More Precise Regression Test Selection
via Reasoning about Semantics-Modifying Changes

Yu Liu Jiyang Zhang Pengyu Nie
The University of Texas at Austin The University of Texas at Austin The University of Texas at Austin
USA USA USA
yuki.liu@utexas.edu jlyang.zhang@utexas.edu pynie@utexas.edu

Milos Gligoric
The University of Texas at Austin
USA
gligoric@utexas.edu

ABSTRACT

Regression test selection (RTS) speeds up regression testing by only
re-running tests that might be affected by code changes. Ideal RTS
safely selects all affected tests and precisely selects only affected
tests. But, aiming for this ideal is often slower than re-running
all tests. So, recent RTS techniques use program analysis to trade
precision for speed, i.e., lower regression testing time, or even use
machine learning to trade safety for speed. We seek to make recent
analysis-based RTS techniques more precise, to further speed up re-
gression testing. Independent studies suggest that these techniques
reached a “performance wall” in the speed-ups that they provide.
We manually inspect code changes to discover those that do not
require re-running tests that are only affected by such changes.
We categorize 29 kinds of changes that we find from five projects
into 13 findings, 11 of which are semantics-modifying. We enhance
two RTS techniques—ExsTtazi and STARTS—to reason about our
findings. Using 1,150 versions of 23 projects, we evaluate the impact
on safety and precision of leveraging such changes. We also evaluate
if our findings from a few projects can speed up regression testing in
other projects. The results show that our enhancements are effective
and they can generalize. On average, they result in selecting 41.7%
and 31.8% fewer tests, and take 33.7% and 28.7% less time than
Exstazi and STARTS, respectively, with no loss in safety.

CCS CONCEPTS

« Software and its engineering — Software testing and debug-
ging; Software evolution.

KEYWORDS

Regression test selection, regression testing, semantics-modifying
changes, change-impact analysis

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0221-1/23/07.

https://doi.org/10.1145/3597926.3598086

664

Owolabi Legunsen
Cornell University
USA
legunsen@cornell.edu

ACM Reference Format:

Yu Liu, Jiyang Zhang, Pengyu Nie, Milos Gligoric, and Owolabi Legunsen.
2023. More Precise Regression Test Selection via Reasoning about Semantics-
Modifying Changes. In Proceedings of the 32nd ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA 23), July 17-21, 2023,
Seattle, WA, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3597926.3598086

1 INTRODUCTION

Regression testing is the dominant quality assurance approach
today; it commonly re-runs all tests (RetestAll) to check that code
changes do not introduce bugs. But, RetestAll costs are growing
rapidly with increasing rates of updates and growth in code size [31,
70]. So, without cost-reducing automated techniques, developers
may test less, or use manual ad hoc approaches that miss bugs [29].
Regression test selection (RTS) reduces regression testing costs
by only re-running tests that are affected by changes. Affected tests
are computed as those that transitively depend on changed code.
Researchers studied RTS for decades [10, 11, 14, 17, 18, 21, 22, 27,
28, 30, 32-34, 37, 39, 41, 42, 50, 54-58, 60-62, 64, 65, 68, 69, 74] and
recent techniques [5, 8, 9, 19, 26, 40, 53, 66] are being adopted.
Ideally, RTS would safely select all affected tests and precisely
select only affected tests. But, RTS techniques that aim for safety

and precision are often slower than RetestAll [25, 27, 50].

Recent RTS techniques that are being adopted make two kinds
of trade-offs. First, some techniques based on program analysis
trade precision for speed, i.e., lower end-to-end regression testing
time, when selecting affected tests. The rationale is that developers
likely prefer safe but imprecise RTS that is faster than RetestAll to
unsafe RTS, or safe and precise RTS that is slower than RetestAll.
Second, some techniques trade safety for speed, typically by training
machine learning (ML) models to only select tests that may fail (i.e.,
not all affected tests) after a change [7, 44, 45]. The rationale is that
a failing test suffices to initiate debugging.

We seek to speed up recent analysis-based RTS techniques be-
cause they seem to have reached a “performance wall”—a limit
on how much they can speed up regression testing. Independent
studies showed similar average ratios of selected tests and aver-
age time reduction on different projects and sets of project revi-
sions [10, 39, 63, 67, 73]. So, the next generation of RTS techniques
should break this performance wall to improve on the gains of
the existing ones. Sections 7 and 8 position our work relative to

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

ML-based RTS. There, we show that our improved analysis-based
RTS performs better than the state-of-the-art ML-based RTS.

The technical challenge that we address in this paper is how to
speed up regression testing by making analysis-based RTS more
precise without sacrificing safety. We do so based on the idea that
some semantics-modifying code changes do not require re-running
all tests that analysis-based RTS selects. For example, suppose
that the only change to a Java class that has no ancestors (except
java.lang.Object) or descendants is the deletion of a method.
If the resulting code compiles, then a class-level RTS technique
need not re-run test classes that are only affected by this deletion.
Our approach therefore generalizes related work like Rexs [67],
which improves RTS precision by not re-running tests that are only
affected by semantics-preserving changes, i.e., refactorings.

We hypothesize that identifying and reasoning about the kinds
of changes that we target can further reduce end-to-end regression
testing time at the cost of increased RTS analysis time. End-to-end
regression testing time with RTS consists of collection time to find
test dependencies, analysis time to find affected tests, and execution
time to run selected tests.

To identify kinds of code changes for which analysis-based RTS
may safely skip to re-run some tests, we manually inspect developer
changes in 250 revisions of 5 open-source projects. We find 29 such
kinds of changes and organize them into 13 findings, 11 of which
are semantics-modifying. We do not claim to have discovered an
exhaustive list of kinds of changes that can be used to make RTS
more precise. Rather, we use those that we discover to investigate if
RTS that reasons about them is effective for speeding up end-to-end
regression testing time, and if information discovered from some
projects help make RTS more precise in other projects. Future work
can pursue the discovery of more of such kinds of changes.

We enhance ExsTAzi (a dynamic class-level RTS technique) [26]
and STARTS (a static class-level RTS technique) [40] to reason about
the kinds of changes that we find. We call the enhanced techniques
FINEEKSTAZI and FINESTARTS; they enable us to evaluate the im-
pact of our work on dynamic and static RTS paradigms. Finding and
leveraging these kinds of changes is a one-time cost paid by RTS
tool developers, not by the users of FINEEksTAzI and FINESTARTS.

We evaluate our enhanced RTS techniques on other projects
and revisions than those from which we discover the kinds of
changes that we use. We run FINEEKsTAzI and FINESTARTS on 50
revisions each in 23 open source projects (total: 1,150 revisions).
Then, we compare the number of selected tests, the end-to-end
times, and the analyses times of FINEEKsTAZI and FINESTARTS
with those of Exstazi and STARTS. We also evaluate the safety of
FINEEKSsTAZI and FINESTARTS relative to ExsTazr and STARTS by
using RTSCHECK [75] to check all four implementations. Finally,
to assess the prevalence of the kinds of changes that we leverage,
we manually compare the kinds of changes in 250 of these 1,150
revisions with those that we used during the discovery process.

The results show that reasoning about these kinds of changes is
effective for improving RTS precision and speeding up regression
testing. FINEEKsTAZI reduces the number of selected tests and the
end-to-end regression testing time by as much as 80.8% (average:
41.7%) and 55.4% (average: 33.7%), compared to ExsTAazI. The com-
parative numbers for FINESTARTS’s improvement over STARTS
are 71.2% (average: 31.8%) and 60.6% (average: 28.7%). FINEEKSTAZI

665

Yu Liu, Jiyang Zhang, Pengyu Nie, Milos Gligoric, and Owolabi Legunsen

1 class A {

2- public int m(int x, int y){ return x - y; }

3+ public int m(int x, int y){ return x / y; }

43}

5 class B {

6 public int m(int x, int y){ return x + y; 3}

73

8 class C {

9 public int m(int x, int y) throws Exception {

10 Object a = Class.forName("A").newInstance();

11 Method m = a.getClass().getMethod("m", ...);

12 return m.invoke(a, x, y);

13 3}

14 3}

1 class T1{

2 @Test void t1(){assertEqual(2, new A().m(5, 3);}
3%

4 class T2{

5 @Test void t2(){assertEquals(8, new B().m(5, 3);}
6 3}

7 class T3{

8 @Test void t3()

9 throws Exception{assertEquals(4, new C().m(7, 3);}
10 @Test void t4(){assertEquals(10, new B().m(7, 3);}
1 3}

Figure 1: Code and tests for illustrating Ekstazr and STARTS.

is also faster than HyRTS [73], which is a dynamic RTS tool that
is more precise than Ekstazr and STARTS. But, future work could
enhance HyRTS to reason about the kinds of changes that we find.
FINEEKSTAZI and FINESTARTS make Exstazi and STARTS more
precise and speed up regression testing without sacrificing safety.
Our analysis of the RTSCHECK results shows that FINEEKsTAZI and
FINESTARTS do not incur any new safety violations compared to
Exstaz1 and STARTS. Lastly, our manual checks show that 250 (of
1,150) revisions contain several but not all of the kinds of changes
that we find. Changes in the manually checked revisions map to 10
out of 13 kinds of changes. So, while the kinds of changes varied
across programs’ revision histories, the kinds of changes that we
find apply beyond the projects from which we obtained them.

This paper makes the following contributions:

* Idea. We use reasoning about semantics-modifying changes to
make RTS more precise without sacrificing safety.

* Kinds of changes. We produce an initial set of kinds of changes
that future work can build on to make RTS even more precise.

* Tools. We develop FINEEKsTAzI and FINESTARTS as manual-
analysis driven enhancements of Exstazr and STARTS.

* Evaluation. We find that reasoning about these kinds of changes
speeds up regression testing and can generalize across projects.

Our data is at https://github.com/EngineeringSoftware/FineRTS.

2 BACKGROUND AND EXAMPLES

We use examples to describe Exstazi, STARTS, and semantics-
modifying changes for which it is safe to not re-run some tests.

Recent RTS techniques. Exstazr and STARTS are recent analysis-
based class-level RTS techniques; they find changed classes and af-
fected test classes based on a class-level dependency graph. Exstaz1
creates its dependency graph dynamically, but STARTS builds its
dependency graph statically. Figures 1 and 2 to illustrate their simi-
larities and differences. Figure 1 shows classes A, B, C in a synthetic
code under test (CUT), and test classes T1, T2, and T3, which check

1
2
3
4

More Precise Regression Test Selection via Reasoning about Semantics-Modifying Changes

ﬂ T2 T3 T2 B selected test
[l changed class
v - ‘ v - > depends on
] [o] B [<] [

Ekstazi STARTS

Figure 2: Ekstazi and STARTS dependency graphs for Fig. 1.

public class Base64Test {
private static final String[] BASE64_IMPOSSIBLE_CASES = {
static final String[] BASE64_IMPOSSIBLE_CASES = {
"ZE==", "ZmC=", "Zm9vYE==", "Zm9v¥YmC=", "AB",

+

3

Figure 3: Changing a field’s access modifier.

them. Two versions of the CUT are shown in A.m, which used to com-
pute difference (old version in red) but now computes division (new
version in green). Figure 2 shows the dependency graphs that Ex-
stazr and STARTS compute and the tests that they select. STARTS
is unsafe as it does not detect that T3 depends on the changed class
A because C.m uses reflection to invoke A.m. STARTS can also be less
precise due to dynamic dispatch. Legunsen et al. [39, 60] found that
Exstazi and STARTS have similar end-to-end times and reflection
rarely makes STARTS unsafe in practice.

Some kinds of change that we use. We give several examples
of semantics-modifying changes for which Ekstazr and STARTS
re-run affected tests, and illustrate why it is safe to not re-run tests
that are only affected by such changes. The examples are simplified
from changes in open-source projects; we show only relevant code.

The change in Figure 3 (from the Apache codec project [1], revi-
sion a6b2f 1) removes the private access modifier on a static field
and the project’s code still compiles. Exstazi and STARTS re-run
Base64Test (it depends on itself), but doing so is needless: other
classes that access the field must use reflection to do so, but reflec-
tion is not used here. So, if the only changes are to access modifiers,
code still compiles, and the project does not use reflection to access
the changed fields, then it is safe to not re-run tests that are only
affected by such changes.

The change in Figure 4 (from the Apache math project [3], revi-
sion 802058f) only deletes a throws clause. Ekstazi and STARTS
needlessly re-run 15 and 22 test classes. No class uses reflection
to check method signatures, so tests that are only affected by this
change will behave the same before and after the change. It is safe
to not re-run such tests.

As a final example, in Figure 5 (from the Apache email project [2],
revision 78b9fdf) a new method is added. ExsTazr and STARTS
re-run eight and nine test classes unnecessarily, together with a test
class that was changed to depend on the new method. It is safe to
not re-run those eight and nine test classes: they do not transitively
depend on the new method.

Our goal is to study how to find these kinds of changes and
enhance analysis-based RTS to reason about them, to improve
RTS precision. Section 3 describes our process for finding kinds of
changes that can be used, and Section 4 explains how we enhance
Exstazr and STARTS to reason about these kinds of changes.

666

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

1 public class Percentile extends AbstractUnivariateStatistic ...
2- public Percentile(final double quantile) throws

3- MathIllegalArgumentException {

4+ public Percentile(final double quantile) {

Figure 4: Removing throws clause from method signature.

1 public abstract class Email
2+ public String getHeader(final String header)
3+ { vreturn headers.get(header); }

Figure 5: Adding a method to a class.

3 MANUAL ANALYSIS OF CHANGES

We describe how we manually find and categorize the kinds of
changes that we use, and discuss how many of these kinds of
changes the RTS tools in this paper use. To re-emphasize, we do not
claim that the kinds of changes that we find are exhaustive. We only
show that it is feasible to find these kinds of changes and to improve
RTS precision (and speed up regression testing) by reasoning about
them. Future work could find more kinds of changes.

3.1 Manual Analysis Process

We manually analyze the nature of changes in 50 revisions per
project in 5 projects that are shown in Table 1 with the revisions
that we start from. We follow four steps:

(1) Choosing revisions. Per project, we randomly choose a revi-
sion from 2019 and 50 contiguous subsequent revisions. Our ratio-
nale for choosing these projects and revisions is in Section 5.1.
Table 1: Manually (2) Inspection. We manually inspect
inspected projects all changes to Java files in all 250 revi-
sions and record the changed program

beanutls | 5020457 elements (e.g., class, method) and our de-
codec 6cf3482 cisions on if each change, by itself, is
compress | 80a388e safe for RTS to ignore. Three co-authors
pool 41cddfl performed the inspection; one of them
fastjson 6bledsf

did initial inspection and then met with
the other two to discuss and find agreement over a period of 2
months. Some decisions are challenging and depend on context.
For example, if an instance method is added, whether tests that are
only affected by that change can be ignored depends on if a call to a
method with the same signature exists in the same class hierarchy
as the new method.

(3) Categorization. We organize our findings on the kinds of
changes, and aggregate the number of Java files, revisions, and
projects related to each kind of code change.

(4) Checking RTS behavior. For each kind of change, we confirm
that ExsTazi or STARTS selects at least one test, as a sanity check
on our decisions, and to provide initial data for evaluating our
enhanced RTS techniques.

3.2 Findings from Manual Analysis

In Table 2, we organize the 29 kinds of changes that we observe
during manual analysis into 13 findings that can be used to improve
RTS precision. We group kinds of changes that are similar or that
modify similar program elements, if they are likely to induce the
same test-selection behavior in our enhanced RTS techniques. ID

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

Yu Liu, Jiyang Zhang, Pengyu Nie, Milos Gligoric, and Owolabi Legunsen

Table 2: Findings from our formative study. KIND oF CHANGE: description; #F no. of source files with each kind of code change;
#S: no. of revisions with each kind of change; #P: no. of inspected projects (out of 5) with each kind of change; REasoNING: why

the kind of change can be used to improve RTS precision.

[ID KinD oF CHANGE #F #S #P REASONING |

F1 a Add class 133 39 5 Evaluated RTS techniques already handle these properly.

a Add instance method 58 43 5

b Remove 1nstf'1nce method ! Lo If no method with same signature is invoked on instances of the modified class,
F2 ¢ Remove static method 1 1 1 .

d Add constructor 1 11 then tests that are only affected by such change can be safely skipped.

e Add static method 5 5 3
F3 a Sort members 42 5 3 Thisis arefactoring for which tests need not be re-run.

a Addfield 18 13 3
F4 b Remove field 3 3 2 Tests that do not create instances of modified class will not change behavior.

¢ Add static initializer block 1 1 1
F5 a Change anonymous class to lambda 18 2 2 Ifthese are the only changes, affected tests do not need to be rerun.

a Rename _dass ? 52 Refactorings for which no tests do not need to be re-run. The compiler will
F6 b Rename instance method 4 4 3 . .

¢ Rename static method 1 1 1 catch improper renamings.

a Import field type from different package 1 1 1
F7 b Modify field initialization 9 5 3 Affected tests can be re-run based on method-level reasoning.

¢ Import method from different package 1 1 1

a Add excep tion to method 6 43 If these are the only changes, affected tests do not need to be re-run if no test
F8 b Modify throws clause 1 1 1 d 4 flecti

¢ Modify method parameter 2 2 1 ependency uses reffection.

a Modify class access modifier 52 2 g these are the only changes, affected tests do not need to be re-run if no test
F9 b Make field final 2 2 1 K

¢ Modify field access modifier 2 2 2 dependency uses reflection.
F10 a Modify a constructor 5 3 2 Affected tests can be re-run based on method-level reasoning.
ISP Specialize parameter type 3 2 2 Noneed to re-run tests if these are the only changes because bytecode of

b Add/Change base class to hierarchy 1 1 1 affected (dependent) class has changed,

There is no need to re-run tests if there is no reflection (no runtime annotation).
F12 a Add runtime annotation 3 3 1 Affected tests can be re-run based on method-level reasoning if there is reflection,
and annotation is method annotation, parameter annotation, or field annotation.

F13 2 Replage param‘eter with lambda expression 1 Affected tests can be re-run based on method-level reasoning.

b Compiler modifies bytecode structure 12 6 3

in Table 2 is a label that we use to refer to each finding; the caption
in that table describes other columns.

Here, we discuss the KIND oF CHANGE rows in Table 2 that are
not self-explanatory. Sorting fields or methods (F3) is a refactoring;
RTS should not re-run tests. RExs [67] is the only refactoring-aware
RTS technique that we know, and it does not handle this refactoring.
Yet, F3 applies to many files that we analyze.

We explain some other semantics-modifying kinds of changes.
(1) “Import method from different package” (F7): the package from

which a method is imported has changed.
(2) “Import field type from different package” (F7): the package
from which a field’s type is imported has changed.
(3) “Replace parameter with lambda expression” (F13): a lambda
expression is passed as a parameter to a changed APL
(4) “Compiler modifies bytecode structure” (F13): compiler opti-
mizations change bytecode structure but not functionality, e.g.,
constant propagation or synthetic method introduction.
Table 2 is based only on the file-level diffs that we analyze. If a file
contains more than one kind of change in one diff, we increment
the count of each kind by one. The kinds of changes in Table 2 are
only from 95 unique revisions; the remaining (155) revisions merely
modify bytecode metadata, or re-format code. Also, the kinds of
changes that we identify are from 332 unique files.

667

Table 3: Findings that RTS techniques support.

o S

S S @@?y &Yg(}
e‘év 23(5 & sééo ség)

R < RS s

F17 v v v v v
F2 X X X v/ v
F3 X X X v v
Fa' X X X v v
F5 1 X X X X X
F6 X X v v v
F71 X X X v/ v
F8 X X X v/ v
Fo X X X v v
F1o X X X v v/
Fi1 ¥ X X X v v/
Fi2 X X X X X
F13 X X X X X

Findings that RTS techniques handle. Table 3 shows which
findings are supported by recent RTS techniques and the enhanced
techniques that we introduce in this paper. There, v or X means that

More Precise Regression Test Selection via Reasoning about Semantics-Modifying Changes

| getAffectedTests

dependencies

Metadata -1 ‘ 4) 4 affected tests
* old cksum

changes
2
Code >

new cksum
getModified

Figure 6: RTS workflow.

a tool uses or does not use a finding, respectively. Our enhanced
techniques are marked with . Of 13 findings, 11 are semantics-
modifying changes and they are marked with . Table 3 also shows
that we do not yet use some findings from our manual analysis: F5,
F12, and F13. Non-trivial compiler support is needed to leverage
F5 and F13. F12 has no effect unless reflection is used; we do not
implement it since reflection is rare in our evaluated subjects.

4 TECHNIQUE

FINEEKsTAZI and FINESTARTS use the kinds of changes in Section 3
by enhancing EksTazr and STARTS, respectively, to not select tests
that are only affected by such changes. We show how the enhanced
techniques differ from Exstaz1r and STARTS (Section 4.1), and de-
scribe how the enhanced techniques work (Section 4.2).

4.1 Overview of Original vs. Enhanced RTS

Figure 6 shows the steps in Exstazr and STARTS that we enhance
in FINEEKsTAZI and FINESTARTS. The inputs are code (and tests) for
the current revision and metadata about test dependencies collected
from the previous revision. The outputs are affected test classes.
Exstazi and STARTS metadata contains checksums per class and a
mapping between tests and classes they transitively depend on.

Ekstazi and STARTS work in four main steps. Step (D loads
the old revision’s metadata from disk. Step (2) computes metadata
in the new revision; we will refer to this step as getNewMetaData.
Step 3 computes changed classes using the old and new metadata;
we will refer to this step as getModified. Finally, step @ computes
affected test classes as those for which at least one dependency
changed; we will refer to this step as getAffectedTests.

FINEEKSTAZI and FINESTARTS follow the same main steps as
Exstazi and STARTS, but they differ in two ways:

(1) Structurally. Exstazi and STARTS work only at the class-level
but FINEEksTAZI and FINESTARTS work across class, method,
and field levels of program granularity.

(2) Algorithmically. FINEEksTAzI and FINESTARTS have differ-
ent getNewMetaData, getModified, and getAffectedTests steps
than EksTazr and STARTS, to reason across granularity levels.

Here, we describe the metadata that FINEEksTAz1 and FINESTARTS

collect, and how their getNewMetaData steps diverge from the ones

in Ekstazr and STARTS. We will highlight the other differences

between the original and enhanced RTS techniques in Section 4.2.

The data structures used by RTS techniques to store metadata is
important for their practicality and central to their algorithms.
Exstazi and STARTS collect metadata for each test class t as

t — {C1 : chksum(Cy),C2 : chksum(C3),C3 : chksum(Cs3)}. We

do not describe chksum(C;) in detail (see [26, 27, 40]): it computes

668

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

a checksum for each class C; that t transitively depends on by
removing debug information and hashing the remaining bytecode.

FINEEKSTAZI and FINESTARTS use a more complex data structure
to collect metadata so that they can capture relationships across
three different levels of program granularity. Specifically, they col-
lect metadata for each test class t as t — {Dy, D2, D3, ...} where
each D;isamap C; — (f;, ni, m;) for each class C; that t depends on.
Each C; maps to three sets: (1) f; = {(name;;, descriptor;, valuej) |
j is a field in C;}; (2) nj = {k — chkSum(k) | k is a constructor
or static initializer in C;}; and (3) m; = {(namey, descriptor;) —
chkSum(l) | I is a method in C;}.

The chkSum that FINEEksTAzI and FINESTARTS use is the same
as in Ekstazr and STARTS, except that we apply it to parts of a class
instead of the whole class. Note that the way that the original and
enhanced algorithms use the metadata is also different. ExsTAZI
and STARTS compute affected test classes using the set of test
classes in the new revision and the metadata from the old revision.
The getModified step in Ekstaz1 and STARTS considers a class as
changed if its checksum in the current and old revisions differ.
The getModified step in FINEEKksTAZI and FINESTARTS is more
complicated because of the need to reason across granularity levels.
We describe getModified as part of the algorithms in Section 4.2.

4.2 How FINEEKsTAZI and FINESTARTS Work

Algorithm 1 shows the getAffectedTests procedure that FINEEKSTAZI
and FINESTARTS use. Instead of just checking if a class changes
(like Exstazr and STARTS do), Algorithm 1 additionally checks
if and how the fields, constructors (including static initializers),
and methods are modified. Reasoning across multiple granularity
levels is needed to benefit from the kinds of changes that we found
in Section 3 for safely speeding up RTS. HyRTS [73] also reasons
across class and method granularity, but our enhanced techniques
also reason about fields. We experimentally compare FINEEKSTAZI
and FINESTARTS with HyRTS in Section 5.

In Algorithm 1, getAffectedTests iterates over each test class t in
the new revision and calls the getModified on each class C that ¢
depends on. If test is a newly added test class, on line 4, it is added
to the set of affected tests. If any ¢ that depends on C is only affected
by changes that match our findings, getAffectedTests will not return
t as an affected test class.

On line 13, if C’s metadata is unchanged, getModified returns
false: no test that depends on C should be selected. If line 14 is
reached, then C changed. All that remains is to check whether
the change warrants re-running tests that depend on C. To do so,
getModified calls the fldChanged, conChanged, and mtdChanged
procedures to check if the change matches our findings at the field,
constructor, and method levels respectively. If no change is detected,
line 21 returns false.

Procedure fldChanged checks if the set of fields changed. If the
change is not just adding new fields or deleting old fields, then
line 24 will return true. In that case, all tests that depend on C will
be selected. This is an imprecise check of change to fields because
we cannot distinguish between “renaming a field” and “deleting a
field with old name and adding a field with new name”. Renaming
fields, which is a refactoring, is not ignored by our algorithm and
all tests that depend on C are selected. Access modifiers are not

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

Yu Liu, Jiyang Zhang, Pengyu Nie, Milos Gligoric, and Owolabi Legunsen

Algorithm 1 getAffectedTests for FINEEKsTAZI and FINESTARTS

Algorithm 2 Embedding mRTS in FINEEKSTAZI

Inputs: T: the set of test classes in the new revision, M: t — D
> Section 4.1 describes D
Outputs: T¢ C T : affected test classes
1: procedure getAffectedTests(T, M)
22 T? « {}
3: for all test in T do
4 if test ¢ M then > test is a newly added test class
5: T? « T% U {test}; continue
6: for all C in M[test].keys() do
7 if getModified(test, C, M) then
8 T% « T% U {test}; break
9

return T¢

> test should be re-run

10:
11: procedure getModified(test, C, M)

122 1" « getNewMetaData(C)

13: if M([test][C] = I"*" then return false > C did not change
14: else » did fields, constructors, initializers, or methods in C change?
15: for all f in getFieldData(M|[test][C]) do

16: if fldChanged (M[test][C][f],I"¥[f]) then return true

17: for all n in getConstructorAndInitData(M[test][C]) do

18: if conChanged (M [test][C][n], 1" [n]) then return true

19: for all m in getMethodData(M[test][C]) do

20: if mtdChanged(M{[test][C][m],I"¥[m], C) then return true
21: return false

22:

23: procedure fldChanged(f, f"*%)
4: return —~(f\ "Y' =Q v "WV \f=0)

N

> true if field info changed

26: procedure conChanged(n, n"®")

returnn # n"Y » true if constructor or static initializer changed

29: procedure mtdChanged(m, m"®¥, C)

30: for all sig in (m.keys() U m"®¥ .keys()).copy() do
> old and new signatures
31: if sig € m and sig € m"" then > unchanged signatures
32: if m[sig] = m"®V[sig] then
> same bytecode; ignore the change
33: m"W — m"¥ \ {(sig, m"*V[sig])}; m < m\ {(sig, m[sig])}
34: else return true > change: same signature, different bytecode
35: else if m"®¥[sig] € m.values() or m[sig] € m"*".values() then
> found old bytecode with new signature; ignore the change
36: m «— m\ {(sig, m"*¥[sig]) }; m"¥ «— m"W \ {(sig, m[sig])}
37: cHasHrchy « hasHrchy(C) or hadHrchy(C)
38: if !IcHasHrchy and (m = 0 or m"¥ = () then
> one empty map: method added or deleted without affecting hierarchy
39: return false
40: elseif C € T and m"*V = (then
> deleted a method from a test class
41: return false
42: return true

stored in f, so, if field access modifiers are the only changed part
of C, fldChanged will return false.

If fields in C did not change, conChanged returns true if a con-
structor or static initializer changed (line 27) so that all tests that
depend on C are selected. Constructors and static initializers are
typically much fewer than other kinds of methods. So checking
them first in conChanged makes getAffectedTests faster.

669

Inputs: Test class ¢, EksTAZI metadata .ekstazi, mRTS metadata .mrts
Outputs: true if the test should run; false otherwise
1: procedure AFFECTED(Z, .ekstazi, .mrts)
2: c¢g < FINEEKsTAzZI.getModifiedClasses(t, .ekstazi)
3: if cg = 0 then > Nothing is modified
4: return false
5. mg < mRTS.getModifiedClasses(t,.mrts)
6: if cg C mg then > Reflection or third-party class
7 return true
8: forclz : cgdo
9 if mRTS.isModified(t,clz, .mrts) then
return frue
return false

10:
11:

Finally, mtdChanged performs method-level reasoning. The union
of (signature, bytecode) pairs for all methods in the old and new
revisions is iterated over to check for changes. If the pair for method
m; is the same in the old and new revisions, m; did not change and
mtdChanged proceeds with the next method, m;;1 (line 32). If the
signatures are the same but the bytecode differ, then the method
changed and line 34 returns true. On line 35, if the signatures differ
but the bytecode is the same, m; was refactored—no test should be
selected—and mtdChanged proceeds with m;1.

On line 38, if exactly one revision’s map is empty then a method
must have been added to or deleted from a class C. If C is not
part of a class hierarchy, and assuming the code compiles, then
no test that only depends on C should be selected, so mtdChanged
returns false. Line 40 deals with a special case: if a test method is
added/revised, it is considered as changed. Speedups result when
the only change is to delete a method in a test class—the remaining
tests cannot be affected by the deleted test if the code still compiles.

4.3 Embedding Method-Level Reasoning

Using several findings in Section 3, e.g., F10, to improve RTS pre-
cision requires method-level reasoning. So, we develop a static
method-level analysis (mRTS) that can be combined with class-
level analyses to improve their precision without making them less
safe. Algorithm 2 shows how we integrate mRTS analysis into F1-
NEEKSTAZI; its inputs are a test class, EKsTAzZI metadata (. ekstazi),
and mRTS metadata (.mrts). It outputs true if the test should be
selected and false otherwise. The analogous algorithm for embed-
ding mRTS into FINESTARTS works in a similar way.

Line 2 obtains a set of modified classes (cg) for test ¢ (as identified
by FINEEKsTAZI). If the set is empty (line 3), false is returned—t
is not affected. If the set is not empty, mRTS is called to obtain
the set of modified classes mg. If cg ¢ myg, then t is affected for
one of two reasons (1) a third-party class is modified (which is not
tracked by mRTS), or (2) reflection is used to access some classes
(which are not captured by mRTS). If cg C mg, lines 8-10 iterate
over cg. For each C € cg line 9 invokes mRTS and returns true if
the mRTS finds that ¢ is affected. If mRTS analysis returns false
for all changed classes, then ¢ is not affected (line 11).

More Precise Regression Test Selection via Reasoning about Semantics-Modifying Changes

5 EVALUATION

We evaluate the effectiveness of using our manual analysis findings
for improving RTS precision. We address these research questions:

e RQ1: How much does using the kinds of changes in our manual
analysis reduce the tests selected by EksTazr and STARTS?

e RQ2: How much does using the kinds of changes in our manual
analysis reduce the end-to-end time of Exstazi and STARTS?

e RQ3: What is the impact of using the kinds of changes in our
manual analysis on the safety of Exstazi and STARTS?

e RQ4: To what extent do the findings from our manual analysis
re-occur in other projects and revisions that we did not analyze?

5.1 Experimental Setup

Evaluation subjects and revisions: Table 4 shows the 23 projects
that we evaluate (sorted by average test time), plus some character-
istics. Projects in our manual analysis are highlighted in gray. We
choose 18 of the projects in Table 4 because they are widely used
in RTS research, and prior work [39, 40, 60] showed that ExsTaz1
and STARTS work well on many of their revisions. We omit four
projects from prior RTS research where average test time is less
than 10 seconds. We added another five projects that we are familiar
with and whose tests run longer than 10 seconds.

To find revisions, for each project, we run git diff on its revi-
sion history until we found 50 revisions where at least one Java file
was modified, and the project compiles. For projects in our manual
analysis, we used different sets of 50 revisions in our evaluation.
Doing so reduces the chance that FINEEksTAzI and FINESTARTS
are tuned to the projects and versions from which we obtained our
findings. In a sense, we aim to not “overfit” the data.

Running experiments: We run RetestAll, Ekstazr, FINEEksTAZI,

FiNEEKSsTAZI, STARTS, FINESTARTSF , FINESTARTS, and HyRTS
on each of the 50 revisions in the 23 projects. FINEEksTazI' and
FINESTARTS! do not use mRTS.

We record the number of test classes selected and the end-to-end
RTS time. We run separate experiments to collect the analysis (A),
test execution (E), and collection (C) times. Measuring A, E, and C
times enables us to analyze the time costs of reasoning about these
kinds of changes during RTS. We run all experiments on a 3.20 GHz
Intel® Core™ machine with 64GB of RAM, running Ubuntu Linux
18.04 and Oracle Java 64-Bit Server version 1.8.0_241.

5.2 RQ1: Impact on RTS Selection Rates

We evaluate whether and by how much FINEEksTAzIT , FINEEKSTAZI,
FINESTARTSY , and FINESTARTS select fewer tests than ExsTaz1
and STARTS. We also compare with HyRTS. Figure 7 shows the
percentage of all tests selected by these techniques per project. Note
that HyRTS crashed on P13, P17, and P18; we mark them as N/A
and exclude them when comparing with other tools. Exact numbers
of tests are shown in the appendix in our data package [4].
Reasoning about findings from our manual analysis reduces
selection rates, compared with Exstaz1 and STARTS, in every eval-
uation subject. Also, combining with method-level analysis (mRTS)
further reduced selection rates. Reasoning about those findings
without mRTS yields up to 46.5% (average: 17.8%) reduction in tests

670

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

Table 4: Projects in our study.

PID || Name SHA | KLOC | #Test | 2T
TIME (s)
P1 imaging 70dd698 39.3 115.2 15.6
P2 lang bff7521 78.1 148.8 16.6
P3 collections 954¢29f 63.7 170.4 17.6
P4 asterisk-Java aca95a7 60.1 46.0 20.1
P5 codec 35e9cf2 23.9 60.7 224
Pe configuration 7e4b3fa 51.6 | 169.0 25.2
P7 compress 8a65cc9 50.2 | 142.6 28.9
P8 gerrit-events 6585777 8.1 24.0 30.1
P9 tabula-java 5f43a93 6.8 15.3 46.2
P10 fastjson 3ea25de | 178.2 | 2297.0 47.8
P11 math dff1a09 149.7 467.6 50.3
P12 || net 480662 28.3 44.0 62.3
P13 beanutils 85b8cc9 335 | 102.6 74.6
P14 || rxjava-extras 62fb6a3 13.9 48.3 89.4
P15 dbcp 64a3b97 31.4 42.6 92.9
P16 io fc418a7 34.4 112.9 113.1
P17 || b.HikariCP acc9ac7 11.9 39.3 157.2
P18 || sdk-rest 1617bb1 65.2 24.0 169.8
P19 || email-ext-plugin | 8761c27 12.9 38.3 231.7
P20 || pool be87cfc 14.6 22.0 333.8
P21 || LogicNG 1bcead7 | 49.6 | 120.0 336.9
P22 || finmath-lib 03befd8 76.6 100.6 1185.9
P23 || Imdbjava 680e0a8 5.6 14.3 1308.6

selected by ExsTazi, and up to 50.4% (average: 16.0%) reduction
for STARTS. If the code-change information and mRTS are used
together, these reductions grow to 80.8% (average: 41.7%) and 71.2%
(average: 31.8%), respectively. The selection rates of FINEEKSTAZI
are on par with those of HyRTS: FINEEKSTAZI selects fewer tests
in 7 of 20 projects (HyRTS fails on 3 projects). Both use dynamic
cross-granularity analysis; FINEEKSTAZI uses field-, method-, and
class-level analyses, while HyRTS uses only method- and class-
level analyses. Future work could enhance HyRTS precision by
enhancing it to reason about our findings.

5.3 RQ2: Impact on End-to-End Testing Times

We measure how reduced selection rates (Section 5.2) translate
to reductions in end-to-end regression testing times. Recall that
end-to-end time with RTS includes analysis time (to reason about
changes and find affected tests), execution time (to run selected
tests), and collection time (to create metadata for performing RTS
on the next revision). Figure 8 shows the percentage of end-to-end
time of the RTS tools compared to RetestAll time. This percentage
can be greater than 100% if RTS incurs significant overhead (analysis
and collection times). Exact end-to-end times, and breakdown of A,
E, and C times are in the appendix in our data package [4].
Compared to Exstazr and STARTS, FINEEKsTAZI and FINES-
TARTS reduce end-to-end times by up to 44.6% (average: 13.7%) and
42.9% (average: 12.5%), respectively, without mRTS. These reduc-
tions are up to 74.0% (average: 33.7%) and 68.0% (average: 28.7%),
respectively, when also using mRTS. But, reasoning about our find-
ings increases RTS analysis time, leading to an increase (rather
than a decrease) in the end-to-end times with FINEEKsTAZI and

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

Yu Liu, Jiyang Zhang, Pengyu Nie, Milos Gligoric, and Owolabi Legunsen

80

60

40

Percentage of selected test classes (%)

20

200

1754

150

B Ekstazi
FineEkstazi’
B FineEkstazi
I STARTS
BN FineSTARTS"
B FineSTARTS
[HyRTS
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23
Figure 7: Percentage of number of selected test classes of RTS tools over RetestAll.
B Ekstazi
FineEkstazi®
B FineEkstazi
B STARTS
W FineSTARTS®
B FineSTARTS
e HYRTS

125

100

754

Percentage of end to end time (%)

50 4

254

Pl P2 P4 P5 P6 P7 P8 P9 P10 P11

P12 P13

P14 P15 P16

P17 P18 P19

Figure 8: Percentage of end-to-end time of RTS tools over RetestAll.

FINESTARTS in some cases. FINEEKsTAZI is faster than HyRTS in
15 out of 20 projects. In a few cases, HyRTS takes longer time than
RetestAll (up to 199.4% of RetestAll time), showing that it can incur
high analysis and collection times to obtain its high precision.
Concerning the analysis, execution, and collection parts of end-
to-end time, we find that FINEEksTAzI and FINESTARTS trade a
higher analysis time for improved precision and reduced end-to-
end times. Without mRTS, the analyses times of FINEEXsTAzI and
FINESTARTS are up to 28.5% (average: 14.1%) and 155.5% (average:
65.6%) higher than those of Exstazr and STARTS, respectively. The
analyses times are higher when mRTS is also used: 87.8% (average:
25.9%) and 398.0% (average: 182.4%) for FINEEKsTAZI and FINES-
TARTS, respectively. FINEEksTAzI and FINESTARTS are still able
to reduce end-to-end times because (1) the analyses times of Ek-
stazI and STARTS are very small both in absolute numbers and
as percentages of end-to-end times (on average, 0.9% for EXsTAZI
and 0.1% for STARTS); and (2) despite the increase, the analyses
costs of FINEEKsTAzI and FINESTARTS are still small portions of
end-to-end time (1.2% and 0.3%, respectively, on average).

5.4 RQ3: Impact on Safety

We use RTSCHECK [75], the state-of-the-art technique for testing
RTS tools, to check FINEEKSTAzI and FINESTARTS correctness and

671

P20 P21

P22

P23

Table 5: Violations that RTSCHECK finds in RTS tools.

Rule | EKsTAZI | FINEEKSTAZI | STARTS | FINESTARTS |

R1 2 2 6 6
R2 0 0 0 0
R3 6624 4490 6655 4482
R4 0 0 0 0
R5 0 0 0 0
R6 0 0 1 1
R7 3 3 0 0

efficiency. Inputs to RTSCHECK are RTS tools, and the outputs are
each tool’s number of safety, precision, and generality violations
(a generality violation shows problems with integrating an RTS
tool). The AutoEP, DefectsEP and EvoEP components of RTSCHECK
respectively use thousands of automatically generated evolving
programs, the Defects4] benchmarks [36], and GitHub revisions
to check RTS tools. RTSCHECK uses seven rules: R1 and R2 yield
safety violations; R3, R4 and R5 yield precision violations; and R6
and R7 yield generality violations.

Table 5 shows the number of RTSCHECK violations found in
Exstazi, FINEEKSsTAZI, STARTS, and FINESTARTS. Our enhanced
techniques did not introduce new safety violations, despite the
reduced selection rates.

More Precise Regression Test Selection via Reasoning about Semantics-Modifying Changes

Table 6: Applicabilty of manual analysis findings to other
projects and versions. #F: no. of source files with each kind
of code change; #S: no. of revisions with each kind of change.

[D KinD oF CHANGE #F #S |
F1 a Add class 4052 190
a Add instance method 688 285
b Remove instance method 322 96
F2 ¢ Remove static method 55 32
d Add constructor 0 0
e Add static method 218 101
a Addfield 273 156
F4 b Remove field 74 41
¢ Add static initialized block 0 0
Change signature 125 57
8 a Add exception to method / /
b Modify throws clause / /
¢ Modify method parameter / /
F10 a Modify a constructor 749 233
Fi1 a Specialize parameter type 0 0
b Add/Modify base class to hierarchy 59 24
No change 3204 75
F3 a Sort members / /
F6 b Rename instance method / /
¢ Rename static method / /
a Modify field holding version / /
F7 b Change field initialization / /
¢ Modify utilized API interfaces / /
a Modify class access modifier / /
F9 b Make field final / /
¢ Modify field access modifier / /
[Method 3801 540 |
[Summary 13845 721]

We manually checked these violations. R1 violations (selecting
fewer failing tests than RetestAll) are caused by (1) all tools not
detecting changes to non-Java files; (2) STARTS missing static de-
pendencies between Suite (JUnit3 style) and tests. R3 violations
(selecting all tests in all versions) are because the programs gener-
ated by AutoEP have only a couple of tests, and safe RTS tools may
have to select all tests in some programs. Our techniques have less
R3 violations than existing RTS tools, which means that our tech-
niques improve the precision. The R6 violation (selecting a different
number of tests than RetestAll in the first version) from STARTS
is caused by incompatibility with a third-party library version. R7
violations (selecting more failed tests than RetestAll) from ExsTaz1
are caused by (1) unexpectedly triggering JUnit4 annotations with
JUnit3; (2) improper support for a third-party library’s annotations.

5.5 RQ4: Spread of Manual Analysis Findings

Table 6 shows the frequency of the kinds of change in our manual
analysis in revisions and projects that we did not analyze. Table 6
omits findings that we do not support (Section 3.2). The “Method”
row sums all kinds of changes that occurred at the method-level;
the “Summary” row sums all kinds of changes. We automate the cat-
egorization of these changes. We count the three kinds of changes
in F8 together as “Change signature”. Also, F3, F6, F7, F9 are hard
to automatically count separately, so we count them together as
shown in the “No change” row. They apply to the same branch
(“return false” on line 21 in Algorithm 1) after comparing methods,
fields, and constructors, and we do not insert more branches to
distinguish these four findings to save analysis cost. For example,
F3 only changes the constant pool of the class, but does not change
the bytecode of methods, fields, and constructors.

672

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

Many changes are at the method-level: 3801/13845 of files and
540/721 of revisions. Our results (Section 3.2) show that reasoning
about our manual analysis findings complements combining class-
and method-level analyses. We show that (1) by itself, reasoning
about our findings improves RTS precision; and (2) using our find-
ings together with method-level reasoning further improves RTS
precision. Zhang [73] proposed using method-level analysis to im-
prove RTS precision. But, we are the first to find and reason about
semantics-modifying changes, and to use a two-tiered approach
based on both our findings and mixed-granularity reasoning.

6 DISCUSSION

We discuss the manual effort involved in our approach, experimen-
tal comparison with ML-based RTS, and future work.

On manual effort. The manual effort to find the kinds of changes
that we use can be non-trivial. But, we do not expect RTS tool
users to spend this manual effort. Rather, it is researchers and RTS
tool developers who may invest in finding these kinds of changes.
Also, note that finding the kinds of changes and enhancing RTS
techniques to leverage them is a one-time cost, unlike ML models
that may need to be trained per project and across revisions. The
manual effort that RTS tool developers invest is expected to result in
a pay-offs for the tool users: increased productivity (shorter testing
time), reduced impact on climate (less energy expended on testing),
and higher-quality code (tests are run more frequently).

Comparison with ML-based RTS. This paper improves analysis-
based RTS precision. But readers may wonder if ML-based RTS
could perform better. Here, we give some arguments to the contrary,
and show some experimental results which support our arguments.
Breaking the “performance wall” that we discussed in Section 1
is driving unsafe ML-based RTS, which is also being adopted, e.g.,
at Facebook [45] and Gradle Enterprise [7]. These early ML-based
RTS adopters have access to a lot of data about code changes and
test failures for training models. But, ML is out of the reach for the
vast majority of individual open-source projects because (1) they
have limited histories that contain insufficient usable data for train-
ing [72]; (2) their developers may not have ML expertise; (3) sub-
scriptions to ML-based RTS services like Gradle Enterprise may
cost more money than developers can afford (pricing for Gradle
Enterprise is not public at the time of writing [6]); and (4) there are
use cases in which safe RTS is critical, e.g., during debugging [29].
Next, we discuss our preliminary experiments to apply ML-based
RTS on open-source projects; the results support our arguments
about the lack of fit of ML-based RTS for these kinds of projects.

Models used. Trained models for ML-based RTS [7, 45] are not
available publicly. So, we use publicly-available models that we
previously trained for using ML-based RTS to improve analysis-
based RTS [72]. That training required historical test failures, which
are hard to find, so we used mutation testing to simulate failures.

Evaluation procedure. We use the 10 projects and revisions from
our prior evaluation. The IDs, names, and numbers of revisions of
the projects are in Table 7. We use the best model, FailBasic, the
best baseline, BM25, and the selection rates that found the most
failing tests. Overall, we use four models: FailBasicE, FailBasicS R
BM25F, and BM25° (E: Exstazi, S: STARTS).

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

Yu Liu, Jiyang Zhang, Pengyu Nie, Milos Gligoric, and Owolabi Legunsen

100 mmm FineEkstazi
B FineSTARTS

HyRTS
Fail — Basict
Fail — Basic®
BM25F
BM25°

80

60 4

401

Percentage of execution time (%)

204

: .

M1 M2

M3 M4 M5 M6 M7 M8 M9 M10

Figure 9: Percentage of execution time of RTS tools and ML models over RetestAll.

Table 7: Percentage of tests missed by ML-based RTS models,
compared to intersection of tests selected by three analysis-
based RTS tools—Ekstazi, HyRTS, and STARTS—[%].

[PID [Name | #sua | FailBasicE | FailBasic® | BM25% [BM25° |
M1 | Asterisk 4 73.3 62.3 46.4 40.2
M2 | Bukkit 5 56.7 28.9 46.7 8.3
M3 | Config 8 21.9 17.6 25.9 21.7
M4 | Csv 18 15.8 12.0 8.0 5.6
M5 | Lang 36 17.7 1.9 14.4 2.1
M6 | Net 17 27.2 27.2 21.2 21.2
M7 | Validator 15 24.0 24.0 35.7 35.2
M8 | Gedcomdj 21 11.8 11.8 5.7 5.7
M9 | Vectorz 20 1.8 1.8 1.9 1.9
M10 | Zt-exec 14 15.0 15.0 7.1 7.1

[- TJAvg | - 265 | 203 213] 149]

Results. Figure 9 compares FINEEKsTAzI, FINESTARTS, and HyRTS,
with the ML-based RTS models in terms of execution time (percent-
age compared to RetestAll time). We omit training costs from the
comparison. Training took 56 minutes per project, on average.
FailBasicE, the most precise ML-based RTS model, incurs more
test-execution time than FINEEKksTAZI and HyRTS in most projects.
Like in our prior work. [72], we configure all four ML-based RTS
tools to select a fixed fraction of tests to improve their failing test
detection rate. More details are in our data package’s appendix [4].
To evaluate the safety of ML-based RTS models, we compare
their selection rates to the number of tests in the intersection of
those that FINEEKsTAZI, FINESTARTS, and HyRTS select. The inter-
section of sets of selected tests from these tools is an approximation
of a “minimal” set of change-traversing tests. Table 7 shows the
percentages of change-traversing tests that are not selected by
each ML-based RTS model. The most precise ML-based RTS model,
FailBasicE, misses 26.5% of tests, on average. BM25° misses the
fewest tests (21.3% on average), but it is imprecise. In contrast, our
enhanced RTS techniques show better precision-safety trade-offs.
For example, FINEEKSTAZI is more precise than FailBasic? with no
new safety violations (see RTSCHECK evaluation in Section 5.4).

Conclusion. The experiments that we discuss here provide initial
evidence that, today, analysis-based RTS performs better than ML-
based RTS on open-source projects. Note that many developers
may not have the expertise to train their own models, and using

673

models that are trained on one project may not perform well on
different projects. Our re-use of ML models from prior work on RTS
performs worse than FINEEKsTAz1 and FINESTARTS on projects that
those models were trained on. Also, without ML, FINEEKSTAZI and
FINESTARTS obtain test reductions comparable to those obtained
by using ML to improve the precision of analysis-based RTS [72].

Future work. The use of parallel computing in RTS for analyzing
the dependency graph, e.g., TLDR [71], can also speed up RTS and
it is orthogonal to our enhancements to RTS by leveraging the
kinds of changes. We plan to explore parallelizing the analyses in
FINEEKsTAZI and FINESTARTS. Future work could also implement
findings that we did not yet implement, and investigate how to use
findings from our manual analysis to improve other recent RTS
techniques like HyRTS, EALRTS [44], etc.

7 THREATS TO VALIDITY

The findings on which we developed FINEEKsTAZI and FINESTARTS
are based on manual inspection of changes in 250 revisions of 5
open-source projects. There are many other projects and kinds of
changes. It is important to perform a more extensive study in the
future. The results in this paper are limited to the projects and
revisions that we evaluate, and may not generalize to other projects.
But we show that even when only a few findings apply to a project,
the precision and end-to-end time improvements can be beneficial.

Our process of coming up with the findings was manual. For
our proposed approach—improving RTS precision by reasoning
about manually identified semantics-modifying changes—to be
more broadly applicable, we must develop automated techniques
for examining the kinds of changes that developers make and for
categorizing those into findings. We look forward to addressing
these and other limitations in the future.

8 RELATED WORK

Others have used manually identified information to push the limits
on other program analysis. For example, Shi et al. [60] manually
identify reflection-related methods and use them to make STARTS
safer. Also, Livshits et al. [43] allow users to manually provide hints
for resolving reflective calls when using their static analysis. In the
rest of this section, we discuss other related work on: (1) improving
RTS precision, (2) leveraging code changes to improve program
analysis, and (3) studies of code changes.

More Precise Regression Test Selection via Reasoning about Semantics-Modifying Changes

Improving RTS. As RTS grows in maturity and tool adoption,
researchers must now start paying more attention to RTS quality
improvement. We took a step in this direction with our RTSCHECK
methodology for testing RTS tools [75], which we now use to test F1-
NEEKksTAZI and FINESTARTS. We developed Rexs, which improves
RTS precision by not re-running tests affected by only semantics-
preserving changes, i.e., refactoring [67]. This paper generalizes
Reks and leverages semantics-modifying code changes that do not
require re-running all tests.

Other than Rexs, other work on improving RTS precision did not
leverage kinds of code changes as we do. Zhang’s HyRTS [73] com-
bines method- and class-level analyses to improve RTS precision;
we compared FINEEKsTAzI with HyRTS in our evaluation. Palmskog
et al. [51] formally conducted a structural hierarchical impact anal-
ysis, including coarse-grained and fine-grained components. We
adopted a similar three-level hierarchy including both content and
structure. Orso et al’s DEyaVOO [50] improves RTS precision with
a two-phase approach: computing a class firewall [38] as an upper-
bound of the set of classes affected by changed code, then using an
edge-level control-flow analysis to improve the precision of the first
phase. Our approach exhibits a similar refinement process: we first
collect class-level RTS’s selected tests, and then refine the results
by integrating a method-level and field-level RTS, but we addition-
ally incorporate the knowledge of the nature of changes in our
techniques. TLDR [71] is a static method-level RTS tool and saves
end-to-end time by analyzing the method-level dependency graph
in parallel. TLDR is orthogonal to our work, and both approaches
can be combined in the future.

Recently, companies including Meta [45] and Gradle [7] report
using ML-based RTS. Researchers also studied applying ML models
for RTS on open-source projects [13, 20, 44, 52, 72]. We discussed
in Section 7 that ML-based RTS is not as effective for open-source
projects as our enhanced analysis-based RTS.

Leveraging code changes. Bell et al’s DeFlaker [12] leveraged
code change semantics to detect flaky tests (failing tests due to
non-determinism) with lower cost. DeFlaker monitors the cover-
age of the latest code changes, using a hybrid of class-level and
statement-level dependency analysis, and marks as flaky newly
failing tests that do not execute any of the changes. DeFlaker can
potentially detect more flaky tests (in the same number of test runs)
by leveraging our findings.

Prior work on defect prediction has studied utilizing various
aspects of code change semantics such as code churn [47, 48], com-
plexity of changes [35], and fine-grained code changes [24]. Giger
et al’s work [24] empirically studied the correlation between bugs
and code change types and found that leveraging semantics of code
changes can improve defect prediction models. Our work is simi-
lar, but we focus on arbitrary code changes, and our goal was to
improve precision of RTS techniques.

Saha et al. [59] developed REPIR, an information-retrieval-based
test-case prioritization technique that leverages code-change infor-
mation. REPiR uses code changes as queries to search for relevant
tests to be prioritized, which can be more computationally efficient
and performs better than techniques based on program analysis.

674

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

Binkley [15, 16] used slicing to find a reduced program on which
selected tests should be run and then selected only tests that exer-
cised some statements in the reduced program, which is different
but related to RTS. They focus on using operation semantics to find
changed lines, but we focus on the semantics of code changes in
terms of transitive dependencies between changes and tests.

Studies of code changes. Prior work has studied alternative ways
to identify and categorize code changes in different contexts. Fluri
et al. [23] extracted code changes as diffs of abstract syntax tree
and identified popular code change types in open source projects.
Nguyen et al. [49] studied popular and repetitive code change types
on a large corpus of open source projects, in both within-project
and cross-project settings. Martinez and Monperrus [46] mined
popular code change patterns for program repair. In our work, we
focus on identifying and leveraging kinds of code changes that can
be used to improve RTS precision.

Ren et al. [54] developed Chianti that uses change impact anal-
ysis to determine affected tests whose execution behavior may
have been modified by the change. Chianti defined a set of inter-
dependent atomic changes responsible for the modified behavior
of test; in contrast, we define a set of dependent atomic changes
that will not result in the change of test execution behavior. We
have applied our technique to improve both a dynamic and a static
analysis-based RTS tool.

9 CONCLUSION

We use knowledge distilled from manual inspection of code changes
to improve the precision of analysis-based RTS techniques and
speed up regression testing, without using ML and without sac-
rificing safety. We report 13 findings from identifying changes,
mostly semantic-modifying ones, in revision histories of open-
source projects, and use them to enhance Ekstazr and STARTS.
We implement our enhanced RTS techniques, FINEEksTAZI and
FINESTARTS, and find that they are more precise, and that the en-
hancements generalize to projects that we did not manually analyze.
We believe that the work presented in this paper can be a first step
in a new line of work that uses semantics-modifying code changes
for speeding up RTS. Doing so could help to further increase the
adoption of RTS in industry.

ACKNOWLEDGMENTS

We thank Nader Al Awar, Fred Schneider, August Shi, Aditya Thim-
maiah, Zhigiang Zang and the anonymous reviewers for their com-
ments and feedback. Some of this research was sponsored by the
Army Research Office and was accomplished under Cooperative
Agreement Number W911NF-19-2-0333. The views and conclusions
contained in this document are those of the authors and should not
be interpreted as representing the official policies, either expressed
or implied, of the Army Research Office or the U.S. Government.
The U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copyright
notation herein. This work is also partially supported by a Google
Faculty Research Award and the US National Science Foundation
under Grant Nos. CCF-1652517, CCF-2019277, CCF-2045596, CCF-
2107291, and CCF-2217696.

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

REFERENCES

[11]

2023. Apache Commons Codec. https://github.com/apache/commons-codec.
2023. Apache Commons Email. https://github.com/apache/commons-email.
2023. Apache Commons Math. https://github.com/apache/commons-math.
2023. Data package for this paper. https://github.com/EngineeringSoftware/
FineRTS.

2023. Ekstazi. http://ekstazi.org/.

2023. Gradle Enterprise Pricing. https://gradle.com/pricing/.

2023. Gradle predictive test selection. https://gradle.com/gradle-enterprise-
solutions/predictive-test-selection/.

2023. HyRTS. http://hyrts.org.

2023. STARTS—A tool for STAtic Regression Test Selection. https://github.com/
TestingResearchlllinois/starts.

Mohammed Nayef Al-Refai. 2019. Towards Model-Based Regression Test Selection.
Ph. D. Dissertation. Colorado State University, USA.

Thomas Ball. 1998. On the Limit of Control Flow Analysis for Regression Test
Selection. In International Symposium on Software Testing and Analysis. 134-142.

[12] Jon Bell, Owolabi Legunsen, Michael Hilton, Lamyaa Eloussi, Tifany Yung, and

[13]

[14]

[15]
[16]

[17]

(18]

[19]

[20

[
=

[22]

[23

[24

[25]

™
&

[27]

[28

[29]

[30]

(31

Darko Marinov. 2018. DeFlaker: Automatically Detecting Flaky Tests. In Interna-
tional Conference on Software Engineering. 433-444.

Antonia Bertolino, Antonio Guerriero, Breno Miranda, Roberto Pietrantuono,
and Stefano Russo. 2020. Learning-to-Rank vs Ranking-to-Learn: Strategies for
Regression Testing in Continuous Integration. In International Conference on
Software Engineering. 1-12.

John Bible, Gregg Rothermel, and David S. Rosenblum. 2001. A Comparative
Study of Coarse- and Fine-Grained Safe Regression Test-Selection Techniques.
ACM Transactions on Software Engineering Methodology 10, 2 (2001), 149-183.
David Binkley. 1997. Semantics Guided Regression Test Cost Reduction. IEEE
Transactions on Software Engineering 23, 8 (1997), 498-516.

David W Binkley. 1992. Using Semantic Differencing to Reduce the Cost of
Regression Testing. In International Conference on Software Maintenance. 41-50.
Swarnendu Biswas, Rajib Mall, Manoranjan Satpathy, and Srihari Sukumaran.
2011. Regression Test Selection Techniques: A Survey. Informatica 35, 3 (2011),
289-321.

Lionel Briand, Yvan Labiche, and Siyuan He. 2009. Automating Regression Test
Selection Based on UML Designs. Journal of Information and Software Technology
51, 1(2009), 16-30.

Ahmet Celik, Young Chul Lee, and Milos Gligoric. 2018. Regression Test Selection
for TizenRT. In International Symposium on Foundations of Software Engineering.
845-850.

Daniel Elsner, Florian Hauer, Alexander Pretschner, and Silke Reimer. 2021. Empir-
ically Evaluating Readily Available Information for Regression Test Optimization
in Continuous Integration. In International Symposium on Software Testing and
Analysis. 491-504.

Emelie Engstrém, Per Runeson, and Mats Skoglund. 2010. A Systematic Review
on Regression Test Selection Techniques. Journal of Information and Software
Technology 52, 1 (2010), 14-30.

Emelie Engstrém, Mats Skoglund, and Per Runeson. 2008. Empirical Evaluations
of Regression Test Selection Techniques: A Systematic Review. In International
Symposium on Empirical Software Engineering and Measurement. 22-31.

Beat Fluri, Michael Wursch, Martin PInzger, and Harald Gall. 2007. Change
Distilling: Tree Differencing For Fine-Grained Source Code Change Extraction.
IEEE Transactions on Software Engineering 33, 11 (2007), 725-743.

Emanuel Giger, Martin Pinzger, and Harald C. Gall. 2011. Comparing Fine-
Grained Source Code Changes and Code Churn for Bug Prediction. In Mining
Software Repositories. 83-92.

Milos Gligoric. 2015. Regression Test Selection: Theory and Practice. Ph.D. Disser-
tation. University of Illinois at Urbana-Champaign, USA.

Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Ekstazi: Lightweight
Test Selection. In International Conference on Software Engineering (Tool Demon-
strations Track). 713-716.

Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Practical Regression
Test Selection with Dynamic File Dependencies. In International Symposium on
Software Testing and Analysis. 211-222.

Milos Gligoric, Rupak Majumdar, Rohan Sharma, Lamyaa Eloussi, and Darko
Marinov. 2014. Regression Test Selection for Distributed Software Histories. In
International Conference on Computer Aided Verification. 293-309.

Milos Gligoric, Stas Negara, Owolabi Legunsen, and Darko Marinov. 2014. An
Empirical Evaluation and Comparison of Manual and Automated Test Selection.
In International Conference on Automated Software Engineering. 361-372.

Todd L. Graves, Mary Jean Harrold, Jung-Min Kim, Adam Porter, and Gregg
Rothermel. 1998. An Empirical Study of Regression Test Selection Techniques.
In International Conference on Software Engineering. 188-197.

Pooja Gupta, Mark Ivey, and John Penix. 2011. Testing at the speed and scale
of Google. http://google-engtools.blogspot.com/2011/06/testing-at-speed-and-
scale-of-google html.

675

(32]

[38

[39

=
=

[41

[42

[43

[44

[45

[47

[48

[49

[50

[51

(52

[56

[57

[58

Yu Liu, Jiyang Zhang, Pengyu Nie, Milos Gligoric, and Owolabi Legunsen

Alex Gyori, Owolabi Legunsen, Farah Hariri, and Darko Marinov. 2018. Eval-
uating Regression Test Selection Opportunities in a Very Large Open-Source
Ecosystem. In International Symposium on Software Reliability Engineering. 112—
122.

Mary Jean Harrold, James A. Jones, Tongyu Li, Donglin Liang, Alessandro Orso,
Maikel Pennings, Saurabh Sinha, S. Alexander Spoon, and Ashish Gujarathi. 2001.
Regression Test Selection for Java Software. In Conference on Object-Oriented
Programming, Systems, Languages, and Applications. 312-326.

Jean Hartmann. 2012. 30 Years of Regression Testing: Past, Present and Future.
In Pacific Northwest Software Quality Conference. 119-126.

Ahmed E. Hassan. 2009. Predicting Faults using the Complexity of Code Changes.
In International Conference on Software Engineering. 78—88.

René Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4]: A Database
of Existing Faults to Enable Controlled Testing Studies for Java Programs. In
International Symposium on Software Testing and Analysis. 437-440.

D. Kung, J. Gao, P. Hsia, F. Wen, Y. Toyoshima, and C. Chen. 1994. Change
Impact Identification in Object Oriented Software Maintenance. In International
Conference on Software Maintenance. 202-211.

David Chenho Kung, Jerry Gao, Pei Hsia, Jeremy Lin, and Yasufumi Toyoshima.
1995. Class Firewall, Test Order, and Regression Testing of Object-Oriented
Programs. Journal of Object-Oriented Programming 8, 2 (1995), 51-65.

Owolabi Legunsen, Farah Hariri, August Shi, Yafeng Lu, Lingming Zhang, and
Darko Marinov. 2016. An Extensive Study of Static Regression Test Selection
in Modern Software Evolution. In International Symposium on Foundations of
Software Engineering. 583-594.

Owolabi Legunsen, August Shi, and Darko Marinov. 2017. STARTS: STAtic
Regression Test Selection. In International Conference on Automated Software
Engineering. 949-954.

Hareton KN Leung and Lee White. 1989. Insights into Regression Testing. In
International Conference on Software Maintenance. 60-69.

Hareton KN Leung and Lee White. 1991. A Cost Model to Compare Regression
Test Strategies. In International Conference on Software Maintenance. 201-208.
Benjamin Livshits, John Whaley, and Monica S Lam. 2005. Reflection Analysis
for Java. In Asian Symposium on Programming Languages and Systems. 139-160.
Erik Lundsten. 2019. EALRTS: A Predictive Regression Test Selection Tool. Master’s
thesis. KTH Royal Institute of Technology, Sweden.

Mateusz Machalica, Alex Samylkin, Meredith Porth, and Satish Chandra. 2019.
Predictive Test Selection. In International Conference on Software Engineering
(Software Engineering in Practice). 91-100.

Matias Martinez and Martin Monperrus. 2015. Mining Software Repair Models
for Reasoning on the Search Space of Automated Program Fixing. Empirical
Software Engineering Journal 20, 1 (2015), 176-205.

Raimund Moser, Witold Pedrycz, and Giancarlo Succi. 2008. A Comparative
Analysis of the Efficiency of Change Metrics and Static Code Attributes for
Defect Prediction. In International Conference on Software Engineering. 181-190.
Nachiappan Nagappan and Thomas Ball. 2005. Use of Relative Code Churn Mea-
sures to Predict System Defect Density. In International Conference on Software
Engineering. 284-292.

Hoan Anh Nguyen, Anh Tuan Nguyen, Tung Thanh Nguyen, Tien N. Nguyen,
and Hridesh Rajan. 2013. A Study of Repetitiveness of Code Changes in Software
Evolution. In International Conference on Automated Software Engineering. 180—
190.

Alessandro Orso, Nanjuan Shi, and Mary Jean Harrold. 2004. Scaling Regression
Testing to Large Software Systems. In International Symposium on Foundations of
Software Engineering. 241-251.

Karl Palmskog, Ahmet Celik, and Milos Gligoric. 2020. Practical Machine-
Checked Formalization of Change-Impact Analysis. In Tools and Algorithms
for the Construction and Analysis of Systems. 137-157.

Rongqi Pan, Mojtaba Bagherzadeh, Taher A Ghaleb, and Lionel Briand. 2022.
Test Case Selection and Prioritization using Machine Learning: A Systematic
Literature Review. Empirical Software Engineering 27, 2 (2022), 1-43.

Marek Parfianowicz. 2017. Open Clover. https://openclover.org.

Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara G Ryder, Ophelia Chesley, and Julian
Dolby. 2003. Chianti: A Prototype Change Impact Analysis Tool for Java. Technical
Report DCS-TR-533. Rutgers University CS Dept.

Gregg Rothermel and Mary Jean Harrold. 1993. A Safe, Efficient Algorithm for
Regression Test Selection. In International Conference on Software Maintenance.
358-367.

Gregg Rothermel and Mary Jean Harrold. 1996. Analyzing Regression Test
Selection Techniques. IEEE Transactions on Software Engineering 22, 8 (1996),
529-551.

Gregg Rothermel and Mary Jean Harrold. 1997. A Safe, Efficient Regression Test
Selection Technique. ACM Transactions on Software Engineering Methodology 6,
2 (1997), 173-210.

Gregg Rothermel and Mary Jean Harrold. 1998. Empirical Studies of a Safe
Regression Test Selection Technique. ACM Transactions on Software Engineering
Methodology 24, 6 (1998), 401-419.

More Precise Regression Test Selection via Reasoning about Semantics-Modifying Changes

[59]

[60]

[61

[62]

[63]

[64

[65]

[66]

Ripon K. Saha, Lingming Zhang, Sarfraz Khurshid, and Dewayne E. Perry. 2015.
An Information Retrieval Approach for Regression Test Prioritization Based on
Program Changes. In International Conference on Software Engineering. 268-279.
August Shi, Milica Hadzi-Tanovic, Lingming Zhang, Darko Marinov, and Owolabi
Legunsen. 2019. Reflection-Aware Static Regression Test Selection. In Conference
on Object-Oriented Programming, Systems, Languages, and Applications. 187:1-
187:29.

August Shi, Tifany Yung, Alex Gyori, and Darko Marinov. 2015. Comparing
and Combining Test-Suite Reduction and Regression Test Selection. In European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 237-247.

August Shi, Peiyuan Zhao, and Darko Marinov. 2019. Understanding and Im-
proving Regression Test Selection in Continuous Integration. In International
Symposium on Software Reliability Engineering. 228-238.

Min Kyung Shin, Sudipto Ghosh, and Leo R Vijayasarathy. 2022. An Empirical
Comparison of Four Java-based Regression Test Selection Techniques. Journal of
Systems and Software 186 (2022), 111174.

Mats Skoglund and Per Runeson. 2005. A Case Study of the Class Firewall Re-
gression Test Selection Technique on a Large Scale Distributed Software System.
In International Symposium on Empirical Software Engineering and Measurement.
74-83.

Mats Skoglund and Per Runeson. 2007. Improving Class Firewall Regression
Test Selection by Removing the Class Firewall. International Journal on Software
Engineering and Knowledge Engineering 17, 3 (2007), 359-378.

Marko Vasic, Zuhair Parvez, Aleksandar Milicevic, and Milos Gligoric. 2017.
File-Level vs. Module-Level Regression Test Selection for .NET. In International

676

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

Symposium on Foundations of Software Engineering. 848-853.

Kaiyuan Wang, Chenguang Zhu, Ahmet Celik, Jongwook Kim, Don Batory, and

Milos Gligoric. 2018. Towards Refactoring-Aware Regression Test Selection. In

International Conference on Software Engineering. 233-244.

David Willmor and Suzanne M. Embury. 2005. A Safe Regression Test Selection

Technique for Database Driven Applications. In International Conference on

Software Maintenance. 421-430.

Guogqing Xu and Atanas Rountev. 2007. Regression Test Selection for Aspect]

Software. In International Conference on Software Engineering. 65-74.

Nathan York. 2011. Tools for Continuous Integration at Google Scale. https:

/[www.youtube.com/watch?v=b52aXZ2yi08.

[71] Maruf Hasan Zaber. 2021. Towards Parallelization of Regression Test Selection.

Master’s thesis. University of California, Irvine, USA.

Jiyang Zhang, Yu Liu, Milos Gligoric, Owolabi Legunsen, and August Shi. 2022.

Comparing and Combining Analysis-based and Learning-based Regression Test

Selection. In ICSE Workshop on Automation of Software Test.

Lingming Zhang. 2018. Hybrid Regression Test Selection. In International Con-

ference on Software Engineering. 199-209.

[74] Jianjun Zhao, Tao Xie, and Nan Li. 2006. Towards Regression Test Selection for
Aspect] Programs. In Workshop on Testing Aspect-Oriented Programs. 21-26.

[75] Chenguang Zhu, Owolabi Legunsen, August Shi, and Milos Gligoric. 2019. A
Framework for Checking Regression Test Selection Tools. In International Con-
ference on Software Engineering. 430-441.

[67

(68

[69

[70

[72

[73

Received 2023-02-16; accepted 2023-05-03

	Abstract
	1 Introduction
	2 Background and Examples
	3 Manual Analysis of Changes
	3.1 Manual Analysis Process
	3.2 Findings from Manual Analysis

	4 Technique
	4.1 Overview of Original vs. Enhanced RTS
	4.2 How FineEkstazi and FineSTARTS Work
	4.3 Embedding Method-Level Reasoning

	5 Evaluation
	5.1 Experimental Setup
	5.2 RQ1: Impact on RTS Selection Rates
	5.3 RQ2: Impact on End-to-End Testing Times
	5.4 RQ3: Impact on Safety
	5.5 RQ4: Spread of Manual Analysis Findings

	6 Discussion
	7 Threats to Validity
	8 Related Work
	9 Conclusion
	References

