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ABSTRACT

We recently proposed inline tests for validating individual program

statements; they allow developers to provide test inputs, expected

outputs, and test oracles immediately after a target statement. But,

existing code can have many target statements. So, automatic gen-

eration of inline tests is an important next step towards increasing

their adoption. We propose ExLi, the first technique for automat-

ically generating inline tests. ExLi extracts inline tests from unit

tests; it first records all variable values at a target statement while

executing unit tests. Then, ExLi uses those values as test inputs

and test oracles in an initial set of generated inline tests. Target

statements that are executed many times could have redundant ini-

tial inline tests. So, ExLi uses a novel coverage-then-mutants based

reduction process to remove redundant inline tests. We implement

ExLi for Java and use it to generate inline tests for 718 target state-

ments in 31 open-source programs. ExLi reduces 17,273 initially

generated inline tests to 905 inline tests. The final set of generated

inline tests kills up to 25.1% more mutants on target statements

than developer written and automatically generated unit tests. That

is, ExLi generates inline tests that can improve the fault-detection

capability of the test suites from which they are extracted.
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1 INTRODUCTION

Inline tests [46] enable developers to test individual program state-

ments, thereby increasing the fault-detection capability of test

suites. Inline tests are complementary to existing levels of test

granularityÐunit tests, integration tests, and end-to-end tests. Inline

tests can help find single-statement bugs, which often occur [38, 39]
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but elude unit tests [42]. Inline tests can also provide other software

engineering benefits, e.g., they document complex target statements

and they could be easier to co-evolve with code than unit tests.

Previously, we developed two tools to provide framework-level

support for inline testing. These tools make it easier for developers

to write inline tests and they increase the chances for the relatively

new inline testing paradigm to be adopted. One tool, pytest-inline,

supports inline testing in Python [33, 47]; it is integrated with

pytest, the most popular testing framework for Python [34], and

has already been downloaded 2,472 times [65]. We presented the

other tool for Java, ITest, in our original inline testing paper [46].

Automatic generation of inline tests is an important next step

towards increasing their adoption for two reasons. First, automatic

generation can reduce manual developer effort for retrofitting in-

line tests into existing code bases that have many target statements.

Second, automatic generation can enable future inline testing re-

search by providing more inline tests for evaluation than exist today.

For example, we previously simulated runtime costs by repeatedly

executing 152 manually written inline tests thousands of times [46].

We propose ExLi, the first technique for automatically generating

inline tests. ExLi extracts inline tests from unit tests. Unit tests are

an attractive source of inline tests: they are abundant in practice

and they can be automatically generated [16, 62, 69]. In turn, the

extracted inline tests can help find single-statement bugs that unit

tests miss [42]. Extracted inline tests can also help find bugs in exe-

cuted statements that are deeply-nested in conditional expressions,

which can be missed by automatically generated unit tests [1].

Given the code under test (CUT), a target statement, and unit

tests that cover the target statement, ExLi generates a set of inline

tests for the target statement. ExLi can automatically discover the

four kinds of target statements that we identified in prior work

as being able to benefit from inline testing [46], and extract inline

tests from the unit tests that cover them.

ExLi is agnostic to the source of unit tests; they can be manually

written by developers or automatically generated by tools like

Randoop [62, 69] or EvoSuite [16]. ExLi outputs a new version of

the CUT in which the target statement is immediately followed by

the generated inline tests. Since ExLi is a first step towards inline

test generation, we assume that unit tests correctly exercise the

CUT. That is, the inline tests generated by ExLi on one code version

could detect regression bugs in future versions of the code.

ExLi first instruments the CUT to record all observed variable val-

ues in the target statement during unit testing. Then, the recorded

values are used to automatically generate inline tests. For example,

consider assignment statements. The recorded values of right-hand

side variables are used as input values, and the recorded values

of the left-hand side variable are used as expected values in the
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generated inline test. ExLi can also generate inline tests for decla-

rations and expressions in if conditions. We plan to support more

locations of target statements in the future.

Inline tests are co-locatedwith target statements, so an important

concern is that readability could be degraded if too many inline

tests are generated per target statement. Compilation could also

fail if adding the generated inline tests causes a method’s body to

exceed the maximum allowable size [61]. Too many inline tests can

be generated for target statements in which many sets of values are

observed during unit testing. Such many-valued target statements

could be covered by many unit tests, or they may be in loops. In a

particularly egregious case, 14,928 sets of values were recorded for

a target statement during our experiments.

To address the concern of generating too many initial inline tests

per target statement, ExLi introduces a coverage-then-mutants based

test reduction process. We consider an inline test to be redundant if

it has the same fault-detection capability as other inline tests with

respect to code covered and mutants killed. Code coverage [7, 21]

and mutation score [36, 70] are established metrics for measuring

the quality and fault-detection capability of unit tests. We adapt

these two metrics to guide inline test reduction.

ExLi uses both target coverageÐcode covered while executing

the target statementÐand context coverageÐcode covered while

executing the enclosing basic block of the target statement. ExLi

also builds on existing mutation analysis tools [25, 37] but it only

mutates target statements.

The coverage-then-mutants based test reduction process in ExLi

works as follows. ExLi tracks the code covered in the target state-

ment and its context during unit testing, and only records sets of

values that cover code that was not covered by previously extracted

sets of values. ExLi also mutates the target statement and ensures

that each generated inline test kills at least one unique mutant. If

no mutant is generated for a target statement, ExLi’s reduction is

based on coverage. But, if coverage and mutation scores are com-

puted, reduction is based on mutation score as prior work suggests

that mutation score is a more accurate metric of the fault-detection

capability than coverage [74].

We implement ExLi for Java and apply it to 718 target statements

in 31 open-source programs. ExLi generates an initial set of 17,273

inline tests. ExLi-UM, which uses universalmutator [25] for muta-

tion analysis, generates a final set of 905 inline tests (reduction rate:

94.8%). ExLi-Major, which uses Major [37] for mutation analysis,

generates a final set of 930 inline tests (reduction rate: 94.6%).

We also evaluate whether generated inline tests enhance the

fault-detection capability of test suites from which they are ex-

tracted. We do so by performing mutation analysis only on the

target statements. ExLi-UM kills 25.1% more mutants, and ExLi-

Major kills 24.6% more mutants than those killed by developer

written and automatically generated unit tests. Our manual inspec-

tion shows why generated inline tests can kill more mutants: the

unit tests reach the target statements and infect program state, but

those unit tests lack łlocalž oracles at the target statement. That is,

errors induced by mutants do not propagate to the assertions in the

unit tests, or those assertions do not check relevant parts of state.

This paper makes the following contributions:

1 public static final String MULTI_VALUE_DELIMITTER = ",";

2 public static final char EQ = '=';

3 public static void setAdditionalFields(String spec,GelfMsg gelfMsg){

4 if (null != spec) {

5 String[] properties = spec.split(MULTI_VALUE_DELIMITTER);

6 for (String field : properties) {

7 final int index = field.indexOf(EQ); // target statement

8 itest().given(field, "profile.requestStart.ms").given(EQ, '=')

9 .checkEq(index, -1);

10 itest().given(field, " mdcName='long']").given(EQ, '=')

11 .checkEq(index, 8);

12 if (-1 == index) { continue; }

13 ... // add field to gelfMsg

14 }}}

Figure 1: Target statement with ExLi-generated inline tests.

★ Technique. ExLi is the first technique for automatically generat-

ing inline tests; it extracts inline tests from unit tests.

★ Reduction approach. ExLi uses a novel inline test reduction

approach that is based on both code coverage and mutation score.

★ Evaluation. ExLi’s reduction strategy is effective, yielding inline

tests that improve the fault-detection capability of unit test suites.

★ Dataset. ExLi generates the largest dataset of inline tests to date.

ExLi and our dataset can enable future work on inline tests.

ExLi and our dataset is open-sourced at

https://github.com/EngineeringSoftware/exli.

2 EXAMPLE

Figure 1 shows an example code with a target statement and in-

line tests that ExLi generates for that target statement after reduc-

tion. The example is simplified from mp911de/logstash-gelf [49].

Method setAdditionalFields splits the value stored in spec us-

ing MULTI_VALUE_DELIMITTER (ł,ž) as the delimiter, stores the re-

sults in properties, and adds each field in properties that con-

tains EQ (ł=ž) to gelfMsg. Line 7 is the target statement; it finds

the index of first occurrence of EQ in field. All variables in this

example have primitive or String types, but ExLi supports complex

non-primitive types as well (see example in Figure 6, Section 4).

A developer could use ExLi to generate inline tests for this target

statement; it is in a loop and it is reached by lots of other methods.

Line 8 is one of the two inline tests that ExLi generates. All

inline tests have three parts. First, the łDeclarež partÐitest()Ð

marks the current statement as an inline test. Second, the łAssignž

partÐgiven(field, "profile.requestStart.ms").given(EQ,

'=')Ðprovides inputs to the inline test. Third, the łAssertž partÐ

checkEq(index,−1)Ðspecifies a test oracle, including an expected

output. In Figure 1, given the inputs for field and EQ, the index

variable computed by the target statement should be −1 for the

inline test on line 8 to pass.

The example target statement is executed 2,413 times with 215

unique sets of values during unit testing. But, directly generating

215 inline tests to check one statement could be an overkill for

two reasons. First, many of the 215 sets of values are redundant

because they exercise the target statement in the same way. So,

using them all is wasteful. Second, adding 215 inline tests for this

target statement will likely make the code harder to read and main-

tain. So, ExLi must reduce the number of generated inline tests

by eliminating redundancy. ExLi’s coverage-then-mutants based
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Figure 2: The steps in ExLi’s workflow.

reduction process reduces those 215 inline tests to the two shown

in Figure 1, without loss in fault-detection capability.

3 TECHNIQUE

Figure 2 shows ExLi’s procedure for generating inline tests. The

inputs are the CUT (required), the unit tests (required), and line

numbers of the target statements (optional, not shown). ExLi out-

puts the generated inline tests after the coverage-then-mutants

based reduction. ExLi also produces two intermediate outputs for

evaluation and debugging purposes: ExLi-Base inline tests without

any reduction; and ExLi-Cov inline tests with reduction based only

on code coverage but not mutation score.

3.1 Finding and Analyzing Target Statements

The first two steps of ExLi’s workflow are for finding and analyz-

ing the target statements. In step 1 , TargetStmtFinder parses

the abstract syntax tree (AST) of the CUT and extracts the target

statements. If developers provided the optional input of line num-

bers of the target statements, ExLi will skip this step and directly

use the developer-specified target statements. Then, in step 2 ,

VariablesFinder identifies the variables used in each target state-

ment, which will be the input or output variables in the generated

inline tests. For example, VariablesFinder should identify three

variables for the target statement in Figure 1: two input variables,

field and EQ, and one output variable index.

3.2 Generating Inline Tests

We here describe steps 3 , 4 , 5 , and 7 , which generate ExLi-

Base inline tests without performing reduction.

First, the Instrumenter (step 3 ) adds code before each target

statement to collect the values of input variables and after each

target statement to collect the values of output variables. Figure 3

shows how we instrument the code in Figure 1: collectInputs

(line 7) is added before the target statement to collect the values

of field and EQ, and collectOutputs (line 9) is added after the

target statement to collect the value of index. Other code added by

Instrumenter for test reduction will be described in Section 3.3.

Then, the Executor (step 4 ) runs unit tests on the instrumented

code, and the Collector stores in memory the unique sets of values

observed during unit testing (step 5 ).

Using the collected sets of values, InlineTestConstructor (step

7 ) synthesizes inline tests. To do so, the value collected for each

input variable is used in given(. . . ) calls; these calls can be chained.

That is, the inline test will assign each value to the correspond-

ing input variable when testing the target statement. Then, the

value collected for each output variable is used in a check_eq(. . .)

construct. That is, inline tests check that the resulting value in

1 public static void setAdditionalFields(String spec,GelfMsg gelfMsg){

2 if (null != spec) {

3 String[] properties = spec.split(MULTI_VALUE_DELIMITTER);

4 for (String field : properties) {

5 try {

6 collectCov(); // cov1

7 collectInputs(field, EQ);

8 final int index = field.indexOf(EQ); // target statement

9 collectOutputs(index);

10 collectCov(); // cov2

11 if (-1 == index) { continue; }

12 ... // add field to gelfMsg

13 } finally { collectCov(); } // cov3

14 }}}

Figure 3: Example showing ExLi’s instrumentation.

each output variable after executing the target statement using the

assigned input values equals outputs recorded during unit testing.

The InlineTestConstructor also edits the CUT to insert con-

structed inline tests right after the target statement. After that,

ExLi uses ITest [46] (our inline testing tool for Java) to run each

generated inline test. If any inline test fails, ExLi filters it out: the

failing inline test is removed from the CUT. Such failing inline tests

are due to the target statement using inputs other than the input

variables (e.g., a static variable used in a method invoked from the

target statement) that is not collected by ExLi; future work can

explore storing such inputs from the global program state.

3.3 Coverage-then-Mutants Based Reduction

ExLi-Base generates an inline test for each unique set of values

collected during executing unit tests. But, too many sets of values

could be collected for some target statements even if we only keep

unique sets of values (Section 1). We observe in our experiments

that many sets of values are redundant with respect to one another:

they have similar fault-detection capability and exercise the target

statement in the same way. (Recall that, from a unit testing point of

view, the sets of values that ExLi collects are intermediate values.)

To avoid generating redundant inline tests, ExLi uses a novel

coverage-then-mutants based test reduction process: reducing the

inline tests (or sets of values, if reducing before constructing inline

tests) that have redundant fault-detection capability, using both

code coverage [7, 21] and mutation score [36, 70] as metrics for

fault-detection capability.

3.3.1 Reduction by Code Coverage. ExLi collects code coverage

using JaCoCo [56], a widely-used code coverage tool for Java. To

fit the inline testing scenario, ExLi considers two kinds of code

coverage: target coverage, the coverage collected while executing

the target statement; and context coverage, the coverage after ex-

ecuting the target statement while executing the context of the

target statement. The context of a target statement is defined as
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Algorithm 1 CovReducer

Global var: tgtStmtToCovered: mapping from target statement to the set

of lines covered by the target statement’s collected values

Inputs: cov1, cov2, cov3: code coverage information for the current set

of values; ℓ0: target statement’s lineno

Outputs: true if the set of values should be kept, false otherwise

1: procedure shouldKeepValues(cov1, cov2, cov3, ℓ0)

2: tgtCovChanged← covChanged(cov1, cov2, ℓ0)

3: ctxCovChanged← covChanged(cov2, cov3, ℓ0)

4: return tgtCovChanged ∨ ctxCovChanged

5: procedure covChanged(cov, cov′ , ℓ0)

6: change← false

7: for ℓ ∈ cov′ .keys( ) do

8: if ℓ ∉ cov ∨ cov[ℓ ] < cov′ [ℓ ] then ⊲ line ℓ coverage changed

9: if ℓ ∉ tgtStmtToCovered[ℓ0] then

⊲ line ℓ not covered by ℓ0’s collected values

10: change← true

11: tgtStmtToCovered[ℓ0] ← tgtStmtToCovered[ℓ0] ∪ {ℓ }

12: return change

code between the target statement and the end of its enclosing basic

block. For example, for the target statement in Figure 1 (line 7),

its enclosing basic block is the for loop from lines 6 to 14, and its

context is the code from lines 12 to 14. Using context coverage in

addition to target coverage makes reduction more accurate. The

target coverage alone may not provide enough information to dis-

tinguish non-redundant inline tests. For example, the inline tests at

line 8 and line 10 in Figure 1, which have different fault-detection

capability, have the same target coverage, but they have different

context coverage because only the first inline test covers the then

branch of the if statement in the context at line 12.

To collect target coverage and context coverage, Instrumenter

(step 3 ) adds code to collect code coverage at three points, see

the collectCov calls in Figure 3: (1) the instruction-level coverage

just before the target statement (line 6, cov1), (2) the instruction-

level coverage right after the target statement (line 10, cov2) and

(3) the instruction-level coverage at the end of target statement’s

enclosing basic block (line 13, cov3). Then, CovReducer (step 6 )

processes each collected set of values and instruction-level coverage

information. Only sets of values that increase either target coverage

or context coverage of the corresponding target statement are kept

and sent to InlineTestConstructor.

The shouldKeepValues procedure in Algorithm 1 describes

how CovReducer computes the target coverage and context cover-

age and decides when to keep a set of values. The inputs are code

coverage information cov1, cov2, cov3, and target statement ℓ0.

CovReducer uses a global map, tgtStmtToCovered, to store the

code coverage metric: the lines of code covered by the collected

sets of values (which is initialized to empty) of each target state-

ment. shouldKeepValues checks if the target coverage changed

(line 2) and if the context coverage changed (line 3) and returns

true if either changed. covChanged compares the code coverage

at two points, and checks if the later one has covered any line not

covered by the former one (line 8) and that line was not covered

by previously collected values (line 9). If so, covChanged updates

tgtStmtToCovered and returns true. The instruction-level cover-

age reported by JaCoCo is a mapping from line number to the count

of instructions on that line being covered. So, line 8 considers a

line’s coverage as changed if its instruction counts changed (from

zero to non-zero; or, from non-zero to a larger value for ternary

operators or Boolean expressions).

3.3.2 Reduction by Mutation Score. Mutation score is an estab-

lished measure of the fault-detection capability of tests [36, 70]; it

is the ratio of mutants killed by the unit tests (i.e., that cause the

tests to fail) to the total number of mutants. Mutants are typically

small syntactic modifications to the CUT that simulate seeded faults.

ExLi uses two popular mutation generators for Java: universalmu-

tator [25] and Major [37]. ExLi uses all mutation operators in the

two generators, but it only mutates target statements. To do so, we

specify line numbers to mutate (for universalmutator) or filter out

mutants that are not for the target statements (for Major).

MutReducer (step 8 ) performs reduction by mutation score,

given the ExLi-Base inline tests without reduction and ExLi-Cov

inline tests after reduction by code coverage. Note that the mutant

generator may fail to generate mutants for some target statements

(9.6% for universalmutator, 8.9% for Major), in which case mutation

score cannot be computed, and MutReducerwill directly output the

ExLi-Cov inline tests for those target statements. For all other tar-

get statements, MutReducer further reduces the coverage-reduced

inline tests by mutation score, which prior work suggests measures

fault-detection capability more accurately than coverage [74].

MutReducer first executes the ExLi-Base and ExLi-Cov inline

tests on the mutants and maps each inline test to mutants that

it kills. Then, MutReducer uses the Greedy test-suite reduction

algorithm [87] (used in prior work [74, 76, 78]), using the mapping

of ExLi-Cov inline tests to killed mutants, to reduce ExLi-Cov inline

tests that kill the same mutants. Each inline test in the reduced set

kills at least one unique mutant. Finally, if ExLi-Base inline tests kill

any mutant that is not killed by the reduced ExLi-Cov inline tests,

then reduction by coverage results in a loss in mutation score. So,

MutReducer adds one ExLi-Base inline test that killed that mutant

to the reduced inline tests to remedy this loss.

We refer to the final set of inline tests after MutReducer as ExLi-

UM or ExLi-Major, when using universalmutator or Major as the

mutant generator, respectively. So, the final set of inline tests pre-

serves fault-detection capability, as measured by mutation score,

compared to ExLi-Base inline tests before reduction.

Remark 1. Conceptually, ExLi could directly use test-suite reduction

with respect to mutants on the target statement to reduce the col-

lected sets of values. Instead, we make the design choice to first use

reduction by code coverage for three reasons. First, using mutants

for minimization requires to first generate inline tests for all the

collected sets of values. It is not always possible to do so due to lim-

its on method sizes [61]. Second, using reduction by code coverage

has the benefit that we can use mutation testing as a sanity check

of the fault-detection capability of the reduced set of inline tests.

There would be no automated sanity check if mutation testing is

used initially. Lastly, ExLi will need to preserve all inline tests for

target statements in which no mutant is created. So, if ExLi only

uses reduction by mutation score and if a frequently covered target

statement has no mutants, then readability may degrade because

too many inline tests are generated.
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Table 1: API used to filter statements.

Type API

Regex Matcher.matches(), Matcher.find(), Matcher.group()

String
String.split(), String.substring(), String.indexOf(),

String.format(), String.replace()

Bit ż, ń, &, |, ˆ, ˜, &=, |=, ˆ=, ż=, ń=

Stream Stream.of(), *.stream()

Remark 2. Implicitly, generating inline tests from unit tests induces

a trade-off space among the competing goals of good readability,

high coverage, and high fault-detection capability. Since inline tests

are co-located with the CUT, fewer inline tests will likely lead to

better readability, but at the cost of possibly lower coverage or lower

fault-detection capability. We design ExLi to have high readability

and high fault-detection capability at the cost of possible loss in the

code coverage of the target statement or its context. Specifically,

reduction by mutation score is not guaranteed to preserve the

code coverage achieved by ExLi-Cov inline tests. We optimize for

code maintenance settings where high readability with high fault-

detection capability is likely preferable to poor readability. ExLi

can be configured to optimize differently along the trade-off space.

Also, now that ExLi can generate many more inline tests than

previously possible, future work can more easily perform user

studies of developers’ trade-off preferences.

4 IMPLEMENTATION

We describe our ExLi implementation, using the same step numbers

as in Section 3 to make our descriptions easier to follow.

1 Find target statements. ExLi currently supports finding the

same four kinds of Java target statements as in our prior work [46]:

regular expressions, string manipulation, bit manipulation, and

stream processing. Given a kind of target statement, TargetStmt-

Finder searches for target statements that use APIs that are com-

monly used in the kinds of statements of interest. Table 1 lists the

APIs that ExLi searches for. Unlike our earlier ITest prototype that

searches program text, ExLi improves accuracy by parsing the AST

(using JavaParser [35]) to find target statements.

2 Identify variables. VariablesFinder parses the AST of a

given target statement (using JavaParser [35]) to identify its free

variables, i.e., not including the variables whose scope is fully con-

tained by the target statement. For example, in the following target

statement, str and list are free variables, but item is not:

String str = list.stream().map(item -> item.replace("a",

"b")).collect(Collectors.joining(","));

An array indexing expression, e.g., arr[i], is also treated as a

single variable, because inline tests may only need to assign to, or

check certain elements of the array.

3 Instrument CUT. Instrumenter is implemented using the

ASM library [6]. ExLi currently supports instrumenting target state-

ments at three syntactic locations:

• Condition of an if statement. Figure 4 shows an example from

json-schema-validator [57]. Line 7 is the target statement;

it checks if value matches a pattern. Instrumenter adds code

before the if statement (line 6) to collect input variables, at the

beginning of the then branch (line 8) to collect true as the value

1 public String[] match(String value) { ...

2 for (int i = 0; i < patterns.length; i++) {

3 try {

4 Matcher matcher = patterns[i].matcher(value);

5 collectCov(); // cov1

6 collectInputs(matcher);

7 if (matcher.matches()) { // target statement

8 collectOutputCond(true);

9 collectCov(); // cov2

10 int count = matcher.groupCount();

11 String[] groups = new String[count];

12 for (int j = 0; j < count; j++)

13 groups[j] = matcher.group(j + 1);

14 return groups;

15 } else { collectOutputCond(false); }

16 } finally { collectCov(); } // cov3

17 }

18 return null; }

Figure 4: Example of ExLi instrumenting a target statement

at a condition of an if statement.

1 public void write(int c) throws IOException {...

2 if (c < 0x800) {

3 try {

4 collectCov(); // cov1

5 collectInputs(ptr, c);

6 mOutBuffer[ptr++] = (byte) (0xc0 | (c >> 6)); // target statement

7 collectOutputs(mOutBuffer[ptr-1]);

8 // wrong: collectOutputs(mOutBuffer[ptr]);

9 collectCov(); // cov2

10 ...

11 } finally { collectCov(); } // cov3

12 } ... }

Figure 5: Example of ExLi instrumenting a target statement

with an increment expression in an array index.

of the output variableÐthe result of evaluating a conditional

expression, and at the beginning of the else branch (line 15) to

collect false as the value of the output variable.

• Declaration statement. Instrumenter adds code before the target

statement to collect right-hand side variable values and after the

target statement to collect left-hand side variable values.

• Assignment statement. Instrumenter adds code to collect left-

and right-hand side variable values before the target statement

and to collect left-hand side variable values after the target state-

ment. Left-hand side variables are collected both before and after

the target statement, because they may be both input and output

variables in compound assignment statements like a += 1.

Moreover, Instrumenter handles the following special cases:

• If there is an increment/decrement expression in an array index,

Instrumenter rewrites the array-indexing expression such that

the correct element is collected. For example, in Figure 5, the

output variable on line 6 is mOutBuffer[ptr + +], but its value is

collected on line 7 as mOutBuffer[ptr − 1] because ptr would

be incremented after executing the target statement.

• Some target statements are in if blocks that have jump (return,

break, continue, throw, etc.) instructions in the then and else

branches. To avoid compilation error (unreachable code) that

would occur if Instrumenter adds code to the end of blocks in
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1 public CompiledTemplate compile(IdentifiableStringTemplateSource

2 templateSource) throws TemplateException {

3 String id = templateSource.getId().replace('/', ';'); // target statement

4 itest().given(templateSource, "25.xml")

5 .checkEq(id, ";root;body@;folder;descriptor.txt");

6 String source = templateSource.getSource();

7 StringTemplateSource currentTemplateSource =

8 (StringTemplateSource) templateLoader.findTemplateSource(id);

9 ... }

(a) An inline test with an object that is serialized to an XML file.

1 <org.craftercms.core.util.template.impl.IdentifiableStringTemplateSource>

2 <id>/root/body@/folder/descriptor.txt</id>

3 <source>${body}</source>

4 </org.craftercms.core.util.template.impl.IdentifiableStringTemplateSource>

(b) The contents that are serialized to an XML file.

Figure 6: An inline test that saves an object in an XML file.

such branches, Instrumenter always wraps the parent node of

the target statement in the AST in a try block. If the target state-

ment’s parent node is a constructor body whose first statement

is a constructor call (e.g., super() or this()), ExLi excludes such

constructor calls from the try block to avoid compilation error

(super/this has to be the first statement).

4 Execute unit tests and 5 collect values. Executor runs unit

tests on the instrumented CUT and the Collector stores the values

of input and output variables that are observed during execution.

ExLi is agnostic to the source of unit tests; they can be manually

written or automatically generated. We currently use Randoop [62,

69] and EvoSuite [16] for automatic unit test generation; future

work can investigate other test generators.

When the variable whose value is to be collected is of a primitive

type, a wrapper type for a primitive type, a String, or an array of

these types, Collector directly stores the collected values (which

will be used on the constructed code for the inline test). Otherwise,

Collector uses XStream [50] to serialize the values, which will be

deserialized in future executions of the generated inline test. This

support for complex non-primitive types was not available in our

earlier Inline Test prototype and is added in this work.

Figure 6 shows an example inline test using XStream to support

complex non-primitive types, from craftercms/core [81]. Line 3 is

the target statement; it replaces ł/ž in templateSource’s id with

ł;ž. Line 4 is an inline test that ExLi generates. The variable be-

ing assigned, templateSource, is of a complex non-primitive type

IdentifiableStringTemplateSource, whose value is serialized

into ł25.xmlž (Figure 6b).

6 Reduce by code coverage. CovReducer reduces redundancy

among collected sets of variable values that cover a target state-

ment in the same way. We set JaCoCo [56], the code coverage

tool used by ExLi, to instrument and collect all classes in the cur-

rent project and dependency libraries, including the Java standard

library. However, some classes in the Java standard library (e.g.,

java.lang.String) are loaded during JaCoCo initialization and are

thus not instrumented. To avoid missing coverage information in

such classes, especially for string-related and regex-related target

statements, our implementation uses wrapper classes that we write

for java.lang.String and java.util.Matcher so that the method

calls of these classes can be instrumented. It is necessary to wrap

java.util.Matcher because some java.lang.Stringmethods that

are used by our evaluation subjects depend on it.

Table 2: Projects used in our evaluation.

PID project SHA LOC

P1 AquaticInformatics/aquarius-sdk-java 8f4edb9 21,634
P2 Asana/java-asana 52fef9b 5,572
P3 awslabs/amazon-sqs-java-extended-client-lib 58fed25 1,288
P4 Bernardo-MG/maven-site-fixer 60244c0 1,689
P5 Bernardo-MG/velocity-config-tool 26226f5 358
P6 craftercms/core 4d394a9 10,233
P7 CycloneDX/cyclonedx-core-java d933705 6,011
P8 finos/messageml-utils b4c75c6 21,765
P9 fleipold/jproc b872abf 1,189
P10 hyperledger/fabric-sdk-java da35400 33,677
P11 jenkinsci/email-ext-plugin 699277c 13,190
P12 jkuhnert/ognl 5c30e1e 18,190
P13 jscep/jscep b20e944 6,310
P14 lamarios/sherdog-parser aa6806a 1,546
P15 liquibase/liquibase-oracle 6ab7dea 7,170
P16 maxmind/geoip-api-java 1030316 11,526
P17 medcl/elasticsearch-analysis-pinyin 01dda56 2,169
P18 mojohaus/build-helper-maven-plugin f1fac8c 2,424
P19 mojohaus/properties-maven-plugin 6cf7c2b 891
P20 mp911de/logstash-gelf 66debd8 13,130
P21 mpatric/mp3agic 407f7a9 9,907
P22 netceteragroup/trema-core fa9f76d 3,285
P23 phax/ph-pdf-layout f2d7b98 14,408
P24 ralscha/extclassgenerator 40ad147 6,271
P25 red6/pdfcompare 1259ef2 4,213
P26 restfb/restfb 35a34dd 42,022
P27 steveash/jopenfst 14c4a1d 5,180
P28 TNG/property-loader 928f414 1,860
P29 uwolfer/gerrit-rest-java-client a0bf7cc 14,594
P30 visenze/visearch-sdk-java 0efcda3 7,643
P31 wmixvideo/nfe 1ccdba7 133,698

Total 423,043
Avg 13,646.5

7 Construct inline tests. InlineTestConstructor creates the

inline tests at the AST level with the help of JavaParser [35].

8 Reduce by mutation score. MutReducer performs mutation

analysis, using universalmutator [25] and Major [37], and test-suite

reduction, using an existing implementation [73], to further reduce

the generated inline tests. The test-suite reduction implementa-

tion [73] supports four algorithms: Greedy [87], GE, and GRE [9],

as well as HGS [31]. We found that the four algorithms always

result in the same number of inline tests in the reduced set (but

different inline tests are selected) in our experiments, thus we set

Greedy as the default algorithm.

5 EVALUATION

We answer the following research questions:

RQ1: How many inline tests does ExLi generate before reduction?

RQ2: How many inline tests does ExLi generate after reduction?

RQ3: How effective are the generated inline tests in terms of fault-

detection capability, compared with unit tests?

RQ4: What is the runtime cost of ExLi?

Experimental environment. We run all experiments on a ma-

chine with Intel Core i7-11700K @ 3.60GHz (8 cores, 16 threads)

CPU, 64 GB RAM, Ubuntu 20.04, Java 8, and Maven 3.8.6.

5.1 Curating an Evaluation Dataset

We start with a large set of projects from our recent work on learn-

ing to complete unit tests [58]. That prior work used different

experimental requirements than this work to filter projects. So, we

start from the original unfiltered set containing 1,535 Java projects
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mutants killed by ExLi-UM inline tests, but the difference is small:

ExLi-UM inline tests kills 111 or 3.8% more mutants than ExLi-

Major inline tests. Compared with ExLi-UM inline tests, ExLi-Cov

inline tests miss 299 mutants (9.1% of all killed mutants). Compared

with unit tests, ExLi-UM inline tests miss 216 mutants (6.6% of all

killed mutants). This is because unit tests can check global program

state (e.g., fields) that is modified by the target statement, but inline

tests currently cannot; future extensions of inline tests can address

this limitation. But, ExLi-UM kills 658 more mutants than unit tests

(20.1% of all killed mutants or 25.1% of mutants killed by unit tests).

We manually inspect surviving mutants that lead to loss of mu-

tation scores when ExLi-Cov is compared with ExLi-Base. So far,

we found two limitations of ExLi that lead to such intermediate

losses. (1) There are multiple clauses in an if condition, but the

mutation operator only modifies one of them. This limitation occurs

because, unlike pytest-inline, ITest does not yet support testing

individual clauses in a condition. This limitation will go away as

ITestmatures. (2) Multiple sets of values can kill a mutant but they

all cover the target statement and its context in the same way as a

chosen set of values that cannot kill the mutant. This is a limitation

of reduction by coverage as we discussed in Section 3.

Observe from Figure 10 that inline tests and unit tests are com-

plementary in terms of their fault-detection capability on the target

statements. So, inline tests can enhance the fault-detection capa-

bility of the unit test suites from which they are extracted. To

understand why some mutants on target statements can be killed

by inline tests but not by the unit tests, we manually inspected 63

randomly sampled mutants from the 658. We found two reasons:

(1) unit tests lack good assertions to kill the mutants, i.e., the mutant

could be killed if we add assertions to the unit tests (77.8% of cases);

(2) the mutant does not change program state that propagates to

unit tests, i.e., it only changes local variables or control flow but

not the return value or global variables, but inline tests’ łlocalž

assertions kill such mutants (22.2% of the cases).

Answer to RQ3. Inline tests complement the fault-

detection capability of unit tests on the target statements.

ExLi-UM and ExLi-Major generate inline tests with aver-

age mutation scores of 87.9% and 82.9%, respectively, which

are higher than the mutation scores on the target state-

ments of unit tests written by developers (67.9%), and those

generated by Randoop (31.4%) and EvoSuite (43.8%).

5.4 Measuring ExLi’s Runtime Cost

Generating inline tests with ExLi-UM and ExLi-Major takes, on

average across projects, 1,053.7s and 949.9s, respectively. (We omit

compilation time of the mutants; it is an offline process and is

currently slow because we recompile per mutant. Future work

can optimize this process by compiling in parallel or by using

incremental compilation.) The breakdown of the average runtime

is: 67.0s for running unit tests, 598.2s for recording variable values,

coverage-based reduction, and generating inline tests, and 388.5s

(universalmutator) or 284.7s (Major) for mutation-based reduction.

We are very encouraged by these early results on runtime costs,

especially when compared with our estimated amount of time that

it would take developers to write all 905ś930 inline tests that ExLi

generates. Our prior user study [46] showed that participants spent

around 6.3 minutes (378s) to understand and write inline tests

for each target statement in Python. Assume that the times to

understand target statements and write inline tests is uniformly

distributed and are the same for Java and Python. Then, on average,

participants would have needed 271,404s to write inline tests for

all 718 target statements that we use.

Answer to RQ4. Running ExLi-UM/ExLi-Major takes

949.9s to 1,053.7s on average per project, excluding mu-

tant compilation times. Our estimates, based on our prior

user study, suggests that these average times is evidence

that ExLi can reduce manual effort for writing inline tests.

6 DISCUSSION

Usage modes. The inline tests that ExLi generates can help find

regressions in future versions of the code, and there is need for

future work on co-evolving inline tests with code. But, ExLi can also

help find bugs in the current program versions if developers inspect

the generated tests. By inspecting inline tests in prior work [46],

we found two bugs that have now been fixed by the developers.

Limitations. (1) ExLi uses coverage of the target statement and its

context for initially reducing the set of inline tests. Flaky tests [3,

26, 41, 51, 64, 75] can cause coverage to fluctuate. We do not control

for flaky tests in the unit tests that ExLi uses. (2) Extracted inline

tests may be flaky and fail if the expected output in the oracles that

are generated depend on data that may change, e.g., current date

or device configuration. (3) When potential inputs cause the target

statement or its context to throw an exception, ExLi does not use

such values to construct inline tests because ITest [46] does not

yet support using expected exceptions as test oracles. (4) We do

not evaluate the extracted inline tests with developers of the open-

source projects that we evaluate. But, we have initial confidence

from our prior user study, which showed that participants find

inline tests useful. We plan to communicate more with open-source

developers in the future, especially as ITest [46] matures.

Threats to validity. Our code to instrument target statements,

collect coverage rates, and perform reduction could contain bugs.

To mitigate this threat, at least two co-authors review the code, and

multiple authors inspect the results. Our findings could be limited

to projects that we evaluate and their unit tests. To mitigate this

threat, we used open-source projects with various characteristics

and used automatically generated unit tests. The ideas in ExLi are

general but our results may not generalize to other programming

languages. We plan to use our pytest-inline tool [47] as a basis for a

tool that extracts inline tests from Python unit tests.

Future work. We plan to (1) support generation of inline tests

for target statements in other program locations than the three

that ExLi supports (if conditions, assignment statements, and dec-

larations); (2) support other kinds of target statements than the

four that our inline testing research so far considered; (3) generate

inline tests for other programming languages; and (4) investigate

regression test selection (RTS) for inline tests, borrowing from our

work on RTS for unit tests [19, 20, 23, 27, 43, 44, 48, 77, 90].



Extracting Inline Tests from Unit Tests ISSTA ’23, July 17ś21, 2023, Seattle, WA, USA

7 RELATED WORK

Single-statement bugs and inline tests. Inline tests are partly

motivated by recent work [38, 39, 42, 68] showing that many bugs

are caused by faults in single statements, and that unit tests miss

such bugs. We used inline tests to find single-statement bugs [46],

and ExLi could help find more in the future. The ManySStuBs4J [39]

dataset contains single-statement bugs that are curated by statically

analyzing open-source Java projects and their version histories. As

the ManySStuBs4J dataset evolves to capture more recent versions

of those projects, it can be a benchmark for evaluating the bug-

detection capability of inline tests. We do not use ManySStuBs4J

because (1) the filtering process that was followed to curate the

dataset resulted in many false positives during our initial search for

target statements; (2) the commits used in the dataset are from be-

fore 2019, so we had trouble running the unit tests in some projects.

łppx inline testsž [79] and the inline tests in this paper [46] share

a name and the characteristic that they are co-located with code.

But, łppx inline testsž check the correctness of functions instead of

single statements. Xiong et al. [86] propose inner oracles: assertions

declared in unit tests to check internal states. Inline tests allow

specifying both oracles and test inputs to check single statements.

Automatic test generation. Automatically generation of tests is

a popular research topic and many test generation techniques have

been proposed for Java [2, 8, 16, 18, 22, 59, 62, 72]. But, ExLi is

the first automatic generation technique for inline tests. Elbaum

et al.’s technique [14] extracts unit tests from system tests. ExLi

is similar in spiritÐit also extracts lower granularity tests from

higher granularity testsÐbut differs in the granularity levels that it

targets. Also, unlike Elbaum et al.’s technique, ExLi further reduces

generated inline tests.

Test suite reduction/minimization. Yoo andHarman [87] present

a survey on test suite minimization. Zhang et al. [89] study the ef-

fectiveness of test suite reduction techniques. Test-suite reduction

techniques include those that use (1) Greedy algorithms [10, 80],

(2) heuristics [9, 31], and (3) integer programming [32, 45]. We use

a recent implementation of the Greedy algorithm [73] to further

reduce inline tests that ExLi generates.

Shi et al. [74] found that techniques based on statement coverage

reduce test-suite sizes by 62.9% but lose 20.5% in killed mutants.

Conversely, techniques based on killed mutants have no loss in

killed mutants but have test-suites that are 10.9 percentage points

larger than those produced by coverage-based minimization, on

average. Shi et al.’s study gives more confidence in preservation of

fault-detection capability in ExLi reduction based on killed mutants.

Noemmer and Haas [60] recently compare test suite minimiza-

tion techniques on open-source projects and find that, on average,

test suites reduce by 70% while losing 12.5% of the fault-detection

capability. Our results show that traditional test suite minimiza-

tion reduces generated inline tests by 32.1% and ExLi preserves

fault-detection capability.

Using coverage as feedback in automated testing. Coverage

was used as feedback for test generation [16, 17, 54] and test-suite

reduction [30, 40, 53]. We use a combined change of coverage rate

of target statements and their enclosing basic blocks.

Assertion/Invariant generation. Program assertions/invariants

are useful for checking the correctness of program states. Inline

tests are similar to assert statements: both are co-located with pro-

gram statements and they can be turned off in production. But,

inline tests are different: they allow to provide arbitrary inputs,

expected outputs, and oracles for testing statements. Further, assert

statements only run if they are in code covered by unit tests, but

inline tests run in a different context even if the target statement is

not covered by unit tests. Lastly, existing inline testing frameworks

provide features that are typically not supported in assert state-

ments: parameterized tests, repeating test runs (helpful to see if

inline tests are flaky), grouping tests, and running tests in parallel.

There have been many techniques for automatically generating

assertions and invariants, including those that (1) infer invariants

from runtime information [5, 12, 15]; (2) generate assertions from

comments and documentation [4, 24, 55]; and (3) learn assertions

from code [13, 28, 58, 85, 88]. ExLi is most similar to approaches

in the first category, as it extracts inline tests from runtime infor-

mation. But, ExLi additionally (1) uses the collected information to

construct inputs, expected outputs, and oracles for the generated

inline tests; and (2) reduces the set of generated inline tests.

Mutation testing. Mutation testing is a technique for evaluating

the effectiveness of test suites [29, 63, 67]. Popular mutant genera-

tors for Java include universalmutator [25], Major [82], PIT [83],

and MuJava [52]. ExLi uses the first two tools which perform muta-

tion on the source code level, thus allowing filtering mutants for the

target statements. But, future work can explore integrating other

mutation tools with ExLi.

8 CONCLUSION

In this paper, we presented ExLi, a technique for automatically

generating inline tests with coverage-then-mutants based test re-

duction. The coverage-based reduction is based on context-aware

coverage feedback, and the mutation-based reduction is based on

killed mutants. We evaluate ExLi on 31 open-source Java projects

and find that ExLi generates between 905 (when using universalmu-

tator to reduce tests) and 930 (when using Major to reduce tests)

inline tests for 718 target statements. ExLi reduces initially gen-

erated inline tests by more than 94%. ExLi enables developers to

enhance the fault-detection capability of their test suites by easily

obtaining and adding inline tests.
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