Towards Aggregated Payment Channel Networks

Xiaoxue Zhang
University of California Santa Cruz
xzhan330@ucsc.edu

Abstract—Payment channel networks (PCNs) have been de-
signed and utilized to address the scalability challenge and
throughput limitation of blockchains. It provides a high-
throughput solution for blockchain-based payment systems.
However, such ‘“layer-2"’ blockchain solutions have their own
problems: payment channels require a separate deposit for each
channel of two users. Thus it significantly locks funds from users
into particular channels without the flexibility of moving these
funds across channels. In this paper, we proposed Aggregated
Payment Channel Network (APCN), in which flexible funds are
used as a per-user basis instead of a per-channel basis. To prevent
users from misbehaving such as double-spending, APCN includes
mechanisms that make use of hardware trusted execution en-
vironments (TEEs) to control funds, balances, and payments.
The distributed routing protocol in APCN also addresses the
congestion problem to further improve resource utilization.
QOur prototype implementation and simulation results show that
APCN achieves significant improvements on transaction success
ratio with low routing latency, compared to even the most
advanced PCN routing.

I. INTRODUCTION

Blockchain is a promising solution for decentralized digital
ledgers, but low throughput remains a huge problem with
growing numbers of users and transactions [1], [2]. For
instance, Bitcoin can only support 10 transactions per second
at peak in 2020 [3]. Payment channel networks (PCNs) [2]
are a leading concept to provide a high-throughput solution
for blockchains. In a PCN, two users can conduct transac-
tions with each another through a bi-directional channel. The
blockchain is only involved when the users open and close the
channel. Each user commits a certain fund at the opening of
this channel. Then they can make any number of transactions
that update the tentative distribution of the channel’s funds
as long as the remaining funds allow. These transactions only
need to be signed by the two users, and do not need to be
broadcast to the entire blockchain. Each user can establish
channels with multiple other users. If a channel does not exist
between two users, they can make a transaction via a multi-
hop path, where any two consecutive users on the path share
a channel. The PCN is a promising solution to achieve the
scalability of blockchains because most transactions can be
achieved in an off-chain manner.

However, such “layer-2” blockchain solutions have their
own problems: PCNs require a separate deposit for every chan-
nel and significant locked-in funds from users [4]. Besides,
funds are not equally distributed among all the channels of one
user. A situation might happen that a user cannot support a

978-1-6654-8234-9/22/$31.00 ©2022 IEEE

Chen Qian
University of California Santa Cruz
cqian12@ucsc.edu

transaction due to insufficient funds in a required channel, but
in fact, the node has sufficient unused funds in other channels.
Redistributing funds among channels immediately is not real-
istic here, because users need to react with blockchain to set up
new channels which is time-consuming. Such inflexibility of
fund utilization results in significant resource under-utilization
in PCNs. Many recent studies focus on using routing protocols
to improve resource utilization in PCNs, such as Spider [5] and
Flash [6]. However, our evaluations show that routing cannot
fully solve the problem of imbalanced fund utilization
problem across different channels. The key reason is that
per-channel funds also limit routing path selections.

In this paper, we introduce Aggregated Payment Channel
Network (APCN), a system that enables sharing and freely
allocating funding among all payment channels of a single
user. In APCN, funds are maintained in a per-user basis
instead of per-channel, which provides higher flexibility of
fund utilization and hence much higher payment success rate
(from 70% to > 95% in our evaluation). When users perform
multi-hop payments, those intermediate nodes only deliver the
payments to the next-hop node, instead of adjusting funds in
the channels as in the PCNs. So intermediate nodes actually
act as relay hops which is more similar to packet-switching
networks compared to existing PCNs. A multi-hop payment is
successful as long as: 1) a path exists between the sender and
receiver; 2) the sender has enough funds to pay the receiver.
Unlike PCNs, there is no requirement that every channel on
the path must have that amount of lock-in funds.

However, there are multiple challenges in designing APCN.
1) How to prevent users from double-spending. Since funds are
not maintained in separate channels, the user cannot determine
whether the funds sent to her have been paid to others until
she makes the settlement on the main chain. 2) How to
make settlements when shutting down channels or users going
offline. In PCNs, payments only change the distribution of
the channel’s funds, and the total balance of the channel
always keeps the same. When closing a channel, two users
only need to broadcast a blockchain transaction with the final
balance. However, in APCN, the funds are not kept in a single
channel, and it is difficult to trace payments in the network.
In order to address these two challenges, we design protocols
based on the widely available trusted execution environment
(TEE) for controlling funds, balances and payments. TEE is a
hardware security feature in modern CPUs [7] that ensures the
confidentiality and integrity of code and data. 3) We further
assume not every user of APCN has a TEE device. Hence how

users can rely on other TEE devices and trust the execution
remains another challenge. 4) We consider the congestion
control problem in APCN: if too many payments go through
a certain node, the transaction processing rate on this node
should be slower than the transaction arrival rate which causes
congestion. Such a node will become the bottleneck of the
whole network. To prevent this situation, we design a routing
protocol with congestion control in APCN that each channel
locally keeps a congestion factor, and nodes would consider
the congestion factors of channels to select the next hop.

We conduct both prototype implementation and large-scale
simulations for APCN, based on real-world PCN topologies
and transactions. The results show that even the most advanced
PCN routing protocols cannot achieve 75% transaction success
rate — a transaction is successful if there is a routing path
with sufficient funds — while APCN always achieves over 95%
transaction success. We show APCN is also cost-efficient.

The rest of this paper is organized as follows. The system
overview and model are presented in Section II. We describe
an overview in Section III and the detail design of the APCN
and routing protocol in Section IV. Section VI presents the
evaluation results of APCN. Section VII describes the related
work. Section VIII concludes this work.

II. OVERVIEW
A. Network Model

APCN is a payment channel network in which the funds
are maintained in a per-user basis instead of per-channel. In
APCN, each user is called a node. The bi-directional payment
channel shared by two nodes is called a physical channel or
direct link, and these two nodes are called direct neighbors.
Each node maintains some funds to make transactions with
others or help to relay transactions. We model an APCN as a
graph G = (V, E, U), where E is the set of links, V' is the set
of nodes with a weight function w, and ¥,, € ¥ is the funds of
user v in the network. Each node is assigned a congestion rate
which can reflect the time it will take on average to process a
transaction going through it. This value is periodically updated
according to the number of transactions going through it in
the last time slot. Furthermore, a path p is a sequence of links
e1...ex with e; = (v;,v;41) for 1 < i < k — 1. The path of a
transaction is accepted only if the amount of this transaction
is less than the fund of the sender, 1);.

Problem definition. The problem of making successful
payments in APCN is described as follows. Consider a trans-
action ¢ initiated by sender s that should be received by the
recipient v. APCN needs to find a path from s to r, where
two consecutive nodes on the path should share a physical
link (payment channel) to transfer the payment to the next-
hop. The success of the payment implies that s can make
a transaction with r by a sequence of transactions involving
other intermediate nodes, even if s and r have no trusted
channel.

APCN should make use of a routing protocol that finds
an end-to-end path from the sender to the recipient in the
network graph. In fact, APCN is able to apply any existing
routing protocol of PCNs and make corresponding adjustments

- 4
— flal &b e 1| [0 “ (o] _
BlockchL@

(a) Set up

(b) Transactions =

!m -
)

-30

-80
IS
J

7
:lﬁl A: 30
@ el

Settle:
B(-30)
C(-80)

=]

Blockchain (\

J

(c) Settlement

Fig. 1. APCN overview: APCN nodes operate TEEs to store and manage
funds. Users construct payment channels between nodes to exchange funds
directly, and execute multi-hop payments along concatenated payment chan-
nels.

to allow them to work in APCN. In our implementation, we
use the virtual coordinates based greedy routing introduced in
a recent work WebFlow [8] and extend it for APCN.

B. Trusted execution environment (TEE)

The requirement for synchronous blockchain access in exist-
ing payment networks comes from the fact that their protocols
use the blockchain as a root-of-trust: parties executing the
payment protocol monitor the blockchain to discover when
other parties deviate from the protocol, and react appropriately.
In traditional PCNs, users can easily verify transactions by
checking their channel states and balances. This mechanism
also prevents the double spending problem since a single
fund cannot be used in two different channels. A single fund
cannot be paid to the same receiver twice either, since both the
receiver and sender keep a view of channel state. They could
detect misbehaving parties when a dispute happens. However,
in APCN, the channel is stateless. We should prevent the
situation where a malicious node tries to spend a fund twice
to two different receivers.

In order to ensure the faithful execution of the payment
protocol in APCN, we make use of trusted execution en-
vironments (TEEs) [9]. TEEs are encrypted and integrity-
protected memory regions, which are isolated by the CPU
hardware from the rest of the software stack. Multiple TEE
implementations are commercially available, including Intel
SGX [10], ARM TrustZone [11] and AMD SEV [9], with
several others currently underway, such as KeyStone En-
clave [12], Multizone [13] and OP-TEE [14]. Intel CPUs from
the Skylake generation onwards support SGX [15], a set of
new instructions that permit applications to create TEEs called
SGX enclaves. TEEs ensure faithful execution of software and
the owners cannot make changes on either the data or software
in TEEs.

APCN constructs a peer-to-peer payment network in which
each node comprises: (i) an API for users to interact with
the payment network; (ii) an interface through which to read
and write blockchain transactions; and (iii) a TEE-protected
program called Ledger that securely holds and manages users’
funds. Ledgers ensure the faithful execution of the payment

protocol. They are responsible for managing payment chan-
nels, executing payment transactions, and controlling access
to funds. They communicate via secure channels established
by two neighboring nodes to update user funds.

Fig. 1 shows an example of APCN. For a user A, to join
in the APCN at initialization, it needs to construct a set-up
message and send it to the blockchain. This message should
include a transaction that A makes a deposit of $128 to
the blockchain. After this message being confirmed in the
blockchain, A can open channels with other users and make
or relay transactions in the APCN. Assume A opens channels
with user B and C' respectively. When A wants to make a
payment of $30 to B, the TEE of A, denoted as TEE 4, will
record this transaction in the local ledger as B : —$30, and
update A’s remaining funds to $98. The TEE of B, denoted
as TEFEp, will also record this transaction in its local ledger
as A : $30, and update B’s remaining funds to $112. The next
time when A wants to make another payment of $80 to user C,
TEFE, and TE E¢ will update their local ledgers to C : —$80
and A : $80 respectively, and update A and C’s remaining
funds to $18 and $83 as well. When A wants to go offline
and make a settlement, it first needs to retrieve the encrypted
ledger of the latest version from T'E'E 4, and then send it to the
blockchain. It keeps monitoring the blockchain until its ledger
is confirmed. In this process, T'E'E 4 denies all the transactions
to or through it. After the ledger showing up in the block, A
sends messages to all its neighbors. The neighbors’ TEEs who
receive the messages will update their local ledgers to mark
the transaction records with A as confirmed.

C. Attacker Model

We assume users and webservers can exchange messages
through a traditional secure communication channel such as
TLS. Information leakages among them are beyond the scope
of our discussion. We assume the attackers can gain complete
physical access to a node in which the funds are stored and
complete control of its network connections. They may drop,
modify and replay messages. An attacker may also delay or
prevent the node it controls from accessing the blockchain for
an unbounded amount of time. However, they cannot make
changes to the TEEs on the controlled nodes. The widely
applied TEE implementation SGX is known to be vulnera-
ble to attacks such as controlled-channel attacks, and there
have been some countermeasures to them [16]. To prevent
information leakage from access patterns, existing oblivious
RAM library can be adopted [17]. There are also existing
timing and memory-access side-channel resistant libraries for
sensitive data [7]. Shih et al. [18] presented a modified LLVM
compiler dubbed T-SGX, which is effective against all known
controlled-channel attacks. Lee et al. [19] proposed ZigZagger
as a defence against their own branch shadowing attack. To
defeat enclave specific attacks such as ROP attacks, Seo et
al. [20] activated ASLR inside SGX enclaves to make ex-
ploitation more difficult. BYOTee [21] put forward a method to
build multiple equally secure enclaves by utilizing commodity
FPGA devices. Microcode patch could also help, but it can

only be changed by the manufacturer of the CPU, which is
out of scope of this paper. We apply side-channel resistant
libraries and T-SGX in our implementation. We consider the
user security of their funds in a fully distributed PCN. Users
may be malicious and attempt to steal funds and deviate from
the payment protocol, if it benefits them.

D. Requirements

Security: The main security requirement of APCN is that it
should enable transactions to be executed between users safely
and correctly. For safety, we consider two situations. The first
is online users making transactions. Since funds are not kept in
a single channel, we should ensure that APCN could prevent
double spending. If a malicious node tries to spend a fund
twice to two different receivers, the receivers should be able
to detect it and reject the transaction. The second situation we
consider is the settlement. When a user goes offline, all the
transactions related to this user should be settled and written
to the blockchain. If other users want to go offline later, we
need to guarantee that the same transaction will not be written
to the blockchain twice.

Performance: The main performance goal of ACPN is a
high transaction success rate, which is determined by many
factors including available funds, routing protocols, and con-
gestion control to handle concurrent requests.

III. DESIGN OVERVIEW OF APCN

We provide an overview of transaction executions in APCN.
Table I shows the API that APCN provides to users. It supports
1) creating deposits, 2) operating payment channels, and 3)
settlement. APCN generates unique identifiers for each deposit
and channel, e.g., when a deposit is created (new_deposit),
a unique identifier is returned as a handle to be used in
subsequent API calls. TEEs of each user are identified through
unique public keys.

TEE service providers. Users generate public/private key
pairs for their wallet addresses, which are cryptocurrency ad-
dresses owned exclusively by a user’s TEE. They are generated
securely inside each TEE, and their private keys are stored in
TEE memory. The owner of the TEE cannot see the private
key. Users can send funds to these addresses in the form of
fund deposits. Then deposits can be used in any payment
channels of the users. Note that not all users are equipped
with TEEs on their devices, while some machines with TEEs
are willing to provide their TEEs to others. These machines
can serve as TEE service providers. Those users without a
TEE-enabled node of their own can use a remote TEE service
provider to manage their funds.

Users must verify the integrity of TEE before trusting
them. APCN uses the remote attestation support of TEEs for
verification [22]. A TEE (i) measures the enclave code, (ii)
cryptographically signs the measurement and the user’s public
key, and (iii) provides the signed measurement and public
key to the remote user. The remote user then verifies the
attestation, i.e., the remote user ensures that the attestation
is correctly signed by the TEE hardware and that the mea-
surement corresponds to a known TEE implementation. Users

TABLE I

APCN API
APCN APIs Inputs Outputs API Description
Deposits:
new_deposit t. k d; Create a new fund deposit with ID d; using a transaction ¢ and the TEE’s public key k
new_pay_channel k ci Create a new payment channel with ID ¢; with a given TEE identified by &
Payments:
Update_ledger v,c, L L Pay an amount v to the other user in a payment channel ¢; and update the Ledger
Routing:
routing v, Ng n; Determine the next hop node n; of a transaction to destination ngq
Settlement:
close_channel ci, L - Shut down a payment channel c; by updating the ledger. Mark the status of ¢; as Inactive
settle_deposit v, d; t Refund a deposit d; by generating and returning a transaction ¢

can thus verify that a specific service provider, identified by its
public key, is operating genuine TEE hardware. And remote
TEE providers have the same abilities as a local TEE. To deal
with the situation that the machine with remote TEE going
offline and avoid having to trust a single remote TEE service
provider, APCN constructs committees with multiple remote
service providers.

Service provider Committee. Committees are groups of
TEE service providers that jointly manage fund deposits,
ledgers and transactions. They are used to prevent single point
failure when a user does not have a local TEE and has to
rely on a TEE service provider to manage their funds. For
each deposit owned by a committee, a minimum number of
committee members are required to sign transactions before
that deposit can be spent, thus tolerating a fixed number of
TEE failures. For this, APCN used multi-signature support
of the blockchain: each fund deposit is paid to a m-out-of-
n wallet address, where m TEE signatures are required to
spend the deposit. The n committee members are responsible
to manage the user deposit.

IV. PAYMENT PROTOCOL
This section describes the design of APCN protocols.

A. Deposits allocation

In order to create a deposit for a user, a transaction
indicating making deposits related to the user needs to be
recorded on the blockchain. To construct a new deposit d,
users invoke new_deposit, and present a deposit transaction
t and the public key of the user’s TEE. The TEE then verifies
that t sends funds to the correct address using its public key
K. The TEE then constructs a new deposit d, forwards t to
the blockchain, and returns d’s unique identifier signed by the
TEE to the user.

Although the deposit is maintained by each user, we still
need payment channels for transactions among users. Since
the channels in APCN are stateless without funds in them,
it is not necessary to associate a determined number of
deposit with a certain channel. To create payment channels
between users without a blockchain interaction, participants
call new_pay_channel and provide the public key of the
TEE with which to create the channel. The two TEEs then
establish a secure communication channel using authenticated
Diffie-Hellman for key provisioning and remote attestation.
Using the secure channel, the TEEs assign a unique channel
identifier to the channel ¢ and return the channel identifier.

B. Using payment channels
To execute a payment ¢ along a channel, the sender u calls

update_channel, which specifies the amount w to send and
the channel identifier ¢;. The sender’s TEE first ensures that
the sender has sufficient funds, d,, > w, before decrementing
the sender’s balance and incrementing the recipient v’s balance
locally. It then forwards the payment to the recipient’s TEE to
update balances. If the payment is not received by the recipient
in a pre-determined time slot, e.g., due to a network failure,
the sender’s TEE rolls back the payment to prevent balance
inconsistencies. If the payment is received by the recipient
successfully, the sender’s TEE needs to update the remaining
deposit to be d,, — w, and the recipient’s TEE needs to update
the deposit to d,, + w. They also need to update the ledgers of
the users respectively, which is v : —w in the sender’s ledger,
and u : 4w in the recipient’s ledger.

C. Congestion control

In PCNs like the Lightning and Raiden networks, most
users by default pick the shortest path from the sender to the
destination. However, it leads to the congestion problem [5].
Consider an example PCN shown in Fig 2. Suppose many
users on the left side of a (in Cluster A) try to make
transactions with users on the right side of b (in Cluster B)
at the same time. Based on many routing protocols, when
transaction requests from cluster A reach node a, a always
forward those transactions to node b which has shorter paths to
the receivers in cluster B. This leads to congestion on channel
a — b, while channels ¢ — v and b — u are under-utilized.
And thus, all the transactions between clusters A and B would
suffer from extra processing latency of channel a — b.

To address this problem, we introduce a congestion factor [,
for each channel, which shows the current processing latency
for an incoming transaction in the channel. However, it is
impossible to minimize the processing latency as well as
maximize the success volume of the whole system as a linear
programming problem, because we cannot probe and compare
all the possible paths for every transaction in advance. Instead,
we apply a heuristic mechanism to optimize the end-to-end
latency - Latency Awareness (LA) forwarding, which avoids
congested links.

In LA forwarding, a node u chooses a neighbor x as the
next hop to receiver 7 such that it minimizes the heuristic
function h(u) = l(u,z) + I(z,7). l(u, z) is computed as how
many transactions are currently using the channel u — z, and
I[(x,r) denotes the estimated routing latency from z to r from

a b
° °
Cluster A %’ Cluster B
° u

Fig. 2. Example illustrating the importance of congestion control in APCN.

locally computing the distance between the virtual positions
of x and r. The first question is how to assign the congestion
factor [. for each channel. Assume the processing latency of
a transaction at an idle channel ¢ is A, and the channel can
process one transaction at a time. If multiple transactions want
to use the same channel, they will be put in a queue and [, is
adjusted according to the number of transactions in the queue.
For example, the congestion factor of an idle channel c is
l. = A. If there are 2 unfinished transactions in the channel ¢,
the congestion factor becomes /. = 3A. The second question
is how to estimate the remaining routing latency [from a
neighbor node x to the receiver r. Note that we assign each
node a virtual coordinate that reflects the network topology
features. The node pair with small hopcounts in the network
also shows a short distance in the Euclidean space. So we use
the distance d,, between the virtual positions of = and r as the
estimated hopcounts between them. We estimate I(x,) such
that it is proportional to the estimated hopcounts between x
and r. For simplicity, we assume all the channels between x
and r are idle. So the heuristic function at node u is computed
as: h(u) = (n(u,z) + 1)A 4+ d(z,r)A, where n(u,x) is the
ongoing transactions in the channel uzx.

However, simply assuming that all the channels between x
and r are idle is not accurate since node u does not have any
information on these channels. And selecting the next hop x
according to the heuristic function h(u) instead of choosing
the next hop that is closest to the receiver r may lead to a
larger routing stretch, and thus may introduce extra routing
latency. There exists a trade-off between WebFlow which has
lower routing stretch, and LA forwarding which has lower
estimated routing latency. So we combine WebFlow and LA
forwarding together. For each transaction arrived at node u,
it has the probability p to apply WebFlow to be forwarded
to the neighbor closest to the receiver. Otherwise, it runs the
LA forwarding protocol. We will further evaluate and find the
optimal p value in evaluation.

D. Deposits settlement

In PCNs, if a user wants to shut down a channel, he needs
to have a transaction claiming the final state of the channel
recorded on the blockchain. However, in APCN, shutting down
a channel would not require any operation on the blockchain as
we mentioned in Sec IV-B. Only if a user wants to go offline,
does he need to settle his deposits and have his final deposits
on the blockchain. The channel record in a ledger has four
statuses: Pending, Complete, Inactive, and Settled. Pending
is the status that there exist one or more ongoing transactions
related to this channel. Complete is that all the transactions
going through the channel is complete and confirmed by the
sender and recipient. Inactive is the status that the user

has shut down the channel and this channel does not exist
anymore. Settled is the status that the neighbor that the
user shares the channel with is offline and has settled all his
channels and deposits.

To shut down a channel of the user w, it invokes
close_channel and includes the channel id and the user id
of its neighbor v whom it shares this channel ¢ with as inputs.
The TEE of wu first checks the status of channel c in its ledger.
If the status is Inactive, it means that the channel ¢ has been
closed before and does not exist currently. So close_channel
will return ‘FALSE’. If the status is Settled, it indicates
that v is offline and has settled all the related channels. So
the function will fail to shut down the channel and return
‘FALSE’. If the status is Pending, it means that there exist one
or more ongoing transactions related to this channel, including
u sending payments via the channel ¢, other users sending
payments to u via the channel ¢, and c served as intermediate
hop of passing by transactions. In this case, the TEE of u will
hold the close_channel request until the status of ¢ becomes
Complete. It is to prevent the situation that a transaction has
probed and determined the path, but some channels of this path
break down before the transaction completes. In the whole
process, the TEE of u will reject any other transactions via
the channel c. If the status of channel ¢ becomes Complete,
u’s TEE can directly shut down the channel by changing the
status to Inactive and inform v’s TEE to change the status
of channel ¢ to Inactive in v’s ledger as well. To prevent
the case that a malicious u tries to close the channel using a
stale state to benefit itself, when it invokes close_channel,
v will have a bounded reaction time to invalidate the action by
providing the latest state with the timestamp. If v approves or
fails to respond within the time slot, v will continue closing
the channel.

Consider user u wants to go offline and settle its deposit on
the Blockchain. The first thing it needs to do is to settle all its
channels by invoking close_channel.After the status of all
the channel records in its ledger becomes Complete, the next
step of u is to call settle_deposit and settle its deposits
on chain. To do this, u need to obtain the latest ledger signed
by its TEE from the TEE, and directly send its signed ledger
to the Blockchain. u needs to keep monitoring the Blockchain
until its ledger is verified, packed into a block, and added to the
Blockchain. Then, u constructs a proof that its ledger has been
added to Blockchain and sends the proof to all its neighbors. If
some neighbors do not agree on the channel states, they could
provide the correct signed ledger to Blockchain to dispute. If
the proof is correct, the neighbor nodes will mark the channel
u — v as Settled in their own ledgers.

E. Transaction data format

Transactions. All transactions among users are conducted
via channels by TEE service providers. Each transaction 7
includes the address of the transaction recipient 7,, the trans-
action amount 7, the address of the last hop user 7¢, and a
monotonically increasing transaction index 7;. We note that 7¢
here is not necessarily the sender. For multi-hop transactions,
7 records the last hop where the transaction comes from.

TABLE II
LEDGER STATE

Field Symbol Description
Channel c The channel id of this entry
Neighbor cn Neighbor’s address the user build channel ¢ with
Amount Cq The overall transaction amount of the user
State K the state of transactions going on in the channel
— Sp Pending, ongoing transaction in the channel
— S¢ Complete, all transactions in the channel complete
— 8 Inactive, user has closed the channel
— Ss Settled, user’s neighbor has settled the channel
Version w The version number of the latest transaction

For each intermediate user received a transaction, it needs
to replace the 7, field to be the address of it, and relay the
transaction to the next hop.

Ledger state. The ledger in the TEE maintains state that
contains the remaining deposit amount of the user, and several
entries as shown in Table II. Each entry denotes a channel of
the user u, and consist of the following items: the channel c
built by v and its neighbor, the neighbor cy the user u shares
the channel ¢ with, the overall amount u sent to the neighbor
cn via channel ¢, and the state s of this channel ¢ as introduced
in Sec IV. The amount of the channel can be negative, which
is the amount user u owes cy.

F. Users with and without TEE

Here we describe two categories of users separately, the user
with local TEE, and the user without local TEE. Algorithm 1
shows the protocol executed by each node and TEE service
provider. To construct a new deposit d, users with local TEE
invoke new_deposit_withTEE (Alg. 1, line 1) and present
a deposit transaction ¢ and the TEE public key that ¢ sends
funds to. TEE verifies that ¢ sends funds to the correct address
using its public key k, and then constructs a new deposit d,
forwards ¢ to the blockchain, and returns d’s unique identifier
to the requester (line 7), signed by the corresponding TEE.
For users without local TEE, they have to use more than one
remote TEE service provider to prevent malicious attackers.
To construct a new deposit d, users without local TEE invoke
new_deposit_withoutTEE (line 8), and present a deposit
transaction ¢ and the list of TEE service providers’ public
keys forming the committee that ¢ sends funds to. The service
providers then verify that ¢ sends funds to a k-out-of-m multi-
signature address using the committee members’ public keys,
ki...kp,, and notify the committee of the new ¢. The user then
constructs a new deposit d, forwards ¢ to the blockchain, and
returns d’s unique identifier to the requester (line 14), signed
by all committee members.

Payment channels do not hold any funds, and can be set up
or close at any time. Creating a payment channel c is to add an
entry in the ledger of user u and v. Before the channel c can be
set up, it must be approved by the the remote party (e.g., v if u
requests channel creation approval) using approve_channel
(line 15). Approval contacts the remote user via its TEE and
queries if the user is online to build a channel c.

After approval, to create payment channels between
users without blockchain interaction, participants call
new_pay_channel and provide the public key of the TEE

with which to create the channel (line 18). The TEEs of
two users then establish a secure communication channel
using authenticated Diffie-Hellman for key provisioning and
remote attestation. Using the secure channel, the TEEs assign
a unique channel identifier ¢; to the channel c, initialize both
participant’s balances to 0, and return the channel identifier
(line 24). Then the two users v and v need to create the
corresponding entry of the channel in their ledgers using
add_ledger (line 33). When u creates the channel ¢, its
TEE initializes the amount of entry c in the ledger to be
0, and the channel state to be s.. Only after the ledger
created successfully, can the channel ¢ be used by user u
and v for future transactions. If one of them wants to close
this channel, she needs to call close_channel (line 44) to
close the corresponding entry of the channel in both u and
v’s ledgers. At any time, users may settle the deposit using
settle_deposit (line 60) by calling close_channel for
all channels.

G. TEE operations

In this section, we describe three functions associated with
ledger: Ledger creation, Ledger update and Ledger close. The
construction consists of the instructions for two users, Alice
and Bob, and their ledgers on their TEEs.

Ledger creation: We start with describing a procedure in
which Alice and Bob register in the APCN system with the
initial balance, a4 and ap. As mentioned in Sec IV-F, after
their TEEs verifying the correctness of their deposit transac-
tions t4 and tp, respectively, their TEEs need to construct
new deposits d4 and dp, forward their deposit transactions to
the blockchain, and initialize a ledger with the deposit d 4 and
dp, with the amount being a4 and ap. The current version
of the ledgers is empty ones with no entry.

When Alice and Bob agree to open a channel ¢ in APCN,
their TEEs negotiate and assign a unique channel identifier c;
to the channel c. Then TEESs need to create the corresponding
entry of the channel in their ledgers, whose format should
follow Table II. For the new ledger entry in Alice’s TEE,
the Deposit field continues to be a4, since no transaction
happens at this time. The Channel field is ¢; as the return value
of the function new_pay_channel in Alg. 1. The Neighbor
field cy is set to be Bob’s address. The Amount field is
initialized as 0, since no transaction happens and the overall
transaction amount Alice sends to Bob is 0. The State field is
S¢, which means the channel is active and there is no pending
transaction in the channel, so the channel is ready to serve
future transactions.

Ledger update: When Alice and Bob want to make a new
transaction when there is an ongoing transaction in channel
¢, we use a standard technique (see, e.g, Sec. 3.3 in [2])
for updating the entry for a payment channel in the ledger
that is based on counters called “version numbers” w € N.
Note that the transaction here includes the direct transaction
between Alice and Bob, and the multi-path transaction going
through Alice and Bob. We do not distinguish between these
two situations. Initially, w is set to O, and it is incremented
after each transaction via channel c. Suppose Alice initiates

Algorithm 1 APCN payment protocol executed by each node and TEE service provider.

1: def new_deposit_withTEE(t, k): 16:
. verify_tx(¢, k) 17:
d < create_new_deposit(t)
. deposits|[d;] < d

. write_to_blockchain(t)

. create_Ledger(d;)

apprv <— ask_approve_remote(k)
return apprv

18: def new_pay_channel(k):

19: ¢ < create_channel_with(k)
20: channels[c;] < ¢

21: add_Ledger(c;)

PO NV T Y

: return d; 22: add_Ledger(cy)
8: def new_deposit_withoutTEE(t, 23: return c;
kl ...km,)Z

24: def pay_channel(v, ¢;):
25: ¢ 4— channels[c;]

26: assert(c.my_bal > v)
27. Update_Ledger(-v, ¢;)
28: Update_Ledger(v, cn)

9. verify_tx(t, k1..km)

10: d 4 create_new_deposit(t)

11: deposits[d;] « d

12: write_to_blockchain(t)

13: create_Ledger(d;)

14 return d; 29: def create_Ledger(d;):
30: d <+ deposits[d;]

15: def approve_channel(k): i@ d

32: return L 48: def Close_Ledger(c;, L):
33 def add_Ledger(c;, L): 49: // Collect all entries of channel ¢

34: ¢ < channels[c;] 50: ¢ <= channelsc;]

3 ca < 0 51: if s :<_: s.c then

52: s 8.1
36: S < Sc
3 return L 53: return TRUE

s4: else
38: def Update_Ledger(v, c;, L): 55: wait for time A
39: ¢ 4— channels[c;] 56: if s == s.c then
40: c.my_bal <— c.my_bal + v 57: S < $.1
4: Cq & Cq +V 58: return TRUE
42: 8 4= 8p 59: return FALSE

43: return L
60: def settle_deposit(d;):

44: def close_channel(c;, L): 61: for all channels c in U’s ledger do
45: ¢ <= channels|[c;] 62: close_channel(c;)

46: Close_Ledger(c;,L) 63: t < construct_tx(d;, k)

47 Close_Ledger(cy,L) 64: return t

Merge entry of ¢

Latest version m of ¢
— 2 Yo

Add entry of 7

€ e 7, S P+l ...

Fig. 3. Illustration of ledger update protocol.

the first transaction 7 of amount 7, in channel c. If Bob agrees
on this transaction, T E 4 and T E'E'p both need to update the
corresponding entry in their ledgers. On Alice’s side, there is
only one entry of channel c in its ledger, and the current status
of the entry is s, with version number 0. So Alice will update
its ledger by updating this entry. The Amount field is set to be
cqa —Tq- The State field is changed to s, until the transaction is
complete. Also, the version number w is incremented by 1. In
Bob’s ledger, its TEE updates the Amount field to be ¢, + 7,
the State field to be s, and the version number to be 1 in the
entry for channel c.

Ledger close: If one of the parties, say Alice, wants to
close the channel ¢, she first needs to negotiate with Bob.
After approval by Bob, both of them needs to close the entry
of channel c in their ledgers. Again, their TEEs need to check
their ledgers, collect all entries of channel ¢, and merge all
those with status s.. After this, if there is only one entry
of channel ¢ and its state is s., TEEs can directly close the
channel by setting the State field of the entry to be Inactive
s;. If there exists some entries of channel ¢ with status s,
TEEs wait time A for those transactions to complete. After the
waiting time A, TEEs merge those entries with status s, and
update the State field to be Inactive s;. Those entries whose
status are still s, will be abandoned.

H. TEE committees

We provide TEE committees to prevent malicious TEE
service providers for users without TEEs. For a new TEE
service provider who wants to join the system, it has to
perform remote attestation with a group of TEE committee to

verify that it has the correct code and works correctly. It also
has to pay certain amount of participation fee to be included
in this committee. Every time when the committee performs
a transaction correctly, all the members will receive incentive
from the user.

When creating channels or sending a payment, a user
should get approval from the committee and update its ledger.
In order to achieve agreement and consistency of ledger
state among all committee members, APCN uses Committee
chains introduced in TeeChain [7]. The chain replication offers
strong consistency without requiring all committee members to
communicate directly. The committee members form a chain,
with the primary at the head, and the last backup at the tail.
The user first sends the update request to the primary in the
committee. The primary will check if the user has sufficient
funds and propagates the update down the chain. Each com-
mittee member does the same check, forwards the update to
its backup, and waits for an acknowledgment before updating
the ledger. When the primary receives an acknowledgment,
the entire chain has updated. If any committee member fails
or refuses to update to the latest agreed upon ledgers, the
replication chain is broken, freezing all nodes at the current
ledger state. And this member will lose all its participation
fees and incentive in the committee.

V. PROTOCOL SECURITY ANALYSIS

APCN protects the funds of all users in the PCN: despite
what others may do, funds cannot be stolen or double spent.
At any time during the payment protocol execution, each
user should be able to perform a finite set of actions that
eventually results in them receiving their perceived balance
on the underlying blockchain.

We now prove that APCN achieves funds security using the
Universal Composability (UC) framework [23] similar to prior
work [7], [24]. The UC framework includes parties executing
the protocol in the real world, ideal functionalities performed
by idealized third parties, and a set of adversaries A. A
protocol is said to be UC secure if the real-world execution
of the protocol cannot be distinguished from the idealized
protocol execution by the environment.

We model committees as a single TEE executing the pro-
tocol. Under UC, we consider a real world, in which users

run the APCN protocol, m4pcn, as described in Sec III,
and an ideal world, in which users interact with an ideal
functionality, F'apcn, implemented by a trusted third party.
Attackers behavior is introduced in the ideal world by a
simulator S with appropriate attacker abilities as described
in Sec II-C. To prove that APCN achieves fund security, we
show that (i) the real and ideal worlds are indistinguishable to
an external observer . This implies that any attack violating
fund security in the real world is also possible in the ideal one;
and (ii) Fupcn achieves fund security in the ideal world.
This proves that m4pcon also achieves fund security. We’ll
show that the simulator S in the ideal-world translates every
adversary A in the real-world into a simulated attacker, which
is indistinguishable to the environment.

We prove indistinguishability between the real and ideal
worlds through a series of five hybrid steps, starting at the real
world Hy, and ending in the ideal world H;. In each step, a
key element is changed and indistinguishability is proven. As
commonly done [25], in Hj, the desired behavior of TEEs
and the blockchain are replaced by two ideal functionalities,
Frpg and Fp respectively. Frpg is an ideal functionality that
models a TEE. It abstracts an enclave as a third party trusted
for execution, confidentiality and authenticity, with respect to
any user that is part of the system. F'p is an ideal functionality
that represents the blockchain. H; behaves the same as Hj
except that S simulates Frrpp. When the adversary A wants
to communicate with its Frgp, S faithfully emulates Frpg’s
behavior and records .A’s messages. As S simulates the real-
world protocol perfectly, the environment € cannot distinguish
between Hy and H;. In Hy, S simulates Fz. When the
adversary 4 wants to interact with the blockchain, S emulates
Fp’s behavior for A, and no environment can distinguish
between H; and Hy. H3 behaves the same as Hy except that if
A invoked its Frgg with an incorrect call, S aborts and drops
incorrectly signed messages to Frpg. Otherwise, S delivers
the message to the honest party in the protocol. Hy and Hj
are indistinguishable, or else ¢ and A can be leveraged to
construct an adversary that succeeds in a signature forgery.
In Hy4, the only difference is that incorrectly signed messages
to Fp are dropped by S. H, is indistinguishable from Hj
for the same reasons as the last step. Hs is the ideal world
execution, that calls of S to F)y pcy are mapped from the calls
in the simulated real-world. In Hy, S can faithfully interact
with F)ypon, while faithfully emulating A’s view of the real-
world. S can then output to ¢ exactly A’s output in the real-
world. So it is equivalence between mapcon and Frgp to €.

Since for any environment the ideal-world and the real-
world executions are indistinguishable, funds security that
holds in the ideal-world will also hold in the real-world. We
now discuss why the ideal functionality F4pcon satisfies the
security requirements from Sec. II-D.

Correctness on channel update. For users sharing a chan-
nel with their own TEESs, the correct channel activities are
achieved by the ideal functionality notifying the users of
whether the channel has successfully been created or updated.
For users without TEEs, chain replication in the TEE com-

mittee offers strong consistency among all TEEs, which will
finally achieve consensus on channel state and notify users.

Guaranteed channel closing with latest state. A channel
u — v can be closed by either v or v with latest state. If
u sends a channel closing request to the ideal functionality
Fapon, it will inform v with a message. If it does not
receive any dispute or response from v within time A, it will
close the channel after the channel finishing all the ongoing
transactions or reaching time bound. If v provides a dispute
with the correct signed ledger and latest timestamp, Fapcon
will accept this channel state to close the channel, and also
for future settlement.

Guaranteed no double spending. Consider a user wu, it calls
the ideal functionality F4pcony to make a transaction to v.
Fapcon always guarantees that v has enough funds to pay v,
and updates funds after each transaction. It makes sure that u
cannot use the same amount of money to pay others twice.

VI. PERFORMANCE EVALUATION
We present the evaluation results based on prototype imple-
mentation and simulations.

A. Methodology

We implement the APCN prototype using Intel SGX SDK
in C++. The prototype is mainly used for evaluating the real
latency to generate ledgers, links, and transactions. Note that
multiple TEE implementations are commercially available,
including ARM TrustZone and AMD SEV. They can also be
applied.

The simulations use two real PCN topologies: Ripple [26]
and Lightning [2], as well as synthesis topologies. For Ripple,
we use the data from January 2021 to December 2021, and
get the network topology with 1,783 nodes and 18,395 edges
in our simulation. For Lightning, we get the network topology
with 3,519 nodes and 47,311 edges on one day in January
2022. The node balance in APCN is assigned as the sum of
the channel balances of a node. We build two sets of synthetic
PCN topologies based on the Waxman model [27] and the
scale-free network model [28]. The node balances are assigned
similar to those of Ripple. The payments are also generated by
mapping the Ripple transactions to the synthetic topologies.

In order to defend side-channel attacks, we use timing
and memory-access side-channel resistant libraries, AES-NI
based AES-GCM [29], [30]. To further enhance the secu-
rity of APCN, we apply T-SGX [18], a countermeasure for
controlled-channel attacks.

Comparisons. To evaluate the performance of APCN,
we compare APCN with WebFlow [8], SpeedyMurmurs
(SM) [31], Spider [5], Perun [32], and shortest paths (SP).

Metrics. We use average processing latency and the number
of hopcounts to evaluate the congestion control mechanism
in APCN. The processing latency of payment is calculated
as the sum of per-hop delay along the path which is related
to the channel condition. Similar to prior work [6], [31],
we also use success rate as evaluation metric for resource
utilization, defined as the percentage of successful payments
whose demands are met overall generated payments. We report

Bl APCN
80 Il WebFlow 80

Bl APCN
Il WebFlow

Perun

Perun

Success Raio(%)
Success Raio(%)

0
APCNWebFlow 0 20 40 60 80 100
q (%)

APCNWebFlow 0 20 40 60 80 100
q (%)

(a) Ripple (b) Lightning

ElAPCN
Il WebFlow
Perun

M APCN
Il WebFlow 80
Perun

80

60

40

Success Raio(%)
Success Raio(%)

20

0
APCNWebFlow 0 20 40 60 80 100
q (%)

(d) Scale-free

0
APCNWebFlow 0 20 40 60 80 100
q(%)

(c) Waxman

Fig. 4. The success ratio comparison of APCN, PCN and virtual payment channel network with varying proportion of virtual channels.

2
=
S
'S
S
S

N
S
S

S
S
S

Average routing latency (ms)
2 =
S S
Average routing latency (ms)
w
=3
=)

N
=
S
N
=
S

0
I
S

Average routing latency (ms)
n
Average routing latency (ms)
)2 -
wn
S

0 10 20 30 40 50 60 70 80 90 100
p (%)

0 10 20 30 40 50 60 70 80 90 100
p (%)

B
S
=3

0 10 20 30 40 50 60 70 80 90 100
p (%)

0 10 20 30 40 50 60 70 80 90 100
p (%)

(c) Waxman (d) Scale-free

Fig. 5. The average routing latency with varying p values.

(a) Ripple (b) Lightning
TABLE III
CHANNEL PERFORMANCE
Operation and Latency(ms) APCN APCN w/ T-SGX
Single Local TEE:
new_payment_channel 2,310 6,183
close_channel 2,205 5,830
makepayments 105 291
Remote TEE:
new_payment_channel 4,317 25,294
close_channel 2,984 12,523
makepayments 427 1,015

the average results over 10 runs, each of which includes
hundreds of communication pairs.
B. Evaluation Results

Performance of payment channels. We conduct a testbed
evaluation with the prototype. In the experiments, we construct
a payment channel between two users with local TEEs. So
the users only use a single local TEE to manage their ledgers
and transactions instead of the TEE service providers commit-
tee. We execute several transactions between them. Table III
shows the performance of different actions of APCN, and the
latency when applying T-SGX to improve system security.
Each channel creation takes 2.3 secs on average. It is much
faster than channel creation in Lightning Network, which
is approximately 60 mins, as a transaction must be placed
onto the blockchain and confirmation takes 6 Bitcoin blocks.
Channel creation in APCN only requires the corresponding
TEE to perform remote attestation and add an entry in its
ledger, without the participants of the blockchain. Even though
remote attestation requires participation of the Intel attestation
service, it will not become the bottleneck when the system
scales up. The reason is that each user only has limited number
of channels with its neighbors, and channel creation is not a
frequent action. As long as the channel is there, users can
perform unlimited number of transactions via the channel. To
close a channel, TEE has to wait until the channel status in the

ledger becomes ‘Complete’. The waiting time can vary a lot,
so we only evaluate the time to close a channel whose status
is Complete. In APCN, closing a channel only requires status
change in the ledger and takes 2.2 secs on average, which
is much less than the time to close a channel in Lightning
Network which requires a transaction in blockchain. For the
payments processing latency, we only consider the time of an
idle channel processing one payment. It is 105 ms on average.
We use this time as A in our congestion control mechanism
in evaluation.

We then consider the case of non-SGX users. we construct
a payment channel between two users, one is equipped with
SGX, one is not and uses a TEE service provider committee at
size of 3. Creation of such a payment channel takes 4.3 secs,
as the non-SGX user must verify the integrity of TEEs of the
committee. Closing channel and processing payment also take
more times, 2.9 secs and 427 ms respectively, since each TEE
service provider in the committee needs to verify and sign
each update of the user’s ledger. When applying T-SGX to
APCN, the processing latency increased within 5 times in all
the cases, which is tolerable for better security.

Comparison with other PCNs. We use simulations to
compare the performance of APCN, WebFlow, and Perun —
a virtual payment channel system. For virtual payment chan-
nels, we analyze the historical transaction dataset in different
network topologies. The virtual channels are built according
to the transaction frequency of user pairs. We tends to build
virtual channel for user pairs making transactions with higher
frequency. We set the proportion of virtual channels to be g,
and vary the ¢ value from 0% to 100% to test the performance.
Here, we use 5,000 transactions in each run. Figure 4 shows
the success rates of transactions in APCN, WebFlow, and
Perun with varying ¢ value. When ¢ is 0, Perun has no
virtual channel, and it becomes the same scheme as WebFlow.
All users need to execute the routing protocol to probe the

100 100 100
P—o—%—e—o o6 o o . S—o—o—6—9—o—o0— e
—

" —e—APCN % —e—APCN % “o-APCN
_ . WF - = -% WF - -% WF
S Spider i, S Spider X Spider
Z 80, —-SM £ £ 80% —£-SM Z 8 A-SM
g N o s 51 W= = = -+ 3 X -
H g o 2 Z 4 xooe s e N + SP
5 g o 70! B
s 2] b]
] 7] 3 T - e e +o A 2]

60 Btk R S
50 50 50

1 2 3 4 5 6 7 8 9 10
Number of transactions (K)

1 2 3 4 5 6 7 8 9 10
Number of transactions (K)

1 2 3 4 5 6 7 8 9 10 1 2 3

4

5

6

7

8 9

Number of transactions (K)

Number of transactions (K)

(a) Ripple (b) Lightning (c) Waxman (d) Scale-free

Fig. 6. The success ratio with varying transaction numbers under different network topologies.

payment channels to send or relay transactions. So it has
the same performance as WebFlow. With more payment pairs
setting up virtual channel, the overall success rate decreases
a lot. The reason is that, with more virtual channels in the
networks, more funds are locked in the virtual channels, and
those funds cannot be used in other channels. Although virtual
payment channels provide a very fast way to stream payments,
it actually affect the overall success rate.

Efficiency of congestion control mechanism. We first
consider the influence of parameters in our congestion control
mechanism. With congestion control, the intermediate node
would send the payment to the direct neighbor closest to
the receiver with a probability p in APCN. To find the
optimal p for our system, we vary the p value from 0% to
100%, and see how the choice impacts the performance, i.e.
average processing latency. Here, we use 5,000 transactions
in each run. Figure 5 shows the average processing latency
with varying p values. It is understandable that both settings:
p = 0% and 100% result in relatively high average processing
delay. Because when p equals to 0%, it becomes the same
routing protocol as WebFlow without congestion control. Even
if the algorithm always chooses the next hop that is closest to
the receiver and more likely to have lower routing stretch, the
next hop itself may introduce large processing delay, and thus
lead to higher overall processing latency along the path. On the
contrary, when p equals to 100%, our heuristic routing algo-
rithm at intermediate nodes estimates the remaining processing
latency proportional to the distance from the node to the
recipient. However, this estimation is not accurate reflecting
the processing latency, since hop-delay is not a stable metric
and changing over time. Observed from the evaluation result,
when p equals to 40%, the congestion control mechanism
could achieve a better performance. So we set p value to 40%
in the following experiments.

Performance with different networks. We evaluate APCN
with four PCN topologies and a varied number of transac-
tions. As shown in Fig. 6, by increasing of the number of
transactions, the success rate of all schemes except APCN
decreases significantly in all topologies. The reason is that,
for other schemes under traditional payment channel networks,
as more transactions flowing into the network, more channels
are saturated in one direction, making them cannot be used
for future transactions. However, in APCN, the success ratio
almost keeps over 95% and does not have obvious changes,

while success ratio of other schemes are always below 80%.
VII. RELATED WORK

PCNs provide a high-throughput solution for
blockchains [33]. Lightning Network [2] uses max-flow
routing algorithms to find paths. Flash [6] also uses modified
max-flow routing algorithms but treats elephant and mice
payments differently. SilentWhispers [34], SpeedyMurmurs
[31], and have been proposed to improve routing scalability.

In order to improve the fund utilization and avoid channel
imbalance, Spider [5] develops a multi-path congestion control
algorithm. It is a centralized offline routing algorithm and still
has a high probing overhead. REVIVE [35] enables users to se-
curely rebalance their channels, according to the preferences of
the channel owners. Sprites [36] supports partial withdrawals
and deposits, during which the channel can continue to operate
without interruption, but requires smart contracts. Teechain [7]
supports dynamic deposits with treasuries by TEEs, in order
to prevent parties from stealing the fund. Different from them,
APCN enables shared deposits among all payment channels of
each user and allows funds to be used with high flexibility.

VIII. CONCLUSION
We present APCN, a novel design for PCNs that enables

shared funds among all the payment channels of a node. This
design provides high fund-allocation flexibility and hence sig-
nificantly increases transaction success rates. To prevent users
from misbehavior, we use TEEs to control funds, balances,
and payments. We also design a routing protocol in APCN that
takes congestion control into account. We build a prototype of
APCN with Intel SGX and evaluate the performance with both
prototype experiments and simulations with real PCN data.
Results show that APCN achieves evidently higher success
rates of multi-hop payments with lower average hops and
latency, compared to existing PCNs.
ACKNOWLEDGMENT

The authors were partially supported by NSF Grants
1750704, 1932447, and 2114113. C. Qian was partially sup-
ported by the ARO and was accomplished under Grant Num-
ber WO11NF-20-1-0253. The views and conclusions contained
in this document are those of the authors and should not
be interpreted as representing the official policies, either
expressed or implied, of the ARO or the U.S. Government.
The U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copy-
right notation herein. We thank our shepherd Dejun Yang and
anonymous reviewers for their comments.

[1]

[3]
[4]

[5]

[6]
[7]

[9]
[10]
(11]

[12]

[13]
[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

REFERENCES

K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba,
A. Miller, P. Saxena, E. Shi, E. G. Sirer et al., “On scaling decentralized
blockchains,” in Proceedings of Springer FC, 2016.

J. Poon and T. Dryja, “The bitcoin lightning network: Scalable off-chain
instant payments,” 2016.

“Transaction rate of bitcoin,” http://www.blockchain.com/en/charts/tran-
sactions-per-second, 2020.

V. Mavroudis, K. Wiist, A. Dhar, K. Kostiainen, and S. Capkun,
“Snappy: Fast on-chain payments with practical collaterals,” in Proceed-
ings of USENIX NDSS, 2020.

V. Sivaraman, S. B. Venkatakrishnan, K. Ruan, P. Negi, L. Yang,
R. Mittal, G. Fanti, and M. Alizadeh, “High throughput cryptocurrency
routing in payment channel networks,” in Proceedings of USENIX NSDI,
2020.

P. Wang, H. Xu, X. Jin, and T. Wang, “Flash: efficient dynamic routing
for offchain networks,” in Proceedings of ACM CoNEXT, 2019.

J. Lind, O. Naor, I. Eyal, F. Kelbert, E. G. Sirer, and P. Pietzuch,
“Teechain: a secure payment network with asynchronous blockchain
access,” in Proceedings of ACM SOSP, 2019.

X. Zhang, S. Shi, and C. Qian, “Webflow: Scalable and decentralized
routing for payment channel networks with high resource utilization,”
arXiv preprint arXiv:2109.11665, 2021.

D. Kaplan, J. Powell, and T. Woller, “Amd memory encryption,” White
paper, 2016.

R. Intel, “Software guard extensions programming reference,” Intel
Corporation, 2014.

Z.Hua, J. Gu, Y. Xia, H. Chen, B. Zang, and H. Guan, “vtz: Virtualizing
{ARM} trustzone,” in Proceedings of USENIX Security, 2017.

D. Lee, D. Kohlbrenner, S. Shinde, D. Song, and K. Asanovié,
“Keystone: An open framework for architecting tees,” arXiv preprint
arXiv:1907.10119, 2019.

H.-F. Security, “Multizone: The first trusted execution environment for
risc-v,” https://hex-five.com/, 2018.

Linaro, “Open portable trusted execution environment,” https://www.op-
tee.org/, 2014.

Intel, “Product change notification,”
https://qdms.intel.com/dm/i.aspx/5SA160770-FC47-47A0-BF8A-
062540456F0A/PCN114074-00.pdf, 2015.

A. Nilsson, P. N. Bideh, and J. Brorsson, “A survey of published attacks
on intel sgx,” arXiv preprint arXiv:2006.13598, 2020.

M. Li, J. Zhu, T. Zhang, C. Tan, Y. Xia, S. Angel, and H. Chen,
“Bringing decentralized search to decentralized services,” in Proceedings
of USENIX OSDI, 2021.

M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-sgx: Eradicating
controlled-channel attacks against enclave programs.” in Proceedings
of NDSS, 2017.

S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado,
“Inferring fine-grained control flow inside {SGX} enclaves with branch
shadowing,” in Proceedings of USENIX Security, 2017.

J. Seo, B. Lee, S. M. Kim, M.-W. Shih, I. Shin, D. Han, and T. Kim,
“Sgx-shield: Enabling address space layout randomization for sgx pro-
grams.” in Proceedings of NDSS, 2017.

M. Armanuzzaman and Z. Zhao, “Byotee: Towards building your
own trusted execution environments using fpga,” arXiv preprint
arXiv:2203.04214, 2022.

C. S. Intel, “Intel software guard extensions remote attestation end-to-
end example,” 2018.

R. Canetti, “Universally composable security: A new paradigm for cryp-
tographic protocols,” in Proceedings IEEE Symposium on Foundations
of Computer Science, 2001.

S. Dziembowski, S. Faust, and K. Hostakovd, “General state channel
networks,” in Proceedings of ACM SIGSAC Conference on Computer
and Communications Security, 2018.

I. Bentov, Y. Ji, F. Zhang, L. Breidenbach, P. Daian, and A. Juels,
“Tesseract: Real-time cryptocurrency exchange using trusted hardware,”
in Proceedings of ACM CCS, 2019.

F. Armknecht, G. O. Karame, A. Mandal, F. Youssef, and E. Zenner,
“Ripple: Overview and outlook,” in Proceedings of Springer TRUST,
2015.

B. M. Waxman, “Routing of multipoint connections,” 1988.

(28]

[29]

[30]

(31]

(32]

[33]

[34]

(35]

[36]

N. Developers, https://networkx.github.io/documentation/networkx-
1.9.1/reference/generated/networkx.generators.random_graphs.barabasi
_albert_graph.html, 2014.

Intel, “Intel 64 and ia-32 architectures software developer manuals,”
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-
sdm.html.

R. Intel, “Intel(r) software guard extensions
https://github.com/intel/linux-sgx.

S. Roos, P. Moreno-Sanchez, A. Kate, and I. Goldberg, “Settling
payments fast and private: Efficient decentralized routing for path-based
transactions,” in Proceedings of USENIX NDSS, 2017.

S. Dziembowski, L. Eckey, S. Faust, and D. Malinowski, “Perun: Virtual
payment hubs over cryptocurrencies,” in Proceedings of IEEE SP, 2019.
Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling byzantine agreements for cryptocurrencies,” in Proceedings of
ACM SOSP, 2017.

G. Malavolta, P. Moreno-Sanchez, A. Kate, and M. Maffei, “Silentwhis-
pers: Enforcing security and privacy in decentralized credit networks.”
in Proceedings of USENIX NDSS, 2017.

R. Khalil and A. Gervais, “Revive: Rebalancing off-blockchain payment
networks,” in Proceedings of ACM CCS, 2017.

A. Miller, I. Bentov, S. Bakshi, R. Kumaresan, and P. McCorry, “Sprites
and state channels: Payment networks that go faster than lightning,” in
Proceedings of Springer FC, 2019.

for linux o0s,”

