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Abstract

Cloud systems are increasingly being managed by opera-
tion programs termed operators, which automate tedious,
human-based operations. Operators of modern management
platforms like Kubernetes, Twine, and ECS implement declar-
ative interfaces based on the state-reconciliation principle. An
operation declares a desired system state and the operator
automatically reconciles the system to that declared state.

Operator correctness is critical, given the impacts on sys-
tem operationsÐbugs in operator code put systems in un-
desired or error states, with severe consequences. However,
validating operator correctness is challenging due to the
enormous system-state space and complex operation inter-
face. A correct operator must not only satisfy correctness
properties of its own code, but it must also maintain man-
aged systems in desired states. Unfortunately, end-to-end
testing of operators significantly falls short.
We present Acto, the first automatic end-to-end testing

technique for cloud system operators. Acto uses a state-
centric approach to test an operator together with a managed
system. Acto continuously instructs an operator to reconcile
a system to different states and checks if the system success-
fully reaches those desired states. Acto models operations as
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state transitions and systematically realizes state-transition
sequences to exercise supported operations in different sce-
narios. Acto’s oracles automatically check whether a sys-
tem’s state is as desired. To date, Acto has helped find 56
serious new bugs (42 were confirmed and 30 have been fixed)
in eleven Kubernetes operators with few false alarms.
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1 Introduction

Cloud systems are growing in scale and demand beyondwhat
human-based operation can reliably, continuously, and effi-
ciently manage. Modern cloud systems are increasingly be-
ingmanaged by operation programs, termed operators [2, 47],
that automate labor-intensive operations. Operators of cloud
management platforms like Kubernetes [39], Twine [83], and
ECS [67] implement declarative interfaces based on state rec-

onciliation. An operation declares the desired system state
and the operator automatically reconciles the system from
its current state to the declared state. This łcloud-nativež op-
erator pattern simplifies operations and improves efficiency.
The cloud-native operator pattern has led to a thriving

ecosystem of high-quality, reusable operator code [55, 56, 61,
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platforms maintain their current system states in a collec-
tion of state objects in strongly consistent datastores (e.g.,
etcd [7]). Every entity in the system, such as a pod, a volume,
and a stateful set (representing a stateful system), has a cor-
responding state object. State objects have uniform APIs and
consistent data schema, making them highly interpretable
and extensible [39].
Figure 3 shows how a ZooKeeper operator scales up a

managed ZooKeeper cluster. A user declares the desired
state of the ZooKeeper cluster by submitting a new CR that
changes the replicas property from 2 to 3 via the Kubernetes
client (kubectl). The operator processing the desired-state
declaration first confirms that the current number of replicas
in the ZooKeeper cluster is different from 3Ðonly two pod
objects for replicas currently exist in etcd. To reconcile to the
desired state, the operator notifies Kubernetes to increase the
stateful-set count for replicas. To do so, Kubernetes creates a
new pod and a new volume. State reconciliation stops when
the desired state with three replicas is reached.

Operation correctness. We define three correctness re-
quirements for operations: the operator (1) always reconciles
the managed system to valid, reachable desired states, re-
gardless of its current or previous states; (2) can recover the
managed system from implicit or explicit error states by
rolling back to a previous good state; and (3) should prevent
misoperations from driving the managed system into error
states. Figure 1 violates the first requirement and Figure 2
violates the second requirement. In this paper, we treat root
causes of violations to the first two requirements bugs and
report them to developers. We refer to root causes of viola-
tions of the third requirement as misoperation vulnerabilities,
which are known to be serious issues [37, 38, 51, 68ś70, 93].
We discuss systematic mitigations for misoperation vulnera-
bilities with developers.

Operation correctness is hard to achieve. Operator devel-
opers face the twin fundamental challenges of (1) anticipat-
ing relevant system states to explore in the enormous state
space, and (2) correctly reconciling the managed systems
from all the different start states.

3 Motivating Study

To understand the kinds of test cases (i.e., tests) that oper-
ator developers write and the limitations of their current
testing practices, we study 50 open-source Kubernetes oper-
ator projects from GitHub and their tests.

Finding 1. Most operators that we study rely on unit tests,

which cannot validate operation correctness. Only 34% of these

studied operators have a few end-to-end tests.

Checking if a managed system reaches desired states is
beyond the scope of unit tests, each of which checks amethod
in operator code. Such checks need end-to-end (e2e) tests [10]
to validate operation correctness of the managed systems.

Table 1. Properties covered by existing e2e tests and

characteristics of tests that triggermultiple operations.

Operator
# Properties Tests with multiple operations

Tested Total % (#) # Ops (Avg)

KnativeOp 8 (2.15%) 372 14.29% (1/7) 6

PCN/MongoOp 70 (1.27%) 5495 38.71% (12/31) 2.58

RabbitMQOp 19 (1.43%) 1332 25.00% (2/8) 2.5

ZooKeeperOp 13 (1.47%) 886 75.00% (6/8) 2

Typically, an e2e test first causes an operator to carry out
an operation, for example, to deploy, scale, or reconfigure
the managed system. Then, the e2e test checks if the oper-
ation succeeded by means of assertions that compare the
reconciled managed system state with the expected state.
However, only 17 (34%) of 50 operators include e2e tests, and
those manually written e2e tests are few, with a median of
six e2e tests per operator.
We focus the rest of our study on the effectiveness of ex-

isting e2e tests, since we address operation correctness. We
study four operators from the 50 and their e2e tests: Kna-
tiveOp, PCN/MongoOp, RabbitMQOp, and ZooKeeperOp.
These operators are developed either by official teams of the
managed systems, or by companies that sell services built
around the managed systems. These four operators contain
7ś31 e2e tests; PCN/MongoOp relies only on e2e tests (no
unit tests). Table 4 provides more data about these operators.

Finding 2. Existing e2e tests cover only 1.27ś2.15% of sup-

ported properties exposed by the operation interface. Also, most

tested operations start from the default initial state.

Table 1 shows that existing e2e tests change very few
properties when testing operation correctness in these four
Kubernetes operators that we study. We find that some oper-
ators’ e2e tests do not check basic operations, e.g., backend
migration in RabbitMQOp. Also, few e2e tests check opera-
tions in multiple configurations, e.g., deploying ZooKeeper
with persistent and ephemeral storage. Acto efficiently helps
test more operations in multiple configurations.
Operators are long-running processes that continuously

monitor and reconcile managed systems from any state to the
desired states. So, operations should be tested from different

start states. Consider scaling: given a desired number of
replicas, triggering a scale-up or a scale-down procedure
depends on the current state. Table 1 (third column) shows
that the few e2e tests that check multiple operations only
check 2.97 operations on average, a small number compared
to how operators work in practice. Most tests trigger only
one operation from the default initial state.

Finding 3. State-based assertions in existing e2e tests cover

only 0.24ś10.90% of managed systems’ state-object fields.

Given the enormous state space, developers likely find it
tedious to write assertions on many state-object fields. Ta-
ble 2 shows a breakdown of three kinds of assertions that
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Table 2. Three types of assertions in existing e2e tests.

Operator
# Assertions # State Objects

Env. State Behav. Total Asserted Total

KnativeOp 18 32 0 50 14 (0.93%) 1506

PCN/MongoOp 2 209 177 388 329 (10.90%) 3017

RabbitMQOp 26 19 29 74 12 (0.42%) 2852

ZooKeeperOp 62 54 0 116 7 (0.24%) 2934

we observe in existing e2e tests. These tests check (1) the en-
vironment (e.g., can operators request Kubernetes services?);
(2) system statesÐis the managed system reconciled to the
desired state?; and (3) managed system behavior. Assertions
on the environment check that operators run in compatible
settings; they do not validate operation correctness. State
and system-behavior assertions could validate operation cor-
rectness. But, in our study, these kinds of assertions either
only check a small part of the system state or only check the
availability of system services.

Finding 4. The few assertions on system behavior are basic

and mostly check service availability.

KnativeOp and ZooKeeperOp tests have no assertion on
system behavior. In PCN/MongoOp and RabbitMQOp, such
assertions only check that the managed system responds
to read/write requests from clients. We find a few asser-
tions on system-specific behavior: (1) 36 of 177 assertions in
PCN/MongoOp check backup availability; and (2) only one
of 77 RabbitMQOp assertions checks membership list size.

Implications. Our study shows that current manual testing
of operation correctness is significantly limited, even for
popular operators with many GitHub stars (see Table 4, ğ6).
Our results suggest that manually writing end-to-end (e2e)
tests is tedious and inadequate. So, automatic e2e testing
of operation correctness is desirable. We believe that such
automatic testing is viable and can be done effectively by
leveraging the declarative, state-reconciliation pattern of
modern cloud system operators.

4 Technique

Acto is a state-centric testing technique. It tests operation
correctness by performing end-to-end (e2e) testing of cloud-
native operators together with the managed systems. To do
so, Acto continuously generates new operations during a
test campaign. Then, Acto’s oracles check if the operator
always correctly reconciles the system from each current
state to the desired state, or raises an alarm otherwise.

Acto detects bugs when requirements of operation correct-
ness (ğ2) are violated. Such bugs include those that (1) cause
an operator not to reconcile the system to desired states,
(2) crash the operator or the system, and (3) prevent the
managed system from recovering from an error state. Acto
also detects vulnerabilities to misoperations that can drive
the systems into explicit error states.

Acto generates minimized e2e test code for every alarm
that it raises. These generated tests can help developers to
reliably reproduce a bug or a vulnerability, without rerun-
ning the entire test campaign. That is, generated e2e tests
only run operations that are necessary to set up the state for
reproducing a bug or a vulnerability. Developers can include
the generated e2e test in their regression test suite.
Acto is automaticÐit tests unmodified operators and re-

quires no manual annotation, instrumentation, or assertion.
The test inputs that Acto automatically generates are oper-
ations, which drive the operator under test to reconcile the
managed system to declared desired states. Acto ensures that
generated operations are syntactically valid and represent
various scenarios by analyzing the constraints and seman-
tics of properties exposed by an operator’s interface. Acto
dynamically computes the desired state for triggering the
next operation based on the current state.

Acto’s test oracles check if the system state after an oper-
ation matches the desired state. Automatic test oracle gen-
eration is a hard problem in general. Acto’s test oracles are
enabled by a key opportunity in modern cloud management
platforms based on state reconciliation like Kubernetes: they
maintain the system states in uniform, interpretable state
objects that can be systematically queried and analyzed.

Usage. Acto works in two modes: a blackbox mode (Acto-
■) and a whitebox mode (Acto-□). Acto-■ takes two inputs:
1) a manifest for building and deploying the target operator,
and 2) the specification of state declaration provided by the
operator interface (e.g., the custom resource definition of
Kubernetes operators). Both inputs are abundant in mature
operator projects; they are widely used for operator devel-
opment and deployment. Finding these inputs is straight-
forward. Acto-□ requires an additional input: the operator’s
source code for static program analysis. Acto outputs test
failures, debugging information for root cause analysis, and
minimized test code that reproduces detected failures.

4.1 Operation Model

Acto models an operation as a pair, (𝑆𝑐 , 𝐷), where 𝑆𝑐 denotes
a current system state and𝐷 is a declaration of a valid desired
state. 𝐷 is constrained by the operation interface specifica-
tion (e.g., a CR definition in Kubernetes). If successful, an
operation triggers a state transition, 𝑆𝑐

𝐷

−→ 𝑆𝐷 , where 𝑆𝐷

satisfies 𝐷 , i.e., 𝑆𝐷 |= 𝐷 . 𝐷 often only specifies a (small) part
of the system state. So, there are multiple possible system
states that can satisfy 𝐷 , and, in practice, only a small part
of 𝑆 needs to be examined to check if 𝑆𝐷 |= 𝐷 .
If an operation fails (e.g., due to bugs in operator code),

the system enters an error state, 𝑆𝑒 ̸ |= 𝐷 , i.e., 𝑆𝑒 does not
satisfy the desired state. When 𝑆𝑒 ̸ |= 𝐷 , the operator should
be able to rollback the state from 𝑆𝑒 with a state transition
𝑆𝑒

𝐷𝑖−1
−−−→ 𝑆𝑐 , where 𝐷𝑖−1 is the desired-state declaration that

previously triggered a transition to 𝑆𝑐 .
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Figure 4. State transitions of different test strategies.

The fundamental challenge in testing operators is the pro-
hibitive cost of testing all elements in the Cartesian product

of 𝑆 = 𝑆𝐶 ∪𝑆𝐸 and 𝐷̆ , where 𝑆𝐶 is the set of all possible valid
system states (𝑆𝑐 ∈ 𝑆𝐶 ), 𝑆𝐸 is the set of all possible error

states (𝑆𝑒 ∈ 𝑆𝐸 ), and 𝐷̆ is the set of all possible declarations

of desired state (𝐷 ∈ 𝐷̆). There can be a large number of val-
ues for different properties that constitute the system state.
Exhaustive testing could be prohibitively expensive and any
practical testing approach can only exercise a part of the

state space, i.e., 𝑆 × 𝐷̆ .

4.2 Test Strategy

Acto systematically explores the state space using the fol-
lowing three test strategies (Figures 4aśc).

Single operation. Acto generates a declaration of a desired
state𝐷 , triggers an operation to reconcile the current system
state 𝑆𝑐 to the desired system state 𝑆𝐷 , and checks whether
𝑆𝐷 |= 𝐷 . The single operation is applied to the initial system
state 𝑆𝑐 = 𝑆0 (starting from a non-initial state requires more
operations). This simple single-operation strategy is similar
to the current testing practices discussed in ğ3; it is easy to
implement and reason about. The key challenge is how to

explore an effective and representative subset of 𝐷̆ .

Operation sequence. Acto extends single operations into
a test campaign, which consists of a sequence of opera-
tions. Test campaigns overcome the limitation of the single-
operation strategy, which must always start from the initial
state 𝑆𝑐 = 𝑆0. As discussed in ğ3, it is important to test
whether an operator can reconcile the system to desired
states from different, non-initial start states. Reaching an
end state from different start states increases the chance of
invoking different procedures in the operator code. In a test
campaign, earlier operations take the system to new states
which become the start states for subsequent operations.
Acto generates a test campaign by chaining the expected end

states {𝑆𝑖 } from the single-operation strategy, and generat-
ing a new 𝐷𝑖 after each successful reconciliation, as shown
in Figure 4b. The result is a sequence of state transitions,
𝑆0

𝐷1
−−→ 𝑆1

𝐷2
−−→ ...

𝐷𝑖

−−→ 𝑆𝑖
𝐷𝑖+1
−−−→ ...; Acto checks whether each

𝑆𝑖 |= 𝐷𝑖 , where i ≠ 0.

Error-state recovery. The operation-sequence strategy
does not test whether or not an operator correctly restores a
system from implicit or explicit error states. If the system is
in an error state 𝑆𝑒 , the operator is responsible for recovering
from 𝑆𝑒 by reconciling the system from 𝑆𝑒 back to the prior
healthy state 𝑆𝑖−1. The subsequent operations start from
𝑆𝑖−1, such as in the transition, 𝑆𝑖−1

𝐷𝑖+1
−−−→ 𝑆𝑖+1, in Figure 4c.

Error states can be reached because of operator bugs that
reconcile the system to a state 𝑆𝑒 ̸ |= 𝐷 , or misoperationsÐ
semantic errors in 𝐷 that escape syntactic validation against
the interface specification.

Acto combines these three test exploration strategies (Fig-
ures 4aśc) to realize the state transition sequences in one
test campaign, as shown in Figure 4d.

5 Design and Implementation

This section describes the main components of Acto and how
we implement them. These components embody Acto’s state-
centric testing technique (ğ4); they generate declarations of
desired system states, execute test campaigns, and check
reconciled states using automated test oracles.

5.1 Realizing State Transitions

During a test campaign (Figure 4d), Acto automatically gen-
erates a new state declaration 𝐷𝑖+1 based on the current
system state 𝑆𝑖 to realize a state transition, 𝑆𝑖

𝐷𝑖+1
−−−→ 𝑆𝑖+1. Test

campaigns start from the initial state 𝑆0. Acto triggers state
transitions with the goals to: (1) cover all properties exposed
by the operation interface, and (2) exercise representative
operation scenarios based on property semantics.
Acto systematically exercises all the properties that are

defined in the operation interface. Each new 𝐷𝑖+1 changes
one property in the current state 𝑆𝑖 and any other properties
that are needed to satisfy predicates on property relation-
ships (ğ5.2.4). Specifically, Acto selects a previously untested
property and uses it to declare a new desired state. The end
state after one transition, becomes the start state for the
next transition (Figure 4b). All state declarations collectively
change every property at least once during a test campaign.

Acto tests different scenarios based on the semantics of the
changed properties. (Acto automatically infers these seman-
tics, ğ5.2.2). Table 3 gives a few such scenarios. For example,
Acto tests the scale-up-and-scale-down and the scale-down-
and-scale-up sequences if a property represents the number
of replicas. Acto also tests different pod assignments that
trigger the operator to re-configure or re-deploy managed
systems differently. This scenario-driven approach allows
Acto to focus on a small number of representative states,
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5.2.3 Generating Property Values. To generate values
for properties with inferred semantics, Acto currently imple-
ments 57 property-specific generators based on Kubernetes
resource semantics. Most of these properties are composite.
The generators focus on high-level semantics to exercise
different scenarios (Table 3). Each generator creates property
values to realize a scenario. We find that most properties
exposed by operation interfaces (83% on average in our eval-
uated operators) can be mapped to Kubernetes resources.
Acto’s generators are invoked at runtime. Some generators
read environment and runtime information to inform value
generation (e.g., an unsatisfiable affinity rule).
For properties whose semantics Acto cannot infer, Acto

mutates current values based on their data types while satis-
fying syntactic constraints (ğ5.2.1). Acto only mutates primi-
tive sub-properties of composite properties. Acto’s mutation
ensures syntactic validity but does not guarantee semantic
meaningfulness. Mutated values that are not semantically
meaningful help check for vulnerabilities to misoperations.
Our manual inspection during Acto evaluation (ğ6) shows
that 80+% of mutations are semantically meaningful.

5.2.4 Satisfying Predicates. The values that Acto gener-
ates should satisfy predicates, in the form of property depen-
dencies, for changed property values to trigger state transi-
tions. For example, an operation that changes a backup policy
only triggers a state transition if backup is also turned on.
But, dependencies among properties are often not specified,
so Acto automatically infers them.

Inferring dependencies fromnaming convention (Acto-

■). Property names that are exposed by the operation in-
terface provide hints from which dependencies can be in-
ferred. In Kubernetes, dependencies can be identified by
feature togglesÐeach composite property has a Boolean sub-
property whose name contains łenabledž. For example, oper-
ations that change PCN/MongoOp’s backup policy must also
set Backup.Enabled to True. Acto-■ infers dependencies on
each property that uses this convention based on a breadth-
first search that iteratively collects feature toggles. We find
this simple heuristic to be effectiveÐit captures 98.05% of
control dependencies that we find. Not all dependencies are
identifiable from feature toggles, but we only find a small
number of other subtle dependencies.

Inferring dependencies using control-flow analysis

(Acto-□). Acto-□ analyzes control-flow relationships among
program variables in operator code to detect dependencies
among property values that do not follow the ł*enabled*ž
naming convention. This analysis is similar to those used for
finding dependencies among program inputs [43, 93].
Property 𝑝2 depends on property 𝑝1, i.e., 𝑝1

dep←−−𝑝2, if 𝑝2
is only used when 𝑝1 satisfies a predicate. Acto-□ searches
for control dependencies, (𝑝1, 𝜑, 𝑐)

dep←−−𝑝2, where 𝑐 is some
value and 𝜑 is a predicate, e.g., an arithmetic, logic, string, or
object comparison. Specifically, if a predicate 𝜑 dominates a

sink statement of property 𝑝2 and 𝜑 is not postdominated by
the sink, then there is a control-flow dependency between 𝜑
and 𝑝2, i.e., 𝑝2 is used only when 𝜑 is True. Sinks consume
property values, e.g., a call to an external API. Further, if
𝜑 is determined by comparing the value of 𝑝1 with 𝑐 , then
Acto-□ records a control dependency, (𝑝1, 𝜑, 𝑐)

dep←−−𝑝2. If 𝑝2
has multiple sinks, Acto-□ reports a control dependency,
(𝑝1, 𝜑, 𝑐)

dep←−−𝑝2, iff all sinks of 𝑝2 depend on (𝑝1, 𝜑, 𝑐).

5.3 Test Oracles

Acto’s oracles check whether the state to which the managed
system is reconciled matches the specified desired state. If
there is a match, Acto reports the operation as successful.
Otherwise, Acto signals an alarm that the user can inspect
to find bugs or vulnerabilities to misoperations.
The complexity of Acto’s oracles depends on whether

mismatches between reconciled and desired states manifest
explicitly or implicitly. Acto implements oracles to check for
state mismatches that manifest as explicit error states, such as
exceptions, error codes, and timeouts. These oracles 1) scan
an operator’s error log for unexpected exceptions, e.g., the
panic signal in Go; 2) check runtime status of the managed
system (recorded in state objects); and 3) check whether an
operation returns an error code or fails to complete on time.

Acto’s oracles that check for explicit errors are insufficient:
many operator bugs manifest as implicit-state mismatches

with no explicit symptoms. To find such bugs, Acto also im-
plements oracles to check if 𝑆𝑖 |= 𝐷𝑖 for each state transition
𝑆𝑖−1

𝐷𝑖

−−→ 𝑆𝑖 . Checking 𝑆𝑖 |= 𝐷𝑖 is challenging. First, 𝑆𝑖 and 𝐷𝑖

are represented differently: 𝐷𝑖 is a specification [3] and 𝑆𝑖
is embodied in state objects [17]. Second, satisfiability (|=)
is domain-specific; its semantics may not be obvious. Acto
uses two types of oracles to detect implicit-state mismatch:

• Consistency oracle (ğ5.3.1). Acto checks whether 𝑆𝑖 |= 𝐷𝑖

from the operator and the management platform (e.g.,
Kubernetes) views. A buggy operator’s view may show
𝑆𝑖 |= 𝐷𝑖 while the management view shows 𝑆𝑖 ̸ |= 𝐷𝑖 . Such
view inconsistencies likely indicate the presence of bugs.
• Differential oracle (ğ5.3.2). This oracle leverages the level-
triggering principle [57] that operators should follow: the
same desired state should be reached from different start
states. So, for each transition pair, 𝑆𝑖−1

𝐷𝑖

−−→ 𝑆𝑖 and 𝑆0
𝐷𝑖

−−→ 𝑆 ′
𝑖
,

Acto checks whether 𝑆𝑖 and 𝑆 ′
𝑖
match after state recon-

ciliation based on 𝐷𝑖 . This differential oracle also checks
whether the operator can recover from an error state, 𝑆𝑒 , by
checking whether the system state after a rollbackmatches
𝑆𝑖−1, the preceding state before the error.

In addition to the automated built-in oracles, Acto also has an
interface to allow users to add custom oracles, e.g., domain-
specific oracles to check managed systems.

5.3.1 Consistency Oracle. Some bugs occur if an opera-
tor stops reconciliation because the system is in state 𝑆𝑖 |= 𝐷
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5.5 Implementation

We implement Acto for Kubernetes operators. Acto-■ has
12,100 lines of Python code. Roughly 9,000 of those lines
implement generic test logic (e.g., input generation, test exe-
cution, and oracles). Kubernetes-specific semantic inference
and value generation take ∼2K lines. If new Kubernetes re-
sources are introduced in the future, we will need to extend
Acto to add new value generators for the associated proper-
ties (ğ5.2.3). The remaining lines of Acto-■ code implement
utilities: environment setup, state analysis, etc. Acto-□ is
built on top of Acto-■ using an additional 5,700 lines of Go
code for program analysis. We currently support operators
written in Go, the most popular language among operators.
Acto runs tests on virtualized Kubernetes clusters. It supports
three backends, Kind [9], Minikube [12], and K3d [8].

Static analysis in Acto-□. We use ssa [15] which pro-
vides intra-procedural static single-assignment (SSA) rep-
resentation. We use pointer [14] for alias analysis, which
implements the Andersen-style point-to analysis [33].

State convergence. Acto applies test oracles only after
the system state converges. Convergence time ranges from
one second to 10 minutes, so setting a fixed timer would be
unreliable. Acto uses a reset timer to check for convergenceÐ
it resets the timer when it observes a system event, until no
event occurs and the timer times out. We conservatively set
the timer to three times the system restart time.

Test parallelization. To speed up testing, Acto partitions
operation sequences, [(𝑆0, 𝐷1), (𝑆1, 𝐷2), ..., (𝑆𝑥 , 𝐷𝑥+1)], into
multiple tests and runs them in parallel. To run three parti-
tions of this sequence in parallel, Acto creates three tests cor-
responding to 1) 𝑆0

𝐷1
−−→ 𝑆1

𝐷2
−−→, ...,

𝐷𝑖

−−→ 𝑆𝑖 , 2) 𝑆0
𝐷𝑖

−−→ 𝑆𝑖
𝐷𝑖+1
−−−→

, ...,
𝐷𝑛

−−→ 𝑆𝑛 , and 3) 𝑆0
𝐷𝑛

−−→ 𝑆𝑛
𝐷𝑛+1
−−−→, ...,

𝐷𝑥

−−→ 𝑆𝑥 . If 𝑆𝑖 is an error
state, it is łrolled backž based on 𝐷𝑖−1. Acto can run multiple
test partitions on one machine, each in a virtualized Kuber-
netes cluster with a separate namespace. This approach saves
time as test runs wait for convergence. Acto keeps container
file systems in memory to reduce the image loading time.

6 Evaluation

Acto’s premise is that fully automatic end-to-end correctness
testing for unmodified operators is viable and effective. We
answer three research questions: (1) Can Acto effectively
find new bugs in real-world operators? (2) How efficient is
Acto? (3) Are Acto’s signaled alarms trustworthy?

We apply Acto to eleven popular open-source Kubernetes
operators which manage nine cloud systems (Table 4). All
evaluated operators are developed by the official teams of the
managed systems, or by companies that sell services built
around the managed systems. Test suites in the evaluated
operators have similar characteristics as those in ğ3.
Our main evaluation results are summarized as follows:

• Acto finds 56 new bugs in eleven operators; 42 bugs in the
operators have been confirmed; 30 have been fixed. Acto

Table 4. The Kubernetes operators that we evaluate.

Operator System Dev. # Stars LOC # E2E Tests

CassOp Cassandra K8ssandra 148 23.1K 48

CockroachOp CockroachDB Official 238 17.4K 21

KnativeOp Knative Official 157 16.3K 7

OCK/RedisOp Redis OCK 531 2.5K 0

OFC/MongoOp MongoDB Official 977 17.1K 62

PCN/MongoOp MongoDB Percona 268 15.0K 31

RabbitMQOp RabbitMQ Official 669 14.7K 8

SAH/RedisOp Redis Spotahome 1303 10.5K 1

TiDBOp TiDB Official 1130 132.8K 131

XtraDBOp XtraDB Percona 448 15.5K 37

ZooKeeperOp ZooKeeper Pravega 332 5.5K 8

also finds six bugs in Kubernetes and in the Go runtime
that affect multiple operators; all were confirmed or fixed.
• Acto’s test campaigns take less than eight hours per oper-
ator on a cluster of eight machines (a nightly run). Five of
eleven operators only need one machine.
• Acto generates few false positives: Acto-□ reports no false
alarms and Acto-■ has a very low false alarm rate: 0.19%.

6.1 Finding New Bugs and Vulnerabilities

Acto finds previously unknown bugs in all evaluated opera-
tors, 56 bugs in total (Table 5). We reported all these bugs.
So far, 42 were confirmed and 30 have been fixed. No bug
report was rejected. Acto-□ found all 56 bugs. Acto-■missed
one bug, due to not being able to infer the semantics of a
primitive property that is needed to generate a scenario.
Acto generates e2e tests to reproduce all 56 bugs that it

detects; developers can add these e2e tests to their regression
test suite (ğ5.4). In fact, for six bug fixes, developers added
regression tests that perform the same state transition gen-
erated by Acto. Our experience tells that the generated e2e
tests are invaluable for debugging and validating bug fixes.
Many bugs detected by Acto have severe consequences:

managed-system failures, reliability issues, and security is-
sues (Table 6). Estimating the likelihood of encountering
each bug łin the fieldž is hardÐthe data for such estimation
is not publicly available. However, a bug detected by Acto
was also encountered by a real user after we reported it [19].
Also, some previously reported bugs are similar to those that
Acto detects (e.g., [20]). Note that the evaluated operators are
popular open-source projects (GitHub ł#Starsž in Table 4),
suggesting that operator correctness is hard to achieve.

Acto also finds six bugs in Kubernetes and in the Go run-
time that affect multiple operators. These bugs cause wrong
or imprecise quantity conversions [26], incompatibility be-
tween declarations and API-server validation [18], crashes
due to Go’s generated shared object [21], etc. All these six
bugs were confirmed or fixed after we reported them.

Acto also detects 630 misoperation vulnerabilities (ğ6.1.2).
Each vulnerability corresponds to a unique misoperation
that drives the managed system into an error state.
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Table 5. New bugs detected by Acto-□ (Acto-■) in the

evaluated operators. Acto also detected six new bugs in
Kubernetes and Go runtime that affect multiple operators.

Operator
Undesired Error State Recovery

Total
State System Operator Failure

CassOp 2 0 0 2 4

CockroachOp 3 0 2 0 5

KnativeOp 1 0 2 0 3

OCK/RedisOp 4 0 3 1 8

OFC/MongoOp 3 1 2 2 8

PCN/MongoOp 4 0 0 1 5

RabbitMQOp 3 0 0 0 3

SAH/RedisOp 2 1 0 1 4

TiDBOp 2 1 0 1 4

XtraDBOp 4 0 1 1 6

ZooKeeperOp 4 1 (0) 0 1 6 (5)

Total 32 4 (3) 10 10 56 (55)

6.1.1 Bugs Detected by Acto. Acto detects bugs that vi-
olate the first two operation correctness requirements: (1)
driving managed systems into undesired or error states, or
(2) failing to recover from error states.

Undesired state. Acto found 32 bugs, where an operator
does not reach the desired state, but neither the operator
nor the managed system reports errors explicitly. The conse-
quences of these bugs are latent and hard to observe (e.g., se-
curity vulnerabilities). These bugs have different root causes
in code, but a common theme is that the operator stops rec-
onciliation before the desired state is reached. We showed
two such bugs in Figures 6 and 7. These bugs show the impor-
tance of modeling operations as state transitions and testing
different state transitions to the same declared states (ğ4.1).

Error state. Acto found 14 bugs that result in runtime errors
or crashes of the managed system or the operator. Among
these, four bugs caused runtime errors in the managed sys-
tems (such as the one in Figure 1). In another example [31],
when testing TiDBOp, Acto generates a valid operation that
turns on binlog to replicate data using the TiDB binlog. How-
ever, TiDB binlog requires a pump cluster to record and sort
binlogs, which is not set up by TiDBOp. So, TiDBOp restarts
TiDB nodes to load the new configuration, but the replicas
crash because of the missing pump cluster.
Acto also found ten bugs that caused operator failure.

For example, CockroachOp crashed due to an łindex-out-
of-rangež error when parsing a valid state declaration gen-
erated by Acto [27]. The crash brought down the webhook
service [5] that the operator uses to validate declarations. Af-
ter restart, CockroachOp crashed again due to the offending
declaration and it got stuck in a crash-then-restart loop.

Recovery failure. Acto detected ten bugs that lead to seri-
ous liveness issues (e.g., permanent operator failures) that
can neither be addressed by restarting the operator nor by
issuing new operations (such as the one in Figure 2). Acto

Table 6. Consequences of the 56 detected bugs in Ta-

ble 5. One bug can have multiple consequences.

Consequence Example # Bugs

System failure MongoDB is down and cannot recover [23] 5

Reliability issue Redis is not protected by disruption budget [25] 15

Security issue CockroachDB uses outdated secrets [29] 2

Resource issue Redis runs with no resource guarantee [24] 9

Operation outage CockroachOp crashes and cannot recover [27] 18

Misconfiguration Ingress controller cannot be disabled [22] 15

detected these bugs by testing rollback operations with the
differential oracle. Our investigation reveals a common cod-
ing practice: operators perform new operations only after
the system is in a stable state. This practice is a double-edged
sword: it prevents bugs caused by racing operations and
reduces risks during upgrade, but it makes failure recovery
difficult, because it also blocks rollback operations if the
system is in an error state.

6.1.2 Misoperation Vulnerabilities Detected by Acto.

Acto-□ detects 630 misoperation vulnerabilities that violate
the third operation correctness requirement (Acto-■ detects
616 of these 630). Each vulnerability corresponds to a unique
property. Acto detects these vulnerabilities by generating de-
clared states with unsatisfiable affinity rules, misconfigured
security contexts, unavailable resources, etc. (Table 3). All
these vulnerabilities can lead to severe consequences includ-
ing entire system failure, partial service failures, and relia-
bility issues. In practice, the triggering misoperations could
result from human mistakes or wrong policies. These results
show that operator developers do not anticipate and defend
well against misoperations, which are frequently reported
as major causes of system failures [37, 38, 51, 68ś70, 93].
We actively discuss with developers on potential mitiga-

tion (e.g., by more rigorous early checks). In practice, some of
these vulnerabilities are difficult to prevent. The reason lies
in the challenges of encoding sufficient domain knowledge in
operators to check the semantics of requested operations. For
example, it is hard to replicate Kubernetes core scheduler’s
complex logic [82]. Checking some misoperations requires
knowledge of managed systems. State rollback can be an ef-
fective mitigation strategy, but it does not always workÐover
35% of 630 misoperation vulnerabilities cannot be mitigated
by rollbacks due to the recovery-failure bugs in ğ6.1.1.

6.1.3 Effectiveness of Different Oracles. Acto’s consis-
tency and differential oracles catch 43 of the 56 bugs (Table 7).
The consistency oracle detects 23 bugs by matching and com-
paring properties in state declarations to the spec sections
in state objects (ğ5.3.1). The differential oracle catches ten
more bugs that are triggered during normal state transitions.
It also catches all ten recovery-failure bugs during rollback
state transitions. The regular error checks detect 14 bugs
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Table 7. Breakdown of the number of bugs detected by

the oracles. Same bug can be detected by multiple oracles.

Test Oracle # Bugs (Percentage)

Consistency oracle 23 (41.07%)

Differential oracle for normal state transition 25 (44.64%)

Differential oracle for rollback state transition 10 (17.86%)

Regular error check (e.g., exception, error code) 14 (25.00%)

by checking process status of the operator and runtime sta-
tus of the managed system (recorded in the state objects).
Compared with state-based assertions in existing tests that
only cover 0.24%ś10.9% of state-object fields (Table 2), Acto’s
oracles systematically check all related fields. For example,
the differential oracle compares all state-object fields that
are deterministic (71.4%ś80.5% of all fields across evaluated
operators) through different transitions to the same end state.

6.1.4 Coverage. Acto achieves 100% property coverage
for every operatorÐActo generates at least one operation
for each property (ğ5.1). Acto’s effectiveness over manually-
written tests (ğ3) comes from its ability to cover more prop-
erties and their values, and more transitions from different
states (including error states). In 38 of 56 detected bugs, the
related property is uncovered by existing tests. Relevant prop-
erties for the other 18 bugs are covered, but these bugs elude
existing tests because a revealing transition is not exercised.
For example, in CassOp, existing tests check that labels [11]
are correctly added to pods, but Acto detects a bug [28] that
can only be triggered when pod labels are deleted.

6.1.5 Bug Fixes. We reported all 56 bugs that Acto finds to
the developers of the respective operators; 42 have been con-
firmed and 30 of those have been fixed. Developers typically
fix these reported bugs by improving reconciliation logic for
the bug-triggering transitions generated by Acto, and adding
validation logic before reconciling on each state declaration
to prevent error conditions. Fixing bugs in failure-recovery
logic usually requires more effort, because it needs domain
knowledge to differentiate permanent error states from tran-
sient unstable states. For example, the bug in Figure 2 has
been confirmed, but the developers cannot easily fix it be-
cause the operator cannot reliably detect liveness violationsÐ
the pod migration will never succeed in the futureÐby ob-
serving the current state.

6.1.6 Tradeoffs between Acto-■ and Acto-□. We ex-
pect Acto-□ to be more beneficial than Acto-■ for operators
that heavily use primitive-typed properties or do not follow
naming conventions for property dependencies. In the eval-
uated operators, most properties have composite type with
clear structure features and they follow naming conventions.
Hence, the benefit of Acto-□ over Acto-■ is small in our eval-
uation. Note that Acto-□ is language specificÐit currently
only supports operators written in Go. Acto-■ is language

Table 8. Acto-□ test campaign time per operator.

Operator
Testing Time (Machine Hours)

# Ops # Workers
Generation Execution Total

CassOp 0.02 10.39 10.41 568 16

CockroachOp 0.02 6.08 6.10 371 16

KnativeOp 0.04 6.25 6.29 774 16

OCK/RedisOp 0.02 9.72 9.75 597 16

OFC/MongoOp 0.01 5.73 5.74 434 16

PCN/MongoOp 0.04 26.55 26.58 1749 12

RabbitMQOp 0.03 4.69 4.72 394 16

SAH/RedisOp 0.02 7.92 7.94 718 16

TiDBOp 0.03 16.08 16.11 824 12

XtraDBOp 0.03 57.48 57.51 1950 8

ZooKeeperOp 0.02 8.54 8.55 740 16

agnostic and can apply to operators written in languages
other than Go, and proprietary, close-sourced operators.

6.2 Test Efficiency

Table 8 shows machine hours Acto-□’s test campaigns take
per operator and the number of operations in each test cam-
paign (ł#Opsž). The longest campaign (XtraDBOp) had 1,950
operations. Acto stops generating operations when a cam-
paign covers all properties and corresponding scenarios.

All experiments are run on Cloudlab [48] Clemson c6420
machines with 2 Intel Xeon Gold 6142 CPUs (16 cores) and
376 GB of memory, with Ubuntu 20.04 LTS. Campaign times
vary from 4.72 to 57.51 hours across operators. Using eight
machines, test campaigns for all operators finish in less than
eight hours. So, Acto-□ can be run nightly.

Acto’s efficiency comes from test parallelization (ğ5.5). By
default, Acto spawns 16 parallel workers to run tests on each
machine. But, parallelism can be reduced if the operator or
the managed system requires more resources (e.g., memory).

Semantic analysis for composite properties (ğ5.2.2) drasti-
cally reduces the number of operations in test campaigns and
allows Acto to focus on high-level semantics of composite
properties to exercise representative scenarios, rather than
mutating fine-grained primitive (sub-)properties.
Acto-■ takes 8.47% less time on average than Acto-□ be-

cause it generates, on average, 48 fewer test operations per
operator than Acto-□. The reason is that Acto-■ cannot in-
fer semantics for a few primitive properties and thus cannot
generate operations for several scenarios; it only mutates
current values within the constraints of a property (ğ5.2.3).

6.3 False Positives

Acto’s alarms have a low false positive rate. Acto-□ reports
no false alarm. Every test failure during the test campaigns
points to either a bug in the operator code or a misoperation
vulnerability. In total, Acto-□ reports 2243 test failures: 738
test failures are caused by the 56 bugs in the operator and six
bugs in Kubernetes and Go runtime, and 1505 test failures are
caused by 630 misoperation vulnerabilities. Fixing one bug
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or vulnerability may resolve multiple test failures. We are
automating alarm clustering based on fault localization [72,
88], but it is now beyond the scope of testing.
Acto-■ reports four false alarms in total. It reports 2071

test failures in total; among them, 653 test failures are caused
by 55 bugs in operators and six bugs in Kubernetes or Go;
1414 test failures are caused by 616 misoperation vulnera-
bilities. Therefore, the overall false positive rate of Acto-■
is 0.19%, or 4 out of 2071 alarms. All four false alarms are
caused by unsatisfied predicates when Acto-■ changes prop-
erties. As discussed in ğ5.2.4, Acto-■ is unable to infer de-
pendencies that do not follow the naming convention. For
example, in ZooKeeperOp, the property, ephemeral, depends
on a predicate: another property, storageType, must also be
set to łephemeralž. Hence, Acto-■ fails to satisfy the predi-
cate when changing the ephemeral property, but it expects a
state change and raises a false alarm. These dependencies are
captured by Acto-□ through control-flow analysis (ğ5.2.4).

6.4 Implications and Discussion

We reflect on our experience on finding root causes of de-
tected bugs and vulnerabilities, and discuss implications.

Operation coverage. It is nontrivial to validate operators
under the declarative model. A key challenge is to reach de-
sired states from many different start states (including error
states). We observe that operators invoke different impera-
tive procedures, based on how a declared state differs from
the current state. However, it can be tedious and error-prone
to cover all such conditions. In fact, most bugs that Acto
finds do not manifest when performing operations from the
initial state 𝑆0. Operations from the initial state are likely
already validated by developers manually or by writing tests.
Modeling and testing diverse state transitions are critical to
validating operation correctness (ğ4.1). Declarative program-
ming [82] may make operator testing less error-prone.

As for testing, Acto uses property coverage to drive state
transitions in the test campaigns (ğ5.1). The rationale is to
achieve high coverage of desired states, as state transitions
are triggered by changing property values via the operation
interface. Traditional coverage metrics like code coverage
are insufficient because they are not concerned with system
states: tests that are adequate for the code in one state may
not be adequate in a different state. Code coverage may not
help test all properties either, e.g., an operator that is missing
code to handle transition-triggering property changes could
have high code coverage. Acto can find bugs due to missing
code if the end state does not match the desired state.

Reducing risks. Operations can pose new reliability risks to
managed systemsÐwhat happens if an operation fails during
execution? An operation can span a series of procedures. For
example, we observe that existing Kubernetes operators com-
monly implement reconfiguration operations in two stages:

(1) stopping the current running node (with the old configura-
tion); then (2) starting a new node (with new configuration).
In such implementations, failure in either stage is risky. First,
such a failure could leave the operator in intermediate states
which are nontrivial to recover from [80, 81]. Acto’s results
show that recovery failures are common (ğ6.1.1). Second, in
such implementations, the first step can open a small win-
dow of downtime (e.g., due to stopping the current node).
That downtime would be magnified if a new node fails to
start. So, it is safer to turn down the old node after the new
node starts successfully. But, in practice, this safe start order
can be hard to implement, due to the semantic requirements
of the managed system and version incompatibility of the
changes [64, 96]. For example, a ZooKeeper cluster cannot
have two leaders at the same time, to avoid a split brain. So, a
reconfiguration operation must first stop the old leader node
before starting the new one to avoid a split brain. System
support for speculative execution or emulation can help.

Closing the knowledge gaps. Operations must also re-
spect the constraints of the managed system. Otherwise, an
operation can harm the managed system. The TiDBOp bug
described in ğ6.1.1 is one example. Also, many vulnerabilities
to misoperations that Acto detects are rooted in the essential
cross-system interaction challenge [84]Ðit is hard for an
operator to comprehensively check a requested operation’s
semantic validity if the semantics are not defined inside the
operator code but in the managed system or the underlying
management framework (e.g., Kubernetes). One potential
solution is to replicate the validity checks of the relevant com-
ponents in the operator. (Prior work showed the promise
of automatically extracting configuration checks [92].) In
essence, the knowledge gap lies in the fact that operator de-
velopers may not be the managed-system developers, or they
may not be aware of subtle, complex constraints. Since oper-
ation correctness should be a first-class concern in reliable
system design, a rigorous interface between the operator
and the managed systems is needed to close these gaps.

7 Limitations and Future Work

Acto is a first step towards thorough validation of operation
correctness for modern cloud systems. Like any testing tech-
nique, Acto is incomplete and it can miss bugs. Acto does
not cover all possible system states and transitions; doing
so is prohibitively expensive. For example, Acto generates
property values to cover a few representative scenarios. This
design aims to balance efficiency and coverageÐit covers
each property at least once and it exercises diverse scenarios
based on the semantics of operations. The results are promis-
ing, but there is plenty of room for future work to improve
Acto’s state-space exploration and its efficiency.

Acto has other soundness and completeness issues. First,
the predicate analysis of Acto-■ is incomplete, resulting in
false alarms; Acto-□’s control-flow analysis only captures
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predicates that manifest as control-flow dependencies (we
did not observe any other kind). Moreover, Acto’s automated
oracles do not incorporate domain knowledge about man-
aged systems and they rely only on state objects managed
by the platform. Hence, the current oracles may not capture
complex and subtle failure states that are not reflected in state
objects, such as loss of writes, linearizability violations, and
gray or partial failures [34, 54, 58, 63]. We design Acto as an
extensible and łpush-buttonž testing utility for unmodified
operators, while also enabling users to add domain-specific
oracles that have stronger managed-system observability.

The state-centric testing principle that Acto leverages may
apply to generic distributed systems, to capture issues re-
lated to operation assumptions. The challenges would be
to automatically validate system states and to synthesize
state transitions for arbitrary systems. Systems with clearly-
defined protocols or models may be more amenable.

Some types of bugs can only be triggered by external faults
like node failures and network delays [44, 80]; a reliable op-
erator must tolerate common faults. Acto does not target
those fault-tolerance bugs. Our prior work, Sieve [80], de-
tects those bugs by injecting faults and checking operator
safety and liveness. We plan to integrate Sieve with Acto:
(1) Sieve’s inputs are end-to-end tests; Acto could be used
to systematically generate these tests to make fault injec-
tion more comprehensive, and (2) Sieve can generate diverse
error states for Acto to test operator recovery. The key chal-
lenge is to efficiently navigate the combination of the input
operation space and the fault space (each space is very large).

Lastly, Acto currently focuses on testing individual opera-
tors. But, a system may be managed by multiple operators
in practice. So, operation correctness could be violated by
conflicting operations from different operators. We plan to
extend Acto to test interdependent operators together. A key
challenge will be to address a larger state space and to reason
about state transitions in interleaving operation schedules.

8 Related Work

Prior work identified operation errors as major causes of
production failures [35, 37, 38, 51, 53, 68ś71]; they result
mostly from human mistakes. As human-based operations
are increasingly being replaced by automated operation pro-
grams, the correctness of those programs is critical. Acto is a
first step towards automatic testing of operation correctness.
We believe that Acto’s ideas can apply beyond Kuber-

netes to other cloud platforms like Twine [83], ECS [67],
and Borg [90]. These platforms also adopt declarative, state-
reconciliation patterns for operators or controllers, as a result
of many design iterations [39] and discussions [46, 74].
DCM [82] uses declarative programming to synthesize

cluster managers based on constraint solving; the idea can
potentially be extended for custom operators. However, most
operators are currently written in imperative code.

Acto is complementary to prior work on software deploy-
ment [45, 62, 73, 91, 96] and configuration [64, 79, 92ś95].
Acto checks programs that perform those operations rather
than the correctness of code or configuration changes.
Acto can potentially be enhanced with ideas from sym-

bolic execution [40] and fuzzing [66]. But, naïve application
of these techniques is unlikely to yield benefits. For example,
without reasoning about state transition, techniques only
guided by code coverage will be insufficient (ğ6.4).
Sieve [80] is a closely related testing technique. It finds

bugs in Kubernetes controllers that are triggered by exter-
nal faults like node failures, network delays, etc. Operators
are custom controllers for managing systems atop the Ku-
bernetes platform. Acto is fundamentally different from, but
complementary to Sieve. In essence, Sieve is a fault injector
that checks fault tolerance, while Acto is an end-to-end test
generator that checks functional correctness. Sieve cannot
find the bugs Acto detects, because it assumes that the op-
erator works correctly without faults. Sieve detects bugs by
comparing operator executions with and without injected
faults. Sieve does not report errors in any fault-free refer-
ence execution. More importantly, Sieve takes test workloads
as inputÐthose test workloads are currently written manu-
ally, but it is challenging and costly for developers to write
comprehensive test workloads (see ğ3). Acto automatically
generates test workloads (i.e., łtest campaignsž in Acto’s
terminology). Conversely, Acto cannot directly detect bugs
that Sieve finds, because Acto does not inject external faults.
We discuss potential Acto and Sieve integration in ğ7.

9 Concluding Remarks

With the rapidly growing practice of automating operations
and deploying operators in production, operator correctness
has become a critical component of cloud system reliability.
This paper presents Acto, an automatic technique for testing
cloud-native operators end to end with the managed systems.
We show that Acto’s state-centric approach enables effective
and practical end-to-end testing that is readily applicable to
existing operators and complements the significant inade-
quacy of manually written tests. Our goal now is to make
Acto a common utility in developing and testing operators,
towards correct automation of cloud system operations.
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