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ABSTRACT

We recently proposed inline tests for validating individual program
statements; they allow developers to provide test inputs, expected
outputs, and test oracles immediately after a target statement. But,
existing code can have many target statements. So, automatic gen-
eration of inline tests is an important next step towards increasing
their adoption. We propose ExL1, the first technique for automat-
ically generating inline tests. EXLI extracts inline tests from unit
tests; it first records all variable values at a target statement while
executing unit tests. Then, EXLI uses those values as test inputs
and test oracles in an initial set of generated inline tests. Target
statements that are executed many times could have redundant ini-
tial inline tests. So, EXLI uses a novel coverage-then-mutants based
reduction process to remove redundant inline tests. We implement
EXL1 for Java and use it to generate inline tests for 718 target state-
ments in 31 open-source programs. EXLI reduces 17,273 initially
generated inline tests to 905 inline tests. The final set of generated
inline tests kills up to 25.1% more mutants on target statements
than developer written and automatically generated unit tests. That
is, EXLI generates inline tests that can improve the fault-detection
capability of the test suites from which they are extracted.
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1 INTRODUCTION

Inline tests [46] enable developers to test individual program state-
ments, thereby increasing the fault-detection capability of test
suites. Inline tests are complementary to existing levels of test
granularity—unit tests, integration tests, and end-to-end tests. Inline
tests can help find single-statement bugs, which often occur [38, 39]
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but elude unit tests [42]. Inline tests can also provide other software
engineering benefits, e.g., they document complex target statements
and they could be easier to co-evolve with code than unit tests.

Previously, we developed two tools to provide framework-level
support for inline testing. These tools make it easier for developers
to write inline tests and they increase the chances for the relatively
new inline testing paradigm to be adopted. One tool, pytest-inline,
supports inline testing in Python [33, 47]; it is integrated with
pytest, the most popular testing framework for Python [34], and
has already been downloaded 2,472 times [65]. We presented the
other tool for Java, ITEST, in our original inline testing paper [46].

Automatic generation of inline tests is an important next step
towards increasing their adoption for two reasons. First, automatic
generation can reduce manual developer effort for retrofitting in-
line tests into existing code bases that have many target statements.
Second, automatic generation can enable future inline testing re-
search by providing more inline tests for evaluation than exist today.
For example, we previously simulated runtime costs by repeatedly
executing 152 manually written inline tests thousands of times [46].

We propose ExL1, the first technique for automatically generating
inline tests. EXLI extracts inline tests from unit tests. Unit tests are
an attractive source of inline tests: they are abundant in practice
and they can be automatically generated [16, 62, 69]. In turn, the
extracted inline tests can help find single-statement bugs that unit
tests miss [42]. Extracted inline tests can also help find bugs in exe-
cuted statements that are deeply-nested in conditional expressions,
which can be missed by automatically generated unit tests [1].

Given the code under test (CUT), a target statement, and unit
tests that cover the target statement, EXL1 generates a set of inline
tests for the target statement. ExLI can automatically discover the
four kinds of target statements that we identified in prior work
as being able to benefit from inline testing [46], and extract inline
tests from the unit tests that cover them.

ExL1 is agnostic to the source of unit tests; they can be manually
written by developers or automatically generated by tools like
Randoop [62, 69] or EvoSuite [16]. EXL1 outputs a new version of
the CUT in which the target statement is immediately followed by
the generated inline tests. Since ExL1 is a first step towards inline
test generation, we assume that unit tests correctly exercise the
CUT. That is, the inline tests generated by EXLI on one code version
could detect regression bugs in future versions of the code.

ExLi first instruments the CUT to record all observed variable val-
ues in the target statement during unit testing. Then, the recorded
values are used to automatically generate inline tests. For example,
consider assignment statements. The recorded values of right-hand
side variables are used as input values, and the recorded values
of the left-hand side variable are used as expected values in the
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generated inline test. EXLI can also generate inline tests for decla-
rations and expressions in if conditions. We plan to support more
locations of target statements in the future.

Inline tests are co-located with target statements, so an important
concern is that readability could be degraded if too many inline
tests are generated per target statement. Compilation could also
fail if adding the generated inline tests causes a method’s body to
exceed the maximum allowable size [61]. Too many inline tests can
be generated for target statements in which many sets of values are
observed during unit testing. Such many-valued target statements
could be covered by many unit tests, or they may be in loops. In a
particularly egregious case, 14,928 sets of values were recorded for
a target statement during our experiments.

To address the concern of generating too many initial inline tests
per target statement, EXL1 introduces a coverage-then-mutants based
test reduction process. We consider an inline test to be redundant if
it has the same fault-detection capability as other inline tests with
respect to code covered and mutants killed. Code coverage [7, 21]
and mutation score [36, 70] are established metrics for measuring
the quality and fault-detection capability of unit tests. We adapt
these two metrics to guide inline test reduction.

EXL1 uses both target coverage—code covered while executing
the target statement—and context coverage—code covered while
executing the enclosing basic block of the target statement. EXL1
also builds on existing mutation analysis tools [25, 37] but it only
mutates target statements.

The coverage-then-mutants based test reduction process in ExL1
works as follows. EXLI tracks the code covered in the target state-
ment and its context during unit testing, and only records sets of
values that cover code that was not covered by previously extracted
sets of values. EXL1 also mutates the target statement and ensures
that each generated inline test kills at least one unique mutant. If
no mutant is generated for a target statement, EXLI’s reduction is
based on coverage. But, if coverage and mutation scores are com-
puted, reduction is based on mutation score as prior work suggests
that mutation score is a more accurate metric of the fault-detection
capability than coverage [74].

We implement ExL1 for Java and apply it to 718 target statements
in 31 open-source programs. EXLI generates an initial set of 17,273
inline tests. ExL1-UM, which uses universalmutator [25] for muta-
tion analysis, generates a final set of 905 inline tests (reduction rate:
94.8%). ExL1-Major, which uses Major [37] for mutation analysis,
generates a final set of 930 inline tests (reduction rate: 94.6%).

We also evaluate whether generated inline tests enhance the
fault-detection capability of test suites from which they are ex-
tracted. We do so by performing mutation analysis only on the
target statements. ExL1-UM kills 25.1% more mutants, and ExLi-
Major kills 24.6% more mutants than those killed by developer
written and automatically generated unit tests. Our manual inspec-
tion shows why generated inline tests can kill more mutants: the
unit tests reach the target statements and infect program state, but
those unit tests lack “local” oracles at the target statement. That is,
errors induced by mutants do not propagate to the assertions in the
unit tests, or those assertions do not check relevant parts of state.

This paper makes the following contributions:
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1 public static final String MULTI_VALUE_DELIMITTER = ",";

2 public static final char EQ = '=';

3 public static void setAdditionalFields(String spec,GelfMsg gelfMsg){
4 if (null != spec) {

5 String[] properties = spec.split(MULTI_VALUE_DELIMITTER);

6 for (String field : properties) {

7 final int index = field.indexOf(EQ); //target statement

8

9

itest().given(field, "profile.requestStart.ms").given(EQ, '=')
.checkEq(index, -1);
10 itest().given(field, " mdcName='long']").given(EQ, '=')
11 .checkEq(index, 8);
12 if (-1 == index) { continue; }
13 ... //add field to gelfMsg
14 33}

Figure 1: Target statement with ExLi-generated inline tests.

* Technique. EXLI is the first technique for automatically generat-
ing inline tests; it extracts inline tests from unit tests.

* Reduction approach. ExL1 uses a novel inline test reduction
approach that is based on both code coverage and mutation score.

* Evaluation. EXL1’s reduction strategy is effective, yielding inline
tests that improve the fault-detection capability of unit test suites.

* Dataset. EXLI generates the largest dataset of inline tests to date.
ExL1 and our dataset can enable future work on inline tests.

ExL1 and our dataset is open-sourced at
https://github.com/EngineeringSoftware/exli.

2 EXAMPLE

Figure 1 shows an example code with a target statement and in-
line tests that ExL1 generates for that target statement after reduc-
tion. The example is simplified from mp911de/logstash-gelf [49].
Method setAdditionalFields splits the value stored in spec us-
ing MULTI_VALUE_DELIMITTER (%) as the delimiter, stores the re-
sults in properties, and adds each field in properties that con-
tains EQ (“=”) to gelfMsg. Line 7 is the target statement; it finds
the index of first occurrence of EQ in field. All variables in this
example have primitive or String types, but EXLI supports complex
non-primitive types as well (see example in Figure 6, Section 4).
A developer could use EXLI to generate inline tests for this target
statement; it is in a loop and it is reached by lots of other methods.

Line 8 is one of the two inline tests that ExL1 generates. All
inline tests have three parts. First, the “Declare” part—itest()—
marks the current statement as an inline test. Second, the “Assign”
part—given(field, "profile.requestStart.ms").given(EQ,
'=")—provides inputs to the inline test. Third, the “Assert” part—
checkEq(index, —1)—specifies a test oracle, including an expected
output. In Figure 1, given the inputs for field and EQ, the index
variable computed by the target statement should be —1 for the
inline test on line 8 to pass.

The example target statement is executed 2,413 times with 215
unique sets of values during unit testing. But, directly generating
215 inline tests to check one statement could be an overkill for
two reasons. First, many of the 215 sets of values are redundant
because they exercise the target statement in the same way. So,
using them all is wasteful. Second, adding 215 inline tests for this
target statement will likely make the code harder to read and main-
tain. So, ExL1 must reduce the number of generated inline tests
by eliminating redundancy. EXLI’s coverage-then-mutants based
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Figure 2: The steps in ExLr’s workflow.

reduction process reduces those 215 inline tests to the two shown
in Figure 1, without loss in fault-detection capability.

3 TECHNIQUE

Figure 2 shows ExL1’s procedure for generating inline tests. The
inputs are the CUT (required), the unit tests (required), and line
numbers of the target statements (optional, not shown). EXL1 out-
puts the generated inline tests after the coverage-then-mutants
based reduction. EXLr also produces two intermediate outputs for
evaluation and debugging purposes: ExLi-Base inline tests without
any reduction; and ExL1-Cov inline tests with reduction based only
on code coverage but not mutation score.

3.1 Finding and Analyzing Target Statements

The first two steps of ExLr’s workflow are for finding and analyz-
ing the target statements. In step @ TargetStmtFinder parses
the abstract syntax tree (AST) of the CUT and extracts the target
statements. If developers provided the optional input of line num-
bers of the target statements, ExL1 will skip this step and directly
use the developer-specified target statements. Then, in step (2),
VariablesFinder identifies the variables used in each target state-
ment, which will be the input or output variables in the generated
inline tests. For example, VariablesFinder should identify three
variables for the target statement in Figure 1: two input variables,
field and EQ, and one output variable index.

3.2 Generating Inline Tests

We here describe steps @ @ @ and @ which generate ExLi-
Base inline tests without performing reduction.

First, the Instrumenter (step @) adds code before each target
statement to collect the values of input variables and after each
target statement to collect the values of output variables. Figure 3
shows how we instrument the code in Figure 1: collectInputs
(line 7) is added before the target statement to collect the values
of field and EQ, and collectOutputs (line 9) is added after the
target statement to collect the value of index. Other code added by
Instrumenter for test reduction will be described in Section 3.3.

Then, the Executor (step @) runs unit tests on the instrumented
code, and the Collector stores in memory the unique sets of values
observed during unit testing (step @).

Using the collected sets of values, InlineTestConstructor (step
@) synthesizes inline tests. To do so, the value collected for each
input variable is used in given(. .. ) calls; these calls can be chained.
That is, the inline test will assign each value to the correspond-
ing input variable when testing the target statement. Then, the
value collected for each output variable is used in a check_eq(...)
construct. That is, inline tests check that the resulting value in
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public static void setAdditionalFields(String spec,GelfMsg gelfMsg){
if (null != spec) {
String[] properties = spec.split(MULTI_VALUE_DELIMITTER);
for (String field : properties) {
try {
collectCov(); //covl
collectInputs(field, EQ);
final int index = field.indexOf(EQ); //target statement
collectOutputs(index);
collectCov(); //cov2
if (-1 index) { continue; }
... //add field to gelfMsg
} finally { collectCov(); } //cov3

333

Figure 3: Example showing ExLr’s instrumentation.

each output variable after executing the target statement using the
assigned input values equals outputs recorded during unit testing.
The InlineTestConstructor also edits the CUT to insert con-
structed inline tests right after the target statement. After that,
EXL1 uses ITEST [46] (our inline testing tool for Java) to run each
generated inline test. If any inline test fails, ExL1 filters it out: the
failing inline test is removed from the CUT. Such failing inline tests
are due to the target statement using inputs other than the input
variables (e.g., a static variable used in a method invoked from the
target statement) that is not collected by ExLi; future work can
explore storing such inputs from the global program state.

3.3 Coverage-then-Mutants Based Reduction

ExLi-Base generates an inline test for each unique set of values
collected during executing unit tests. But, too many sets of values
could be collected for some target statements even if we only keep
unique sets of values (Section 1). We observe in our experiments
that many sets of values are redundant with respect to one another:
they have similar fault-detection capability and exercise the target
statement in the same way. (Recall that, from a unit testing point of
view, the sets of values that EXLi collects are intermediate values.)

To avoid generating redundant inline tests, EXL1 uses a novel
coverage-then-mutants based test reduction process: reducing the
inline tests (or sets of values, if reducing before constructing inline
tests) that have redundant fault-detection capability, using both
code coverage [7, 21] and mutation score [36, 70] as metrics for
fault-detection capability.

3.3.1 Reduction by Code Coverage. EXL1 collects code coverage
using JaCoCo [56], a widely-used code coverage tool for Java. To
fit the inline testing scenario, ExLI considers two kinds of code
coverage: target coverage, the coverage collected while executing
the target statement; and context coverage, the coverage after ex-
ecuting the target statement while executing the context of the
target statement. The context of a target statement is defined as
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Algorithm 1 CovReducer

Global var: tgtStmtToCovered: mapping from target statement to the set
of lines covered by the target statement’s collected values
Inputs: cov1, cov2, cov3: code coverage information for the current set
of values; £0: target statement’s lineno
Outputs: true if the set of values should be kept, false otherwise
: procedure sHOULDKEEPVALUES(cov1, cov2, cov3, £0)
tgtCovChanged « covCHANGED(cov1, cov2, £Q)
ctxCovChanged « covCHANGED(cov2, cov3, £0)
return tgtCovChanged Vv ctxCovChanged

change « false
for ¢ € cov’.keys() do
if £ ¢ cov V cov[f] < cov’'[¢] then
if ¢ ¢ tgtStmtToCovered[£0] then
> line ¢ not covered by ¢@’s collected values

1

2

3

4

5: procedure covCHANGED(cov, cov’, £0)
6

7

8 > line ¢ coverage changed
9

10: change « true
11: tgtStmtToCovered[£0] « tgtStmtToCovered[£0] U {¢}

2: return change

—_

code between the target statement and the end of its enclosing basic
block. For example, for the target statement in Figure 1 (line 7),
its enclosing basic block is the for loop from lines 6 to 14, and its
context is the code from lines 12 to 14. Using context coverage in
addition to target coverage makes reduction more accurate. The
target coverage alone may not provide enough information to dis-
tinguish non-redundant inline tests. For example, the inline tests at
line 8 and line 10 in Figure 1, which have different fault-detection
capability, have the same target coverage, but they have different
context coverage because only the first inline test covers the then
branch of the if statement in the context at line 12.

To collect target coverage and context coverage, Instrumenter
(step @) adds code to collect code coverage at three points, see
the collectCov calls in Figure 3: (1) the instruction-level coverage
just before the target statement (line 6, cov1), (2) the instruction-
level coverage right after the target statement (line 10, cov2) and
(3) the instruction-level coverage at the end of target statement’s
enclosing basic block (line 13, cov3). Then, CovReducer (step @)
processes each collected set of values and instruction-level coverage
information. Only sets of values that increase either target coverage
or context coverage of the corresponding target statement are kept
and sent to InlineTestConstructor.

The sHOULDKEEPVALUES procedure in Algorithm 1 describes
how CovReducer computes the target coverage and context cover-
age and decides when to keep a set of values. The inputs are code
coverage information cov1, cov2, cov3, and target statement ¢0.
CovReducer uses a global map, tgtStmtToCovered, to store the
code coverage metric: the lines of code covered by the collected
sets of values (which is initialized to empty) of each target state-
ment. SHOULDKEEPVALUES checks if the target coverage changed
(line 2) and if the context coverage changed (line 3) and returns
true if either changed. covCHANGED compares the code coverage
at two points, and checks if the later one has covered any line not
covered by the former one (line 8) and that line was not covered
by previously collected values (line 9). If so, covCHANGED updates
tgtStmtToCovered and returns true. The instruction-level cover-
age reported by JaCoCo is a mapping from line number to the count
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of instructions on that line being covered. So, line 8 considers a
line’s coverage as changed if its instruction counts changed (from
zero to non-zero; or, from non-zero to a larger value for ternary
operators or Boolean expressions).

3.3.2  Reduction by Mutation Score. Mutation score is an estab-
lished measure of the fault-detection capability of tests [36, 70]; it
is the ratio of mutants killed by the unit tests (i.e., that cause the
tests to fail) to the total number of mutants. Mutants are typically
small syntactic modifications to the CUT that simulate seeded faults.
ExL1 uses two popular mutation generators for Java: universalmu-
tator [25] and Major [37]. EXLI uses all mutation operators in the
two generators, but it only mutates target statements. To do so, we
specify line numbers to mutate (for universalmutator) or filter out
mutants that are not for the target statements (for Major).

MutReducer (step (8)) performs reduction by mutation score,
given the ExLi-Base inline tests without reduction and ExL1-Cov
inline tests after reduction by code coverage. Note that the mutant
generator may fail to generate mutants for some target statements
(9.6% for universalmutator, 8.9% for Major), in which case mutation
score cannot be computed, and MutReducer will directly output the
ExL1-Cov inline tests for those target statements. For all other tar-
get statements, MutReducer further reduces the coverage-reduced
inline tests by mutation score, which prior work suggests measures
fault-detection capability more accurately than coverage [74].

MutReducer first executes the ExLi-Base and ExLi-Cov inline
tests on the mutants and maps each inline test to mutants that
it kills. Then, MutReducer uses the Greedy test-suite reduction
algorithm [87] (used in prior work [74, 76, 78]), using the mapping
of ExL1-Cov inline tests to killed mutants, to reduce ExL1-Cov inline
tests that kill the same mutants. Each inline test in the reduced set
kills at least one unique mutant. Finally, if ExL1-Base inline tests kill
any mutant that is not killed by the reduced EXL1-Cov inline tests,
then reduction by coverage results in a loss in mutation score. So,
MutReducer adds one ExLi-Base inline test that killed that mutant
to the reduced inline tests to remedy this loss.

We refer to the final set of inline tests after MutReducer as ExLi-

UM or ExLi1-Major, when using universalmutator or Major as the
mutant generator, respectively. So, the final set of inline tests pre-
serves fault-detection capability, as measured by mutation score,
compared to ExLi-Base inline tests before reduction.
Remark 1. Conceptually, EXL1 could directly use test-suite reduction
with respect to mutants on the target statement to reduce the col-
lected sets of values. Instead, we make the design choice to first use
reduction by code coverage for three reasons. First, using mutants
for minimization requires to first generate inline tests for all the
collected sets of values. It is not always possible to do so due to lim-
its on method sizes [61]. Second, using reduction by code coverage
has the benefit that we can use mutation testing as a sanity check
of the fault-detection capability of the reduced set of inline tests.
There would be no automated sanity check if mutation testing is
used initially. Lastly, ExL1 will need to preserve all inline tests for
target statements in which no mutant is created. So, if EXL1 only
uses reduction by mutation score and if a frequently covered target
statement has no mutants, then readability may degrade because
too many inline tests are generated.
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Table 1: API used to filter statements.

Type | API
Regex ‘ Matcher.matches(), Matcher.find(), Matcher.group()
. String.split(), String.substring(), String.indexOf(),
String . .
String.format(), String.replace()
Bit ‘ » & |, &=, =, "=, v, «=

Stream ‘ Stream.of(), *.stream()

Remark 2. Implicitly, generating inline tests from unit tests induces
a trade-off space among the competing goals of good readability,
high coverage, and high fault-detection capability. Since inline tests
are co-located with the CUT, fewer inline tests will likely lead to
better readability, but at the cost of possibly lower coverage or lower
fault-detection capability. We design EXLI to have high readability
and high fault-detection capability at the cost of possible loss in the
code coverage of the target statement or its context. Specifically,
reduction by mutation score is not guaranteed to preserve the
code coverage achieved by ExL1-Cov inline tests. We optimize for
code maintenance settings where high readability with high fault-
detection capability is likely preferable to poor readability. ExL1
can be configured to optimize differently along the trade-off space.
Also, now that EXLI can generate many more inline tests than
previously possible, future work can more easily perform user
studies of developers’ trade-off preferences.

4 IMPLEMENTATION

We describe our ExL1 implementation, using the same step numbers
as in Section 3 to make our descriptions easier to follow.

@ Find target statements. EXLI currently supports finding the
same four kinds of Java target statements as in our prior work [46]:
regular expressions, string manipulation, bit manipulation, and
stream processing. Given a kind of target statement, TargetStmt-
Finder searches for target statements that use APIs that are com-
monly used in the kinds of statements of interest. Table 1 lists the
APIs that ExL1 searches for. Unlike our earlier ITEST prototype that
searches program text, ExL1 improves accuracy by parsing the AST
(using JavaParser [35]) to find target statements.

@ Identify variables. VariablesFinder parses the AST of a
given target statement (using JavaParser [35]) to identify its free
variables, i.e., not including the variables whose scope is fully con-
tained by the target statement. For example, in the following target
statement, str and 1ist are free variables, but item is not:

String str = list.stream().map(item -> item.replace("a",

"b")).collect(Collectors.joining(","));

An array indexing expression, e.g., arr[i], is also treated as a
single variable, because inline tests may only need to assign to, or
check certain elements of the array.

@ Instrument CUT. Instrumenter is implemented using the

ASM library [6]. EXL1 currently supports instrumenting target state-

ments at three syntactic locations:

o Condition of an if statement. Figure 4 shows an example from
json-schema-validator [57]. Line 7 is the target statement;
it checks if value matches a pattern. Instrumenter adds code
before the if statement (line 6) to collect input variables, at the
beginning of the then branch (line 8) to collect true as the value
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1 public String[] match(String value) { ...

2 for (int i = @; i < patterns.length; i++) {

3 try {

4 Matcher matcher = patterns[i].matcher(value);

5 collectCov(); //covi

6 collectInputs(matcher);

7 if (matcher.matches()) { //target statement

8 collectOutputCond(true);

9 collectCov(); //cov2

10 int count = matcher.groupCount();

11 String[] groups = new String[count];

12 for (int j = 0; j < count; j++)
groups[j] = matcher.group(j + 1);

14 return groups;

15 } else { collectOutputCond(false); }

16 } finally { collectCov(); } //cov3

17}

18 return null; }

Figure 4: Example of ExL1 instrumenting a target statement
at a condition of an if statement.

1 public void write(int c) throws IOException {...

2 if (c < 0x800) {

3 try {

4 collectCov(); //covi

5 collectInputs(ptr, c);

6 mOutBuffer[ptr++] = (byte) (@xc@ | (c >> 6)); //target statement
7 collectOutputs(mOutBuffer[ptr-11);

8 // wrong: collectOutputs(mOutBuffer[ptr]);

9 collectCov(); //cov2

10 .
11 } finally { collectCov(); } //cov3
12 3} ...}

Figure 5: Example of ExL1 instrumenting a target statement
with an increment expression in an array index.

of the output variable—the result of evaluating a conditional
expression, and at the beginning of the else branch (line 15) to
collect false as the value of the output variable.

o Declaration statement. Instrumenter adds code before the target
statement to collect right-hand side variable values and after the
target statement to collect left-hand side variable values.

o Assignment statement. Instrumenter adds code to collect left-
and right-hand side variable values before the target statement
and to collect left-hand side variable values after the target state-
ment. Left-hand side variables are collected both before and after
the target statement, because they may be both input and output
variables in compound assignment statements like a += 1.

Moreover, Instrumenter handles the following special cases:

o If there is an increment/decrement expression in an array index,
Instrumenter rewrites the array-indexing expression such that
the correct element is collected. For example, in Figure 5, the
output variable on line 6 is mOutBuffer[ptr + +], but its value is
collected on line 7 as mOutBuffer[ptr — 1] because ptr would
be incremented after executing the target statement.

e Some target statements are in if blocks that have jump (return,
break, continue, throw, etc.) instructions in the then and else
branches. To avoid compilation error (unreachable code) that
would occur if Instrumenter adds code to the end of blocks in
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public CompiledTemplate compile(IdentifiableStringTemplateSource
templateSource) throws TemplateException {
String id = templateSource.getId().replace('/', ';'); //target statement
itest().given(templateSource, "25.xml")
.checkEq(id, ";root;body@;folder;descriptor.txt");
String source = templateSource.getSource();
StringTemplateSource currentTemplateSource =
(StringTemplateSource) templatelLoader.findTemplateSource(id);

o)
(a) An inline test with an object that is serialized to an XML file.

<org.craftercms.core.util.template.impl.IdentifiableStringTemplateSource>
<id>/root/body@/folder/descriptor.txt</id>
<source>${body}</source>
</org.craftercms.core.util.template.impl.IdentifiableStringTemplateSource>

(b) The contents that are serialized to an XML file.

Figure 6: An inline test that saves an object in an XML file.

such branches, Instrumenter always wraps the parent node of
the target statement in the AST in a try block. If the target state-
ment’s parent node is a constructor body whose first statement
is a constructor call (e.g., super() or this()), EXLI excludes such
constructor calls from the try block to avoid compilation error
(super/this has to be the first statement).
(9 Execute unit tests and (5) collect values. Executor runs unit
tests on the instrumented CUT and the Collector stores the values
of input and output variables that are observed during execution.
ExL1 is agnostic to the source of unit tests; they can be manually
written or automatically generated. We currently use Randoop [62,
69] and EvoSuite [16] for automatic unit test generation; future
work can investigate other test generators.

When the variable whose value is to be collected is of a primitive
type, a wrapper type for a primitive type, a String, or an array of
these types, Collector directly stores the collected values (which
will be used on the constructed code for the inline test). Otherwise,
Collector uses XStream [50] to serialize the values, which will be
deserialized in future executions of the generated inline test. This
support for complex non-primitive types was not available in our
earlier Inline Test prototype and is added in this work.

Figure 6 shows an example inline test using XStream to support

complex non-primitive types, from craftercms/core [81]. Line 3 is
the target statement; it replaces “/” in templateSource’s id with
“”. Line 4 is an inline test that EXL1 generates. The variable be-
ing assigned, templateSource, is of a complex non-primitive type
IdentifiableStringTemplateSource, whose value is serialized
into “25.xm1” (Figure 6b).
@ Reduce by code coverage. CovReducer reduces redundancy
among collected sets of variable values that cover a target state-
ment in the same way. We set JaCoCo [56], the code coverage
tool used by ExL1, to instrument and collect all classes in the cur-
rent project and dependency libraries, including the Java standard
library. However, some classes in the Java standard library (e.g.,
java.lang.String) are loaded during JaCoCo initialization and are
thus not instrumented. To avoid missing coverage information in
such classes, especially for string-related and regex-related target
statements, our implementation uses wrapper classes that we write
for java.lang.String and java.util.Matcher so that the method
calls of these classes can be instrumented. It is necessary to wrap
java.util.Matcher because some java.lang.String methods that
are used by our evaluation subjects depend on it.
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Table 2: Projects used in our evaluation.

PID project SHA | LOC
P1 AquaticInformatics/aquarius-sdk-java 8f4edb9 21,634
P2 Asana/java-asana 52fef9b 5,572
P3 awslabs/amazon-sgs-java-extended-client-lib ~ 58fed25 1,288
P4 Bernardo-MG/maven-site-fixer 60244c0 1,689
P5 Bernardo-MG/velocity-config-tool 262265 358
P6 craftercms/core 4d394a9 10,233
P7 CycloneDX/cyclonedx-core-java d933705 6,011
P8 finos/messageml-utils b4c75c6 21,765
P9 fleipold/jproc b872abf 1,189
P10 hyperledger/fabric-sdk-java da35400 33,677
P11 jenkinsci/email-ext-plugin 699277c¢ 13,190
P12 jkuhnert/ognl 5c30ele 18,190
P13 jscep/jscep b20e944 6,310
P14  lamarios/sherdog-parser aa6806a 1,546
P15  liquibase/liquibase-oracle 6ab7dea 7,170
P16 maxmind/geoip-api-java 1030316 11,526
P17  medcl/elasticsearch-analysis-pinyin 01dda56 2,169
P18  mojohaus/build-helper-maven-plugin f1fac8c 2,424
P19 mojohaus/properties-maven-plugin 6cf7c2b 891
P20 mp911de/logstash-gelf 66debd8 13,130
P21  mpatric/mp3agic 407f7a9 9,907
P22 netceteragroup/trema-core fa9f76d 3,285
P23 phax/ph-pdf-layout f2d7b98 14,408
P24  ralscha/extclassgenerator 40ad147 6,271
P25  red6/pdfcompare 1259ef2 4,213
P26 restfb/restfb 35a34dd 42,022
P27  steveash/jopenfst 14c4ald 5,180
P28  TNG/property-loader 928f414 1,860
P29  uwolfer/gerrit-rest-java-client adbf7cc 14,594
P30 visenze/visearch-sdk-java Qefcda3 7,643
P31 wmixvideo/nfe 1ccdba7 133,698
Total 423,043
Avg 13,646.5

(@ Construct inline tests. InlineTestConstructor creates the
inline tests at the AST level with the help of JavaParser [35].
Reduce by mutation score. MutReducer performs mutation
analysis, using universalmutator [25] and Major [37], and test-suite
reduction, using an existing implementation [73], to further reduce
the generated inline tests. The test-suite reduction implementa-
tion [73] supports four algorithms: Greedy [87], GE, and GRE [9],
as well as HGS [31]. We found that the four algorithms always
result in the same number of inline tests in the reduced set (but
different inline tests are selected) in our experiments, thus we set
Greedy as the default algorithm.

5 EVALUATION

We answer the following research questions:

RQ1: How many inline tests does ExLI generate before reduction?
RQ2: How many inline tests does EXL1 generate after reduction?
RQ3: How effective are the generated inline tests in terms of fault-
detection capability, compared with unit tests?

RQ4: What is the runtime cost of ExL1?

Experimental environment. We run all experiments on a ma-
chine with Intel Core i7-11700K @ 3.60GHz (8 cores, 16 threads)
CPU, 64 GB RAM, Ubuntu 20.04, Java 8, and Maven 3.8.6.

5.1 Curating an Evaluation Dataset

We start with a large set of projects from our recent work on learn-
ing to complete unit tests [58]. That prior work used different
experimental requirements than this work to filter projects. So, we
start from the original unfiltered set containing 1,535 Java projects
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Table 3: Statistics about unit tests used in this paper.

PID Dev Randoop EvoSuite
| #tests  T[s] L[%] B[%] | #tests T[s] L[%] B[%] | #tests T[s] L[%] B[%]
P1 165 23 1 50 8728 122 67 43 167 5.7 9 51
P2 67 1.9 24 79 1,476 7.7 89 36 | 1,040 108 90 41
P3 36 33 69 63 | 16400 204 18 7 3 43 12 3
P4 73 35 88 84 2,098 7.7 24 8 62 40 38 44
P5 15 47 100 100 | 18927  17.4 24 7 11 3.0 37 28
P6 63 7.6 52 47 3741 102 40 23 396 106 23 19
p7 371 6.6 67 37 3,286  17.3 55 28 37 5.0 3 3
P8 1,170 53 89 81 2,886 125 44 27 | 1221 340 55 43
P9 38 141 89 89 4,867 8.7 31 23 39 3.0 24 20
P10 430 215.2 12 9 8,697 182 25 20 77 380 1 0
P11 334 435.0 66 54 7,032 29.6 23 11 9 110 1 0
P12 939 108 70 61 494 7.7 29 17 | 1,905 8.3 44 35
P13 210 383 80 73 1,412 8.2 32 29 104 5.1 12 10
P14 12 241 68 52 1,212 2204 73 43 70 145 49 28
P15 140 33 37 9| 11,098 146 67 49 72 5.8 12 12
P16 11 25 22 5| 10869 118 17 4 18 2.9 11 0
P17 20 3.1 78 76 7341 121 35 24 144 2156 81 76
P18 55 42 14 7| 19884 206 31 23 45 3.6 11 8
P19 10 37 30 22 2,159 7.9 36 32 20 3.2 7 5
P20 269 9.2 78 70 | 11467 127 53 30 81 5.2 4 8
P21 495 2.7 88 68 | 10,147 118 68 49 | 1,257 5.6 81 70
P22 60 35 72 61 4332 8.9 44 31 98 46 20 16
P23 99 5.6 70 58 2,708 10.7 27 18 45 7.5 3 2
P24 99 34 78 70 763 53 24 11 176 5.9 49 41
P25 73 103 43 37 2,968 104 36 29 126 52 20 16
P26 1,273 210 59 75 7,100 236 68 30 42 161 12 12
P27 88 1.9 84 74 7,843 124 36 33 75 3.7 12 8
P28 105 2.8 85 91 3,421 65 74 54 113 3.6 78 68
P29 244 3.6 51 35 | 10,961 109 53 34 435 7.8 24 16
P30 151 3.9 75 68 3,496  134.1 73 51 15 3.1 2 0
P31 3,600 3.6 32 13| 17451 217 49 14 | 2287 243 20 13
Total | 10,715 8610 N/A N/A | 215264 7343 N/A N/A | 1059 4812 N/A N/A
Avg 3456 278 572 50.6 | 69440 237 440  27.0 | 34L6 155 273 225
that use Maven, have no compilation error, and have appropri-
ate licenses. To simplify our experiments, we select the subset of , 1000
1,209 single-module projects. From these, we select the 128 actively- S s00
maintained projects that have commits after January 1, 2022, to g
facilitate future work on integrating the generated inline tests into 7 600
2
these projects. Next, we filter out projects in which developer writ- S 400
ten unit tests fail (84 remain), in which JaCoCo fails (73 remain), g
200

and in which Randoop or EvoSuite fails (48 remain).

On these remaining 48 projects, we use EXLI to find target state-
ments and generate inline tests. We filter out 6 projects that do not
have the kinds of target statement that we look for [46]; one project
where all target statements are not covered by any unit test; and
one project for which EXLI does not generate any passing inline
test. We also filter out 8 projects where EXLI’s instrumentation
clashes with the projects’ instrumentation for other purposes, and
one project where developer written tests take more than one hour.

We use the remaining 31 projects as our evaluation subjects.
Table 2 shows the PIDs and names of these projects, the SHA that
we use, and total lines of Java code.

Figure 7 shows statistics about the number of target statements
in the 31 projects. EXLI initially finds 1,104 target statements (84
for regular expression, 745 for string manipulation, 241 for bit
manipulation, and 34 for stream operations). Of these, 820 target
statements are covered by at least one unit test (532 are covered by
at least one developer written unit test, 491 are covered by at least
one Randoop-generated unit test, and 613 are covered by at least
one EvoSuite-generated unit test). After removing failing inline

Figure 7: No. of target statements that we find for four kinds
of APIs, covered by (all, developer written, Randoop, and
EvoSuite) unit tests, and where EXLI generates inline tests.

tests and corresponding target statements, EXLI generates inline
tests for 718 target statements (79 for regular expression, 432 for
string manipulation, 192 for bit manipulation, and 15 for stream
operations); we use them in the rest of our evaluation.

5.2 Extracting Inline Tests

First, we run Randoop and EvoSuite to obtain automatically gener-
ated unit tests for each project in our dataset. We run Randoop with
a time limit of 10 minutes to generate unit tests for each project (as
suggested by the Randoop user manual [84]); we set other options to
default values. We run EvoSuite with a time limit of 120 seconds (as
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Figure 8: Distribution of inline tests per target statement.
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(a) Number of inline tests. (b) Execution time.

Figure 9: Number and execution time of inline tests extracted
by ExL1 with different levels of reduction.

suggested by the configuration in the recent SBST competition [71])
for each class with at least one target statement.

Table 3 shows the statistics about the unit tests: number of test
methods (#tests), test-running time (T[s]), line coverage (L[%]),
and branch coverage (B[%]). Note that EvoSuite’s line and branch
coverage for some projects are low, because it is setup to only
generate unit tests for classes with target statements which may be
a small number of classes with few lines and branches.

Next, we run ExLI to extract inline tests from unit tests. We com-
pile and run developer written, Randoop-generated, and EvoSuite-
generated tests separately to allow flexible set up of different envi-
ronments for each source of unit tests. We run developer written
and Randoop-generated tests using Maven, but we run EvoSuite-
generated tests with a JUnit runner. EvoSuite puts generated tests
in customized runners that cause problems with Maven.

When performing coverage-based reduction, EXLI supports sav-
ing the code coverage information at the end of previous run and
loading it at the beginning of the next run. For example, the ex-
traction of inline tests from Randoop-generated unit tests could
reuse coverage information collected from developer written unit
tests. Similarly, extraction from EvoSuite-generated unit tests could
reuse coverage information collected from developer written and
Randoop-generated unit tests.

For each source of unit tests, we set an upper limit for the num-
ber of inline tests generated per target statement to 100, to avoid
excessive disk space consumption in corner cases (especially when
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not performing reduction). With three sources of tests, our upper
limit for inline tests generated per target statement is 300.

We compare the four sets of inline tests generated by ExL1
as intermediate or final results (also see workflow in Figure 2):
ExLi-Base without reduction, ExL1-Cov with only reduction by
code coverage, ExXL1-UM with coverage-then-mutants based reduc-
tion using universalmutator, and ExL1-Major with coverage-then-
mutants based reduction using Major.

Figure 8 shows the distribution of generated inline tests per
target statement. We also include the number of unique sets of
variable values collected during execution of unit tests (denoted
as Values), to show the number of inline tests that ExL1 would
generate without setting the 300 upper limit. The average number
of inline tests per target statement for Values, ExLi-Base, EXL1-Cov,
ExL1-UM, and ExLi-Major are 88.9, 24.1, 1.9, 1.3, and 1.3, respec-
tively. The medians for Values, ExLi-Base, ExL1-Cov, EXL1-UM, and
ExL1-Major are 10.0, 9.0, 2.0, 1.0, and 1.0, respectively.

The distribution of the number of inline tests per target statement
for Values is long-tailed, which justifies our decision to set an upper
limit of number of inline tests to prevent issues in corner cases.
We observe that 95% of target statements are not affected by the
limit of 300 inline tests per target statement. That is, the number of
inline tests per target statement at the 95th percentile is 225.8.

Answer to RQ1. EXLI could generate an average of 88.9
inline tests per target statement if recording all values dur-
ing execution. Limiting to at most 300 per target statement
and removing the failing ones, EXL1 generates 24.1 inline
tests before reduction per target statement on average.

Figure 9 shows the number of inline tests and their execution
time (note that we did not include compilation time here). To evalu-
ate the effectiveness of ExL1’s reduction, we consider ExLi-Base as
the baseline before reduction; it generates 17,273 inline tests that
take 23.8 seconds to execute.

ExLr’s coverage-based reduction (ExL1-Cov) reduces the number
of inline tests to 1,333 (reduction rate: 92.3%) and the time to 3.0
seconds (reduction rate: 87.4%). Then, when performing mutation-
based reduction using universalmutator (ExL1-UM), the number
of inline tests is further reduced to 905 (cumulative reduction rate:
94.8%) and the time to 2.2 seconds (cumulative reduction rate: 90.8%).
When using Major (ExLi-Major), the number of inline tests is fur-
ther reduced to 930 (cumulative reduction rate: 94.6%) and the time
to 2.3 seconds (cumulative reduction rate: 90.2%). The reduction
rate of ExL1-UM and ExLi-Major with respect to ExL1-Cov is 32.1%
and 30.2% in terms of number of inline tests, and 27.1% and 22.2%
in terms of execution time, respectively.

Comparing ExL1-UM and ExLi-Major, we observe that using
universalmutator achieves higher reduction than using Major. Our
inspections showed that universalmutator generates more mutants
than Major (3,784 vs. 2,388 mutants), and that mutants generated by
Major tend to be generic (e.g., changing right hand side of an assign-
ment to null) compared to the ones generated by universalmutator.
Future work can explore improving the quality of the generated
mutants, e.g., by using mutation operators that are designed for the
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Table 4: Mutation analysis evaluation results. P15 is excluded because no mutant was generated for it.

PID #stmts #mutants | Dev Randoop | EvoSuite | | ExLi-Base | ExL1-Cov | ExLi-UM | ExL1-Major

mutated | #tests  M[%] | #tests M[%] | #tests M[%] || #tests M[%] | #tests M[%] | #tests M[%] | #tests M[%]
P1 3 10 165 60.0 8,728 30.0 167 30.0 16 100.0 4 100.0 4 100.0 4 100.0
P2 244 494 67 8.1 1,476 7.3 1,040 10.7 6,287 100.0 486 100.0 313 100.0 319 99.8
P3 2 10 36 80.0 16,400 0.0 3 0.0 5 80.0 3 80.0 2 80.0 3 70.0
P4 2 18 73 83.3 2,098 0.0 62 0.0 10 83.3 3 83.3 2 83.3 2 72.2
P5 1 19 15 57.9 18,927 0.0 11 0.0 39 57.9 1 36.8 1 57.9 1 36.8
Pe6 13 44 63 86.4 3,741 18.2 396 100.0 555 77.3 26 75.0 14 77.3 12 59.1
P7 2 2 371 50.0 3,286 100.0 37 0.0 10 100.0 3 100.0 3 100.0 3 100.0
P8 11 47 1,170 83.0 2,886 10.6 1,221 48.9 98 89.4 15 76.6 11 89.4 11 85.1
P9 2 2 38 100.0 4,867 50.0 39 100.0 42 100.0 3 100.0 3 100.0 2 100.0
P10 16 75 430 77.3 8,697 13.3 77 2.7 455 82.7 33 82.7 22 82.7 23 80.0
P11 8 25 334 68.0 7,032 0.0 9 0.0 321 96.0 17 84.0 10 96.0 17 84.0
P12 130 1,434 939 57.7 494 8.0 1,905 33.6 2,313 69.6 244 67.0 156 69.6 176 67.4
P13 3 5 210 60.0 1,412 40.0 104 100.0 53 100.0 5 100.0 6 100.0 5 100.0
P14 2 5 12 60.0 1,212 0.0 70 0.0 21 100.0 4 100.0 2 100.0 3 100.0
P16 17 241 11 60.2 10,869 2.9 18 0.0 298 80.9 27 74.3 22 80.9 19 80.5
P17 6 42 20 64.3 7,341 19.0 144 28.6 72 76.2 10 61.9 9 76.2 9 57.1
P18 12 52 55 96.2 19,884 67.3 45 21.2 300 96.2 16 96.2 15 96.2 16 96.2
P19 7 34 10 73.5 2,159 0.0 20 55.9 292 76.5 19 67.6 9 76.5 7 67.6
P20 34 229 269 38.4 11,467 100.0 81 31.0 850 83.8 54 69.9 36 83.8 37 80.8
P21 32 497 495 85.3 10,147 47.9 1,257 88.3 889 81.7 57 53.3 38 81.7 40 78.1
P22 4 10 60 100.0 4,332 30.0 98 30.0 42 90.0 11 60.0 5 90.0 9 70.0
P23 5 42 99 23.8 2,708 59.5 45 38.1 249 100.0 8 81.0 7 100.0 8 100.0
P24 2 3 99 100.0 763 33.3 176 100.0 19 100.0 4 100.0 1 100.0 3 100.0
P25 5 25 73 92.0 2,968 0.0 126 100.0 55 92.0 11 92.0 6 92.0 5 92.0
P26 18 97 1,273 97.9 7,100 100.0 442 83.5 249 70.1 30 69.1 22 70.1 19 64.9
P27 3 31 88 22.6 7,843 0.0 75 19.4 11 90.3 4 51.6 3 90.3 3 90.3
P28 5 19 105 84.2 3,421 53 113 53 114 73.7 12 73.7 8 73.7 6 73.7
P29 10 66 244 42.4 10,961 47.0 435 100.0 487 93.9 18 92.4 14 93.9 16 89.4
P30 4 12 151 333 3,496 100.0 15 100.0 46 100.0 9 100.0 5 100.0 5 100.0
P31 46 194 3,600 90.7 17,451 53.1 2,287 87.6 1,016 96.9 78 84.0 59 96.9 51 92.3
Total 649 3,784 10,575 N/A 204,166 N/A 10,518 N/A 15,214 N/A 1,215 N/A 808 N/A 834 N/A
Avg 21.6 126.1 352.5 67.9 6,805.5 314 350.6 43.8 507.1 87.9 40.5 80.4 26.9 87.9 27.8 82.9

four kinds of target statements, to further improve the effectiveness o Exlicon
of ExXL1’s mutation-based reduction. e ExLI-UM
[0 ExLi-Major
[0 Unit

Answer to RQ2. ExL1’s coverage-then-mutants based re-
duction can effectively reduce all generated inline tests by
94.8% (with universalmutator) or 94.6% (with Major), result-
ing in an average of 1.3 inline tests per target statement.

5.3 Performing Mutation Analysis

Mutation testing is widely used to evaluate the quality of test
suites [11, 66]. In this section, we perform mutation analysis using
the mutants for the target statements generated by universalmuta-
tor. We reuse the same mutants that universalmutator generated
during step @ in Section 4 for reducing inline tests. We report re-
sults based on the 649 target statements that have non-stillborn mu-
tants, and compare the mutation scores of inline tests generated by
ExLi against unit tests. Note that universalmutator did not generate
any mutant for any target statement in liquibase/liquibase-oracle
(P15), so we excluded it from the mutation analysis evaluation.
Table 4 shows the number of tests and mutation scores of de-
veloper written, Randoop-generated, and EvoSuite-generated unit
tests, and ExL1-Base, ExL1-Cov, EXL1-UM, and ExLi-Major inline
tests. Note that the mutation scores of ExL1-UM and ExLi-Base
are always the same by design, because during the mutation-based
reduction, EXL1 adds any inline test from ExLi-Base that kills a
mutant that survives ExL1-Cov inline tests. The average mutation
score of ExL1-Base is 87.9%, which is much higher than the mutation
score of developer written (67.9%), Randoop-generated (31.4%), and

Figure 10: Sets of mutants killed by inline tests and unit tests.

EvoSuite-generated (43.8%) unit tests. These scores are computed
only on the target statement. ExL1-Cov achieves 80.4%, slightly
lower than ExLi-Base, but higher than the mutation score of unit
tests. By performing additional mutation-based reduction, EXL1-UM
fully recovers the mutation score to 87.9%, and EXL1-Major improves
the mutation score to 82.9%. The difference between ExL1-UM and
ExLi-Major is small, and suggests that the two mutation generation
tools are quite similar (see also reports in prior work [25]).

Figure 10 shows a Venn diagram illustrating the overlap among
the sets of mutants killed by all unit tests and inline tests from
ExLi-Cov, EXL1-UM (which is the same as ExLi-Base), and EXLi-
Major. All inline tests and unit tests kill 3,278 mutants in total. 2,404
mutants are killed by both inline tests and unit tests. The set of
mutants killed by ExL1-Major inline tests is a subset of the set of
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mutants killed by ExL1-UM inline tests, but the difference is small:
ExL1-UM inline tests kills 111 or 3.8% more mutants than ExLi-
Major inline tests. Compared with ExL1-UM inline tests, ExL1-Cov
inline tests miss 299 mutants (9.1% of all killed mutants). Compared
with unit tests, EXL1-UM inline tests miss 216 mutants (6.6% of all
killed mutants). This is because unit tests can check global program
state (e.g., fields) that is modified by the target statement, but inline
tests currently cannot; future extensions of inline tests can address
this limitation. But, ExL1-UM kills 658 more mutants than unit tests
(20.1% of all killed mutants or 25.1% of mutants killed by unit tests).

We manually inspect surviving mutants that lead to loss of mu-
tation scores when ExL1-Cov is compared with ExLi-Base. So far,
we found two limitations of EXLr that lead to such intermediate
losses. (1) There are multiple clauses in an if condition, but the
mutation operator only modifies one of them. This limitation occurs
because, unlike pytest-inline, ITEST does not yet support testing
individual clauses in a condition. This limitation will go away as
ITEST matures. (2) Multiple sets of values can kill a mutant but they
all cover the target statement and its context in the same way as a
chosen set of values that cannot kill the mutant. This is a limitation
of reduction by coverage as we discussed in Section 3.

Observe from Figure 10 that inline tests and unit tests are com-
plementary in terms of their fault-detection capability on the target
statements. So, inline tests can enhance the fault-detection capa-
bility of the unit test suites from which they are extracted. To
understand why some mutants on target statements can be killed
by inline tests but not by the unit tests, we manually inspected 63
randomly sampled mutants from the 658. We found two reasons:
(1) unit tests lack good assertions to kill the mutants, i.e., the mutant
could be killed if we add assertions to the unit tests (77.8% of cases);
(2) the mutant does not change program state that propagates to
unit tests, i.e., it only changes local variables or control flow but
not the return value or global variables, but inline tests’ “local”
assertions kill such mutants (22.2% of the cases).

Answer to RQ3. Inline tests complement the fault-
detection capability of unit tests on the target statements.
ExL1-UM and ExLi-Major generate inline tests with aver-
age mutation scores of 87.9% and 82.9%, respectively, which
are higher than the mutation scores on the target state-
ments of unit tests written by developers (67.9%), and those
generated by Randoop (31.4%) and EvoSuite (43.8%).

5.4 Measuring ExLr’s Runtime Cost

Generating inline tests with ExL1-UM and ExLi-Major takes, on
average across projects, 1,053.7s and 949.9s, respectively. (We omit
compilation time of the mutants; it is an offline process and is
currently slow because we recompile per mutant. Future work
can optimize this process by compiling in parallel or by using
incremental compilation.) The breakdown of the average runtime
is: 67.0s for running unit tests, 598.2s for recording variable values,
coverage-based reduction, and generating inline tests, and 388.5s
(universalmutator) or 284.7s (Major) for mutation-based reduction.

We are very encouraged by these early results on runtime costs,
especially when compared with our estimated amount of time that
it would take developers to write all 905-930 inline tests that ExL1
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generates. Our prior user study [46] showed that participants spent
around 6.3 minutes (378s) to understand and write inline tests
for each target statement in Python. Assume that the times to
understand target statements and write inline tests is uniformly
distributed and are the same for Java and Python. Then, on average,
participants would have needed 271,404s to write inline tests for
all 718 target statements that we use.

Answer to RQ4. Running ExL1-UM/ExLi-Major takes
949.9s to 1,053.7s on average per project, excluding mu-
tant compilation times. Our estimates, based on our prior
user study, suggests that these average times is evidence
that ExL1 can reduce manual effort for writing inline tests.

6 DISCUSSION

Usage modes. The inline tests that EXL1 generates can help find
regressions in future versions of the code, and there is need for
future work on co-evolving inline tests with code. But, EXL1 can also
help find bugs in the current program versions if developers inspect
the generated tests. By inspecting inline tests in prior work [46],
we found two bugs that have now been fixed by the developers.
Limitations. (1) EXL1 uses coverage of the target statement and its
context for initially reducing the set of inline tests. Flaky tests [3,
26,41, 51, 64, 75] can cause coverage to fluctuate. We do not control
for flaky tests in the unit tests that EXLI uses. (2) Extracted inline
tests may be flaky and fail if the expected output in the oracles that
are generated depend on data that may change, e.g., current date
or device configuration. (3) When potential inputs cause the target
statement or its context to throw an exception, EXLI does not use
such values to construct inline tests because ITEsT [46] does not
yet support using expected exceptions as test oracles. (4) We do
not evaluate the extracted inline tests with developers of the open-
source projects that we evaluate. But, we have initial confidence
from our prior user study, which showed that participants find
inline tests useful. We plan to communicate more with open-source
developers in the future, especially as ITEST [46] matures.
Threats to validity. Our code to instrument target statements,
collect coverage rates, and perform reduction could contain bugs.
To mitigate this threat, at least two co-authors review the code, and
multiple authors inspect the results. Our findings could be limited
to projects that we evaluate and their unit tests. To mitigate this
threat, we used open-source projects with various characteristics
and used automatically generated unit tests. The ideas in ExL1 are
general but our results may not generalize to other programming
languages. We plan to use our pytest-inline tool [47] as a basis for a
tool that extracts inline tests from Python unit tests.

Future work. We plan to (1) support generation of inline tests
for target statements in other program locations than the three
that ExL1 supports (if conditions, assignment statements, and dec-
larations); (2) support other kinds of target statements than the
four that our inline testing research so far considered; (3) generate
inline tests for other programming languages; and (4) investigate
regression test selection (RTS) for inline tests, borrowing from our
work on RTS for unit tests [19, 20, 23, 27, 43, 44, 48, 77, 90].
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7 RELATED WORK

Single-statement bugs and inline tests. Inline tests are partly
motivated by recent work [38, 39, 42, 68] showing that many bugs
are caused by faults in single statements, and that unit tests miss
such bugs. We used inline tests to find single-statement bugs [46],
and ExL1 could help find more in the future. The ManySStuBs4] [39]
dataset contains single-statement bugs that are curated by statically
analyzing open-source Java projects and their version histories. As
the ManySStuBs4] dataset evolves to capture more recent versions
of those projects, it can be a benchmark for evaluating the bug-
detection capability of inline tests. We do not use ManySStuBs4]
because (1) the filtering process that was followed to curate the
dataset resulted in many false positives during our initial search for
target statements; (2) the commits used in the dataset are from be-
fore 2019, so we had trouble running the unit tests in some projects.

“ppx inline tests” [79] and the inline tests in this paper [46] share

a name and the characteristic that they are co-located with code.
But, “ppx inline tests” check the correctness of functions instead of
single statements. Xiong et al. [86] propose inner oracles: assertions
declared in unit tests to check internal states. Inline tests allow
specifying both oracles and test inputs to check single statements.
Automatic test generation. Automatically generation of tests is
a popular research topic and many test generation techniques have
been proposed for Java [2, 8, 16, 18, 22, 59, 62, 72]. But, EXLI is
the first automatic generation technique for inline tests. Elbaum
et al’s technique [14] extracts unit tests from system tests. EXL1
is similar in spirit—it also extracts lower granularity tests from
higher granularity tests—but differs in the granularity levels that it
targets. Also, unlike Elbaum et al’s technique, ExLI further reduces
generated inline tests.
Test suite reduction/minimization. Yoo and Harman [87] present
a survey on test suite minimization. Zhang et al. [89] study the ef-
fectiveness of test suite reduction techniques. Test-suite reduction
techniques include those that use (1) Greedy algorithms [10, 80],
(2) heuristics [9, 31], and (3) integer programming [32, 45]. We use
a recent implementation of the Greedy algorithm [73] to further
reduce inline tests that EXL1 generates.

Shi et al. [74] found that techniques based on statement coverage
reduce test-suite sizes by 62.9% but lose 20.5% in killed mutants.
Conversely, techniques based on killed mutants have no loss in
killed mutants but have test-suites that are 10.9 percentage points
larger than those produced by coverage-based minimization, on
average. Shi et al’s study gives more confidence in preservation of
fault-detection capability in EXL1 reduction based on killed mutants.

Noemmer and Haas [60] recently compare test suite minimiza-
tion techniques on open-source projects and find that, on average,
test suites reduce by 70% while losing 12.5% of the fault-detection
capability. Our results show that traditional test suite minimiza-
tion reduces generated inline tests by 32.1% and EXLI preserves
fault-detection capability.

Using coverage as feedback in automated testing. Coverage
was used as feedback for test generation [16, 17, 54] and test-suite
reduction [30, 40, 53]. We use a combined change of coverage rate
of target statements and their enclosing basic blocks.

Assertion/Invariant generation. Program assertions/invariants
are useful for checking the correctness of program states. Inline
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tests are similar to assert statements: both are co-located with pro-
gram statements and they can be turned off in production. But,
inline tests are different: they allow to provide arbitrary inputs,
expected outputs, and oracles for testing statements. Further, assert
statements only run if they are in code covered by unit tests, but
inline tests run in a different context even if the target statement is
not covered by unit tests. Lastly, existing inline testing frameworks
provide features that are typically not supported in assert state-
ments: parameterized tests, repeating test runs (helpful to see if
inline tests are flaky), grouping tests, and running tests in parallel.

There have been many techniques for automatically generating
assertions and invariants, including those that (1) infer invariants
from runtime information [5, 12, 15]; (2) generate assertions from
comments and documentation [4, 24, 55]; and (3) learn assertions
from code [13, 28, 58, 85, 88]. EXLI is most similar to approaches
in the first category, as it extracts inline tests from runtime infor-
mation. But, ExL1 additionally (1) uses the collected information to
construct inputs, expected outputs, and oracles for the generated
inline tests; and (2) reduces the set of generated inline tests.
Mutation testing. Mutation testing is a technique for evaluating
the effectiveness of test suites [29, 63, 67]. Popular mutant genera-
tors for Java include universalmutator [25], Major [82], PIT [83],
and MuJava [52]. EXLI uses the first two tools which perform muta-
tion on the source code level, thus allowing filtering mutants for the
target statements. But, future work can explore integrating other
mutation tools with ExL1.

8 CONCLUSION

In this paper, we presented ExLI, a technique for automatically
generating inline tests with coverage-then-mutants based test re-
duction. The coverage-based reduction is based on context-aware
coverage feedback, and the mutation-based reduction is based on
killed mutants. We evaluate ExXLI on 31 open-source Java projects
and find that EXL1 generates between 905 (when using universalmu-
tator to reduce tests) and 930 (when using Major to reduce tests)
inline tests for 718 target statements. EXLI reduces initially gen-
erated inline tests by more than 94%. ExL1 enables developers to
enhance the fault-detection capability of their test suites by easily
obtaining and adding inline tests.
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