
B0B1 . . . B 9 . That is, at phase 9 , each monitor receives a sample from state B 9 , which forms its input,
then performs a �xed number ' of access to the shared memory, after which it produces its verdict
regarding the trace B0B1 · · · B 9 . We now describe this process in more detail.
Each monitor "8 2 M, where 8 2 [1,=], is provided with a local memory, lm8 . The shared

memory is denoted by SM. For the sake of establishing a strong lower bound, we consider protocols
that are not subject to any constraints in terms of how much data can be stored, and how much
data can be transferred at once during a read (snapshot) or a write. In other words, we consider full
knowledge protocols [22]. (Note, however, that our upper bound will be shown e�cient in terms of
both memory storage and bandwidth utilization.)
Both the shared memory and the local memories are organized in levels, where, for every

9 2 [0,:], both the 9th level SM[9] and lm8 [9], 8 2 [1,=] store data used when considering state B 9
of the monitored trace. Moreover, the 9 th level of the shared memory is organized in ' · = registers,
where = is the number of monitors, and ' denotes the number of rounds of read/write instructions.
Speci�cally, SM[9] [A , 8] stores data written by"8 during its A th write. Similarly, the local memory
of"8 is organized in '+2 registers, where lm[9] [0] stores the sample of B 9 by"8 , and, for 1  A  ',
lm[9] [A] stores data extracted by"8 from the shared memory during its A th read. (An extra level
lm[9] [' + 1] is used for synchronization, as explained below.) We assume that all variables are
initialized to §.

Each monitor"8 2M, 8 2 [1,=], runs Algorithm 1 that we detail next. First, before sampling B 9 ,
each monitor takes a snapshot of the shared memory. This is to make sure that all the monitors share
the same information about the partial trace resulting from the global observation of B0B1 · · · B 9�1.
Indeed, recall that it is assumed that all non-faulty monitors sample, compute, and emit their verdict
in between every two consecutive steps of the system. Thus, when "8 starts considering B 9 , all
non-faulty monitors have emitted their verdict about B0B1 . . . B 9�1. In particular, the values of all the
atomic propositions of B 9�1 that are covered by the set of non-faulty monitors have been written in

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

0:12 Bonakdarpour, et al.

Data: ��� formula i and state B 9 , 9 � 0
Result: a verdict from some �xed set +

1 if 9 > 0 then
2 lm8 [9 � 1] [' + 1] SM[9 � 1]; /* "8 snapshots the (9 � 1)th level of shared memory */
3 lm8 [9] [0] sample8 (B 9); /* "8 takes sample from state B 9 */
4 for A = 1 to ' do
5 SM[9] [A , 8] lm8 [9] [A � 1]; /* "8 writes its current knowledge in shared memory */
6 lm8 [9] [A] SM[9]; /* "8 takes a snapshot of the shared memory */
7 emit a verdict in + ; /* "8 decides based on the knowledge accumulated in lm8 */

Algorithm 1: Generic behavior of Monitor"8 , for 8 2 [1,=].

shared memory when"8 samples B 9 . The instructions performed in Lines 1 and 2 allow"8 to get
all such values. As a consequence, for any two monitors"8 and"80 monitoring B0B1 . . . B 9 , it holds

8? 2 [0, 9 � 1], lm8 [?] [' + 1] = lm80 [?] [' + 1] .

That is, they agree on B0B1 · · · B 9�1.
For any given new state B 9 , monitor"8 takes a sample from state B 9 (cf. Line 3), which is stored in

local memory lm8 [9] [0], at the 0th level. (Recall that the value of an atomic proposition in a sample
is either true, false, or §.) After sampling, each monitor"8 executes a sequence of write/snapshot
actions (cf. Lines 5 and 6) for some a priori known number of times '. More precisely, in Line 5, at
the A th iteration, "8 atomically writes all its knowledge accumulated so far, i.e., during the A � 1
previous rounds of read/write instructions. This knowledge is stored at the A th level of the shared
memory, in the register dedicated to data from monitor"8 . In Line 6,"8 reads all the registers in
SM[9], and copies them into lm8 [9] [A], in a single atomic step.

The ' iterations of the for-loop allow"8 to collect information about the current state B 9 . After
' iterations, the for-loop ends, and"8 emits a verdict based all the knowledge accumulated in its
local memory. For our lower bound, we impose no restriction on the way this verdict is computed.
However, for our upper bound, this verdict will be computed solely based on evaluating i on the
partial trace accumulated by "8 . Note that, even for a large ', "8 may still not be aware of all
the atomic propositions of B 9 , simply because the monitors which were covering these atomic
propositions may be slow, and may have not yet reported their samples in the shared memory. Also
note that there is no point in waiting for the slow monitors, since it may well be the case that they
have actually crashed, and waiting for them would yield a livelock.
A distributed-monitoring algorithm is an instantiation of the generic algorithm depicted in

Algorithm 1. A concrete example of such an instantiation is provided in Section 4. Note that the
generic Algorithm 1 takes full advantage of the total power of distributed wait-free computing.

3.4 Statement of the Problem
For any state B 9 , when a set of monitors execute Algorithm 1, di�erent interleavings, and hence
di�erent sets of verdicts, are possible. Global consistency is the property enabling to map the set
of verdicts of the distributed monitors to the verdict of a centralized monitor that has the view of
states identical to the cumulated views of the monitors. More speci�cally, given a state B 9 , the cover of
B 9 is the partial state B̂ 9 such that, for every p 2 AP, B̂ [p] < § if and only if p is in the sample of B 9 by
some non-faulty monitor"8 . From this point on, any reference to an execution trace U = B0B1 · · · B 9
actually refers to the sequence of states covered by the monitors.

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

Decentralized Asynchronous Crash-Resilient Runtime Verification 0:13

A monitor trace for an execution trace U = B0B1 · · · B: is a sequence< =<0<1 · · ·<: , where, for
every 9 2 [0,:],< 9 ✓ + for some verdict set + , and each element of each< 9 is the verdict of some
monitor"8 2M emitted when considering state B 9 . Let i be an ��� formula, and let U = B0B1 · · · B:
be a �nite (partial) trace corresponding to the sequence of (partial) states covered by the monitors.

De�nition 3.5. A monitor trace< =<0<1 . . .<: with verdict set + satis�es global consistency
for U with interpretation

` : 2+ ! B4
if, for every 0  9  : , if no monitors crash between the time when the system enters state B 9 and
the time when the system leaves state B 9 , then

` (< 9) = [B0B1 · · · B 9 |=4 i] .
Note that p 2 AP might be in the sample of a monitor observing the system in state B 9 , but this

monitor may crash before reporting this sample to the shared memory, or may report this sample
in the shared memory before crashing, but does it so late that no other monitors can see this sample
(because asynchrony and failures prevent any monitor from waiting for any other monitor). This is
why global consistency is required to hold only if no monitors crash when monitoring state B 9 .

De�nition 3.6. Let A be an instantiation of Algorithm 1 for an ��� formula i with verdict set + .
Algorithm A is sound for ������, if there exists a function ` : 2+ ! B4 such that, for every �nite
(partial) trace U 2 ⌃⇤ covered by the monitors, and for every monitor trace< produced by A for U ,
< satis�es global consistency for U with interpretation `.

The problem: Given an ��� formula i , design an instantiation A of Algorithm 1 that correctly
monitors i , with monitors emitting verdicts picked from a small set + of values.

In particular, is any ��� formula i correctly distributedly monitorable using B4 as verdict set for
the monitors? The next section shows that the answer to this question is negative. However, further
ahead in the text, it will be shown that, for every ��� formula i , there is a distributed algorithm
that correctly monitors i with verdicts picked from the set of logical values of a multi-valued
logic extending ������, whose cardinality is related neither to |AP| nor to |M|, but to a speci�c
characteristic of the formula i .

4 DISTRIBUTED MONITORING USING RV-LTL
In this section, we pursue two goals. First, in Section 4.1, we modify Algorithm 1, so each monitor
emits a verdict in B4, that is, truth values of ������. This constructs Algorithm 2, that we describe
in detail. Then, in Section 4.2, we provide a concrete example of how distributed monitors can
successfully monitor an ��� formula using Algorithm 2. In Section 4.3, we discuss our second goal
and show that Algorithm 2 cannot monitor any ��� formula while ensuring soundness. In Section 5,
we generalize this negative result to an impossibility result for fault-tolerant monitoring.

4.1 Distributed Monitoring with Verdicts in RV-LTL
As in the generic case, the local memory lm8 of monitor"8 is organized in levels, one for each state
of the monitored trace. The same holds for the shared memory. For every : � 0, lm8 [:] stores a
partial state, i.e., an |AP|-dimensional vector with values in {true, false, §}. For every : � 0, and
every 8 2 [1,=], SM[:] [8] stores a partial state, i.e., SM[:] [8] [p] 2 {true, false, §} stores the value
in B: of the atomic proposition p 2 AP, as written by monitor"8 . Every monitor"8 also uses an
auxiliary storage variable lm08 for local computation, which has the same format as one level of the
shared memory, i.e., lm08 stores one partial state for each monitor "8 . Again, we assume that all
variables are initialized to §.

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

0:14 Bonakdarpour, et al.

Data: ��� formula i and state B: , : � 0
Result: a verdict from B4

1 if : > 0 then
2 lm08 SM[: � 1]; /* "8 snapshots the (: � 1)th level of shared memory */
3 for every p 2 AP do
4 if (lm8 [: � 1] [p] = §) ^ (9 9 2 [1,=] : lm08 [9] [p] < §) then
5 lm8 [: � 1] [p] := lm08 [9] [p]; /* "8 completes its view of B:�1 */

6 lm8 [:] sample8 (B:); /* "8 takes sample, and gets some p 2 AP for B: */
7 SM[:] [8] lm8 [:]; /* "8 writes its current view of B: in shared memory */
8 lm08 SM[:]; /* "8 takes a snapshot of the shared memory */
9 for every p 2 AP do
10 if (lm8 [:] [p] = §) ^ (9 9 2 [1,=] : lm08 [9] [p] < §) then
11 lm8 [:] [p] := lm08 [9] [p]; /* "8 gets propositions that were not in its sample */

12 emit
⇥
lm8 [0]lm8 [1] · · · lm8 [:] |=4 i

⇤
; /* "8 evaluates trace lm8 [0] · · · lm8 [:] in ������ */

Algorithm 2: Behavior of monitor"8 , 8 2 [1,=], using ������.

Algorithm 2 proceeds as follows. As in Algorithm 1, Lines 1–5 allow all non-faulty monitors
observing B: to share the same information about the partial trace resulting from the global
observation of B0B1 · · · B:�1. That is, for any monitor"8 and sampling B: in Line 6, it holds

lm8 [0]lm8 [1] · · · lm8 [: � 1] = B0B1 · · · B:�1 .
Let us now focus on the core of the algorithm. In Line 6, the monitor takes a sample of the
current state B: . This sample gives "8 the value of some atomic propositions p 2 AP, in which
case lm8 [:] [p] 2 {true, false}, but"8 may not become aware of some other atomic propositions
p0 2 AP, in which case lm8 [:] [p0] = §. Then, only one round of the generic algorithm is run. That
is,"8 writes its partial view of B: (Line 7), and takes a snapshot of the shared memory (Line 8) with
the objective of getting the values of atomic propositions of B: that it is missing in its view. If there
is indeed such a proposition p in its snapshot, then"8 adds this value in its partial view of B: , in
Line 11.

For emitting its verdict, monitor"8 evaluates trace lm8 [0] · · · lm8 [:] in ������, that is, its verdict
is the truth value in B4 equal to: h

lm8 [0]lm8 [1] · · · lm8 [:] |=4 i
i
.

Algorithm 2 is probably the most natural way of providing fault-tolerant distributed monitoring.
However, as we show in the next subsection, ������ is far from being su�cient, and even simple
��� formulas cannot be evaluated using distributed monitors using ������.

4.2 A Positive Example for Distributed Monitoring using RV-LTL
LetM = {"1,"2}, and let us consider monitoring the aforementioned request-acknowledgment
formula

ira = (¬0 ^ ¬A) _ ((¬0 U A) ^ 0).
We represent a (partial) state in a �nite trace for ira as a vector

B =
✓
A
0

◆

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

Decentralized Asynchronous Crash-Resilient Runtime Verification 0:15

where the propositions range over {true, false, §}. Let us assume that atomic proposition § is
extrapolated to false (we will show that the choice of extrapolation does not matter). Using a central
monitor, evaluation in ������ should return the following verdicts:✓

A
0

◆ ✓
false
false

◆ ✓
true
false

◆ ✓
false
true

◆ ✓
true
true

◆

verdict >? ?? ? >

where each column represents a trace of length one (i.e., a single state). In a distributed setting, a
monitor may observe the following corresponding partial states and return verdicts in ������:✓

A
0

◆ ✓
§
§

◆ ✓
§

false

◆ ✓
§

true

◆ ✓
false
§

◆ ✓
false
false

◆ ✓
false
true

◆ ✓
true
§

◆ ✓
true
false

◆ ✓
true
true

◆

verdict >? >? ? >? >? ? ?? ?? >

Thanks to Lemma 3.4, the sets of possible verdicts returned by a collection of distributed monitors
observing the system are, for the four possible scenarios:✓

A
0

◆ ✓
false
false

◆ ✓
true
false

◆ ✓
false
true

◆ ✓
true
true

◆

verdict sets {>? } {?? } or {>? ,?? } {?} or {>? ,?} {>} or {>,>? } or {>,?? } or {>,?}

Let us de�ne the following interpretation function. For every non-empty< ✓ B4 = {>,?,>? ,?? },

` (<) =

8>>>><
>>>>:

> if > 2<
? if > 8< and ? 2<
?? if< \ {>,?} = ; and ?? 2<
>? otherwise.

With such an interpretation function, we do have

` (<) = [B |=4 ira],

as desired. This analysis can be extended to traces, and to monitor traces, establishing that Algo-
rithm 2 correctly monitors ira in ������.

4.3 A Counterexample to Distributed Monitoring Using RV-LTL
LetM = {"1,"2} and let us consider the ��� formula for two requests and two acknowledgments:

ira2 =
⇣

(¬01 ^ ¬A1) _ [(¬01 U A1) ^ 01]
⌘
^

⇣
(¬02 ^ ¬A2) _ [(¬02 U A2) ^ 02]

⌘
.

4.3.1 Negative Example of Monitoring ira2. Figure 3 shows a concrete �nite trace U and its cor-
responding monitor trace resulting from running Algorithm 2, where 5 stands for false, and C
stands for true (in this example too, § is extrapolated to false). It also shows the content of the local
memories of two monitors"1 and"2 monitoring U , as well as their individual evaluations of ira2
with respect to the observed trace. For instance, for B0, let:

sample1 (B0) =
©≠≠≠
´

true
§

false
false

™ÆÆÆ
¨

sample2 (B0) =
©≠≠≠
´

true
true
§

false

™ÆÆÆ
¨
.

where each vector shows the value of propositions A1, 01, A2, and 02. Then, when"1 and"2 perform
the write-snapshot instructions of Lines 7 and 8 of Algorithm 2, Fig. 3 illustrates an execution in

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

0:16 Bonakdarpour, et al.

B0 = {A1,01 }
[B0 |=� ira2] = >

lm1 [0]
"1 "2

A1 C §
01 § §
A2 5 §
02 5 §

?p

lm2 [0]
"1 "2
C C
§ C
5 §
5 5
>p

<0 = {?? ,>? }

B1 = {A1 }
[B0B1 |=� ira2] = >

lm1 [1]
"1 "2
C §
§ §
5 5
5 §
>p

lm2 [1]
"1 "2
§ §
§ §
§ 5
§ §
>p

<1 = {>? }

B2 = {A1,01, A2 }
[B0B1B2 |=� ira2] = ?

lm1 [2]
"1 "2
§ C
§ C
C §
5 §
?p

lm2 [2]
"1 "2
§ C
§ C
§ §
§ §
>p

<2 = {?? ,>? }

B3 = {A1, A2,01,02 }
[B0B1B2B3 |=� ira2] = >

lm1 [3]
"1 "2
C §
C C
§ C
§ C

>

lm2 [3]
"1 "2
§ §
§ C
§ C
§ C

>

<3 = {>}

U = B0B1B2B3

< =<0<1<2<3

Fig. 3. A monitor trace as computed by Algorithm 2.

which "1 does not get any new information ("1 took the snapshot before "2 wrote), while "2
gets the partial trace sampled by"1. As a result,

lm1 [0] =
©≠≠≠
´

true
§

false
false

™ÆÆÆ
¨

lm2 [0] =
©≠≠≠
´

true
true
false
false

™ÆÆÆ
¨
.

It follows that"1 emits
?? =

⇥
lm1 [0] |=4 ira2

⇤
,

while"2 emits
>? =

⇥
lm2 [0] |=4 ira2

⇤
.

Since [B0 |=4 ira2] = >? , it must be case that the set of verdicts<0 = {>? ,?? } is interpreted as >? ,
i.e.,

` (<0) = >? .
A contradiction can be observed when considering "1 and "2 observing B0B1B2. Indeed, in

this case too, the set of verdicts emitted by the monitors can be<2 = <0 = {>? ,?? } for some
interleaving of the write-snapshot instruction. However, [B0B1B2 |=4 ira2] = ?? . Therefore, we get

` (<2) < [B0B1B2 |=4 ira2] .
That is, Algorithm 2 does not correctly monitor ira2.

4.3.2 Negative Result on Monitoring a Single State for ira2. We show that Algorithm 2 does not
even correctly monitor ira2 on a single state. Figure 4 shows di�erent execution interleavings of
monitors"1 and"2 when running Algorithm 2 from two di�erent states

B0 = {A1,01},
and

B 00 = {A1,01, A2}.

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

Decentralized Asynchronous Crash-Resilient Runtime Verification 0:17

Again, let us represent a state in a partial trace for ira2 as a vector

B =
©≠≠≠
´

A1
01
A2
02

™ÆÆÆ
¨

with entries in {true, false, §}. In case of B0, after executing Line 6 of Algorithm 2, monitors’ samples
consist of

lm1 [0] =
©≠≠≠
´

true
§

false
false

™ÆÆÆ
¨
, and lm2 [0] =

©≠≠≠
´

true
true
§

false

™ÆÆÆ
¨
.

Likewise, for state B 00, Fig. 4 shows di�erent local snapshots by"1 and"2. The verdict depends on
the di�erent interleavings of write/snapshot. In Fig. 4,"1,"2 (resp.,"2,"1) denotes the case where
monitor"1 (resp., "2) executes a write-snapshot instructions (Lines 7–8 of Algorithm 2) before
monitor"2 (resp.,"1) does, and"1 | |"2 denotes the case where monitors"1 and"2 execute their
write-snapshot actions concurrently.

Figure 4 shows that ������ is unable to consistently monitor ira2. More precisely, observe that,
in the �gure, the shaded collective verdicts<0 and<00, for trace B0 and trace B 00, respectively, are
identical, both equal to {?? ,>? }, while [B0 |=4 ira2] < [B 00 |=4 ira2]. Speci�cally, let us consider the
following scenarios.

Scenario 1: Starting from state B0 with "1,"2 interleaving, we have [lm1 [0] |=4 ira2] = ??
and [lm2 [0] |=4 ira2] = >? . That is, the collective set of local verdicts is<0 = {?? ,>? }.

Scenario 2: Starting from state B 00, with "2,"1 interleaving, we have [lm01 [0] |=4 ira2] = ??
and [lm02 [1] |=4 ira2] = >? . That is, the collective set of local verdicts is<00 = {?? ,>? }.

Therefore, although the valuations of ira2 for two �nite traces B0 and B 00 are di�erent in ������ (i.e.,
>? and ?? , respectively), the collective set of verdicts emitted by monitors"1 and"2 in the above
two scenarios are identical (i.e., {?? ,>? }). That is,

[B0 |=4 ira2] < [B 00 |=4 ira2],
but ` (<0) = ` (<00) for any `, and, thus, ira2 is not correctly monitored, even on traces consisting
in a single state.

We summarize the discussions in this section by the following:

P������� 4.1. Not all ��� formulas can be consistently monitored by a 1-round distributed monitor
with traces in ������. In particular, the ��� formula ira2 cannot be monitored by a 1-round distributed
monitor with traces in ������, even on traces consisting of a single state, even if monitors satisfy state
coverage, and even if no monitors crash during the execution.

The above results yield several questions. Do they hold only because Algorithm 2 does not
perform su�ciently many communication rounds? Do they hold because the monitors exchange
only partial states? Do they hold because the four possible individual verdicts are interpreted
as logical values in B4? In the next section, we answer all these questions negatively: even the
full-information Algorithm 1 cannot distributedly monitor ��� formula ira2 with a verdict set of
cardinality 4, independently from its number of rounds ' � 1.

5 DISTRIBUTED MONITORING REQUIRES LARGE VERDICT SETS
In this section, we introduce a parameter that will be shown to have a strong impact on distributed
monitoring, namely the alternation number of an ��� formula. In particular, in this section, we show

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

0:18 Bonakdarpour, et al.

"1
"1 "2

A1 C §
01 § §
A2 5 §
02 5 §

"2
"1 "2

A1 § C
01 § C
A2 § §
02 § 5

lm1 [0]

lm2 [0]

samples

"1
"1 "2

A1 C §
01 § §
A2 5 §
02 5 §

?p

"2
"1 "2

A1 C C
01 § C
A2 5 §
02 5 5

>p

"1
"1 "2
C C
§ C
5 §
5 5
>p

"2
"1 "2
C C
§ C
5 §
5 5

>p

"1
"1 "2
C C
§ C
5 §
5 5

>p

"2
"1 "2
§ C
§ C
§ §
§ 5
>p

B0 = {A1,01 }
[B0 |=� ira2] = >

write/snapshot

interleavings
"1,"2

"1 | |"2

"2,"1

lm1 [0]

lm2 [0]

<0 = {>? ,?? } <0 = {>? } <0 = {>? }

"1
"1 "2

A1 § §
01 § §
A2 C §
02 5 §

"2
"1 "2

A1 § C
01 § C
A2 § §
02 § 5

lm
0
1 [0]

lm
0
2 [0]

"2,"1

"1 | |"2

"1,"2

"1
"1 "2

A1 § C
01 § C
A2 C §
02 5 5

?p

"2
"1 "2

A1 § C
01 § C
A2 § §
02 § 5

>p

"1
"1 "2
§ C
§ C
C §
5 5
?p

"2
"1 "2
§ C
§ C
C §
5 5
?p

"1
"1 "2
§ §
§ §
C §
5 §
?p

"2
"1 "2
§ C
§ C
C §
5 5
?p

B00 = {A1,01, A2 }
[B00 |=� ira2] = ?

lm
0
1 [0]

lm
0
2 [0]

<00 = {>? ,?? } <00 = {?? } <00 = {?? }

Inconsistency

Fig. 4. Monitors"1 and"2 monitoring formula ira2 from two di�erent states B0 and B 00.

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

Decentralized Asynchronous Crash-Resilient Runtime Verification 0:19

that, for every: � 0, there is an ��� formulai with alternation number: that cannot be distributedly
monitored by monitors emitting verdicts from a set of cardinality smaller than : + 1. This lower
bound is an adaption of the lower bound in [20], which deals with states whose correctness is
speci�ed by Boolean logic, to execution traces whose correctness is speci�ed by linear temporal
logic. In the next section, we shall show that the alternation number also essentially determines an
upper bound on the number of truth values needed to ensure consistency in distributed monitoring,
using truth values from a properly de�ned multi-valued logic.

5.1 Alternation Number
Let U 2 ⌃⇤ be a �nite trace, and let U 0 be the longest proper pre�x of U , i.e., U = U 0B , where U 0 2 ⌃⇤
and B 2 ⌃. Let i be an ��� formula. We set the alternation number of i with respect to U , denoted
by altern(i,U), as follows. First, for full generality, we do not de�ne the alternation number of i
solely for traces, but also for partial traces. That is, in state B , proposition p 2 AP can be true, false,
or unknown (§). Given two partial states B and B 0, we set

B 0 � B

if the following two conditions hold:
• 8p 2 AP : (B 0[p] 2 {true, false}) B [p] = B 0[p]);
• 9p 2 AP : (B 0[p] = § ^ B [p] 2 {true, false}).

We denote by B§ the partial state in which all atomic propositions are unknown.

De�nition 5.1. The alternation number of an ��� formula i with respect to a �nite partial
trace U = U 0B with U 0 2 ⌃⇤ and B 2 ⌃, denoted by altern(i,U), is the maximum integer ✓ � 0,
such that there exists a sequence of partial states B0B1 · · · B✓ with B0 = B§ , B✓ = B , and, for every
8 2 {0, 1, . . . , ✓ � 1}, ⇣

B8 � B8+1
⌘
^

⇣
[U 0B8 |=� i] < [U 0B8+1 |=� i]

⌘
.

The alternation number of an ��� formula i is altern(i) = max
�
altern(i,U) | U 2 ⌃⇤

.

It directly follows from this de�nition that, for any ��� formula i , its alternation number is
bounded by its number of atomic propositions, i.e.,

altern(i)  |AP|.
On the other hand, the alternation number can be much smaller than the number of atomic
propositions. For instance

i = G1 ^ G2 ^ · · · ^ GC
satis�es |AP| = C and altern(i) = 1 (assuming that the evaluation of a partial trace is performed by
replacing all § by false). Let us consider a few examples.

• altern(?) = 1, since once ? is false, the formula can never evaluate to >.
• altern((A ! 0)) = 2, as witnessed by the partial states✓

A

0

◆
=

✓
§

§

◆ ✓
true
§

◆ ✓
true
true

◆

which evaluate to >,?,>, respectively, in ����, when we extrapolate all § to false.
• altern(ira) = altern

�
(¬0 ^ ¬A) _ [(¬0 U A) ^ 0]

�
= 2 with✓

A

0

◆
=

✓
§

§

◆ ✓
§

true

◆ ✓
true
true

◆

which evaluate to >,?,>, respectively, in ����, when we extrapolate all § to false.

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

0:20 Bonakdarpour, et al.

• altern(ira2) = 4 with

©≠≠≠
´

A1
01
A2
02

™ÆÆÆ
¨
=

©≠≠≠
´

§
§
§
§

™ÆÆÆ
¨

©≠≠≠
´

true
§
§
§

™ÆÆÆ
¨

©≠≠≠
´

true
true
§
§

™ÆÆÆ
¨

©≠≠≠
´

true
true
true
§

™ÆÆÆ
¨

©≠≠≠
´

true
true
true
true

™ÆÆÆ
¨

which evaluates to >,?,>,?,>, respectively, in ����, when we extrapolate all § to false.

5.2 The Impact of Alternation Number on Distributed Monitoring
The following result extends Property 4.1 to any distributed monitoring algorithm. It also extends
the lower bound in [20] to execution traces whose correctness is speci�ed by means of linear
temporal logic.

T������ 5.2. For every : � 0, there is an ��� formula i with altern(i) = 2: that cannot be
correctly monitored by = > 2: distributed monitors using verdict set + if |+ |  altern(i).

P����. For the purpose of proving this lower bound, we concentrate on the following variant of
the request/acknowledge property. For every integer : � 1, letk: be de�ned over the set of atomic
propositions {A1, . . . , A:+1,01, . . . ,0:+1}. As in ira, an acknowledgment must not appear before the
corresponding request. However, it is no longer required that every request be acknowledged, but
instead that at least one, and at most : requests be acknowledged. That is,

k: =
‹

(([1,:+1],(<;

©≠
´
€
82(

⇣
(¬08 U A8) ^ 08

⌘
^

€
82 [:+1]\(

¬08™Æ
¨

L���� 5.3. altern(k:) = 2: .

For establishing the lemma, let ' 9 , � 9 be the following sequences of vectors in {true, false, §}:+1,
with 0  9  2: + 2. For every 9 2 [0, 2: + 2] and 8 2 [1,: + 1], we set

' 9 [8] =
⇢
true if 8  b 9/2c;
§ otherwise. � 9 [8] =

⇢
true if 8  d 9/2e;
§ otherwise.

That is, �0 = (§, . . . , §) = '0 = '1, and for 1  9  : + 1,

�29�1 = �29 = (true, . . . , true| {z }
9

, §, . . . , §)

and
'29 = '29+1 = �29�1.

A pair B 9 = (' 9 ,� 9) de�nes a partial states as follows. For each 8 2 [1,: + 1], the value of the
atomic proposition A8 is ' 9 [8], and the value of the atomic proposition 08 is � 9 [8]. Observe that
B0 � B1 � . . . � B29+2. For every 9 2 [1, 2: + 2], the following holds.

[B 9 |=� k:] =

8>>>><
>>>>:

? if 9 = 0
? if 9 is odd and 1  9  2: + 1
> if 9 is even and 2  9  2:
? if 9 is even and 9 = 2: + 2

This is because:
• If 9 = 0, no request is acknowledged in B0.

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

Decentralized Asynchronous Crash-Resilient Runtime Verification 0:21

• For 9 = 2 9 0 + 1, 0  9 0  : , 01, . . . ,0 9 0 are true but A 9 0 is false in B 9 . Hence, there is an
acknowledgment without the matching request. Hence [B 9 |=� k:] = ?.

• For 9 = 2 9 0, 1  9 0  : , every request A1, . . . , A 9 0 is acknowledged, and there is no acknowl-
edgment missing its matching request. Hence [B 9 |=� k:] = >.

• Finally, in B2:+2 (as in B2:+1), there are : + 1 acknowledgments, and thus [B2:+1 |=� k:] =
[B2:+2 |=� k:] = ?.

It follows that the alternation number altern(k: , B0B2 · · · B2:+1) � 2: . Therefore, altern(k:) � 2: .
Now, we prove the second part of Lemma 5.3, that is, altern(k:)  2: . Let UB 0 be a partial trace,

such that
altern(k: ,UB

0) = G .

That is, there exist partial states B 00 = B§ � B 01 � . . . � B 0G such that, for every 9 = 0, . . . , 2:,

[UB 09 |= k:] < [UB 09+1 |= k:] .
As above, each partial state B 09 can be represented by a pair of vectors

(�09 ,'09) 2 {true, false, §}:+1 ⇥ {true, false, §}:+1.
Let 02: (9) denote the number of atomic propositions 08 whose value is true in the partial trace UB 09 ,
i.e.,

02: (9) = |{8 : 9B 2 UB 09 such that 08 = true in B}|
Denote by ✓ and< the smallest (respectively, the largest) 9, 0  9  G , such thatk: is satis�ed in
UB 09 . That is,

✓ = min
0 9G

[UB 09 |= k:] = >

< = max
0 9G

[UB 09 |= k:] = >

Note that ✓ 2 {0, 1} and< 2 {G � 1, G}.
Since, for satisfyingk: , it is required that the number of acknowledged requests is at least one,

and at most : , we have 1  02: (✓) and 02: (<)  : . Now, observe that if [UB 09 |= k:] = > and
[UB 09+1 |= k:] = ?, then 02: (9) < 02: (9 + 1). Indeed, in UB 09 , for each acknowledgment, there is
a matching request, and the number of acknowledgments is at most : . Hence, in order to have
[UB 09+1 |= k:] = ?, it must be the case that �09 [8] = § and �09+1 [8] = true for some 8, 1  8  : + 1.
It follows that 02: (B✓) + d<�12 e  02: (< � 1). Since 02: (< � 1)  02: (<)  : , and B (✓) < 0, we
derive d<�12 e  : � 1, from which it follows that<  2: � 1. As< 2 {G � 1, G}, we have G  2: ,
and thus altern(k: ,U (B 0)  2: .

We conclude that altern(k:) = 2: , which completes the proof of Lemma 5.3. ⇤

In [18], the authors study a collection of distributed tasks T (=,:, ✓) de�ned for = processes,
where :, ✓ are integers. In each task in T (=,:, ✓), the possible inputs for each process ?8 are the
pairs (2,3) 2 {1, . . . ,: + 1} ⇥ {1, . . . ,: + 1}. The possible outputs form a set * of size ✓ , called
the opinion set. Any partition (Y,N) of the multisets of at most = elements of * de�nes a task
)Y,N 2 T (=,:,*) as follows. In a distributed shared memory execution, we say that a process
participates if it writes to the shared memory. For any set % ✓ {1, . . . ,=} of participating processes,
let ` denote the multiset of the output values of these processes. The task)Y,N is then speci�ed as
follows.

• If 1  |{38 : 8 2 %}|  : and {38 : 8 2 %} ✓ {28 : 8 2 %}, it is required that ` 2 Y;
• Otherwise, it is required that ` 2 N.

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

0:22 Bonakdarpour, et al.

A wait-free protocol solves tasks)Y,N 2 T (=,:,*) whenever there is a constant ⌫ such that, for
every participating set % ✓ {1, . . . ,=}, and for every execution 4 with participating set % , if every
process 8 2 % has taken at least ⌫ steps in 4 , then every process produces an output value, and the
outputs satisfy the requirement above.

Intuitively, the input of each process ?8 represents the view of ?8 as the outcome of an election:
28 is a candidate ID, and 38 is an elected ID. Election is valid if all elected IDs are candidates (i.e.,
{38 : 8 2 %} ✓ {28 : 8 2 %}), and at least 1 and no more than : IDs are elected (i.e., |{38 : 8 2 %}|  :).
By outputting a value D8 2 * , process ?8 expresses its opinion regarding whether or not the election
is globally valid. The processes must collectively be able to distinguish between valid and invalid
elections. Indeed, when the inputs of the participating processes represent a valid election, it is
required that the multiset of opinions belong to Y, and, otherwise, that multiset must belong to N.

The main result in [18] is a characterization of the wait-free solvability of the tasks T (=,:, ✓).

L���� 5.4 ([18]). For any integers =,: , with 1  : < =, no task in T (=,:, ✓) is wait-free solvable
if ✓  min(2:,=).

To complete the lower bound, we show that monitoringk: with a verdict set of size ✓ implies
that some tasks in T (=,:, ✓) are wait-free solvable. Suppose thatk: can be monitored with a set
of verdicts + of size ✓ . Let " be such a monitor and let ` : 2+ ! B4 be its interpretation (cf.
De�nition 3.6). We show how" can be used to solve a task) 2 T (=,:, ✓). The opinion set of) is
+ . The partition (Y,N) is induced by `. Given a multiset G , let G denote its underlying set. We set:

G 2 Y () ` (G) 2 {>? ,>}

Algorithm 3 solves wait-free the task)Y,N 2 T=,:,✓ .

Data: (28 ,38) 2 {1, . . . ,: + 1} ⇥ {1, . . . ,: + 1}
Result: an opinion from set +

1 �8 §:+1;'8 §:+1 ; /* Construct a partial state according to the input (28 ,38) */
2 for 9 = 1 to : + 1 do
3 if 28 = 9 then
4 '8 [9] true

5 if 38 = 9 then
6 �8 [9] true

7 B8 (�8 ,'8); E8 " (B8) ; /* gets a verdict from the monitor algorithm */
8 return E8

Algorithm 3: Solving a task) 2 T (=,:, ✓) using a monitor with verdict set of size ✓ .

Algorithm 3 is wait-free since the underlying monitor " is wait-free. Consider an execution
with participating set % in which every participating process produces an output (at line 8). Let G
denote the multiset formed by the outputs, and let G its underlying set. Let B = (�,') denote the
partial state covered by the partial states computed by the participating processes, that is, for every
1  9  : + 1,

�[9] =
⇢
true if 98 2 %,�8 [9] = true
§ otherwise and ' [9] =

⇢
true if 98 2 %,'8 [9] = true
§ otherwise

We consider two cases according to the inputs of the participating processes:

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

Decentralized Asynchronous Crash-Resilient Runtime Verification 0:23

• The inputs of the participating processes represent a valid election. That is,

1  |{38 : 8 2 %}|  :, and {38 : 8 2 %} ✓ {28 : 8 2 %}.
Hence, in B = (�,'), there are at most : acknowledgments, and each of them has a matching
request. Recall that the extrapolation function sets the value of each unde�ned atomic
proposition in B to false. Therefore [B |=4 k:] = >? (as the trace can extend with : + 1
acknowledgments in total). Hence ` (G) = >? , from which we derive G 2 Y.

• The inputs of the participating processes represent a invalid election. That is,

|{38 : 8 2 %}| 2 {0,: + 1}, or there exists : 2 % s.t. 3: 8 {28 : 8 2 %}.
In B = (�,'), there are no acknowledgments, or : + 1 acknowledgments, or some ac-
knowledgments without any matching requests. Therefore [B |=4 k:] 2 {?? ,?}, and thus
` (G) 2 {?? ,?}, from which we derive G 2 N.

We conclude that Algorithm 3 solves the task)Y,N wait-free. As)Y,N 2 T (=,:, ✓), it follows
from Lemma 5.4 that ✓ > min(=, 2:). By Lemma 5.3, altern(k:) = 2: . Therefore, if the number of
monitors is larger than altern(k:), any correct monitor algorithm fork: will require a verdict set
of size larger than altern(k:). ⇤

6 MULTI-VALUED LTL FOR CONSISTENT DISTRIBUTED MONITORING
In this section, we introduce a novel multi-valued logic, called ���� for distributed ���, and we
relate this logic to the notion of alternation number. We establish our main result in this section.
That is, we show that, for every ✓ � 0, and for every ��� formula i with alternation number ✓ ,
there are distributed monitors using a verdict set of cardinality 2d✓/2e + 4 that correctly monitor i ,
where each monitor uses an automaton for evaluating i in ����, i.e., ���� with all truth values in

B2 d✓/2e+4 = {>,?,>0,?0, . . . ,>d✓/2e,?d✓/2e},
which can be automatically synthesized from i .

6.1 Semantics of DLTL
6.1.1 Definition. ���� is directly motivated by distributed monitoring. In some sense, ���� extends
������ to more than four logical values with an eye on the alternation number. However, as opposed
to ������, which is motivated by re�ning the uncertainty regarding what could occur in the future,
���� is motivated by re�ning the uncertainty caused by asynchrony and failures.
For instance, let us consider a monitor" running Algorithm 2, and assume that" eventually

collected a partial state B after having sampled a trace U with |U | = 1, and after having exchanged
information with other monitors. Let us assume that [B |=3 i] = ? and [B |=� i] = >. In ������,
such a monitor " would output >? as verdict, by Line 12 of Algorithm 2. The objective of ����
is to re�ne such a verdict by providing a level of certainty. Indeed, it may well be the case that
some other monitor " 0 collected a partial state B 0 � B , with [B 0 |=3 i] = ? and [B 0 |=� i] = ?,
yielding a verdict ?? from that monitor. With ������ verdicts, i.e., verdicts in {>,>? ,?? ,?}, the
set of verdicts emitted by these two monitors" and" 0 would be {>? ,?? }, while the >? verdict
emitted by" is somehow more relevant than the verdict ?? emitted by" 0, because" has more
information about the system than " 0. The objective of ���� is that " emits a verdict >8 while
" 0 emits a verdict ?9 , with 8 > 9 , where 8 and 9 are non-negative integers re�ecting the degree of
certainty of the verdicts. That is, a verdict >8 is viewed as more certain than a verdict ?9 whenever
8 > 9 .

Choosing the right level of certainty at which a verdict must be emitted is at the core of the
de�nition of ���� below.

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

0:24 Bonakdarpour, et al.

De�nition 6.1. Let U = U 0B be a �nite partial trace in ⌃⇤, i.e., B 2 ⌃ = {true, false, §}, and U 0 2 ⌃⇤.
The truth value in ���� of an ��� formula i with respect to U , denoted by [U |=⇡ i], is de�ned as
follows:

[U |=⇡ i] =

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

> if [U |=4 i] = >
? if [U |=4 i] = ?
>0 if [U |=4 i] = >? ^ (8B 0 � B : [U 0B 0 |=⇡ i] = >0)
?0 if [U |=4 i] = ?? ^ (8B 0 � B : [U 0B 0 |=⇡ i] = ?0)
>8 8 > 0 if [U |=4 i] = >? ^ (9B 0 � B : [U 0B 0 |=⇡ i] = ?8�1)

^ (8B 0 � B, 9 9 < 8 : [U 0B 0 |=⇡ i] 2 {>9 ,?9 } [{>8 })
?8 8 > 0 if [U |=4 i] = ?? ^ (9B 0 � B : [U 0B 0 |=⇡ i] = >8�1)

^ (8B 0 � B, 9 9 < 8 : [U 0B 0 |=⇡ i] 2 {>9 ,?9 } [{?8 })

For ✓ � 0, ����✓ is the restriction of ����, with all truth values in B✓ = {>,?,>0,?0, . . . ,>✓ ,?✓ }.

Hence, in the case discussed above of two monitors" and" 0 having collected the partial states
B and B 0, respectively, with B 0 � B ," can evaluate B in ���� instead of ������, leading it to output
a verdict >8 , while evaluating B 0 in ���� leads " 0 to output a verdict ?9 , with 8 > 9 . Indeed, the
existence of B 0 demonstrates that there exists a partial state B 0 � B such that [B 0 |=� i] < [B |=� i],
so" emits a verdict with more certainty than" 0. The level 8 is actually the length of the longest
sequence B0 � B1 � · · · � B8 where B8 = B , such that, for every 9 2 {0, . . . , 8 � 1}, we have
[B 9 |=� i] < [B 9+1 |=� i]. Formally, we have the following:

L���� 6.2. Let U < n be a �nite partial trace. The alternation number of an ��� formula i with
respect to U satis�es

altern(i,U) =
(
0 if [U |=⇡ i] 2 {>,?}
✓ if [U |=⇡ i] 2 {?✓ ,>✓ } for some ✓ � 0

P����. Let i be an ��� formula, and let U < n be a �nite partial trace. Also, let U = U 0B with
U 0 2 ⌃⇤ and B 2 ⌃. If [U |=⇡ i] 2 {>,?,>0,?0}, then altern(i,U) = 0 because the value of
[U 0B 0 |=� i] is the same for all B 0 � B , and thus there are no alternances. The rest of the proof
is by induction on ✓ . Let ✓ > 0, assume that the lemma holds for ✓ � 1, and let us show that
it holds for ✓ . If [U |=⇡ i] = >✓ , then let B 0 � B such that [U 0B 0 |=⇡ i] = ?✓�1. By induction,
we get that altern(i,U 0B 0) = ✓ � 1. Moreover, [U 0B 0 |=� i] = ?, and [U 0B |=� i] = >, with
B 0 � B . It follows that altern(i,U 0B) � ✓ . Moreover, altern(i,U 0B)  ✓ because for every B 0 � B ,
[U 0B 0 |=⇡ i] 2 {>9 ,?9 } for some 9 < ✓ , which implies by induction that altern(i,U 0B 0) = 9 < ✓ . It
follows that altern(i,U 0B) = ✓ , as claimed. The proof for the case [U |=⇡ i] = ?✓ is analogous. ⇤

6.1.2 Reducing the number of logical values in DLTL. Lemma 6.2 provides the intuition that, using
����, distributed monitoring an ��� formula with alternation number ✓ � 0 could be done using
verdicts in B✓ = {>,?,>0,?0, . . . ,>✓ ,?✓ }, i.e., using 2✓ + 4 logical values. While we shall prove
in the next section that this is indeed the case, one can reduce the number of logical values by a
factor of 2. Indeed, let us revisit the case of request-acknowledgment. As we have seen in Section 5,
altern(ira) = 2, and, as we have seen in Section 4.2, monitoring ira using ������ can be done using
verdicts in B4 = {>,?,>? ,?? }. Instead, Lemma 6.2 suggests that using ���� would require eight
values. This is because ���� de�nes the relative certainty of verdicts ?8 and >9 only for 8 > 9 or
9 < 8 . One can halve the number of logical values in ���� by imposing an arbitrary order also
between the certainties of ?8 and >8 . This yields two variants of ����, respectively called ����+

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

Decentralized Asynchronous Crash-Resilient Runtime Verification 0:25

and �����, depending on whether one imposes >8 more certainty than ?8 , or >8 less certainty than
?8 , respectively. More formally, these logics are de�ned as follows.

De�nition 6.3. Let U = U 0B be a �nite partial trace in ⌃⇤, i.e., B 2 ⌃ = {true, false, §}, and U 0 2 ⌃⇤.
The truth value in ����+ of an ��� formula i with respect to U , denoted by [U |=⇡+ i], is de�ned
as follows:

[U |=⇡+ i] =

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

> if [U |=4 i] = >
? if [U |=4 i] = ?
>0 if [U |=4 i] = >? ^ (8B 0 � B : [U 0B 0 |=⇡+ i] 2 {>0,?0})
?0 if [U |=4 i] = ?? ^ (8B 0 � B : [U 0B 0 |=⇡+ i] = ?0)
>8 8 > 0 if [U |=4 i] = >? ^ (9B 0 � B : [U 0B 0 |=⇡+ i] 2 {>8 ,?8 })

^ (8B 0 � B, 9 9  8 : [U 0B 0 |=⇡+ i] 2 {>9 ,?9 })
?8 8 > 0 if [U |=4 i] = ?? ^ (9B 0 � B : [U 0B 0 |=⇡+ i] = >8�1)

^ (8B 0 � B, 9 9 < 8 : [U 0B 0 |=⇡+ i] 2 {>9 ,?9 } [{?8 })

Similarly, the truth value in ����� of an ��� formula i with respect to U , denoted by [U |=⇡� i], is
de�ned as follows:

[U |=⇡� i] =

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

> if [U |=4 i] = >
? if [U |=4 i] = ?
>0 if [U |=4 i] = >? ^ (8B 0 � B : [U 0B 0 |=⇡� i]) = >0
?0 if [U |=4 i] = ?? ^ (8B 0 � B : [U 0B 0 |=⇡� i] 2 {>0,?0})
>8 8 > 0 if [U |=4 i] = >? ^ (9B 0 � B : [U 0B 0 |=⇡� i] = ?8�1

^ (8B 0 � B, 9 9 < 8 : [U 0B 0 |=⇡� i] 2 {>9 ,?9 } [{>8 })
?8 8 > 0 if [U |=4 i] = ?p ^ (9B 0 � B : [U 0B 0 |=⇡� i] 2 {>8 ,?8 }))

^ (8B 0 � B, 9 9  8 : [U 0B 0 |=⇡� i] 2 {>9 ,?9 })

It follows from these de�nitions that ����+ induces the following order between the logical
values:

?0 < >0 < ?1 < >1 < · · · < >8�1 < ?8 < >8 < ?8+1 < . . .

while ����� induces

>0 < ?0 < >1 < ?1 < · · · < ?8�1 < >8 < ?8 < >8+1 < . . .

The following lemma illustrates the gain in terms of the number of logical values with respect to
the alternation number, in comparison with Lemma 6.2. Recall that B§ denotes the partial state in
which none of the atomic propositions is known.

L���� 6.4. Let U = U 0B , with U 0 2 ⌃⇤ and B 2 ⌃, be a �nite partial trace. The alternation number
of an ��� formula i with respect to U satis�es the following two equalities:

altern(i,U) =

8>>>>>>>><
>>>>>>>>:

0 if [U |=⇡+ i] 2 {>,?}
2✓ + 1 if ([U |=⇡+ i] = >✓) ^ ([U 0B§ |=� i] = ?)
2✓ if

�
([U |=⇡+ i] = >✓) ^ ([U 0B§ |=� i] = >)

�
_

�
([U |=⇡+ i] = ?✓) ^ ([U 0B§ |=� i] = ?)

�
2✓ � 1 if ([U |=⇡+ i] = ?✓) ^ ([U 0B§ |=� i] = >)

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

0:26 Bonakdarpour, et al.

altern(i,U) =

8>>>>>>>><
>>>>>>>>:

0 if [U |=⇡� i] 2 {>,?}
2✓ + 1 if ([U |=⇡� i] = ?✓) ^ ([U 0B§ |=� i] = >)
2✓ if

�
([U |=⇡� i] = ?✓) ^ ([U 0B§ |=� i] = ?)

�
_

�
([U |=⇡� i] = >✓) ^ ([U 0B§ |=� i] = >)

�
2✓ � 1 if ([U |=⇡� i] = >✓) ^ ([U 0B§ |=� i] = ?)

P����. Let i be an ��� formula, and let U = U 0B be a �nite partial trace. We �rst consider the
statement for ����+. If [U |=⇡+ i] 2 {>,?}, then altern(i,U) = 0 because the value of [U 0B 0 |=� i]
is the same for all B 0 � B , and thus there are no alternances. From this point on, we assume that
[U |=⇡+ i] 8 {>,?}. The rest of the proof is by induction on ✓ , where the reasoning below applies
both to the base case ✓ = 0, and to the inductive case for ✓ � 1. Let ✓ � 0.
If [U |=⇡+ i] = >✓ , then let B 0 � B such that [U 0B 0 |=⇡+ i] 2 {>✓ ,?✓ }, and B 0 is minimal for

this property, i.e., for every B 00 � B 0, we have [U 0B 00 |=⇡+ i] 8 {>✓ ,?✓ }. Minimality implies that
[U 0B 0 |=⇡ i] = ?✓ . Thus, let B 00 � B 0 such that [U 0B 00 |=⇡ i] = >✓�1. By induction, we get that
altern(i,U 0B 00) = 2✓ � 1 or 2✓ � 2, depending on whether [U 0B§ |=� i] = ? or >, respectively.
Moreover, [U 0B 00 |=� i] = >, [U 0B 0 |=� i] = ?, and [U 0B |=� i] = >, with B 00 � B 0 � B . It follows
that altern(i,U 0B) � 2✓ + 1 if [U 0B§ |=� i] = ?, and altern(i,U 0B) � 2✓ if [U 0B§ |=� i] = >.
Moreover, altern(i,U 0B) cannot be strictly greater than these respective bounds because, for every
B 0 � B , there exists 9  ✓ such that [U 0B 0 |=⇡+ i] 2 {>9 ,?9 }, which implies that i cannot alternate
more than 2✓ + 1 (resp., 2✓) times with respect to U when [U 0B§ |=� i] = ? (resp., [U 0B§ |=� i] = >).
If [U |=⇡ i] = ?✓ , then let B 0 � B such that [U 0B 0 |=⇡+ i] = >✓�1. By induction, we get that

altern(i,U 0B 0) = 2✓ � 2 or 2✓ � 3, depending on whether [U 0B§ |=� i] = > or ?, respectively.
Moreover, [U 0B 0 |=� i] = >, and [U 0B |=� i] = ?, with B 0 � B . It follows that altern(i,U 0B) � 2✓ if
[U 0B§ |=� i] = ?, and altern(i,U 0B) � 2✓ � 1 if [U 0B§ |=� i] = >. Moreover, since, for every B 0 � B ,
there exists 9 < ✓ such that [U 0B 0 |=⇡+ i] 2 {>9 ,?9 }, it follows that i cannot alternate more than
2✓ (resp., 2✓ � 1) times with respect to U when [U 0B§ |=� i] = ? (resp., [U 0B§ |=� i] = >).

This completes the proof for ����+. The proof for ����� is analogous, and thus omitted. ⇤

As shown in Section 5.1, we have altern(ira) = 2 with the sequence✓
A

0

◆
=

✓
§

§

◆
,

✓
§

true

◆
,

✓
true
true

◆

which evaluate to>,?,>, respectively, in ���� (assuming every atomic proposition § is extrapolated
to false). Also, we have seen in Section 4.2 that ira can be distributedly monitored using ������.
For this, we used an interpretation function ` that returns ?? when applied to the set {>? ,?? }.
This can be put in correspondence with using �����0 , with an interpretation function ` that simply
returns the logical value with highest certainty in �����, i.e., ?0 for the set {>0,?0}. We use such
type of interpretation functions in our main theorem, stated in the next section.

6.2 Monitorability and Monitor Synthesis for DLTL
We have now all the ingredients to present our main result.

T������ 6.5. For every ✓ � 0, and for every ��� formula i with altern(i) = ✓ , there are distributed
monitors using verdict set B2 d✓/2e+4 = {?,>,?0,>0, . . . ,?d✓/2e,>d✓/2e} that correctly monitor i . Each
monitor uses an automaton for evaluating i in ����+d✓/2e , which can be automatically synthesized
from i .

P����. Let ✓ � 0, and let i be an ��� formula with altern(i) = ✓ . We �rst show that i can
be correctly monitored by a set of monitors using ����. Later in the proof, we will show how to

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

Decentralized Asynchronous Crash-Resilient Runtime Verification 0:27

reduce the number of logical values, by using ����+. (Using ����� would also achieve this, and we
have chosen ����+ arbitrarily — see discussion after the proof.) The algorithm performed by each
monitor is given in Algorithm 4. This algorithm performs the same instructions as Algorithm 2,
but evaluates the collected partial trace in ���� instead of ������.

Data: ��� formula i with altern(i) = ✓ , and state B: , : � 0
Result: a verdict from B2✓+4

1 perform instructions of Lines 1–11 in Algorithm 2 ; /* sample, write, read, and update */
2 emit [lm8 [0]lm8 [1] · · · lm8 [:] |=⇡ i] ; /* "8 evaluates trace lm8 [0] · · · lm8 [:] in ���� */

Algorithm 4: Behavior of Monitor"8 , 8 2 [1,=], using ����.

Let B1 = {>,?} [([8�0{>8 ,?8 }) . The interpretation function

` : 2B1 ! B4
interprets any �nite set< 2 2B1 of logical values in ���� returned by the monitors as the truth
value of ������ corresponding to the highest index 8 for which< \ {>8 ,?8 } < ; — we will show
that, for every 8 , ?8 and >8 cannot be both in <, and that ? and > cannot be both in <. More
speci�cally, for every �nite set< ✓ 2B1 , we de�ne

` (<) =

8>>>><
>>>>:

> if > 2<;
? if ? 2<;
>? if< \ {>,?} = ;, and

�
98 � 0 : >8 2<, and 89 � 0, ?9 2<) 9 < 8

�
;

?? if< \ {>,?} = ;, and
�
98 � 0 : ?8 2<, and 89 � 0, >9 2<) 9 < 8

�
.

Let us show that, for every �nite partial trace U = B0B1 · · · B: with : � 0, if< is a set of values
returned by the monitors for U , then

` (<) = [U |=4 i] .

Recall that every state B8 in U might be a partial state, de�ned as the partial state covered by all the
non-faulty monitors during the 8th execution of Algorithm 4 (i.e., the execution of the algorithm on
B0B1 · · · B8). Also recall that, at the beginning of each execution of Algorithm 4, say at phase 8 , every
monitor takes a snapshot of the shared memory in order to get the entire partial state B8�1. That is,
when the monitors start executing Algorithm 4 for state B: , they all agree on the trace B0B1 · · · B:�1.
On the other hand, the monitors may get di�erent samples of B: , and, because of asynchrony, may
have to emit a verdict based on di�erent perspectives on the state B: . To sum up, for every 8 < 9 ,
we have

lm8 [0]lm8 [1] · · · lm8 [: � 1] = lm9 [0]lm9 [1] · · · lm9 [: � 1] = B0B1 · · · B:�1,

while it may be the case that
lm8 [:] < lm9 [:] < B: .

On the other hand, by Lemma 3.4, the monitor"8 that performs the snapshot last (i.e., the snapshot
in Line 8 of Algorithm 2) satis�es

lm8 [:] = B: .

The verdict of this monitor is [lm8 [0]lm8 [1] · · · lm8 [:] |=⇡ i], that is, precisely

[B0B1 · · · B: |=⇡ i] .

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

0:28 Bonakdarpour, et al.

By de�nition of ����, this verdict agrees with ������, in the following sense:

[B0B1 · · · B: |=4 i] = > () [B0B1 · · · B: |=⇡ i] = >
[B0B1 · · · B: |=4 i] = ? () [B0B1 · · · B: |=⇡ i] = ?
[B0B1 · · · B: |=4 i] = >? () [B0B1 · · · B: |=⇡ i] = >8 with 8 � 0
[B0B1 · · · B: |=4 i] = ?? () [B0B1 · · · B: |=⇡ i] = ?8 with 8 � 0

Moreover, by the extensions of ���3 and ���� to partial traces in Section 3.2, if

[B0B1 · · · B: |=⇡ i] = >
then there are no B 0: � B: such that [B0B1 · · · B 0: |=⇡ i] = ?. Similarly, if [B0B1 · · · B: |=⇡ i] = ? then
there are no B 0: � B: such that [B0B1 · · · B 0: |=⇡ i] = >. Also, by de�nition of ����, if

[B0B1 · · · B: |=⇡ i] = >8
then, for every B 0: � B: , we have either

[B0B1 · · · B 0: |=⇡ i] = >8 or [B0B1 · · · B 0: |=⇡ i] 2 {?9 ,>9 }
for some 9 < 8 . Similarly, if [B0B1 · · · B: |=⇡ i] = ?8 , then, for every B 0: � B: , we have either
[B0B1 · · · B 0: |=⇡ i] = ?8 or [B0B1 · · · B 0: |=⇡ i] 2 {?9 ,>9 } for some 9 < 8 . It follows that ` (<) =
[U |=4 i], as desired.
By Lemma 6.2, if i satis�es altern(i) = ✓ , then all verdicts are in B2✓+4. Reducing the number of

logical values, from 2 altern(i)+4 to 2daltern(i)/2e+4 is achieved by replacing the evaluation of the
trace in ���� at each monitor, by an evaluation in ����+. By Lemma 6.4, if i satis�es altern(i) = ✓ ,
then all verdicts are in B2 d✓/2e+4.

To complete the proof, we show how, given any ��� formula, each monitor can evaluate a partial
�nite trace U = B0B1 · · · , B: in ����+. Let

M = (⌃,&,@0, X, _)
be the ������ automaton for i . We have

_(X (@0,U)) = [U |=4 i]
for every �nite trace U 2 ⌃⇤ (see Fig. 1 for an example of such an automaton). In other words, the
pre�x U 0 = B0B1 · · · , B:�1 of the execution is fully encoded in the state X (@0,U 0) reached in M after
having executed the : transitions induced by U 0. In particular, for any two V8 2 ⌃⇤, 8 2 {1, 2}, if
X (@0, V1) = X (@0, V2) then, for any B 2 ⌃,

altern(i, V1B) = altern(i, V2B).
Therefore, to let monitors evaluate [U 0B: |=⇡+ i], it is su�cient to provide each monitor with a
table ⇤ containing |& | ⇥ |⌃| entries in {0, 1, . . . , daltern(i)/2e}, where we de�ne:

⇤[@, B] = altern(i, VB)
for any V 2 ⌃⇤ satisfying X (@0, V) = @. Indeed, for U = B0B1 · · · B: and U 0 = B0B1 · · · B:�1, let

@ = X (@0,U) and @0 = X (@0,U 0).
Then we have

[U |=⇡+ i] =
8>><
>>:

_(@) if _(@) 2 {>,?}
>d✓/2e if _(@) = >? , where ✓ = ⇤[@0, B:]
?d✓/2e if _(@) = ?? , where ✓ = ⇤[@0, B:]

In other words, given the ������ automaton for i , and given the lookup table ⇤, every monitor can
evaluate every trace U in ����+. ⇤

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

Decentralized Asynchronous Crash-Resilient Runtime Verification 0:29

Remarks. It is worth pointing out that the number of logical values used by the monitors in
Theorem 6.5 can be further reduced, but by an additive factor only, under some speci�c conditions,
including the following scenarios. We also note that one signi�cance of Theorem 6.5 is that safety
formulas can be e�ciently monitored with only four truth values. In general, formulas with only
one temporal operator need this many truth values to be consistently monitored. We should also
mention that the size of a ���� monitor is the size of its corresponding ������monitor times ✓ (one
������ monitor per alternation).

• Let us consider an ��� formula i , with altern(i) = ✓ odd. Let us also assume that, for every
�nite trace U such that there exists a sequence B0 � B1 � · · · � B✓ of partial states satisfying
[UB8 |=� i] < [UB8+1 |=� i] for every 8 2 {0, . . . , ✓ � 1}, we have [UB§ |=� i] = ?. Then
the number of truth values used by ����+ is not 2d✓/2e + 4 but only 2b✓/2c + 4. Similarly, if
[UB§ |=� i] = > for every �nite trace U such that there exists a sequence B0 � B1 � · · · � B✓
of partial states satisfying [UB8 |=� i] < [UB8+1 |=� i] for every 8 2 {0, . . . , ✓ � 1}, then, using
����� instead of ����+ yields using only 2b✓/2c + 4 truth values, instead of 2d✓/2e + 4.

• Let us consider an ��� formula i , with altern(i) = ✓ even. Let us also assume that, for every
�nite trace U such that there exists a sequence B0 � B1 � · · · � B✓ of partial states satisfying
[UB8 |=� i] < [UB8+1 |=� i] for every 8 2 {0, . . . , ✓ � 1}, we have

[UB§ |=� i] = ?, and [UB✓ |=3 i] = >

for all such sequences (note that the evaluation of UB✓ is performed in ���3). An example of
such a situation is ira. Its alternation number is 2, and every sequence B0 � B1 � B2 alternating
twice satis�es [UB0 |=� ira] = ? with B0 =

�§
§

�
, and [UB2 |=3 ira] = > with B2 =

�CAD4
CAD4

�
. In such

a scenario, the truth values of highest certainty, >✓ and ?✓ , can be discarded whenever using
����� instead of ����+, saving two truth values. That is, one can restrict the truth values to be
in B✓/2+2 = {>,?,>0,?0, . . . ,>✓/2�1,?✓/2�1}. In the particular case of ira, one can therefore
restrict the truth values to be in B4 = {>,?,>0,?0}, as it was previously established in
Section 4.2.

7 CONCLUSION
We have established a tight (up to a small additive constant) bound on the cardinality of the set
of verdicts from which a collection of asynchronous crash-prone monitors pick their individual
verdicts for monitoring an ��� formula i in a distributed manner. This cardinality is related
to the alternation number, altern(i), of the formula. We showed that, for every ✓ � 0, every
��� formula i with altern(i) = ✓ can be monitored by distributed monitors with verdicts in
B2 d✓/2e = {?,>,?0,>0, . . . ,>2 d✓/2e,?2 d✓/2e}, and each verdict results from evaluating the observed
partial trace in the multi-valued logic ����+. The bound on the size of the verdict set is (almost)
tight, in the sense that, for every ✓ � 0, there exists an ��� formula i with altern(i) = ✓ such that,
for every set + with |+ |  ✓ , i cannot be monitored by distributed monitors with verdicts in + .
For establishing these results, we impose two restrictions. First, we assume that all operations

performed by the distributed monitors (sampling the current state, exchanging information with
the other monitors, and producing the verdict) can be performed between two changes of states by
the monitored system. Second, we specify distributed monitoring by imposing global consistency
of the set<: of verdicts with respect to the centralized evaluation of the actual trace B0B1 · · · B: in
������, by requiring equality ` (<:) = [B0B1 . . . B: |=4 i] between the interpretation ` (<:) and the
evaluation of B0B1 · · · B: in ������, only for verdicts produced in the absence of crashes during the
monitoring of B: . This latter restriction appears natural, and perhaps even unavoidable because,
otherwise, the distributed monitors and the centralized monitor deal with di�erent traces, which

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

0:30 Bonakdarpour, et al.

are inherently incomparable. On the other hand, it might be desirable to relax the former restriction
because such an assumption might not always be satis�ed in practice, in particular by rapidly
evolving systems. Getting rid of this assumption seems however challenging, as one would have to
deal not only with issues caused by asynchrony between monitors with di�erent partial views of
a same state, but also with issues caused by asynchrony between monitors with partial views of
di�erent states. Reconciliation of such views looks di�cult. Nevertheless, this opens a challenging,
but rewarding direction for future work.

Another challenging problem in the context of fault-tolerant distributed monitoring is to consider
other types of faults, namely, Byzantine faults. These faults may arbitrarily change the output of
individual monitors, i.e., their verdicts. It is unclear how a collection of faulty monitors that may
misrepresent their partial view of the system can be transformed into a sound single verdict that a
correct centralized monitor would produce. This problem can also open an entirely new line of
research to deal with distributed monitoring in the presence of faults and security attacks.

REFERENCES
[1] Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit. 1993. Atomic snapshots of shared

memory. J. ACM 40, 4 (1993), 873–890.
[2] James Aspnes, Hagit Attiya, Keren Censor-Hillel, and Faith Ellen. 2015. Limited-Use Atomic Snapshots with Polyloga-

rithmic Step Complexity. J. ACM 62, 1 (2015), 3:1–3:22. https://doi.org/10.1145/2732263
[3] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. 1995. Sharing Memory Robustly in Message-Passing Systems. J.

ACM 42, 1 (1995), 124–142. https://doi.org/10.1145/200836.200869
[4] Hagit Attiya, Sweta Kumari, Archit Somani, and Jennifer L. Welch. 2022. Store-collect in the presence of continuous

churn with application to snapshots and lattice agreement. Information and Computation (2022), 104869. https:
//doi.org/10.1016/j.ic.2022.104869

[5] Hagit Attiya and Ophir Rachman. 1998. Atomic Snapshots in$ (= log=) Operations. SIAM J. Comput. 27, 2 (1998),
319–340. https://doi.org/10.1137/S0097539795279463

[6] Hagit Attiya and Jennifer Welch. 2004. Distributed Computing: Fundamentals, Simulations, and Advanced Topics. Wiley.
[7] A. Bauer, M. Leucker, and C. Schallhart. 2010. Comparing LTL Semantics for Runtime Veri�cation. Journal of Logic

and Computation 20, 3 (2010), 651–674.
[8] A. Bauer, M. Leucker, and C. Schallhart. 2011. Runtime Veri�cation for LTL and TLTL. ACM Transactions on Software

Engineering and Methodology (TOSEM) 20, 4 (2011), 14.
[9] A. K. Bauer and Y. Falcone. 2012. Decentralised LTL Monitoring. In Proceedings of the 18th International Symposium on

Formal Methods (FM). 85–100.
[10] S. Berkovich, B. Bonakdarpour, and S. Fischmeister. 2013. GPU-based Runtime Veri�cation. In Proceedings of the 27th

IEEE International Parallel and Distributed Processing Symposium (IPDPS). 1025–1036.
[11] Glenn Bruns and Patrice Godefroid. 1999. Model Checking Partial State Spaces with 3-Valued Temporal Logics. In 11th

International Conference on Computer Aided Veri�cation (CAV). 274–287. https://doi.org/10.1007/3-540-48683-6_25
[12] Glenn Bruns and Patrice Godefroid. 2000. Generalized Model Checking: Reasoning about Partial State Spaces. In 11th

International Conference on Concurrency Theory (CONCUR). 168–182. https://doi.org/10.1007/3-540-44618-4_14
[13] H. Chauhan, V. K. Garg, A. Natarajan, and N. Mittal. 2013. A Distributed Abstraction Algorithm for Online Predicate

Detection. In Proceedings of the 32nd IEEE Symposium on Reliable Distributed Systems (SRDS). 101–110.
[14] C. Colombo and Y. Falcone. 2014. Organising LTLMonitors over Distributed Systems with a Global Clock. In Proceedings

of the 14th International Conference on Runtime Veri�cation (RV). 140–155.
[15] Carole Delporte-Gallet, Hugues Fauconnier, Sergio Rajsbaum, and Michel Raynal. 2018. Implementing Snapshot

Objects on Top of Crash-Prone Asynchronous Message-Passing Systems. IEEE Transactions on Parallel and Distributed
Systems 29, 9 (2018), 2033–2045. https://doi.org/10.1109/TPDS.2018.2809551

[16] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. 1999. Patterns in property speci�cations for �nite-state veri�cation. In
International Conference on Software Engineering (ICSE). 411 –420.

[17] M. J. Fischer, N. .A. Lynch, and M. S. Peterson. 1985. Impossibility of distributed consensus with one faulty processor.
J. ACM 32, 2 (1985), 373–382.

[18] Pierre Fraigniaud, Sergio Rajsbaum, Matthieu Roy, and Corentin Travers. 2014. The Opinion Number of Set-Agreement.
In Proceedings of the 18th International Conference on Principles of Distributed Systems (OPODIS). 155–170.

[19] Pierre Fraigniaud, Sergio Rajsbaum, and Corentin Travers. 2013. Locality and checkability in wait-free computing.
Distributed Computing 26, 4 (2013), 223–242. https://doi.org/10.1007/s00446-013-0188-x

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

https://doi.org/10.1145/2732263
https://doi.org/10.1145/200836.200869
https://doi.org/10.1016/j.ic.2022.104869
https://doi.org/10.1016/j.ic.2022.104869
https://doi.org/10.1137/S0097539795279463
https://doi.org/10.1007/3-540-48683-6_25
https://doi.org/10.1007/3-540-44618-4_14
https://doi.org/10.1109/TPDS.2018.2809551
https://doi.org/10.1007/s00446-013-0188-x

Decentralized Asynchronous Crash-Resilient Runtime Verification 0:31

[20] P. Fraigniaud, S. Rajsbaum, and C. Travers. 2014. On the Number of Opinions Needed for Fault-Tolerant Run-Time
Monitoring in Distributed Systems. In Proceedings of the 5th International Conference on Runtime Veri�cation (RV).
92–107.

[21] R. Ganguly, A. Momtaz, and B. Bonakdarpour. 2020. Distributed Runtime Veri�cation under Partial Asynchrony. In
Proceedings of the 24nd International Conference on Principles of Distributed Systems (OPODIS). 20:1–20:17.

[22] M.H. Herlihy, D. Kozlov, and S. Rajsbaum. 2013. Distributed Computing Through Combinatorial Topology. Morgan
Kaufmann-Elsevier.

[23] Michiko Inoue andWei Chen. 1994. Linear-Time Snapshot UsingMulti-writerMulti-reader Registers. In 8th International
Workshop on Distributed Algorithms (WDAG). 130–140. https://doi.org/10.1007/BFb0020429

[24] Z. Manna and A. Pnueli. 1995. Temporal veri�cation of reactive systems - safety. Springer.
[25] N. Mittal and V. K. Garg. 2005. Techniques and applications of computation slicing. Distributed Computing 17, 3 (2005),

251–277.
[26] M. Mostafa and B. Bonakdarpour. 2015. Decentralized Runtime Veri�cation of LTL Speci�cations in Distributed

Systems. In Proceedings of the 29th International Parallel and Distributed Processing Symposium (IPDPS). 494–503.
[27] V. A. Ogale and V. K. Garg. 2007. Detecting Temporal Logic Predicates on Distributed Computations. In Proceedings of

the 21st International Symposium on Distributed Computing (DISC). 420–434.
[28] A. Pnueli. 1977. The Temporal Logic of Programs. In Symposium on Foundations of Computer Science (FOCS). 46–57.
[29] A. Pnueli and A. Zaks. 2006. PSL Model Checking and Run-Time Veri�cation via Testers. In 14th Int. Symp. on Formal

Methods (FM). 573–586.
[30] A. Sen and V. K. Garg. 2004. Detecting Temporal Logic Predicates in Distributed Programs Using Computation Slicing.

In Principles of Distributed Systems. 171–183.
[31] K. Sen, A. Vardhan, G. Agha, and G. Rosu. 2004. E�cient Decentralized Monitoring of Safety in Distributed Systems.

In Proceedings of the 26th International Conference on Software Engineering (ICSE). 418–427.

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0.

https://doi.org/10.1007/BFb0020429

	Abstract
	1 Introduction
	1.1 Context
	1.2 Our Results
	1.3 Related Work
	1.4 Organization

	2 Background
	2.1 Linear Temporal Logic (LTL)
	2.2 Logics for Runtime Verification

	3 Distributed Fault-Tolerant Monitoring
	3.1 General Objective
	3.2 LTL on Partial Traces
	3.3 A Generic Algorithm for Distributed Monitoring
	3.4 Statement of the Problem

	4 Distributed Monitoring Using RV-LTL
	4.1 Distributed Monitoring with Verdicts in RV-LTL
	4.2 A Positive Example for Distributed Monitoring using RV-LTL
	4.3 A Counterexample to Distributed Monitoring Using RV-LTL

	5 Distributed Monitoring Requires Large Verdict Sets
	5.1 Alternation Number
	5.2 The Impact of Alternation Number on Distributed Monitoring

	6 Multi-Valued LTL for Consistent Distributed Monitoring
	6.1 Semantics of DLTL
	6.2 Monitorability and Monitor Synthesis for DLTL

	7 Conclusion
	References

