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ML-based RTS. There, we show that our improved analysis-based

RTS performs better than the state-of-the-art ML-based RTS.

The technical challenge that we address in this paper is how to

speed up regression testing by making analysis-based RTS more

precise without sacrificing safety. We do so based on the idea that

some semantics-modifying code changes do not require re-running

all tests that analysis-based RTS selects. For example, suppose

that the only change to a Java class that has no ancestors (except

java.lang.Object) or descendants is the deletion of a method.

If the resulting code compiles, then a class-level RTS technique

need not re-run test classes that are only affected by this deletion.

Our approach therefore generalizes related work like Reks [67],

which improves RTS precision by not re-running tests that are only

affected by semantics-preserving changes, i.e., refactorings.

We hypothesize that identifying and reasoning about the kinds

of changes that we target can further reduce end-to-end regression

testing time at the cost of increased RTS analysis time. End-to-end

regression testing time with RTS consists of collection time to find

test dependencies, analysis time to find affected tests, and execution

time to run selected tests.

To identify kinds of code changes for which analysis-based RTS

may safely skip to re-run some tests, we manually inspect developer

changes in 250 revisions of 5 open-source projects. We find 29 such

kinds of changes and organize them into 13 findings, 11 of which

are semantics-modifying. We do not claim to have discovered an

exhaustive list of kinds of changes that can be used to make RTS

more precise. Rather, we use those that we discover to investigate if

RTS that reasons about them is effective for speeding up end-to-end

regression testing time, and if information discovered from some

projects help make RTS more precise in other projects. Future work

can pursue the discovery of more of such kinds of changes.

We enhance Ekstazi (a dynamic class-level RTS technique) [26]

and STARTS (a static class-level RTS technique) [40] to reason about

the kinds of changes that we find. We call the enhanced techniques

FineEkstazi and FineSTARTS; they enable us to evaluate the im-

pact of our work on dynamic and static RTS paradigms. Finding and

leveraging these kinds of changes is a one-time cost paid by RTS

tool developers, not by the users of FineEkstazi and FineSTARTS.

We evaluate our enhanced RTS techniques on other projects

and revisions than those from which we discover the kinds of

changes that we use. We run FineEkstazi and FineSTARTS on 50

revisions each in 23 open source projects (total: 1,150 revisions).

Then, we compare the number of selected tests, the end-to-end

times, and the analyses times of FineEkstazi and FineSTARTS

with those of Ekstazi and STARTS. We also evaluate the safety of

FineEkstazi and FineSTARTS relative to Ekstazi and STARTS by

using RTSCheck [75] to check all four implementations. Finally,

to assess the prevalence of the kinds of changes that we leverage,

we manually compare the kinds of changes in 250 of these 1,150

revisions with those that we used during the discovery process.

The results show that reasoning about these kinds of changes is

effective for improving RTS precision and speeding up regression

testing. FineEkstazi reduces the number of selected tests and the

end-to-end regression testing time by as much as 80.8% (average:

41.7%) and 55.4% (average: 33.7%), compared to Ekstazi. The com-

parative numbers for FineSTARTS’s improvement over STARTS

are 71.2% (average: 31.8%) and 60.6% (average: 28.7%). FineEkstazi

1 class A {

2 - public int m(int x, int y){ return x - y; }

3 + public int m(int x, int y){ return x / y; }

4 }

5 class B {

6 public int m(int x, int y){ return x + y; }

7 }

8 class C {

9 public int m(int x, int y) throws Exception {

10 Object a = Class.forName("A").newInstance ();

11 Method m = a.getClass ().getMethod("m", ...);

12 return m.invoke(a, x, y);

13 }

14 }

1 class T1{

2 @Test void t1(){assertEqual (2, new A().m(5, 3);}

3 }

4 class T2{

5 @Test void t2(){assertEquals (8, new B().m(5, 3);}

6 }

7 class T3{

8 @Test void t3()

9 throws Exception{assertEquals (4, new C().m(7, 3);}

10 @Test void t4(){assertEquals (10, new B().m(7, 3);}

11 }

Figure 1: Code and tests for illustrating Ekstazi and STARTS.

is also faster than HyRTS [73], which is a dynamic RTS tool that

is more precise than Ekstazi and STARTS. But, future work could

enhance HyRTS to reason about the kinds of changes that we find.

FineEkstazi and FineSTARTS make Ekstazi and STARTS more

precise and speed up regression testing without sacrificing safety.

Our analysis of the RTSCheck results shows that FineEkstazi and

FineSTARTS do not incur any new safety violations compared to

Ekstazi and STARTS. Lastly, our manual checks show that 250 (of

1,150) revisions contain several but not all of the kinds of changes

that we find. Changes in the manually checked revisions map to 10

out of 13 kinds of changes. So, while the kinds of changes varied

across programs’ revision histories, the kinds of changes that we

find apply beyond the projects from which we obtained them.

This paper makes the following contributions:

★ Idea.We use reasoning about semantics-modifying changes to

make RTS more precise without sacrificing safety.

★ Kinds of changes.We produce an initial set of kinds of changes

that future work can build on to make RTS even more precise.

★ Tools. We develop FineEkstazi and FineSTARTS as manual-

analysis driven enhancements of Ekstazi and STARTS.

★ Evaluation.We find that reasoning about these kinds of changes

speeds up regression testing and can generalize across projects.

Our data is at https://github.com/EngineeringSoftware/FineRTS.

2 BACKGROUND AND EXAMPLES

We use examples to describe Ekstazi, STARTS, and semantics-

modifying changes for which it is safe to not re-run some tests.

Recent RTS techniques. Ekstazi and STARTS are recent analysis-

based class-level RTS techniques; they find changed classes and af-

fected test classes based on a class-level dependency graph. Ekstazi

creates its dependency graph dynamically, but STARTS builds its

dependency graph statically. Figures 1 and 2 to illustrate their simi-

larities and differences. Figure 1 shows classes A, B, C in a synthetic

code under test (CUT), and test classes T1, T2, and T3, which check
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Table 2: Findings from our formative study. Kind of Change: description; #F no. of source files with each kind of code change;

#S: no. of revisions with each kind of change; #P: no. of inspected projects (out of 5) with each kind of change; Reasoning: why

the kind of change can be used to improve RTS precision.

ID Kind of Change #F #S #P Reasoning

F1 a Add class 133 39 5 Evaluated RTS techniques already handle these properly.

F2

a Add instance method 58 43 5

If no method with same signature is invoked on instances of the modified class,

then tests that are only affected by such change can be safely skipped.

b Remove instance method 1 1 1

c Remove static method 1 1 1

d Add constructor 1 1 1

e Add static method 5 5 3

F3 a Sort members 42 5 3 This is a refactoring for which tests need not be re-run.

F4

a Add field 18 13 3

Tests that do not create instances of modified class will not change behavior.b Remove field 3 3 2

c Add static initializer block 1 1 1

F5 a Change anonymous class to lambda 18 2 2 If these are the only changes, affected tests do not need to be rerun.

F6

a Rename class 9 3 2
Refactorings for which no tests do not need to be re-run. The compiler will

catch improper renamings.
b Rename instance method 4 4 3

c Rename static method 1 1 1

F7

a Import field type from different package 1 1 1

Affected tests can be re-run based on method-level reasoning.b Modify field initialization 9 5 3

c Import method from different package 1 1 1

F8

a Add exception to method 6 4 3
If these are the only changes, affected tests do not need to be re-run if no test

dependency uses reflection.
b Modify throws clause 1 1 1

c Modify method parameter 2 2 1

F9

a Modify class access modifier 3 2 2
If these are the only changes, affected tests do not need to be re-run if no test

dependency uses reflection.
b Make field final 2 2 1

c Modify field access modifier 2 2 2

F10 a Modify a constructor 5 3 2 Affected tests can be re-run based on method-level reasoning.

F11
a Specialize parameter type 3 2 2 No need to re-run tests if these are the only changes because bytecode of

affected (dependent) class has changed.b Add/Change base class to hierarchy 1 1 1

F12

There is no need to re-run tests if there is no reflection (no runtime annotation).

Affected tests can be re-run based on method-level reasoning if there is reflection,

and annotation is method annotation, parameter annotation, or field annotation.

a Add runtime annotation 3 3 1

F13
a Replace parameter with lambda expression 1 1 1

Affected tests can be re-run based on method-level reasoning.
b Compiler modifies bytecode structure 12 6 3

in Table 2 is a label that we use to refer to each finding; the caption

in that table describes other columns.

Here, we discuss the Kind of Change rows in Table 2 that are

not self-explanatory. Sorting fields or methods (F3) is a refactoring;

RTS should not re-run tests. Reks [67] is the only refactoring-aware

RTS technique that we know, and it does not handle this refactoring.

Yet, F3 applies to many files that we analyze.

We explain some other semantics-modifying kinds of changes.

(1) “Import method from different package” (F7): the package from

which a method is imported has changed.

(2) “Import field type from different package” (F7): the package

from which a field’s type is imported has changed.

(3) “Replace parameter with lambda expression” (F13): a lambda

expression is passed as a parameter to a changed API.

(4) “Compiler modifies bytecode structure” (F13): compiler opti-

mizations change bytecode structure but not functionality, e.g.,

constant propagation or synthetic method introduction.

Table 2 is based only on the file-level diffs that we analyze. If a file

contains more than one kind of change in one diff, we increment

the count of each kind by one. The kinds of changes in Table 2 are

only from 95 unique revisions; the remaining (155) revisions merely

modify bytecode metadata, or re-format code. Also, the kinds of

changes that we identify are from 332 unique files.

Table 3: Findings that RTS techniques support.

ID E
k
st
a
zi

S
T
A
R
T
S

R
e
k
s

★
F
in
e
E
k
st
a
zi

★
F
in
e
S
T
A
R
T
S

F1 † ✓ ✓ ✓ ✓ ✓

F2 † ✗ ✗ ✗ ✓ ✓

F3 ✗ ✗ ✗ ✓ ✓

F4 † ✗ ✗ ✗ ✓ ✓

F5 † ✗ ✗ ✗ ✗ ✗

F6 ✗ ✗ ✓ ✓ ✓

F7 † ✗ ✗ ✗ ✓ ✓

F8 † ✗ ✗ ✗ ✓ ✓

F9 † ✗ ✗ ✗ ✓ ✓

F10 † ✗ ✗ ✗ ✓ ✓

F11 † ✗ ✗ ✗ ✓ ✓

F12 † ✗ ✗ ✗ ✗ ✗

F13 † ✗ ✗ ✗ ✗ ✗

Findings that RTS techniques handle. Table 3 shows which

findings are supported by recent RTS techniques and the enhanced

techniques that we introduce in this paper. There,✓ or ✗means that
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Algorithm 1 getAffectedTests for FineEkstazi and FineSTARTS

Inputs:) : the set of test classes in the new revision," : C → �

⊲ Section 4.1 describes �

Outputs:)0 ⊆ ) : affected test classes

1: procedure getAffectedTests() ,")

2: )0 ← {}

3: for all test in) do

4: if test ∉ " then ⊲ test is a newly added test class

5: )0 ← )0 ∪ {test}; continue

6: for all� in" [test] .keys( ) do

7: if getModified(test,�," ) then ⊲ test should be re-run

8: )0 ← )0 ∪ {test}; break

9: return)0

10:

11: procedure getModified(test,�,")

12: �new ← getNewMetaData(� )

13: if " [test] [� ] = �new then return false ⊲ C did not change

14: else ⊲ did fields, constructors, initializers, or methods in C change?

15: for all 5 in getFieldData(" [test] [� ] ) do

16: if fldChanged(" [test] [� ] [ 5 ], �new [ 5 ] ) then return true

17: for all = in getConstructorAndInitData(" [test] [� ] ) do

18: if conChanged(" [test] [� ] [=], �new [=] ) then return true

19: for all< in getMethodData(" [test] [� ] ) do

20: if mtdChanged(" [test] [� ] [<], �new [<],� ) then return true

21: return false

22:

23: procedure fldChanged(f, fnew)

24: return ¬(f \ fnew = ∅ ∨ fnew \ f = ∅) ⊲ true if field info changed

25:

26: procedure conChanged(n, nnew)

27: return n ≠ nnew ⊲ true if constructor or static initializer changed

28:

29: procedure mtdChanged(m,mnew,�)

30: for all sig in (m.keys( ) ∪mnew .keys( )).copy() do

⊲ old and new signatures

31: if sig ∈ m and sig ∈ mnew then ⊲ unchanged signatures

32: if m[sig] = mnew [sig] then

⊲ same bytecode; ignore the change

33: mnew ← mnew \ { (sig,mnew [sig] ) }; m← m \ { (sig,m[sig] ) }

34: else return true ⊲ change: same signature, different bytecode

35: else if mnew [sig] ∈ m.values( ) or m[sig] ∈ mnew .values( ) then

⊲ found old bytecode with new signature; ignore the change

36: m← m \ { (sig,mnew [sig] ) }; mnew ← mnew \ { (sig,m[sig] ) }

37: cHasHrchy← hasHrchy(� ) or hadHrchy(� )

38: if !cHasHrchy and (m = ∅ or mnew
= ∅) then

⊲ one empty map: method added or deleted without affecting hierarchy

39: return false

40: else if � ∈ ) and mnew
= ∅ then

⊲ deleted a method from a test class

41: return false

42: return true

stored in 5 , so, if field access modifiers are the only changed part

of � , fldChanged will return false.

If fields in � did not change, conChanged returns true if a con-

structor or static initializer changed (line 27) so that all tests that

depend on � are selected. Constructors and static initializers are

typically much fewer than other kinds of methods. So checking

them first in conChanged makes getAffectedTests faster.

Algorithm 2 Embedding mRTS in FineEkstazi

Inputs: Test class C , Ekstazi metadata .4:BC0I8 , mRTS metadata .<ACB

Outputs: true if the test should run; false otherwise

1: procedure Affected(C, .4:BC0I8, .<ACB)

2: 26← FineEkstazi.64C">38 5 843�;0BB4B (C, .4:BC0I8 )

3: if 26 = ∅ then ⊲ Nothing is modified

4: return 5 0;B4

5: <6←<')(.64C">38 5 843�;0BB4B (C, .<ACB )

6: if 26 ⊊<6 then ⊲ Reflection or third-party class

7: return CAD4

8: for 2;I : 26 do

9: if<')(.8B">38 5 843 (C, 2;I, .<ACB ) then

10: return CAD4

11: return 5 0;B4

Finally,mtdChanged performsmethod-level reasoning. The union

of (signature, bytecode) pairs for all methods in the old and new

revisions is iterated over to check for changes. If the pair for method

<8 is the same in the old and new revisions,<8 did not change and

mtdChanged proceeds with the next method,<8+1 (line 32). If the

signatures are the same but the bytecode differ, then the method

changed and line 34 returns true. On line 35, if the signatures differ

but the bytecode is the same,<8 was refactored—no test should be

selected—and mtdChanged proceeds with<8+1.

On line 38, if exactly one revision’s map is empty then a method

must have been added to or deleted from a class � . If � is not

part of a class hierarchy, and assuming the code compiles, then

no test that only depends on � should be selected, so mtdChanged

returns false. Line 40 deals with a special case: if a test method is

added/revised, it is considered as changed. Speedups result when

the only change is to delete a method in a test class—the remaining

tests cannot be affected by the deleted test if the code still compiles.

4.3 Embedding Method-Level Reasoning

Using several findings in Section 3, e.g., F10, to improve RTS pre-

cision requires method-level reasoning. So, we develop a static

method-level analysis (mRTS) that can be combined with class-

level analyses to improve their precision without making them less

safe. Algorithm 2 shows how we integrate mRTS analysis into Fi-

neEkstazi; its inputs are a test class, Ekstazimetadata (.ekstazi),

and mRTS metadata (.mrts). It outputs true if the test should be

selected and false otherwise. The analogous algorithm for embed-

ding mRTS into FineSTARTS works in a similar way.

Line 2 obtains a set of modified classes (26) for test C (as identified

by FineEkstazi). If the set is empty (line 3), false is returned—C

is not affected. If the set is not empty, mRTS is called to obtain

the set of modified classes <6. If 26 ⊄ <6, then C is affected for

one of two reasons (1) a third-party class is modified (which is not

tracked by mRTS), or (2) reflection is used to access some classes

(which are not captured by mRTS). If 26 ⊂ <6, lines 8-10 iterate

over 26. For each � ∈ 26 line 9 invokes mRTS and returns true if

the mRTS finds that C is affected. If mRTS analysis returns false

for all changed classes, then C is not affected (line 11).
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5 EVALUATION

We evaluate the effectiveness of using our manual analysis findings

for improving RTS precision. We address these research questions:

• RQ1: How much does using the kinds of changes in our manual

analysis reduce the tests selected by Ekstazi and STARTS?

• RQ2: How much does using the kinds of changes in our manual

analysis reduce the end-to-end time of Ekstazi and STARTS?

• RQ3: What is the impact of using the kinds of changes in our

manual analysis on the safety of Ekstazi and STARTS?

• RQ4: To what extent do the findings from our manual analysis

re-occur in other projects and revisions that we did not analyze?

5.1 Experimental Setup

Evaluation subjects and revisions: Table 4 shows the 23 projects

that we evaluate (sorted by average test time), plus some character-

istics. Projects in our manual analysis are highlighted in gray. We

choose 18 of the projects in Table 4 because they are widely used

in RTS research, and prior work [39, 40, 60] showed that Ekstazi

and STARTS work well on many of their revisions. We omit four

projects from prior RTS research where average test time is less

than 10 seconds. We added another five projects that we are familiar

with and whose tests run longer than 10 seconds.

To find revisions, for each project, we run git diff on its revi-

sion history until we found 50 revisions where at least one Java file

was modified, and the project compiles. For projects in our manual

analysis, we used different sets of 50 revisions in our evaluation.

Doing so reduces the chance that FineEkstazi and FineSTARTS

are tuned to the projects and versions from which we obtained our

findings. In a sense, we aim to not “overfit” the data.

Running experiments: We run RetestAll, Ekstazi, FineEkstazi� ,

FineEkstazi, STARTS, FineSTARTS� , FineSTARTS, and HyRTS

on each of the 50 revisions in the 23 projects. FineEkstazi� and

FineSTARTS� do not use mRTS.

We record the number of test classes selected and the end-to-end

RTS time. We run separate experiments to collect the analysis (A),

test execution (E), and collection (C) times. Measuring A, E, and C

times enables us to analyze the time costs of reasoning about these

kinds of changes during RTS. We run all experiments on a 3.20 GHz

Intel® Core™ machine with 64GB of RAM, running Ubuntu Linux

18.04 and Oracle Java 64-Bit Server version 1.8.0_241.

5.2 RQ1: Impact on RTS Selection Rates

We evaluate whether and by howmuch FineEkstazi� , FineEkstazi,

FineSTARTS� , and FineSTARTS select fewer tests than Ekstazi

and STARTS. We also compare with HyRTS. Figure 7 shows the

percentage of all tests selected by these techniques per project. Note

that HyRTS crashed on P13, P17, and P18; we mark them as N/A

and exclude them when comparing with other tools. Exact numbers

of tests are shown in the appendix in our data package [4].

Reasoning about findings from our manual analysis reduces

selection rates, compared with Ekstazi and STARTS, in every eval-

uation subject. Also, combining with method-level analysis (mRTS)

further reduced selection rates. Reasoning about those findings

without mRTS yields up to 46.5% (average: 17.8%) reduction in tests

Table 4: Projects in our study.

PID Name SHA KLOC #Test
Test

Time (s)

P1 imaging 70dd698 39.3 115.2 15.6

P2 lang bff7521 78.1 148.8 16.6

P3 collections 954c29f 63.7 170.4 17.6

P4 asterisk-Java aca95a7 60.1 46.0 20.1

P5 codec 35e9cf2 23.9 60.7 22.4

P6 configuration 7e4b3fa 51.6 169.0 25.2

P7 compress 8a65cc9 50.2 142.6 28.9

P8 gerrit-events 6585777 8.1 24.0 30.1

P9 tabula-java 5f43a93 6.8 15.3 46.2

P10 fastjson 3ea25de 178.2 2297.0 47.8

P11 math dff1a09 149.7 467.6 50.3

P12 net 48e0662 28.3 44.0 62.3

P13 beanutils 85b8cc9 33.5 102.6 74.6

P14 rxjava-extras 62fb6a3 13.9 48.3 89.4

P15 dbcp 64a3b97 31.4 42.6 92.9

P16 io fc418a7 34.4 112.9 113.1

P17 b.HikariCP acc9ac7 11.9 39.3 157.2

P18 sdk-rest 1617bb1 65.2 24.0 169.8

P19 email-ext-plugin 8761c27 12.9 38.3 231.7

P20 pool be87cfc 14.6 22.0 333.8

P21 LogicNG 1bcead7 49.6 120.0 336.9

P22 finmath-lib 03befd8 76.6 100.6 1185.9

P23 lmdbjava 680e0a8 5.6 14.3 1308.6

selected by Ekstazi, and up to 50.4% (average: 16.0%) reduction

for STARTS. If the code-change information and mRTS are used

together, these reductions grow to 80.8% (average: 41.7%) and 71.2%

(average: 31.8%), respectively. The selection rates of FineEkstazi

are on par with those of HyRTS: FineEkstazi selects fewer tests

in 7 of 20 projects (HyRTS fails on 3 projects). Both use dynamic

cross-granularity analysis; FineEkstazi uses field-, method-, and

class-level analyses, while HyRTS uses only method- and class-

level analyses. Future work could enhance HyRTS precision by

enhancing it to reason about our findings.

5.3 RQ2: Impact on End-to-End Testing Times

We measure how reduced selection rates (Section 5.2) translate

to reductions in end-to-end regression testing times. Recall that

end-to-end time with RTS includes analysis time (to reason about

changes and find affected tests), execution time (to run selected

tests), and collection time (to create metadata for performing RTS

on the next revision). Figure 8 shows the percentage of end-to-end

time of the RTS tools compared to RetestAll time. This percentage

can be greater than 100% if RTS incurs significant overhead (analysis

and collection times). Exact end-to-end times, and breakdown of A,

E, and C times are in the appendix in our data package [4].

Compared to Ekstazi and STARTS, FineEkstazi and FineS-

TARTS reduce end-to-end times by up to 44.6% (average: 13.7%) and

42.9% (average: 12.5%), respectively, without mRTS. These reduc-

tions are up to 74.0% (average: 33.7%) and 68.0% (average: 28.7%),

respectively, when also using mRTS. But, reasoning about our find-

ings increases RTS analysis time, leading to an increase (rather

than a decrease) in the end-to-end times with FineEkstazi and
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Table 6: Applicabilty of manual analysis findings to other

projects and versions. #F : no. of source files with each kind

of code change; #S: no. of revisions with each kind of change.

ID Kind of Change #F #S

F1 a Add class 4052 190

F2

a Add instance method 688 285
b Remove instance method 322 96
c Remove static method 55 32
d Add constructor 0 0
e Add static method 218 101

F4
a Add field 273 156
b Remove field 74 41
c Add static initialized block 0 0

F8

Change signature 125 57
a Add exception to method / /
b Modify throws clause / /
c Modify method parameter / /

F10 a Modify a constructor 749 233

F11
a Specialize parameter type 0 0
b Add/Modify base class to hierarchy 59 24

No change 3204 75
F3 a Sort members / /

F6
b Rename instance method / /
c Rename static method / /

F7
a Modify field holding version / /
b Change field initialization / /
c Modify utilized API interfaces / /

F9
a Modify class access modifier / /
b Make field final / /
c Modify field access modifier / /

Method 3801 540
Summary 13845 721

We manually checked these violations. R1 violations (selecting

fewer failing tests than RetestAll) are caused by (1) all tools not

detecting changes to non-Java files; (2) STARTS missing static de-

pendencies between Suite (JUnit3 style) and tests. R3 violations

(selecting all tests in all versions) are because the programs gener-

ated by AutoEP have only a couple of tests, and safe RTS tools may

have to select all tests in some programs. Our techniques have less

R3 violations than existing RTS tools, which means that our tech-

niques improve the precision. The R6 violation (selecting a different

number of tests than RetestAll in the first version) from STARTS

is caused by incompatibility with a third-party library version. R7

violations (selecting more failed tests than RetestAll) from Ekstazi

are caused by (1) unexpectedly triggering JUnit4 annotations with

JUnit3; (2) improper support for a third-party library’s annotations.

5.5 RQ4: Spread of Manual Analysis Findings

Table 6 shows the frequency of the kinds of change in our manual

analysis in revisions and projects that we did not analyze. Table 6

omits findings that we do not support (Section 3.2). The “Method”

row sums all kinds of changes that occurred at the method-level;

the “Summary” row sums all kinds of changes. We automate the cat-

egorization of these changes. We count the three kinds of changes

in F8 together as “Change signature”. Also, F3, F6, F7, F9 are hard

to automatically count separately, so we count them together as

shown in the “No change” row. They apply to the same branch

(“return false” on line 21 in Algorithm 1) after comparing methods,

fields, and constructors, and we do not insert more branches to

distinguish these four findings to save analysis cost. For example,

F3 only changes the constant pool of the class, but does not change

the bytecode of methods, fields, and constructors.

Many changes are at the method-level: 3801/13845 of files and

540/721 of revisions. Our results (Section 3.2) show that reasoning

about our manual analysis findings complements combining class-

and method-level analyses. We show that (1) by itself, reasoning

about our findings improves RTS precision; and (2) using our find-

ings together with method-level reasoning further improves RTS

precision. Zhang [73] proposed using method-level analysis to im-

prove RTS precision. But, we are the first to find and reason about

semantics-modifying changes, and to use a two-tiered approach

based on both our findings and mixed-granularity reasoning.

6 DISCUSSION

We discuss the manual effort involved in our approach, experimen-

tal comparison with ML-based RTS, and future work.

On manual effort. The manual effort to find the kinds of changes

that we use can be non-trivial. But, we do not expect RTS tool

users to spend this manual effort. Rather, it is researchers and RTS

tool developers who may invest in finding these kinds of changes.

Also, note that finding the kinds of changes and enhancing RTS

techniques to leverage them is a one-time cost, unlike ML models

that may need to be trained per project and across revisions. The

manual effort that RTS tool developers invest is expected to result in

a pay-offs for the tool users: increased productivity (shorter testing

time), reduced impact on climate (less energy expended on testing),

and higher-quality code (tests are run more frequently).

Comparison with ML-based RTS. This paper improves analysis-

based RTS precision. But readers may wonder if ML-based RTS

could perform better. Here, we give some arguments to the contrary,

and show some experimental results which support our arguments.

Breaking the “performance wall” that we discussed in Section 1

is driving unsafe ML-based RTS, which is also being adopted, e.g.,

at Facebook [45] and Gradle Enterprise [7]. These early ML-based

RTS adopters have access to a lot of data about code changes and

test failures for training models. But, ML is out of the reach for the

vast majority of individual open-source projects because (1) they

have limited histories that contain insufficient usable data for train-

ing [72]; (2) their developers may not have ML expertise; (3) sub-

scriptions to ML-based RTS services like Gradle Enterprise may

cost more money than developers can afford (pricing for Gradle

Enterprise is not public at the time of writing [6]); and (4) there are

use cases in which safe RTS is critical, e.g., during debugging [29].

Next, we discuss our preliminary experiments to apply ML-based

RTS on open-source projects; the results support our arguments

about the lack of fit of ML-based RTS for these kinds of projects.

Models used. Trained models for ML-based RTS [7, 45] are not

available publicly. So, we use publicly-available models that we

previously trained for using ML-based RTS to improve analysis-

based RTS [72]. That training required historical test failures, which

are hard to find, so we used mutation testing to simulate failures.

Evaluation procedure. We use the 10 projects and revisions from

our prior evaluation. The IDs, names, and numbers of revisions of

the projects are in Table 7. We use the best model, FailBasic, the

best baseline, BM25, and the selection rates that found the most

failing tests. Overall, we use four models: FailBasic� , FailBasic( ,

BM25� , and BM25( (E: Ekstazi, S: STARTS).
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Improving RTS. As RTS grows in maturity and tool adoption,

researchers must now start paying more attention to RTS quality

improvement. We took a step in this direction with our RTSCheck

methodology for testing RTS tools [75], which we now use to test Fi-

neEkstazi and FineSTARTS. We developed Reks, which improves

RTS precision by not re-running tests affected by only semantics-

preserving changes, i.e., refactoring [67]. This paper generalizes

Reks and leverages semantics-modifying code changes that do not

require re-running all tests.

Other than Reks, other work on improving RTS precision did not

leverage kinds of code changes as we do. Zhang’s HyRTS [73] com-

bines method- and class-level analyses to improve RTS precision;

we compared FineEkstaziwith HyRTS in our evaluation. Palmskog

et al. [51] formally conducted a structural hierarchical impact anal-

ysis, including coarse-grained and fine-grained components. We

adopted a similar three-level hierarchy including both content and

structure. Orso et al.’s DejaVOO [50] improves RTS precision with

a two-phase approach: computing a class firewall [38] as an upper-

bound of the set of classes affected by changed code, then using an

edge-level control-flow analysis to improve the precision of the first

phase. Our approach exhibits a similar refinement process: we first

collect class-level RTS’s selected tests, and then refine the results

by integrating a method-level and field-level RTS, but we addition-

ally incorporate the knowledge of the nature of changes in our

techniques. TLDR [71] is a static method-level RTS tool and saves

end-to-end time by analyzing the method-level dependency graph

in parallel. TLDR is orthogonal to our work, and both approaches

can be combined in the future.

Recently, companies including Meta [45] and Gradle [7] report

using ML-based RTS. Researchers also studied applying ML models

for RTS on open-source projects [13, 20, 44, 52, 72]. We discussed

in Section 7 that ML-based RTS is not as effective for open-source

projects as our enhanced analysis-based RTS.

Leveraging code changes. Bell et al.’s DeFlaker [12] leveraged

code change semantics to detect flaky tests (failing tests due to

non-determinism) with lower cost. DeFlaker monitors the cover-

age of the latest code changes, using a hybrid of class-level and

statement-level dependency analysis, and marks as flaky newly

failing tests that do not execute any of the changes. DeFlaker can

potentially detect more flaky tests (in the same number of test runs)

by leveraging our findings.

Prior work on defect prediction has studied utilizing various

aspects of code change semantics such as code churn [47, 48], com-

plexity of changes [35], and fine-grained code changes [24]. Giger

et al.’s work [24] empirically studied the correlation between bugs

and code change types and found that leveraging semantics of code

changes can improve defect prediction models. Our work is simi-

lar, but we focus on arbitrary code changes, and our goal was to

improve precision of RTS techniques.

Saha et al. [59] developed REPiR, an information-retrieval-based

test-case prioritization technique that leverages code-change infor-

mation. REPiR uses code changes as queries to search for relevant

tests to be prioritized, which can be more computationally efficient

and performs better than techniques based on program analysis.

Binkley [15, 16] used slicing to find a reduced program on which

selected tests should be run and then selected only tests that exer-

cised some statements in the reduced program, which is different

but related to RTS. They focus on using operation semantics to find

changed lines, but we focus on the semantics of code changes in

terms of transitive dependencies between changes and tests.

Studies of code changes. Prior work has studied alternative ways

to identify and categorize code changes in different contexts. Fluri

et al. [23] extracted code changes as diffs of abstract syntax tree

and identified popular code change types in open source projects.

Nguyen et al. [49] studied popular and repetitive code change types

on a large corpus of open source projects, in both within-project

and cross-project settings. Martinez and Monperrus [46] mined

popular code change patterns for program repair. In our work, we

focus on identifying and leveraging kinds of code changes that can

be used to improve RTS precision.

Ren et al. [54] developed Chianti that uses change impact anal-

ysis to determine affected tests whose execution behavior may

have been modified by the change. Chianti defined a set of inter-

dependent atomic changes responsible for the modified behavior

of test; in contrast, we define a set of dependent atomic changes

that will not result in the change of test execution behavior. We

have applied our technique to improve both a dynamic and a static

analysis-based RTS tool.

9 CONCLUSION

We use knowledge distilled frommanual inspection of code changes

to improve the precision of analysis-based RTS techniques and

speed up regression testing, without using ML and without sac-

rificing safety. We report 13 findings from identifying changes,

mostly semantic-modifying ones, in revision histories of open-

source projects, and use them to enhance Ekstazi and STARTS.

We implement our enhanced RTS techniques, FineEkstazi and

FineSTARTS, and find that they are more precise, and that the en-

hancements generalize to projects that we did not manually analyze.

We believe that the work presented in this paper can be a first step

in a new line of work that uses semantics-modifying code changes

for speeding up RTS. Doing so could help to further increase the

adoption of RTS in industry.
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