Acto: Automatic End-to-End Testing for Operation
Correctness of Cloud System Management

Jiawei Tyler Gu
University of Illinois
Urbana-Champaign, IL, USA
jiaweig3@illinois.edu

Yuxuan Jiang
University of Illinois
Urbana-Champaign, IL, USA
yuxuanj9@illinois.edu

Owolabi Legunsen
Cornell University
Ithaca, NY, USA
legunsen@cornell.edu

Abstract

Cloud systems are increasingly being managed by opera-
tion programs termed operators, which automate tedious,
human-based operations. Operators of modern management
platforms like Kubernetes, Twine, and ECS implement declar-
ative interfaces based on the state-reconciliation principle. An
operation declares a desired system state and the operator
automatically reconciles the system to that declared state.

Operator correctness is critical, given the impacts on sys-
tem operations—bugs in operator code put systems in un-
desired or error states, with severe consequences. However,
validating operator correctness is challenging due to the
enormous system-state space and complex operation inter-
face. A correct operator must not only satisfy correctness
properties of its own code, but it must also maintain man-
aged systems in desired states. Unfortunately, end-to-end
testing of operators significantly falls short.

We present Acto, the first automatic end-to-end testing
technique for cloud system operators. Acto uses a state-
centric approach to test an operator together with a managed
system. Acto continuously instructs an operator to reconcile
a system to different states and checks if the system success-
fully reaches those desired states. Acto models operations as

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SOSP °23, October 23-26, 2023, Koblenz, Germany

© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 979-8-4007-0229-7/23/10...$15.00
https://doi.org/10.1145/3600006.3613161

Xudong Sun
University of Illinois
Urbana-Champaign, IL, USA
xudongs3@illinois.edu

Chen Wang
IBM Research
Yorktown Heights, NY, USA
Chen.Wang1@ibm.com

Wentao Zhang
University of Illinois
Urbana-Champaign, IL, USA
wentaoz5@illinois.edu

Mandana Vaziri
IBM Research
Yorktown Heights, NY, USA
mvaziri@us.ibm.com

Tianyin Xu
University of Illinois
Urbana-Champaign, IL, USA
tyxu@illinois.edu

state transitions and systematically realizes state-transition
sequences to exercise supported operations in different sce-
narios. Acto’s oracles automatically check whether a sys-
tem’s state is as desired. To date, Acto has helped find 56
serious new bugs (42 were confirmed and 30 have been fixed)
in eleven Kubernetes operators with few false alarms.

CCS Concepts: - Computer systems organization — Dis-
tributed architectures; Reliability; « Software and its
engineering — Software testing and debugging.

Keywords: Kubernetes, operation, system management, cloud,
reliability, operation correctness, operator

ACM Reference Format:

Jiawei Tyler Gu, Xudong Sun, Wentao Zhang, Yuxuan Jiang, Chen
Wang, Mandana Vaziri, Owolabi Legunsen, and Tianyin Xu. 2023.
Acto: Automatic End-to-End Testing for Operation Correctness
of Cloud System Management. In ACM SIGOPS 29th Symposium
on Operating Systems Principles (SOSP °23), October 23-26, 2023,
Koblenz, Germany. ACM, New York, NY, USA, 17 pages. https://doi.
org/10.1145/3600006.3613161

1 Introduction

Cloud systems are growing in scale and demand beyond what
human-based operation can reliably, continuously, and effi-
ciently manage. Modern cloud systems are increasingly be-
ing managed by operation programs, termed operators [2, 47],
that automate labor-intensive operations. Operators of cloud
management platforms like Kubernetes [39], Twine [83], and
ECS [67] implement declarative interfaces based on state rec-
onciliation. An operation declares the desired system state
and the operator automatically reconciles the system from
its current state to the declared state. This “cloud-native” op-
erator pattern simplifies operations and improves efficiency.

The cloud-native operator pattern has led to a thriving
ecosystem of high-quality, reusable operator code [55, 56, 61,

SOSP °23, October 23-26, 2023, Koblenz, Germany

Desired State # Desired State

replicas: replicas:
3 #<-5 5 #<-3
=}
Z
ZooKeeper b ZooKeeper ZooKeeper

O C TTIEIRRS TS S
reerY
1] -_— -
SdEEEEEIRACEEEE

Figure 1. A safety bug in ZooKeeperOp, a ZooKeeper
operator, detected by our tool, Acto [30]. The bug mani-
fests when the operator first scales down and then scales up
ZooKeeper. Newly created pods fall into crash loops.

75, 78], many of which are used in production [49, 50, 77, 85,
89]. Taking Kubernetes as an example: most cloud systems
today have operators to manage them atop the Kubernetes
platform. These operators automate important management
tasks like software upgrades, configuration updates, and au-
toscaling. Even for the same cloud system, multiple different
operators are developed by commercial vendors and open-
source communities, to support different operation practices
and deployment environments.

The rapid development and deployment of operators make
their quality assurance a pressing need—operation correctness
is critical to system reliability [51, 70]. A buggy operator
can impair correctly implemented systems in production.
Compared with human operator mistakes—major causes
of system failures [38, 51, 68-70]—bugs in operators have
more magnified impacts due to the nature of automation and
widespread software reuse. In fact, buggy operators caused
many recent production incidents [41, 42, 52, 59, 60, 65, 86].

Figure 1 shows a safety bug that our technique detects in a
Kubernetes operator for managing ZooKeeper. When scaling
down a ZooKeeper cluster, the operator only removes the
pods, but not the data volumes attached to those pods. If the
operator later scales up the ZooKeeper cluster, newly cre-
ated pods will try to reuse old volumes. Due to membership
inconsistencies between new pods and old volumes, the new
ZooKeeper nodes fail to start. As a result, the ZooKeeper
cluster cannot scale up and is thus vulnerable to overloads.

Figure 2 shows a liveness bug that our technique detects
in an operator for managing TiDB. To update the affinity
rule of a TiDB pod [1], the operator must stop the pod and
reassign it with a new affinity rule. But, if the new affinity
rule is not satisfiable, the pod cannot be reassigned. In this
case, the buggy operator waits forever for the assignment
to complete. To make matters worse, the operator cannot be
restored by resetting the affinity rule, because the operator
does not carry out new operations before the ongoing one
completes, to avoid race conditions.

These two bugs are among a myriad of operator bugs that
affect operation correctness. Compared with the manage-
ment platform (e.g., Kubernetes) and the managed system

J. T. Gu, X. Sun, W. Zhang, Y. Jiang, C. Wang, M. Vaziri, O. Legunsen, and T. Xu

Desired State # Desired State

affinity:
unsatisfiable_rule

affinity:
satisfiable_rule

Waiting forever

=
2
v
2
B
5]
[~2

Vols Pods

Figure 2. A liveness bug in TiDBOp, a TiDB operator,
detected by Acto [32]. If a declared affinity rule cannot
be satisfied, TIiDBOp enters an infinite waiting loop and the
pod will never be assigned. TiDBOp cannot be recovered by
rolling back with a satisfiable affinity rule.

(e.g., ZooKeeper and TiDB), operator code is often much
less tested. For example, we find that existing operators rely
mostly on unit tests which cannot check operation correct-
ness end to end, i.e., if an operator reconciles the managed
system to desired states. Some operators include a few end-
to-end (e2e) tests but only cover small parts of the enormous
system state space and the complex operations exposed by
declarative interfaces (see §3).

We seek a practical testing technique that can test cloud
system operators end to end and can be readily applied to
any types of operators for managing different systems. Un-
fortunately, existing automated test generation techniques
like fuzzing [66] or symbolic execution [40] cannot effec-
tively test operators end to end, since they neither model
the semantics of operations nor reason about system states.
In particular, operator bugs do not commonly manifest as
crashes but they drive systems into undesired states (§6.1).

Technique. This paper presents Acto, the first automatic
technique and tool for end-to-end testing of cloud system
operators. Acto automatically generates end-to-end tests to
check three operation correctness requirements: the operator
(1) always reconciles the managed system to desired states,
(2) performs managed system recovery from undesired or
error states by rolling back to a previous good state, and
(3) should be resilient to misoperations (i.e., operation errors)
by preventing them from driving the system into error states.

Acto is state centric. It models an operation as a pair of
current system state and a declaration of the desired state. A
correct operation enables a state transition from the current
state to a new state that satisfies the declaration. Within this
state-transition model, bugs in operators manifest as (1) un-
desired transitions in which the new state implicitly violates
the declaration, or (2) failure to recover from error states. In
addition to bugs, vulnerable code in operators would allow
misoperations to cause transitions into explicit error states.

To systematically explore state transitions under different
scenarios, Acto generates state declarations that cover all
system properties exposed by the operation interface (e.g.,

Acto: Automatic End-to-End Testing for Operation Correctness of Cloud System Management

replicas and affinity in Figures 1 and 2). To make gener-
ated state declarations semantically meaningful, Acto auto-
matically infers the semantics of properties and predicates.
Acto ensures that generated declarations are syntactically
valid and that they can exercise operators in diverse ways.
To validate operation correctness under different system
states, Acto executes the e2e tests in a test campaign, where
the operator is continuously tested under a sequence of op-
erations. Each operation reconciles the system to a new state
from which the subsequent operation starts. Acto’s test cam-
paigns leverage the level-triggering principle [57]: a correct
operator must reconcile the system to the desired state re-
gardless of the start state and must recover from error states.
Acto’s oracles check for errors that (1) manifest in explicit
forms, such as unexpected exceptions and panic signals, and
(2) only manifest implicitly as mismatches between the rec-
onciled system state and the declared desired state. To detect
implicit mismatches after state reconciliation, Acto checks
for consistency in state views of the operator and the underly-
ing management platform (e.g., Kubernetes); inconsistencies
indicate bugs. Acto also employs a differential oracle atop
state objects from different state transitions to the same end
states, taking advantage of the interpretability and unifor-
mity of state objects in modern management platforms.

Key results. We implemented Acto for Kubernetes opera-
tors. It works in two modes: a blackbox mode (Acto-m) that
only requires the operator’s interface specification (custom
resource definition of Kubernetes operators) and a whitebox
mode (Acto-0) that additionally takes the operator’s source
code for semantic inference and predicate analysis.

We evaluated Acto on eleven popular Kubernetes opera-
tors of various kinds. Acto found 56 new operator bugs in
total, among which 42 have been confirmed and 30 have
been fixed. Acto also found six bugs in Kubernetes and in the
Go runtime that affected multiple operators (all have been
confirmed or fixed). The detected bugs lead to severe safety
and liveness issues, affecting not only the operators, but also
the reliability and security of the managed systems. Lastly,
Acto finds many vulnerabilities to misoperations. Acto tests
all these operators within eight hours (a nightly run) on a
cluster of eight machines; five of eleven operators only need
one machine. Acto has few false positives: Acto-O reports
no false alarm and Acto-m has a 0.19% false alarm rate.

Contributions. This paper makes four main contributions:

e We present the first fully automatic end-to-end testing
technique that checks operation correctness for cloud sys-
tem operators using a state-centric approach.

e We develop Acto, a practical tool that uses the proposed
technique to automatically test unmodified Kubernetes
operators and can detect many kinds of bugs.

e Acto has already helped improve the quality of eleven
popular Kubernetes operators by finding bugs that were
fixed by developers. Acto can be run nightly.

SOSP ’23, October 23-26, 2023, Koblenz, Germany

Upscale ZooKeeper I . N - Jv' ..
kubect] =—————————p = State Kubernetes Managed
ZooKeeper CR % Objects Core ZooKeeper
replicas: 5 | Statefulset Pods:
3 #<-2 S e > S S
image: 9 Pod |I<¢ Controller >N NN
zookeeper:2.4 % . Vo Vols:
persistence: i I olume S
storage: 20Gi % -T Vol |'" Controller EEE
reclaim: Delete o
N1, .. < > >
o \ J/ | S — o

Figure 3. Scaling up a ZooKeeper system (from 2 to 3
replicas) with a new desired-state declaration (CR).

e Acto is released as an open-source project and is hosted
at https://github.com/xlab-uiuc/acto, where the sosp-ae
branch includes detailed instructions on reproducing the
results in this paper.

2 Background

Operation programs (i.e., operators) for modern cloud man-
agement platforms like Kubernetes [39], Twine [83], and
ECS [67] follow a declarative, state-reconciliation design pat-
tern. An operation declares a desired system state and the
operator automatically reconciles the system to the declared
state. This design pattern simplifies system management op-
erations by removing the need to write ad hoc, imperative
scripts for different one-off tasks. The pattern also makes
system management declarative and intent driven. We give
a brief overview of the pattern, using Kubernetes [39] as a
representative example.

Declarative operation interface. In Kubernetes, operators
expose a declarative interface in the form of custom resources
(CRs) [3]. A CR defines a system resource and its properties
that can be modified to manage that resource. A state decla-
ration specifies property values in a CR. Figure 3 shows an
example of desired-state declarations for ZooKeeper; it spec-
ifies primitive properties like replicas and image, and com-
posite properties like persistence which has sub-properties.
A ZooKeeper operator reconciles a managed ZooKeeper clus-
ter to satisfy the declared state. Management operations are
expressed by changing one or more property values in a CR.
Kubernetes operators maintain CR definitions in the Ope-
nAPISchema format [13], which defines constraints on each
CR property (e.g., data type and data range). Operations that
change a CR are first validated against the specification by
the API servers, before being forwarded to the operator.

Operator design pattern. Kubernetes operators follow
the state-reconciliation pattern of modern cloud manage-
ment platforms and control planes, such as Kubernetes, Borg,
Omega, Twine, and ECS [39, 67, 76, 83, 87, 90]. An operator
continuously reconciles the managed system from its cur-
rent state to a newly declared desired state, if the current
state does not match the declared state. The management

SOSP 23, October 23-26, 2023, Koblenz, Germany

platforms maintain their current system states in a collec-
tion of state objects in strongly consistent datastores (e.g.,
etcd [7]). Every entity in the system, such as a pod, a volume,
and a stateful set (representing a stateful system), has a cor-
responding state object. State objects have uniform APIs and
consistent data schema, making them highly interpretable
and extensible [39].

Figure 3 shows how a ZooKeeper operator scales up a
managed ZooKeeper cluster. A user declares the desired
state of the ZooKeeper cluster by submitting a new CR that
changes the replicas property from 2 to 3 via the Kubernetes
client (kubectl). The operator processing the desired-state
declaration first confirms that the current number of replicas
in the ZooKeeper cluster is different from 3—only two pod
objects for replicas currently exist in etcd. To reconcile to the
desired state, the operator notifies Kubernetes to increase the
stateful-set count for replicas. To do so, Kubernetes creates a
new pod and a new volume. State reconciliation stops when
the desired state with three replicas is reached.

Operation correctness. We define three correctness re-
quirements for operations: the operator (1) always reconciles
the managed system to valid, reachable desired states, re-
gardless of its current or previous states; (2) can recover the
managed system from implicit or explicit error states by
rolling back to a previous good state; and (3) should prevent
misoperations from driving the managed system into error
states. Figure 1 violates the first requirement and Figure 2
violates the second requirement. In this paper, we treat root
causes of violations to the first two requirements bugs and
report them to developers. We refer to root causes of viola-
tions of the third requirement as misoperation vulnerabilities,
which are known to be serious issues [37, 38, 51, 68-70, 93].
We discuss systematic mitigations for misoperation vulnera-
bilities with developers.

Operation correctness is hard to achieve. Operator devel-
opers face the twin fundamental challenges of (1) anticipat-
ing relevant system states to explore in the enormous state
space, and (2) correctly reconciling the managed systems
from all the different start states.

3 Motivating Study

To understand the kinds of test cases (i.e., tests) that oper-
ator developers write and the limitations of their current
testing practices, we study 50 open-source Kubernetes oper-
ator projects from GitHub and their tests.

Finding 1. Most operators that we study rely on unit tests,
which cannot validate operation correctness. Only 34% of these
studied operators have a few end-to-end tests.

Checking if a managed system reaches desired states is
beyond the scope of unit tests, each of which checks a method
in operator code. Such checks need end-to-end (e2e) tests [10]
to validate operation correctness of the managed systems.

J. T. Gu, X. Sun, W. Zhang, Y. Jiang, C. Wang, M. Vaziri, O. Legunsen, and T. Xu

Table 1. Properties covered by existing e2e tests and
characteristics of tests that trigger multiple operations.

Properties Tests with multiple operations

Operator Tested Total % (#) # Ops (Avg)
KnativeOp 8(2.15%) 372 14.29% (1/7) 6
PCN/MongoOp 70 (1.27%) 5495 38.71% (12/31) 2.58
RabbitMQOp 19 (1.43%) 1332 25.00% (2/8) 25
ZooKeeperOp 13 (1.47%) 886 75.00% (6/8) 2

Typically, an e2e test first causes an operator to carry out
an operation, for example, to deploy, scale, or reconfigure
the managed system. Then, the e2e test checks if the oper-
ation succeeded by means of assertions that compare the
reconciled managed system state with the expected state.
However, only 17 (34%) of 50 operators include e2e tests, and
those manually written e2e tests are few, with a median of
six e2e tests per operator.

We focus the rest of our study on the effectiveness of ex-
isting e2e tests, since we address operation correctness. We
study four operators from the 50 and their e2e tests: Kna-
tiveOp, PCN/MongoOp, RabbitMQOp, and ZooKeeperOp.
These operators are developed either by official teams of the
managed systems, or by companies that sell services built
around the managed systems. These four operators contain
7-31 e2e tests; PCN/MongoOp relies only on e2e tests (no
unit tests). Table 4 provides more data about these operators.

Finding 2. Existing e2e tests cover only 1.27-2.15% of sup-
ported properties exposed by the operation interface. Also, most
tested operations start from the default initial state.

Table 1 shows that existing e2e tests change very few
properties when testing operation correctness in these four
Kubernetes operators that we study. We find that some oper-
ators’ e2e tests do not check basic operations, e.g., backend
migration in RabbitMQOp. Also, few e2e tests check opera-
tions in multiple configurations, e.g., deploying ZooKeeper
with persistent and ephemeral storage. Acto efficiently helps
test more operations in multiple configurations.

Operators are long-running processes that continuously
monitor and reconcile managed systems from any state to the
desired states. So, operations should be tested from different
start states. Consider scaling: given a desired number of
replicas, triggering a scale-up or a scale-down procedure
depends on the current state. Table 1 (third column) shows
that the few e2e tests that check multiple operations only
check 2.97 operations on average, a small number compared
to how operators work in practice. Most tests trigger only
one operation from the default initial state.

Finding 3. State-based assertions in existing eZe tests cover
only 0.24-10.90% of managed systems’ state-object fields.

Given the enormous state space, developers likely find it
tedious to write assertions on many state-object fields. Ta-
ble 2 shows a breakdown of three kinds of assertions that

Acto: Automatic End-to-End Testing for Operation Correctness of Cloud System Management

Table 2. Three types of assertions in existing e2e tests.

Assertions # State Objects

Operator Env. State Behav. Total Asserted Total
KnativeOp 18 32 0 50 14 (0.93%) 1506
PCN/MongoOp 2 209 177 388 329 (10.90%) 3017
RabbitMQOp 26 19 29 74 12 (0.42%) 2852
ZooKeeperOp 62 54 0 116 7(0.24%) 2934

we observe in existing e2e tests. These tests check (1) the en-
vironment (e.g., can operators request Kubernetes services?);
(2) system states—is the managed system reconciled to the
desired state?; and (3) managed system behavior. Assertions
on the environment check that operators run in compatible
settings; they do not validate operation correctness. State
and system-behavior assertions could validate operation cor-
rectness. But, in our study, these kinds of assertions either
only check a small part of the system state or only check the
availability of system services.

Finding 4. The few assertions on system behavior are basic
and mostly check service availability.

KnativeOp and ZooKeeperOp tests have no assertion on
system behavior. In PCN/MongoOp and RabbitMQOp, such
assertions only check that the managed system responds
to read/write requests from clients. We find a few asser-
tions on system-specific behavior: (1) 36 of 177 assertions in
PCN/MongoOp check backup availability; and (2) only one
of 77 RabbitMQOp assertions checks membership list size.

Implications. Our study shows that current manual testing
of operation correctness is significantly limited, even for
popular operators with many GitHub stars (see Table 4, §6).
Our results suggest that manually writing end-to-end (e2e)
tests is tedious and inadequate. So, automatic e2e testing
of operation correctness is desirable. We believe that such
automatic testing is viable and can be done effectively by
leveraging the declarative, state-reconciliation pattern of
modern cloud system operators.

4 Technique

Acto is a state-centric testing technique. It tests operation
correctness by performing end-to-end (e2e) testing of cloud-
native operators together with the managed systems. To do
so, Acto continuously generates new operations during a
test campaign. Then, Acto’s oracles check if the operator
always correctly reconciles the system from each current
state to the desired state, or raises an alarm otherwise.

Acto detects bugs when requirements of operation correct-
ness (§2) are violated. Such bugs include those that (1) cause
an operator not to reconcile the system to desired states,
(2) crash the operator or the system, and (3) prevent the
managed system from recovering from an error state. Acto
also detects vulnerabilities to misoperations that can drive
the systems into explicit error states.

SOSP °23, October 23-26, 2023, Koblenz, Germany

Acto generates minimized eZ2e test code for every alarm
that it raises. These generated tests can help developers to
reliably reproduce a bug or a vulnerability, without rerun-
ning the entire test campaign. That is, generated e2e tests
only run operations that are necessary to set up the state for
reproducing a bug or a vulnerability. Developers can include
the generated e2e test in their regression test suite.

Acto is automatic—it tests unmodified operators and re-
quires no manual annotation, instrumentation, or assertion.
The test inputs that Acto automatically generates are oper-
ations, which drive the operator under test to reconcile the
managed system to declared desired states. Acto ensures that
generated operations are syntactically valid and represent
various scenarios by analyzing the constraints and seman-
tics of properties exposed by an operator’s interface. Acto
dynamically computes the desired state for triggering the
next operation based on the current state.

Acto’s test oracles check if the system state after an oper-
ation matches the desired state. Automatic test oracle gen-
eration is a hard problem in general. Acto’s test oracles are
enabled by a key opportunity in modern cloud management
platforms based on state reconciliation like Kubernetes: they
maintain the system states in uniform, interpretable state
objects that can be systematically queried and analyzed.

Usage. Acto works in two modes: a blackbox mode (Acto-
m) and a whitebox mode (Acto-0). Acto-m takes two inputs:
1) a manifest for building and deploying the target operator,
and 2) the specification of state declaration provided by the
operator interface (e.g., the custom resource definition of
Kubernetes operators). Both inputs are abundant in mature
operator projects; they are widely used for operator devel-
opment and deployment. Finding these inputs is straight-
forward. Acto-O requires an additional input: the operator’s
source code for static program analysis. Acto outputs test
failures, debugging information for root cause analysis, and
minimized test code that reproduces detected failures.

4.1 Operation Model

Acto models an operation as a pair, (S¢, D), where S¢ denotes
acurrent system state and D is a declaration of a valid desired
state. D is constrained by the operation interface specifica-
tion (e.g., a CR definition in Kubernetes). If successful, an
operation triggers a state transition, S¢ — SP, where SP
satisfies D, i.e., S? | D. D often only specifies a (small) part
of the system state. So, there are multiple possible system
states that can satisfy D, and, in practice, only a small part
of S needs to be examined to check if SP | D.

If an operation fails (e.g., due to bugs in operator code),
the system enters an error state, S¢ |~ D, i.e., S° does not
satisfy the desired state. When S¢ |£ D, the operator should
be able to rollback the state from S¢ with a state transition
S¢ =24 5¢ where D;_; is the desired-state declaration that
previously triggered a transition to S°.

SOSP 23, October 23-26, 2023, Koblenz, Germany

G E))+ =
Y

(b) Operation sequence

56

(a) Single operation

(c) Operation sequence with error-state recovery
Di—4

(d) Acto’s test exploration strategy

Figure 4. State transitions of different test strategies.

The fundamental challenge in testing operators is the pro-
hibitive cost of testing all elements in the Cartesian product
of S = S€ USE and D, where S€ is the set of all possible valid
system states (S¢ € S©), SF is the set of all possible error
states (S¢ € SF), and D is the set of all possible declarations
of desired state (D € D). There can be a large number of val-
ues for different properties that constitute the system state.
Exhaustive testing could be prohibitively expensive and any
practical testing approach can only exercise a part of the
state space, i.e., S X D.

4.2 Test Strategy

Acto systematically explores the state space using the fol-
lowing three test strategies (Figures 4a—c).

Single operation. Acto generates a declaration of a desired
state D, triggers an operation to reconcile the current system
state S€ to the desired system state SP . and checks whether
SP | D. The single operation is applied to the initial system
state S¢ = Sy (starting from a non-initial state requires more
operations). This simple single-operation strategy is similar
to the current testing practices discussed in §3; it is easy to
implement and reason about. The key challenge is how to
explore an effective and representative subset of D.

Operation sequence. Acto extends single operations into
a test campaign, which consists of a sequence of opera-
tions. Test campaigns overcome the limitation of the single-
operation strategy, which must always start from the initial
state S¢ = Sy. As discussed in §3, it is important to test
whether an operator can reconcile the system to desired
states from different, non-initial start states. Reaching an
end state from different start states increases the chance of
invoking different procedures in the operator code. In a test
campaign, earlier operations take the system to new states
which become the start states for subsequent operations.
Acto generates a test campaign by chaining the expected end

J. T. Gu, X. Sun, W. Zhang, Y. Jiang, C. Wang, M. Vaziri, O. Legunsen, and T. Xu

states {S;} from the single-operation strategy, and generat-
ing a new D; after each successful reconciliation, as shown
in Figure 4b. The result is a sequence of state transitions,
Sp — S —> ... =5 §; — ...; Acto checks whether each

S; E D;, where i # 0.

Error-state recovery. The operation-sequence strategy
does not test whether or not an operator correctly restores a
system from implicit or explicit error states. If the system is
in an error state S, the operator is responsible for recovering
from S¢ by reconciling the system from S¢ back to the prior
healthy state S;_;. The subsequent gperations start from
S;_1, such as in the transition, S;_; —— S;41, in Figure 4c.
Error states can be reached because of operator bugs that
reconcile the system to a state S [£ D, or misoperations—
semantic errors in D that escape syntactic validation against
the interface specification.

Acto combines these three test exploration strategies (Fig-
ures 4a—c) to realize the state transition sequences in one
test campaign, as shown in Figure 4d.

5 Design and Implementation

This section describes the main components of Acto and how
we implement them. These components embody Acto’s state-
centric testing technique (§4); they generate declarations of
desired system states, execute test campaigns, and check
reconciled states using automated test oracles.

5.1 Realizing State Transitions

During a test campaign (Figure 4d), Acto automatically gen-
erates a new state declaration D;,; based on the current
system state S; to realize a state transition, S; SniEN Sit1. Test
campaigns start from the initial state Sy. Acto triggers state
transitions with the goals to: (1) cover all properties exposed
by the operation interface, and (2) exercise representative
operation scenarios based on property semantics.

Acto systematically exercises all the properties that are
defined in the operation interface. Each new D;,; changes
one property in the current state S; and any other properties
that are needed to satisfy predicates on property relation-
ships (§5.2.4). Specifically, Acto selects a previously untested
property and uses it to declare a new desired state. The end
state after one transition, becomes the start state for the
next transition (Figure 4b). All state declarations collectively
change every property at least once during a test campaign.

Acto tests different scenarios based on the semantics of the
changed properties. (Acto automatically infers these seman-
tics, §5.2.2). Table 3 gives a few such scenarios. For example,
Acto tests the scale-up-and-scale-down and the scale-down-
and-scale-up sequences if a property represents the number
of replicas. Acto also tests different pod assignments that
trigger the operator to re-configure or re-deploy managed
systems differently. This scenario-driven approach allows
Acto to focus on a small number of representative states,

Acto: Automatic End-to-End Testing for Operation Correctness of Cloud System Management

Table 3. Examples of built-in scenarios of Acto to gener-
ate new state declarations and trigger state transitions.
Scenarios are created based on property semantics inferred
by Acto and they can be extended or customized.

Property Scenarios

Replicas Scale up and then down; scale down and then up;
upscale over system resource limit.

Affinity Place all pods on one node; spread pods to different nodes;
set unsatisfiable affinity rules.

Storage Expand storage volumes; shrink storage volumes;
request more storage than is available in a cluster.

Access Switch between normal and privileged roles.

instead of the very large set of all possible property values.
We implement scenarios as plugins that can be extended or
customized; users of Acto can add more plugins.

In addition to valid operation scenarios, Acto also gener-
ates misoperations, each of which triggers a state transition
to an error state, S¢. For example, Acto generates misopera-
tions that (1) scale the replicas beyond the total number of
available physical resources, and (2) set unsatisfiable affinity
rules (Table 3). Acto uses misoperations to check if an oper-
ator (1) is resilient to operation errors, and (2) can recover
from undesired or error states. Acto’s oracles (§5.3) check the
former (is the system in a state S¢?). Acto checks the latter
by rolling back S¢ to the most recent healthy state. Misopera-
tions that declare semantically erroneous states could escape
constraint validation (see §5.2.1). A correct operator should
not carry out an erroneous operation or at least should be
able to recover from operation failures.

5.2 Generating State Declarations

Acto generates desired-state declarations, D € D, that are
syntactically valid (§5.2.1), resemble real-world scenarios
(8§5.2.2, §5.2.3), and satisfy predicates on property relation-
ships (§5.2.4). Such desired states improve the effectiveness
and efficiency of Acto’s state space exploration. End-to-end
tests are expensive, so a D that does not satisfy these con-
ditions has a low chance to find bugs. We next discuss how
Acto generates D to satisfy these conditions.

5.2.1 Extracting Constraints. The operation interface

specification defines syntactic validity constraints on state

declarations. For example, Kubernetes’ OpenAPISchema spec-
ification defines constraints on all supported properties. Acto

uses these constraints to ensure that all property values in

declared desired states are syntactically valid. (Invalid decla-
rations would likely be directly rejected by the API servers

before reaching the operator.) For composite properties, Acto

uses composite constraints like required properties and also

derives constraints from the sub-properties. For primitive

properties, Acto uses constraints like the type, min/max val-
ues (for numeric types), length (for string type), regular-
expression patterns, etc.

SOSP ’23, October 23-26, 2023, Koblenz, Germany

Operator Interface Specification Kubernetes Core Resource

Cassandra CRD # K8s StatefulSetSpec
cassandraDataVolumeClaimSpec: VolumeClaimTemplates:
accessModes: accessModes:
dataSource: > dataSource:
resource: resource:
size: int replicas: int
A

// pkg/reconciliation/cons:’cructistatefulset. go
desiredSts := &appsvl.$tatefulSet {
spec: &appsvl.StatefflSetSpec {
replicas: cr.spec.size

}o...

}o...
rc.Client.Update(rc.Ctx, desiredSts)

Operator Code

Figure 5. Semantic analysis maps the properties in the
operation interface to the properties of a Kubernetes
core resource.

5.2.2 Inferring Property Semantics. To exercise differ-
ent scenarios (§5.1), Acto changes properties based on their
semantics. Acto infers the semantics of a property in the in-
terface specification by mapping it to a set of resource types
in the Kubernetes core APIs. Such mapping is feasible be-
cause many operations for property changes are eventually
delegated to Kubernetes core services.

Inferring semantics from property structure (Acto-m).
Acto exploits the insight that property structure is effective
for mapping to properties in the Kubernetes core resource
specification. Specifically, all Kubernetes core resource types
have unique structures. Figure 5 exemplifies how Acto in-
fers semantics from the property structure: CassOp has a
cassandraDataVolumeClaimSpec property with the same struc-
ture as the VolumeClaimTemplates property in Kubernetes’
StatefulSet resource. Therefore, Acto infers the semantics of
cassandraDataVolumeClaimSpec using a structural mapping.

Inferring semantics from source code (Acto-O). Acto-B
cannot use property structure to map primitive properties
(e.g., integer). Also, naming conventions can be ambiguous
or unreliable. For example, the integer size property in Fig-
ure 5 maps to replicas in Kubernetes’ StatefulSet. To map
primitive properties, Acto-O analyzes operator code. The
idea is to track the data flow of the property value in the
operator code and analyze how the values are used. If a prop-
erty value is passed to a Kubernetes API or assigned to a
Kubernetes resource object, Acto-O maps the property to a
Kubernetes object that stores its value, as shown in Figure 5.

Acto-0O implements a static taint analysis to track property
values. The initial taints are pointers and references to the
desired-state declaration (e.g., cr.spec in Figure 5) and the
taints are propagated via data-flow dependencies. The anal-
ysis is field sensitive—to track each primitive (sub-)property
in the declaration—, inter-procedural and context sensitive.

SOSP 23, October 23-26, 2023, Koblenz, Germany

5.2.3 Generating Property Values. To generate values
for properties with inferred semantics, Acto currently imple-
ments 57 property-specific generators based on Kubernetes
resource semantics. Most of these properties are composite.
The generators focus on high-level semantics to exercise
different scenarios (Table 3). Each generator creates property
values to realize a scenario. We find that most properties
exposed by operation interfaces (83% on average in our eval-
uated operators) can be mapped to Kubernetes resources.
Acto’s generators are invoked at runtime. Some generators
read environment and runtime information to inform value
generation (e.g., an unsatisfiable affinity rule).

For properties whose semantics Acto cannot infer, Acto
mutates current values based on their data types while satis-
fying syntactic constraints (§5.2.1). Acto only mutates primi-
tive sub-properties of composite properties. Acto’s mutation
ensures syntactic validity but does not guarantee semantic
meaningfulness. Mutated values that are not semantically
meaningful help check for vulnerabilities to misoperations.
Our manual inspection during Acto evaluation (§6) shows
that 80+% of mutations are semantically meaningful.

5.2.4 Satisfying Predicates. The values that Acto gener-
ates should satisfy predicates, in the form of property depen-
dencies, for changed property values to trigger state transi-
tions. For example, an operation that changes a backup policy
only triggers a state transition if backup is also turned on.
But, dependencies among properties are often not specified,
so Acto automatically infers them.

Inferring dependencies from naming convention (Acto-
m). Property names that are exposed by the operation in-
terface provide hints from which dependencies can be in-
ferred. In Kubernetes, dependencies can be identified by
feature toggles—each composite property has a Boolean sub-
property whose name contains “enabled”. For example, oper-
ations that change PCN/MongoOp’s backup policy must also
set Backup.Enabled to True. Acto-m infers dependencies on
each property that uses this convention based on a breadth-
first search that iteratively collects feature toggles. We find
this simple heuristic to be effective—it captures 98.05% of
control dependencies that we find. Not all dependencies are
identifiable from feature toggles, but we only find a small
number of other subtle dependencies.

Inferring dependencies using control-flow analysis
(Acto-m). Acto-O analyzes control-flow relationships among
program variables in operator code to detect dependencies
among property values that do not follow the “*enabled*”
naming convention. This analysis is similar to those used for
finding dependencies among program inputs [43, 93].
Property p, depends on property p;, i.e., plﬁp—pz, if p,
is only used when p; satisfies a predicate. Acto-O searches
for control dependencies, (p1, ¢, ¢) ﬁp—pz, where c is some
value and ¢ is a predicate, e.g., an arithmetic, logic, string, or
object comparison. Specifically, if a predicate ¢ dominates a

J. T. Gu, X. Sun, W. Zhang, Y. Jiang, C. Wang, M. Vaziri, O. Legunsen, and T. Xu

sink statement of property p, and ¢ is not postdominated by
the sink, then there is a control-flow dependency between ¢
and p,, i.e., p; is used only when ¢ is True. Sinks consume
property values, e.g., a call to an external APIL Further, if
¢ is determined by comparing the value of p; with c, then
Acto-O records a control dependency, (p1, ¢, ¢) ﬁp—pz. If p,
has multi(})le sinks, Acto-O reports a control dependency,
(p1, @, c) <2 py, iff all sinks of p, depend on (py, ¢,).

5.3 Test Oracles

Acto’s oracles check whether the state to which the managed
system is reconciled matches the specified desired state. If
there is a match, Acto reports the operation as successful.
Otherwise, Acto signals an alarm that the user can inspect
to find bugs or vulnerabilities to misoperations.

The complexity of Acto’s oracles depends on whether
mismatches between reconciled and desired states manifest
explicitly or implicitly. Acto implements oracles to check for
state mismatches that manifest as explicit error states, such as
exceptions, error codes, and timeouts. These oracles 1) scan
an operator’s error log for unexpected exceptions, e.g., the
panic signal in Go; 2) check runtime status of the managed
system (recorded in state objects); and 3) check whether an
operation returns an error code or fails to complete on time.

Acto’s oracles that check for explicit errors are insufficient:
many operator bugs manifest as implicit-state mismatches
with no explicit symptoms. To find such bugs, Acto also im-
plem%nts oracles to check if S; | D; for each state transition
Si—1 — S;. Checking S; | D; is challenging. First, S; and D;
are represented differently: D; is a specification [3] and S;
is embodied in state objects [17]. Second, satisfiability ()
is domain-specific; its semantics may not be obvious. Acto
uses two types of oracles to detect implicit-state mismatch:

e Consistency oracle (§5.3.1). Acto checks whether S; |= D;
from the operator and the management platform (e.g.,
Kubernetes) views. A buggy operator’s view may show
Si E D; while the management view shows S; | D;. Such
view inconsistencies likely indicate the presence of bugs.

o Differential oracle (§5.3.2). This oracle leverages the level-
triggering principle [57] that operators should follow: the
same desired state should be reached from different start
states. So, for each transition pair, S;_4 = S;and Sy — S,
Acto checks whether S; and S] match after state recon-
ciliation based on D;. This differential oracle also checks
whether the operator can recover from an error state, S¢, by
checking whether the system state after a rollback matches
Si—1, the preceding state before the error.

In addition to the automated built-in oracles, Acto also has an
interface to allow users to add custom oracles, e.g., domain-
specific oracles to check managed systems.

5.3.1 Consistency Oracle. Some bugs occur if an opera-
tor stops reconciliation because the system is in state S; = D

Acto: Automatic End-to-End Testing for Operation Correctness of Cloud System Management

Redis CR: D;

redisFollower: . .
pdb: The views of the pdb

fmvenilakie: 2 N property are inconsistent

Si-1

PodDisruptionBudget:

PodDisruptionBudget:
spec: spec:
redis-follower: redis-follower:
(pdb) null (pdb) null

Figure 6. An OCK/RedisOp bug detected by Acto’s con-
sistency oracle [25]. The PodDisruptionBudget state object
has a null pdb, inconsistent with the pdb declared in D;.

in the operator’s view, but S; £ D in the management plat-
form’s view. To detect such bugs, Acto additionally checks
whether the management platform’s view matches D, based
on the platform’s description of the reconciled state. In Ku-
bernetes, the platform’s view is encoded in spec sections of
state objects, which are jointly maintained by all running
controllers and operators.

For each transition S;_; — S;, Acto attempts to match
each property p (specified in D;) to the corresponding spec
fields in the state objects. If a match is found, it indicates that
the management platform agrees with the operator. Other-
wise, Acto raises an alarm.

Figure 6 shows a bug detected by the consistency oracle.
OCK/RedisOp should reconcile the system to a declared state
with a pdb property for Redis followers (to ensure that repli-
cas are available during managed disruptions [16]). But, the
property in D; is not consistent with Kubernetes’ view of Re-
dis followers, in which there is no pdb. The root cause is that
OCK/RedisOp was missing code to support pdb for followers,
risking the Redis availability during transient disruptions.
Such bugs are common due to the operation interface com-
plexity, especially as software evolves [36].

Acto uses property structure analysis (§5.2.2) to infer corre-
spondences between fields in the spec section of state objects
and a declared property. A declared property could match
fields in multiple state objects, but not every matched field is
relevant to the property. For example, PodDisruptionBudget
objects that are not used by Redis followers could also define
pdb. Acto uses the insight that state object changes occur in
small increments, because Acto changes a few properties at a
time. So, Acto only matches a specified property to changed
fields. Acto raises an alarm if a matched field’s value is dif-
ferent from the declared property’s value, or if a property
change does not cause any change to matched field values.

5.3.2 Differential Oracle. The differential oracle does not
check against D;; it checks that an operator 1) reconciles to
the matching desired states from different states S;_; and
So, and 2) recovers from (implicit or explicit) error state S¢
to state S;_;. Acto rolls back to S;_; to continue exploration
from a known good state.

SOSP ’23, October 23-26, 2023, Koblenz, Germany

D; | # Knative CR
ingress:
contour:
enabled: false ContourPod exists

in S; but not in S}

Si

ContourPod: ...

i
(no ContourPod)

Figure 7. A KnativeOp bug that is detected by Acto’s dif-
ferential oracle [22]. Contour continues to manage ingress
after an operation explicitly disables it.

Figure 7 shows a bug detected by the differential oracle.
There, the Boolean KnativeOp property contour.enabled en-
ables or disables Contour, an ingress controller. But, a Kna-
tiveOp bug makes it impossible to disable Contour after it
is enabled. The consistency oracle does not detect this bug:
it is hard to automatically map the Boolean property to the
existence of a Contour pod. The differential oracle detects
the bug because a Contour pod appears in S;, but not in S.

Comparison with a second transition that starts from ini-
tial state Sp results from Acto’s exploration strategy (Fig-
ure 4d). Our choice of Sy is justified by the fact that Sy is
always a good state and it is used frequently in manually
written e2e tests (§3). Conceptually, Acto can compare with
a second transition that starts from any good state.

Note that reporting alarms for any difference in the state
objects of S; and S; would be brittle and lead to false posi-
tives, because execution-specific values like timestamps, IP
addresses, and ports may change nondeterministically. Acto
excludes execution-specific fields when comparing state ob-
jects. Acto automatically labels those fields by (1) running
the transition Sy —> $; multiple times as a calibration and
labeling fields with values varying across runs, and (2) run-
ning Sy = S; multiple times, iff the differential oracle fires
an alarm on S;, to ensure relevant fields are deterministic.

5.4 Reproduction and Debugging

Acto generates minimized e2e test code for every alarm that
it raises. When a test fails (the system is in an error state S¢),
Acto records failure information (e.g., a dump of the error
state, log messages, and system status). Then, Acto rolls back
to a valid state S;_; and continues the test campaign.

To generate test code, Acto minimizes the operation se-
quence that reached S° to only two operations, (So, Di—1)
and (S;—1, D;). Here, (So, D;_1) reconciles the system state to
Si-1. Acto outputs the minimized sequence as an executable
function that developers can include in their regression test
suite after fixing the bug. In our experience, the recorded
failure information suffices to effectively locate root causes
of test failures. Since the minimized test code reliably repro-
duces the bug, interactive debuggers [4, 6] can also be used.
Acto users can suppress alarms by writing annotations.

SOSP 23, October 23-26, 2023, Koblenz, Germany

5.5 Implementation

We implement Acto for Kubernetes operators. Acto-m has
12,100 lines of Python code. Roughly 9,000 of those lines
implement generic test logic (e.g., input generation, test exe-
cution, and oracles). Kubernetes-specific semantic inference
and value generation take ~2K lines. If new Kubernetes re-
sources are introduced in the future, we will need to extend
Acto to add new value generators for the associated proper-
ties (§5.2.3). The remaining lines of Acto-m code implement
utilities: environment setup, state analysis, etc. Acto-O is
built on top of Acto-m using an additional 5,700 lines of Go
code for program analysis. We currently support operators
written in Go, the most popular language among operators.
Acto runs tests on virtualized Kubernetes clusters. It supports
three backends, Kind [9], Minikube [12], and K3d [8].

Static analysis in Acto-O. We use ssa [15] which pro-
vides intra-procedural static single-assignment (SSA) rep-
resentation. We use pointer [14] for alias analysis, which
implements the Andersen-style point-to analysis [33].

State convergence. Acto applies test oracles only after
the system state converges. Convergence time ranges from
one second to 10 minutes, so setting a fixed timer would be
unreliable. Acto uses a reset timer to check for convergence—
it resets the timer when it observes a system event, until no
event occurs and the timer times out. We conservatively set
the timer to three times the system restart time.

Test parallelization. To speed up testing, Acto partitions
operation sequences, [(So, D1), (S1, D2), ..., (Sx, Dx+1)], into
multiple tests and runs them in parallel. To run three parti-
tions of this sequence in parallel, Acto creates three tests cor-
responding to 1) Sy 5 8 =, = 851, 2) Sy — S —5
sy —> Sp,and 3) Sy — S, =, e, =5 S, IfS; is an error
state, it is “rolled back” based on D;_;. Acto can run multiple
test partitions on one machine, each in a virtualized Kuber-
netes cluster with a separate namespace. This approach saves
time as test runs wait for convergence. Acto keeps container

file systems in memory to reduce the image loading time.

6 Evaluation

Acto’s premise is that fully automatic end-to-end correctness
testing for unmodified operators is viable and effective. We
answer three research questions: (1) Can Acto effectively
find new bugs in real-world operators? (2) How efficient is
Acto? (3) Are Acto’s signaled alarms trustworthy?

We apply Acto to eleven popular open-source Kubernetes
operators which manage nine cloud systems (Table 4). All
evaluated operators are developed by the official teams of the
managed systems, or by companies that sell services built
around the managed systems. Test suites in the evaluated
operators have similar characteristics as those in §3.

Our main evaluation results are summarized as follows:

o Acto finds 56 new bugs in eleven operators; 42 bugs in the
operators have been confirmed; 30 have been fixed. Acto

J. T. Gu, X. Sun, W. Zhang, Y. Jiang, C. Wang, M. Vaziri, O. Legunsen, and T. Xu

Table 4. The Kubernetes operators that we evaluate.

Operator System Dev. #Stars LOC # E2E Tests
CassOp Cassandra K8ssandra 148 23.1K 48
CockroachOp CockroachDB Official 238 174K 21
KnativeOp Knative Official 157 16.3K 7
OCK/RedisOp Redis OCK 531 2.5K 0
OFC/MongoOp MongoDB Official 977 171K 62
PCN/MongoOp MongoDB Percona 268 15.0K 31
RabbitMQOp RabbitMQ Official 669 14.7K 8
SAH/RedisOp Redis Spotahome 1303 10.5K 1
TiDBOp TiDB Official 1130 132.8K 131
XtraDBOp XtraDB Percona 448 155K 37
ZooKeeperOp ZooKeeper Pravega 332 5.5K 8

also finds six bugs in Kubernetes and in the Go runtime
that affect multiple operators; all were confirmed or fixed.
o Acto’s test campaigns take less than eight hours per oper-
ator on a cluster of eight machines (a nightly run). Five of
eleven operators only need one machine.
o Acto generates few false positives: Acto-O reports no false
alarms and Acto-m has a very low false alarm rate: 0.19%.

6.1 Finding New Bugs and Vulnerabilities

Acto finds previously unknown bugs in all evaluated opera-
tors, 56 bugs in total (Table 5). We reported all these bugs.
So far, 42 were confirmed and 30 have been fixed. No bug
report was rejected. Acto-O found all 56 bugs. Acto-m missed
one bug, due to not being able to infer the semantics of a
primitive property that is needed to generate a scenario.
Acto generates e2e tests to reproduce all 56 bugs that it
detects; developers can add these e2e tests to their regression
test suite (§5.4). In fact, for six bug fixes, developers added
regression tests that perform the same state transition gen-
erated by Acto. Our experience tells that the generated e2e
tests are invaluable for debugging and validating bug fixes.
Many bugs detected by Acto have severe consequences:
managed-system failures, reliability issues, and security is-
sues (Table 6). Estimating the likelihood of encountering
each bug “in the field” is hard—the data for such estimation
is not publicly available. However, a bug detected by Acto
was also encountered by a real user after we reported it [19].
Also, some previously reported bugs are similar to those that
Acto detects (e.g., [20]). Note that the evaluated operators are
popular open-source projects (GitHub “#Stars” in Table 4),
suggesting that operator correctness is hard to achieve.
Acto also finds six bugs in Kubernetes and in the Go run-
time that affect multiple operators. These bugs cause wrong
or imprecise quantity conversions [26], incompatibility be-
tween declarations and API-server validation [18], crashes
due to Go’s generated shared object [21], etc. All these six
bugs were confirmed or fixed after we reported them.
Acto also detects 630 misoperation vulnerabilities (§6.1.2).
Each vulnerability corresponds to a unique misoperation
that drives the managed system into an error state.

Acto: Automatic End-to-End Testing for Operation Correctness of Cloud System Management

Table 5. New bugs detected by Acto-O (Acto-m) in the
evaluated operators. Acto also detected six new bugs in
Kubernetes and Go runtime that affect multiple operators.

Undesired Error State Recovery
Operator . Total
State System Operator Failure

CassOp 2 0 0 2 4
CockroachOp 3 0 2 0 5
KnativeOp 1 0 2 0 3
OCK/RedisOp 4 0 3 1 8
OFC/MongoOp 3 1 2 2 8
PCN/MongoOp 4 0 0 1 5
RabbitMQOp 3 0 0 0 3
SAH/RedisOp 2 1 0 1 4
TiDBOp 2 1 0 1 4
XtraDBOp 4 0 1 1 6
ZooKeeperOp 4 1(0) 0 1 6(5)
Total 32 4(3) 10 10 56 (55)

6.1.1 Bugs Detected by Acto. Acto detects bugs that vi-
olate the first two operation correctness requirements: (1)
driving managed systems into undesired or error states, or
(2) failing to recover from error states.

Undesired state. Acto found 32 bugs, where an operator
does not reach the desired state, but neither the operator
nor the managed system reports errors explicitly. The conse-
quences of these bugs are latent and hard to observe (e.g., se-
curity vulnerabilities). These bugs have different root causes
in code, but a common theme is that the operator stops rec-
onciliation before the desired state is reached. We showed
two such bugs in Figures 6 and 7. These bugs show the impor-
tance of modeling operations as state transitions and testing
different state transitions to the same declared states (§4.1).

Error state. Acto found 14 bugs that result in runtime errors
or crashes of the managed system or the operator. Among
these, four bugs caused runtime errors in the managed sys-
tems (such as the one in Figure 1). In another example [31],
when testing TiDBOp, Acto generates a valid operation that
turns on binlog to replicate data using the TiDB binlog. How-
ever, TiDB binlog requires a pump cluster to record and sort
binlogs, which is not set up by TiDBOp. So, TiDBOp restarts
TiDB nodes to load the new configuration, but the replicas
crash because of the missing pump cluster.

Acto also found ten bugs that caused operator failure.
For example, CockroachOp crashed due to an “index-out-
of-range” error when parsing a valid state declaration gen-
erated by Acto [27]. The crash brought down the webhook
service [5] that the operator uses to validate declarations. Af-
ter restart, CockroachOp crashed again due to the offending
declaration and it got stuck in a crash-then-restart loop.

Recovery failure. Acto detected ten bugs that lead to seri-
ous liveness issues (e.g., permanent operator failures) that
can neither be addressed by restarting the operator nor by
issuing new operations (such as the one in Figure 2). Acto

SOSP °23, October 23-26, 2023, Koblenz, Germany

Table 6. Consequences of the 56 detected bugs in Ta-
ble 5. One bug can have multiple consequences.

Consequence Example # Bugs
System failure MongoDB is down and cannot recover [23] 5
Reliability issue Redis is not protected by disruption budget [25] 15
Security issue CockroachDB uses outdated secrets [29] 2
Resource issue Redis runs with no resource guarantee [24] 9
Operation outage CockroachOp crashes and cannot recover [27] 18
Misconfiguration Ingress controller cannot be disabled [22] 15

detected these bugs by testing rollback operations with the
differential oracle. Our investigation reveals a common cod-
ing practice: operators perform new operations only after
the system is in a stable state. This practice is a double-edged
sword: it prevents bugs caused by racing operations and
reduces risks during upgrade, but it makes failure recovery
difficult, because it also blocks rollback operations if the
system is in an error state.

6.1.2 Misoperation Vulnerabilities Detected by Acto.
Acto-O detects 630 misoperation vulnerabilities that violate
the third operation correctness requirement (Acto-m detects
616 of these 630). Each vulnerability corresponds to a unique
property. Acto detects these vulnerabilities by generating de-
clared states with unsatisfiable affinity rules, misconfigured
security contexts, unavailable resources, etc. (Table 3). All
these vulnerabilities can lead to severe consequences includ-
ing entire system failure, partial service failures, and relia-
bility issues. In practice, the triggering misoperations could
result from human mistakes or wrong policies. These results
show that operator developers do not anticipate and defend
well against misoperations, which are frequently reported
as major causes of system failures [37, 38, 51, 68-70, 93].

We actively discuss with developers on potential mitiga-
tion (e.g., by more rigorous early checks). In practice, some of
these vulnerabilities are difficult to prevent. The reason lies
in the challenges of encoding sufficient domain knowledge in
operators to check the semantics of requested operations. For
example, it is hard to replicate Kubernetes core scheduler’s
complex logic [82]. Checking some misoperations requires
knowledge of managed systems. State rollback can be an ef-
fective mitigation strategy, but it does not always work—over
35% of 630 misoperation vulnerabilities cannot be mitigated
by rollbacks due to the recovery-failure bugs in §6.1.1.

6.1.3 Effectiveness of Different Oracles. Acto’s consis-
tency and differential oracles catch 43 of the 56 bugs (Table 7).
The consistency oracle detects 23 bugs by matching and com-
paring properties in state declarations to the spec sections
in state objects (§5.3.1). The differential oracle catches ten
more bugs that are triggered during normal state transitions.
It also catches all ten recovery-failure bugs during rollback
state transitions. The regular error checks detect 14 bugs

SOSP 23, October 23-26, 2023, Koblenz, Germany

Table 7. Breakdown of the number of bugs detected by
the oracles. Same bug can be detected by multiple oracles.

Test Oracle # Bugs (Percentage)

Consistency oracle 23 (41.07%)
Differential oracle for normal state transition 25 (44.64%)
Differential oracle for rollback state transition 10 (17.86%)
Regular error check (e.g., exception, error code) 14 (25.00%)

by checking process status of the operator and runtime sta-
tus of the managed system (recorded in the state objects).
Compared with state-based assertions in existing tests that
only cover 0.24%-10.9% of state-object fields (Table 2), Acto’s
oracles systematically check all related fields. For example,
the differential oracle compares all state-object fields that
are deterministic (71.4%-80.5% of all fields across evaluated
operators) through different transitions to the same end state.

6.1.4 Coverage. Acto achieves 100% property coverage
for every operator—Acto generates at least one operation
for each property (§5.1). Acto’s effectiveness over manually-
written tests (§3) comes from its ability to cover more prop-
erties and their values, and more transitions from different
states (including error states). In 38 of 56 detected bugs, the
related property is uncovered by existing tests. Relevant prop-
erties for the other 18 bugs are covered, but these bugs elude
existing tests because a revealing transition is not exercised.
For example, in CassOp, existing tests check that labels [11]
are correctly added to pods, but Acto detects a bug [28] that
can only be triggered when pod labels are deleted.

6.1.5 Bug Fixes. We reported all 56 bugs that Acto finds to
the developers of the respective operators; 42 have been con-
firmed and 30 of those have been fixed. Developers typically
fix these reported bugs by improving reconciliation logic for
the bug-triggering transitions generated by Acto, and adding
validation logic before reconciling on each state declaration
to prevent error conditions. Fixing bugs in failure-recovery
logic usually requires more effort, because it needs domain
knowledge to differentiate permanent error states from tran-
sient unstable states. For example, the bug in Figure 2 has
been confirmed, but the developers cannot easily fix it be-
cause the operator cannot reliably detect liveness violations—
the pod migration will never succeed in the future—by ob-
serving the current state.

6.1.6 Tradeoffs between Acto-m and Acto-O. We ex-
pect Acto-O to be more beneficial than Acto-m for operators
that heavily use primitive-typed properties or do not follow
naming conventions for property dependencies. In the eval-
uated operators, most properties have composite type with
clear structure features and they follow naming conventions.
Hence, the benefit of Acto-0O0 over Acto-m is small in our eval-
uation. Note that Acto-O is language specific—it currently
only supports operators written in Go. Acto-m is language

J. T. Gu, X. Sun, W. Zhang, Y. Jiang, C. Wang, M. Vaziri, O. Legunsen, and T. Xu

Table 8. Acto-O test campaign time per operator.

Testing Time (Machine Hours)

Operator Generation Execution Total #Ops # Workers
CassOp 0.02 10.39 10.41 568 16
CockroachOp 0.02 6.08 6.10 371 16
KnativeOp 0.04 6.25 6.29 774 16
OCK/RedisOp 0.02 9.72 9.75 597 16
OFC/MongoOp 0.01 5.73 5.74 434 16
PCN/MongoOp 0.04 26.55 26.58 1749 12
RabbitMQOp 0.03 4.69 4.72 394 16
SAH/RedisOp 0.02 7.92 7.94 718 16
TiDBOp 0.03 16.08 16.11 824 12
XtraDBOp 0.03 57.48 57.51 1950 8
ZooKeeperOp 0.02 8.54 8.55 740 16

agnostic and can apply to operators written in languages
other than Go, and proprietary, close-sourced operators.

6.2 Test Efficiency

Table 8 shows machine hours Acto-O’s test campaigns take
per operator and the number of operations in each test cam-
paign (“4Ops”). The longest campaign (XtraDBOp) had 1,950
operations. Acto stops generating operations when a cam-
paign covers all properties and corresponding scenarios.

All experiments are run on Cloudlab [48] Clemson c6420
machines with 2 Intel Xeon Gold 6142 CPUs (16 cores) and
376 GB of memory, with Ubuntu 20.04 LTS. Campaign times
vary from 4.72 to 57.51 hours across operators. Using eight
machines, test campaigns for all operators finish in less than
eight hours. So, Acto-O can be run nightly.

Acto’s efficiency comes from test parallelization (§5.5). By
default, Acto spawns 16 parallel workers to run tests on each
machine. But, parallelism can be reduced if the operator or
the managed system requires more resources (e.g., memory).

Semantic analysis for composite properties (§5.2.2) drasti-
cally reduces the number of operations in test campaigns and
allows Acto to focus on high-level semantics of composite
properties to exercise representative scenarios, rather than
mutating fine-grained primitive (sub-)properties.

Acto-m takes 8.47% less time on average than Acto-O be-
cause it generates, on average, 48 fewer test operations per
operator than Acto-O. The reason is that Acto-m cannot in-
fer semantics for a few primitive properties and thus cannot
generate operations for several scenarios; it only mutates
current values within the constraints of a property (§5.2.3).

6.3 False Positives

Acto’s alarms have a low false positive rate. Acto-O reports
no false alarm. Every test failure during the test campaigns
points to either a bug in the operator code or a misoperation
vulnerability. In total, Acto-O reports 2243 test failures: 738
test failures are caused by the 56 bugs in the operator and six
bugs in Kubernetes and Go runtime, and 1505 test failures are
caused by 630 misoperation vulnerabilities. Fixing one bug

Acto: Automatic End-to-End Testing for Operation Correctness of Cloud System Management

or vulnerability may resolve multiple test failures. We are
automating alarm clustering based on fault localization [72,
88], but it is now beyond the scope of testing.

Acto-m reports four false alarms in total. It reports 2071
test failures in total; among them, 653 test failures are caused
by 55 bugs in operators and six bugs in Kubernetes or Go;
1414 test failures are caused by 616 misoperation vulnera-
bilities. Therefore, the overall false positive rate of Acto-m
is 0.19%, or 4 out of 2071 alarms. All four false alarms are
caused by unsatisfied predicates when Acto-m changes prop-
erties. As discussed in §5.2.4, Acto-m is unable to infer de-
pendencies that do not follow the naming convention. For
example, in ZooKeeperOp, the property, ephemeral, depends
on a predicate: another property, storageType, must also be
set to “ephemeral”. Hence, Acto-m fails to satisfy the predi-
cate when changing the ephemeral property, but it expects a
state change and raises a false alarm. These dependencies are
captured by Acto-O through control-flow analysis (§5.2.4).

6.4 Implications and Discussion

We reflect on our experience on finding root causes of de-
tected bugs and vulnerabilities, and discuss implications.

Operation coverage. It is nontrivial to validate operators
under the declarative model. A key challenge is to reach de-
sired states from many different start states (including error
states). We observe that operators invoke different impera-
tive procedures, based on how a declared state differs from
the current state. However, it can be tedious and error-prone
to cover all such conditions. In fact, most bugs that Acto
finds do not manifest when performing operations from the
initial state Syp. Operations from the initial state are likely
already validated by developers manually or by writing tests.
Modeling and testing diverse state transitions are critical to
validating operation correctness (§4.1). Declarative program-
ming [82] may make operator testing less error-prone.

As for testing, Acto uses property coverage to drive state
transitions in the test campaigns (§5.1). The rationale is to
achieve high coverage of desired states, as state transitions
are triggered by changing property values via the operation
interface. Traditional coverage metrics like code coverage
are insufficient because they are not concerned with system
states: tests that are adequate for the code in one state may
not be adequate in a different state. Code coverage may not
help test all properties either, e.g., an operator that is missing
code to handle transition-triggering property changes could
have high code coverage. Acto can find bugs due to missing
code if the end state does not match the desired state.

Reducing risks. Operations can pose new reliability risks to
managed systems—what happens if an operation fails during
execution? An operation can span a series of procedures. For
example, we observe that existing Kubernetes operators com-
monly implement reconfiguration operations in two stages:

SOSP °23, October 23-26, 2023, Koblenz, Germany

(1) stopping the current running node (with the old configura-
tion); then (2) starting a new node (with new configuration).
In such implementations, failure in either stage is risky. First,
such a failure could leave the operator in intermediate states
which are nontrivial to recover from [80, 81]. Acto’s results
show that recovery failures are common (§6.1.1). Second, in
such implementations, the first step can open a small win-
dow of downtime (e.g., due to stopping the current node).
That downtime would be magnified if a new node fails to
start. So, it is safer to turn down the old node after the new
node starts successfully. But, in practice, this safe start order
can be hard to implement, due to the semantic requirements
of the managed system and version incompatibility of the
changes [64, 96]. For example, a ZooKeeper cluster cannot
have two leaders at the same time, to avoid a split brain. So, a
reconfiguration operation must first stop the old leader node
before starting the new one to avoid a split brain. System
support for speculative execution or emulation can help.

Closing the knowledge gaps. Operations must also re-
spect the constraints of the managed system. Otherwise, an
operation can harm the managed system. The TiDBOp bug
described in §6.1.1 is one example. Also, many vulnerabilities
to misoperations that Acto detects are rooted in the essential
cross-system interaction challenge [84]—it is hard for an
operator to comprehensively check a requested operation’s
semantic validity if the semantics are not defined inside the
operator code but in the managed system or the underlying
management framework (e.g., Kubernetes). One potential
solution is to replicate the validity checks of the relevant com-
ponents in the operator. (Prior work showed the promise
of automatically extracting configuration checks [92].) In
essence, the knowledge gap lies in the fact that operator de-
velopers may not be the managed-system developers, or they
may not be aware of subtle, complex constraints. Since oper-
ation correctness should be a first-class concern in reliable
system design, a rigorous interface between the operator
and the managed systems is needed to close these gaps.

7 Limitations and Future Work

Acto is a first step towards thorough validation of operation
correctness for modern cloud systems. Like any testing tech-
nique, Acto is incomplete and it can miss bugs. Acto does
not cover all possible system states and transitions; doing
so is prohibitively expensive. For example, Acto generates
property values to cover a few representative scenarios. This
design aims to balance efficiency and coverage—it covers
each property at least once and it exercises diverse scenarios
based on the semantics of operations. The results are promis-
ing, but there is plenty of room for future work to improve
Acto’s state-space exploration and its efficiency.

Acto has other soundness and completeness issues. First,
the predicate analysis of Acto-m is incomplete, resulting in
false alarms; Acto-O’s control-flow analysis only captures

SOSP 23, October 23-26, 2023, Koblenz, Germany

predicates that manifest as control-flow dependencies (we
did not observe any other kind). Moreover, Acto’s automated
oracles do not incorporate domain knowledge about man-
aged systems and they rely only on state objects managed
by the platform. Hence, the current oracles may not capture
complex and subtle failure states that are not reflected in state
objects, such as loss of writes, linearizability violations, and
gray or partial failures [34, 54, 58, 63]. We design Acto as an
extensible and “push-button” testing utility for unmodified
operators, while also enabling users to add domain-specific
oracles that have stronger managed-system observability.

The state-centric testing principle that Acto leverages may
apply to generic distributed systems, to capture issues re-
lated to operation assumptions. The challenges would be
to automatically validate system states and to synthesize
state transitions for arbitrary systems. Systems with clearly-
defined protocols or models may be more amenable.

Some types of bugs can only be triggered by external faults
like node failures and network delays [44, 80]; a reliable op-
erator must tolerate common faults. Acto does not target
those fault-tolerance bugs. Our prior work, Sieve [80], de-
tects those bugs by injecting faults and checking operator
safety and liveness. We plan to integrate Sieve with Acto:
(1) Sieve’s inputs are end-to-end tests; Acto could be used
to systematically generate these tests to make fault injec-
tion more comprehensive, and (2) Sieve can generate diverse
error states for Acto to test operator recovery. The key chal-
lenge is to efficiently navigate the combination of the input
operation space and the fault space (each space is very large).

Lastly, Acto currently focuses on testing individual opera-
tors. But, a system may be managed by multiple operators
in practice. So, operation correctness could be violated by
conflicting operations from different operators. We plan to
extend Acto to test interdependent operators together. A key
challenge will be to address a larger state space and to reason
about state transitions in interleaving operation schedules.

8 Related Work

Prior work identified operation errors as major causes of
production failures [35, 37, 38, 51, 53, 68-71]; they result
mostly from human mistakes. As human-based operations
are increasingly being replaced by automated operation pro-
grams, the correctness of those programs is critical. Acto is a
first step towards automatic testing of operation correctness.
We believe that Acto’s ideas can apply beyond Kuber-
netes to other cloud platforms like Twine [83], ECS [67],
and Borg [90]. These platforms also adopt declarative, state-
reconciliation patterns for operators or controllers, as a result
of many design iterations [39] and discussions [46, 74].
DCM [82] uses declarative programming to synthesize
cluster managers based on constraint solving; the idea can
potentially be extended for custom operators. However, most
operators are currently written in imperative code.

J. T. Gu, X. Sun, W. Zhang, Y. Jiang, C. Wang, M. Vaziri, O. Legunsen, and T. Xu

Acto is complementary to prior work on software deploy-
ment [45, 62, 73, 91, 96] and configuration [64, 79, 92-95].
Acto checks programs that perform those operations rather
than the correctness of code or configuration changes.

Acto can potentially be enhanced with ideas from sym-
bolic execution [40] and fuzzing [66]. But, naive application
of these techniques is unlikely to yield benefits. For example,
without reasoning about state transition, techniques only
guided by code coverage will be insufficient (§6.4).

Sieve [80] is a closely related testing technique. It finds
bugs in Kubernetes controllers that are triggered by exter-
nal faults like node failures, network delays, etc. Operators
are custom controllers for managing systems atop the Ku-
bernetes platform. Acto is fundamentally different from, but
complementary to Sieve. In essence, Sieve is a fault injector
that checks fault tolerance, while Acto is an end-to-end test
generator that checks functional correctness. Sieve cannot
find the bugs Acto detects, because it assumes that the op-
erator works correctly without faults. Sieve detects bugs by
comparing operator executions with and without injected
faults. Sieve does not report errors in any fault-free refer-
ence execution. More importantly, Sieve takes test workloads
as input—those test workloads are currently written manu-
ally, but it is challenging and costly for developers to write
comprehensive test workloads (see §3). Acto automatically
generates test workloads (i.e., “test campaigns” in Acto’s
terminology). Conversely, Acto cannot directly detect bugs
that Sieve finds, because Acto does not inject external faults.
We discuss potential Acto and Sieve integration in §7.

9 Concluding Remarks

With the rapidly growing practice of automating operations
and deploying operators in production, operator correctness
has become a critical component of cloud system reliability.
This paper presents Acto, an automatic technique for testing
cloud-native operators end to end with the managed systems.
We show that Acto’s state-centric approach enables effective
and practical end-to-end testing that is readily applicable to
existing operators and complements the significant inade-
quacy of manually written tests. Our goal now is to make
Acto a common utility in developing and testing operators,
towards correct automation of cloud system operations.

Acknowledgement

We thank our shepherd, Rebecca Isaacs, and the anonymous
reviewers for their insightful comments. We thank Paolo
Dettori, Kai-Hsun (Kevin) Chen, Kuan-Yin Chen, Kunle Li,
Muhammad Taha, Jiajun (Kashun) Cheng, and Thrivikraman
Varadharajan for their participation and contributions to the
Acto project. We thank all the Kubernetes operator devel-
opers who engaged with us and reviewed our reports. This
work was funded by an IIDAI grant and NSF grants CNS-
2130560, CNS-2145295, CCF-2019277, and CCF-2045596.

Acto: Automatic End-to-End Testing for Operation Correctness of Cloud System Management

References

(1]

[19]

[20]
[21]
[22]

[23]

[24]

[25]
[26]
[27]
[28]

[29]

[30]

[31]

Assigning Pods to Nodes. https://kubernetes.io/docs/concepts/
scheduling-eviction/assign-pod-node/.

Cloud Native Computing Foundation Operator White Paper.
https://www.cncf.io/wp-content/uploads/2021/07/CNCF_Operator_
WhitePaper.pdf.
Custom Resources. https://kubernetes.io/docs/concepts/extend-
kubernetes/api-extension/custom-resources/.

Debugging Go Code with GDB. https://go.dev/doc/gdb.

Dynamic Admission Control. https://kubernetes.io/docs/reference/
access-authn-authz/extensible-admission-controllers/.

Ephemeral Containers. https://kubernetes.io/docs/concepts/
workloads/pods/ephemeral-containers/.

etcd. https://eted.io/.

K3d. https://github.com/k3d-io/k3d.

Kind. https://kind.sigs.k8s.io/.

Kubernetes End-to-end Testing for Everyone. https://kubernetes.io/
blog/2019/03/22/kubernetes-end-to-end-testing-for-everyone/.
Labels and Selectors. https://kubernetes.io/docs/concepts/overview/
working-with-objects/labels/.

Minikube. https://minikube.sigs.k8s.io/.

OpenAPI Specification. https://swagger.io/specification/#schema-
object.

Package pointer. https://pkg.go.dev/golang.org/x/tools/go/pointer.
Package ssa. https://pkg.go.dev/golang.org/x/tools/go/ssa.
Specifying a Disruption Budget for your Application.
kubernetes.io/docs/tasks/run-application/configure-pdb/.
Understanding Kubernetes Objects. https://kubernetes.io/docs/
concepts/overview/working-with-objects/kubernetes-objects/.
Automatically generated regex validation for Quantity does not match
the validation used by unmarshalerDecoder. https://github.com/
kubernetes-sigs/controller-tools/issues/665, 2022.

Cassandra operator becomes partially inoperable if replaceNodes has a
wrong pod name (issue comment). https://github.com/k8ssandra/cass-
operator/issues/315#issuecomment-1090149844, 2022.
CLOUDP-116155 Initial bootup with arbiters. https://github.com/
mongodb/mongodb-kubernetes-operator/pull/1024, 2022.

cmd/cgo: allow cgo to pass strings or []bytes bigger than 1«30. https:
//go-review.googlesource.com/c/go/+/418557, 2022.

Contour pod is not deleted when disabled by user. https://github.com/
knative/operator/pull/1176, 2022.

Mongodb system is down and unable to recover when the feature-

https://

CompatibilityVersion is not specified and changed to an invalid
value. https://github.com/mongodb/mongodb-kubernetes-operator/
pull/1118, 2022.

Redis does not run with resource request/limit set by cr.spec.resources.
https://github.com/OT-CONTAINER-KIT/redis-operator/issues/290,
2022.

Specifying the field redisFollower.pdb does not have any effect. https:
//github.com/OT-CONTAINER-KIT/redis-operator/pull/301, 2022.
The number conversion of Value() of type Quantity is incorrect. https:
//github.com/kubernetes/kubernetes/issues/110653, 2022.

The operator crashes if the image name does not contain colon. https:
//github.com/cockroachdb/cockroach-operator/pull/922, 2022.
Unable to remove the additional labels on the seed service through
CR. https://github.com/k8ssandra/cass-operator/pull/344, 2022.
Updating the field spec.ingress.sql.tls.secretName is not reflected in
the sql ingress object. https://github.com/cockroachdb/cockroach-
operator/issues/920, 2022.

Zookeeper pod keeps crashing when scaling down and up. https:
//github.com/pravega/zookeeper-operator/pull/526, 2022.

TiDB crash loop when enabling binlog. https://github.com/pingcap/
tidb-operator/issues/4945, 2023.

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

SOSP °23, October 23-26, 2023, Koblenz, Germany

TiDB operator unable to recover an unhealthy cluster even with
manual revert. https://github.com/pingcap/tidb-operator/issues/4946,
2023.

ANDERSEN, L. O. Program Analysis and Specialization for the C Pro-
gramming Language. PhD thesis, DIKU, University of Copenhagen,
May 1994.

ArprAcI-Dusseau, R. H., AND ArRrPACI-DuUsseau, A. C. Fail-Stutter Fault
Tolerance. In Proceedings of the 8th Workshop on Hot Topics in Operating
Systems (HotOS-VIII) (May 2001).

BARROSO, L. A., HOoLzZLE, U., AND RANGANATHAN, P. The Datacenter as
a Computer: Designing Warehouse-Scale Machines, 3 ed. Morgan and
Claypool Publishers, 2018.

BEHRANG, F., COHEN, M. B., AND ORrso, A. Users Beware: Preference
Inconsistencies Ahead. In Proceedings of the 10th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE’15)
(Aug. 2015).

BiancHiINI, R, MARTIN, R. P., NaGcaraja, K., NGuyen, T. D., AND
OLIVEIRA, F. Human-Aware Computer System Design. In Proceedings
of the 10th Workshop on Hot Topics in Operating Systems (HotOS-X)
(June 2005).

BRrROWN, A. B., AND PATTERSON, D. A. Undo for Operators: Building
an Undoable E-mail Store. In Proceedings of the 2003 USENIX Annual
Technical Conference (ATC’03) (June 2003).

Burns, B., GRANT, B., OPPENHEIMER, D., BREWER, E., AND WILKES,].
Borg, Omega, and Kubernetes. Communications of the ACM 59, 5 (May
2016), 50-57.

CADAR, C., AND SEN, K. Symbolic Execution For Software Testing:
Three Decades Later. Communications of the ACM 56, 2 (Feb. 2013),
82-90.

CEBULA, M., AND SHERROD, B. 10 Weird Ways to Blow Up Your Kuber-
netes. In KubeCon North America (Nov. 2019).

CHEKRYGIN, L. Keep the Space Shuttle Flying: Writing Robust Opera-
tors. In KubeCon Europe (May 2019).

CHEN, Q., WANG, T., LEGUNSEN, O., L1, S., AND XU, T. Understanding
and Discovering Software Configuration Dependencies in Cloud and
Datacenter Systems. In Proceedings of the 2020 ACM Joint European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE’20) (Nov. 2020).

CHEN, Y., SUN, X., NATH, S., YANG, Z., AND XU, T. Push-Button Re-
liability Testing for Cloud-Backed Applications with Rainmaker. In
Proceedings of the 20th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI'23) (Apr. 2023).

CraMERI, O., KNeZEvi¢, N. Kosti¢, D., BiANCHINI, R., AND
ZWAENEPOEL:, W. Staged Deployment in Mirage, an Integrated Soft-
ware Upgrade Testing and Distribution System. In Proceedings of the
21st Symposium on Operating System Principles (SOSP’07) (Oct. 2007).
DETREVILLE,]. Making System Configuration More Declarative. In
Proceedings of the 10th Workshop on Hot Topics in Operating Systems
(HotOS-X) (June 2005).

DoBIES, J., AND WooD, J. Kubernetes Operators: Automating the Con-
tainer Orchestration Platform. O’Reilly Media, Inc., 2020.

Durryaxkin, D., Riccr, R., MARIcQ, A., WoONG, G., DUERIG, J., EIDE, E.,
STOLLER, L., HIBLER, M., JoHNSON, D., WEBB, K., AKELLA, A., WANG,
K., RicArT, G., LANDWEBER, L., ErL1OTT, C., ZINK, M., CECCHET, E.,
KaR, S., AND MisHRA, P. The Design and Operation of CloudLab. In
Proceedings of the 2019 USENIX Annual Technical Conference (ATC’19)
(July 2019).

FLEMSTROM, D., AND Buck, A. Fleet Management at
Spotify (Part 2): The Path to Declarative Infrastructure.
https://engineering.atspotify.com/2023/05/fleet-management-
at-spotify-part-2-the-path-to-declarative-infrastructure/, May 2023.
Shopify Engineering Blog.

SOSP 23, October 23-26, 2023, Koblenz, Germany

(50]

[51]

(52]

(54]

(55]

[56]

(57]

(58]

(59]

[60]

[61]

(62]

(63]

(64]

65]

[66]

(67]

Gao, L., AND MENON, R. Scaling Apache Spark on Kubernetes at
Lyft. https://www.youtube.com/watch?v=PPtrY_XxYBE, Apr. 2019.
Spark+AI Summit.

Gray, J. Why Do Computers Stop and What Can Be Done About It?
Tandem Technical Report 85.7 (June 1985).

GuiILLoux, S. Writing a Kubernetes Operator: the Hard Parts. In
KubeCon North America (Nov. 2019).

Gunawi, H. S., Hao, M., SumINTO, R. O., LAKSONO, A., SATRIA, A. D,
ADITYATAMA, J., AND EL1AZAR, K. J. Why Does the Cloud Stop Com-
puting? Lessons from Hundreds of Service Outages. In Proceedings of
the 7th ACM Symposium on Cloud Computing (SOCC’16) (Oct. 2016).
Gunawl, H. S, SuminTo, R. O,, SEARS, R., GOLLIHER, C., SUNDARARA-
MAN, S., LiN, X., EMamMmi, T., SHENG, W., BIDOKHTI, N., MCCAFFREY,
C., SRINIVASAN, D., PANDA, B., BAPTIST, A., GRIDER, G., FIELDS, P. M.,
Harwms, K., Ross, R. B., JacoBsoN, A., Riccr, R., WEBB, K., ALvARO, P,
RunEsHA, H. B., Hao, M., AND Li, H. Fail-Slow at Scale: Evidence of
Hardware Performance Faults in Large Production Systems. In Pro-
ceedings of the 16th USENIX Conference on File and Storage Technologies
(FAST’18) (Feb. 2018).

Haask, S. How an Operator Becomes the Hero of the Edge. In Opera-
torCon (May 2019).
Harir, C. AWS, Google, Microsoft, Red Hat’'s New Reg-

istry to Act as Clearing House for Kubernetes Operators.
https://www.datacenterknowledge.com/open-source/aws-google-
microsoft-red-hats-new-registry-act-clearing-house-kubernetes-
operators, Mar. 2019.

Hockin, T. Kubernetes: Edge vs. Level Triggered Logic. https://
speakerdeck.com/thockin/edge-vs-level-triggered-logic, June 2017.
Huang, P., Guo, C., Znou, L., LorcH, J. R, DANG, Y., CHINTALAPATI, M.,
AND YA0, R. Gray Failure: The Achilles’ Heel of Cloud-Scale Systems.
In Proceedings of the 16th Workshop on Hot Topics in Operating Systems
(HotOS-XVI) (May 2017).

KUMAR, H., AND SAFRANEK, J. Storage on Kubernetes - Learning From
Failures. In KubeCon North America (Nov. 2019).

LAGRESLE, M. Moving to Kubernetes: the Bad and the Ugly. In Con-
tainerDays (June 2019).

LANDER, R. Kubernetes Operators: Should You Use Them?
https://tanzu.vmware.com/developer/blog/kubernetes-operators-
should-you-use-them/, July 2021. VMware Blog.

L1, Z., CHENG, Q., HsiEH, K., DANG, Y., HUANG, P., SINGH, P., YANG,
X., LiN, Q., Wu, Y., LEvy, S., AND CHINTALAPATI, M. Gandalf: An
Intelligent, End-To-End Analytics Service for Safe Deployment in
Large-Scale Cloud Infrastructure. In Proceedings of the 17th USENLX
Symposium on Networked Systems Design and Implementation (NSDI'20)
(Feb. 2020).

Lou, C., HuaNG, P, AND SmITH, S. Understanding, Detecting and
Localizing Partial Failures in Large System Software. In Proceedings of
the 17th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI'20) (Feb. 2020).

Ma, S., Zrou, F., BonD, M. D., AND WANG, Y. Finding Heterogeneous-
Unsafe Configuration Parameters in Cloud Systems. In Proceedings of
the 16th ACM European Conference on Computer Systems (EuroSys’21)
(Apr. 2021).

Mabpau, C. Preventing Controller Sprawl From Taking Down Your
Cluster. In KubeCon North America (Oct. 2022).

MaNEs, V.], HaN, H., HaN, C., CHA, S. K., EGELE, M., SCHWARTZ,
E.]., AND Woo, M. The Art, Science, and Engineering of Fuzzing: A
Survey. IEEE Transactions on Software Engineering 47, 11 (Nov. 2021),
2312-2331.

MELISSARIS, T., NABAR, K., RapuT, R., REHMTULLA, S., SHI, A., CHAN-
DRASHEKAR, S., AND PArAPANAGIOTOU, L. Elastic Cloud Services: Scal-
ing Snowflake’s Control Plane. In Proceedings of the 13th ACM Sympo-
sium on Cloud Computing (SOCC’22) (Nov. 2022).

J. T. Gu, X. Sun, W. Zhang, Y. Jiang, C. Wang, M. Vaziri, O. Legunsen, and T. Xu

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

NAGARAJA, K., OLIVEIRA, F., BIANCHINI, R., MARTIN, R. P., AND NGUYEN,
T. D. Understanding and Dealing with Operator Mistakes in Internet
Services. In Proceedings of the 6th USENIX Conference on Operating
Systems Design and Implementation (OSDI’04) (Dec. 2004).

OLIVEIRA, F., TJANG, A., BIANCHINI, R., MARTIN, R. P., AND NGUYEN,
T. D. Barricade: Defending Systems Against Operator Mistakes. In
Proceedings of the 5th European Conference on Computer Systems (Eu-
roSys’10) (Apr. 2010).

OPPENHEIMER, D., GANAPATH]I, A., AND PATTERSON, D. A. Why Do
Internet Services Fail, and What Can Be Done About It? In Proceedings
of the 4th USENIX Symposium on Internet Technologies and Systems
(USITS’03) (Mar. 2003).

PATTERSON, D., BROWN, A., BROADWELL, P., CANDEA, G., CHEN, M.,
CUTLER, J., ENRIQUEZ, P, Fox, A., KicIMAN, E., MERZBACHER, M., OPPEN-
HEIMER, D., SASTRY, N., TETZLAFF, W., TRAUPMAN, J., AND TREUHAFT,
N. Recovery-Oriented Computing (ROC): Motivation, Definition, Tech-
niques, and Case Studies. Tech. Rep. UCB//CSD-02-1175, University
of California Berkeley, Mar. 2002.

PHaM, V.-T., KHURANA, S., Roy, S., AND ROYCHOUDHURY, A. Bucketing
Failing Tests via Symbolic Analysis. In Proceedings of the 20th Interna-
tional Conference on Fundamental Approaches to Software Engineering
(FASE’17) (Apr. 2017).

Pina, L., ANDRONIDIS, A., Hicks, M., AND CADAR, C. MVEDSUA:
Higher Availability Dynamic Software Updates via Multi-Version Ex-
ecution. In Proceedings of the 24th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS’19) (Apr. 2019).

RAjAGOPALAN, S., WILLIAMS, D., JAMjooMm, H., AND WARFIELD, A. Es-
cape Capsule: Explicit State is Robust and Scalable. In Proceedings
of the 16th Workshop on Hot Topics in Operating Systems (HotOS-XIV)
(May 2013).

Rartis, P. Lessons Learned using the Operator Pattern to build a
Kubernetes Platform. In USENIX SREcon (Oct. 2021).

SCHWARZKOPF, M., KONWINSKI, A., ABD-EL-MALEK, M., AND WILKES, J.
Omega: Flexible, Scalable Schedulers for Large Compute Clusters. In
Proceedings of the 8th ACM European Conference on Computer Systems
(EuroSys’13) (Apr. 2013).

SHEN, Z., SHANG, R., AND BEDI1, R. How eBay Leverages Kubernetes,
Helm Charts and Jenkins Pipelines to Deliver High-Quality Soft-
ware. https://tech.ebayinc.com/engineering/how-ebay-leverages-
kubernetes-helm-charts-and-jenkins-pipelines-to-deliver-high-
quality-software/, 2021. eBay Tech Blog.

Sosa, C., AND BHATIA, P. Application management made easier with
Kubernetes Operators on GCP Marketplace. https://cloud.google.com/
blog/products/containers-kubernetes/application-management-
made-easier-with-kubernete-operators-on-gcp-marketplace, May
2019. Google Cloud Blog.

Sun, X., CHENG, R., CHEN, J., ANG, E., LEGUNSEN, O., AND XU, T. Testing
Configuration Changes in Context to Prevent Production Failures. In
Proceedings of the 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI’20) (Nov. 2020).

Sun, X., Luo, W,, Gu, J. T., GANESAN, A., ALAGAPPAN, R, GascH, M.,
SuresH, L., AND Xu, T. Automatic Reliability Testing for Cluster
Management Controllers. In Proceedings of the 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI’22) (July 2022).
SuN, X., SURESH, L., GANESAN, A., ALAGAPPAN, R., GAascH, M., TANG, L.,
AND Xu, T. Reasoning about modern datacenter infrastructures using
partial histories. In Proceedings of the 18th Workshop on Hot Topics in
Operating Systems (HotOS-XVIII) (May 2021).

SURESH, L., Ao LorFF, J., KaLim, F., JyoTHI, S. A., NARODYTSKA, N.,
RyzHYK, L., GAMAGE, S., OKI, B., JAIN, P., AND GascH, M. Building Scal-
able and Flexible Cluster Managers Using Declarative Programming.
In Proceedings of the 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI’20) (Nov. 2020).

Acto: Automatic End-to-End Testing for Operation Correctness of Cloud System Management SOSP ’23, October 23-26, 2023, Koblenz, Germany

[83] Tang, C., Yu, K., VEERARAGHAVAN, K., KALDOR, J., MICHELSON, S., deploying-azure-resources/, Nov. 2021. Microsoft Developer Blogs.
KooBURAT, T., ANBUDURAI, A., CLARK, M., Goagia, K., CHENG, L., [90] VERMA, A., PEDROSA, L., KoruPOLU, M., OPPENHEIMER, D., TUNE, E.,

— =

—

CHRISTENSEN, B., GARTRELL, A., KHUTORNENKO, M., KULKARNI, S.,
PawLowski, M., PELKONEN, T., RODRIGUES, A., TIBREWAL, R., VENKATE-
SAN, V., AND ZHANG, P. Twine: A Unified Cluster Management System
for Shared Infrastructure. In Proceedings of the 14th USENIX Conference
on Operating Systems Design and Implementation (OSDI’20) (Nov. 2020).
TaNG, L., BHANDAR], C., ZHANG, Y., KARANIKA, A., J1, S., GUPTA, L., AND
Xu, T. Fail through the Cracks: Cross-System Interaction Failures in
Modern Cloud Systems. In Proceedings of the 18th European Conference
on Computer Systems (EuroSys’23) (May 2023).

TANG, Z., L1, X., AND Guo, F. Demystifying Kubernetes as a service
- How Alibaba cloud manages 10,000s of Kubernetes clusters.
https://www.cncf.io/blog/2019/12/12/demystifying-kubernetes-as-
a-service-how-does-alibaba-cloud-manage-10000s-of-kubernetes-
clusters/, Dec. 2019. Cloud Native Computing Foundation Blog.
TEMPLETON, G., AND DavIDsON, S. How a Couple of Characters (and
GitOps) Brought Down Our Site. In KubeCon Europe (May 2022).
TirmAZI, M., BARKER, A., DENG, N., HAQUE, M. E,, QIN, Z. G., HAND, S.,
HARCHOL-BALTER, M., AND WILKES, J. Borg: The Next Generation. In
Proceedings of the 15th ACM European Conference on Computer Systems
(EuroSys’20) (Apr. 2020).

VAN TONDER, R., KOTHEIMER, J., AND GOUEs, C. L. Semantic Crash Buck-
eting. In Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering (ASE’18) (Sept. 2018).

VASUDEVAN,]. Azure Service Operators — A Kubernetes native way
of Deploying Azure Resources. https://devblogs.microsoft.com/cse/
2021/11/11/azure-service-operators-a-kubernetes-native-way-of-

AND WILKES, J. Large-Scale Cluster Management at Google with Borg.
In Proceedings of the 10th European Conference on Computer Systems
(EuroSys’15) (Apr. 2015).

WANG, S., L1AN, X., MARINOV, D., AND Xu, T. Test Selection for Unified
Regression Testing. In Proceedings of the 45th IEEE/ACM International
Conference on Software Engineering (ICSE’23) (May 2023).

Xu, T, JiN, X., HuaNG, P., ZHoU, Y, Ly, S., JIN, L., AND PASUPATHY, S.
Early Detection of Configuration Errors to Reduce Failure Damage.
In Proceedings of the 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI’16) (Nov. 2016).

Xu, T., ZHANG,]., HUANG, P., ZHENG, J., SHENG, T., YuAN, D., ZHOU,
Y., AND PasupaTHY, S. Do Not Blame Users for Misconfigurations.
In Proceedings of the 24th Symposium on Operating System Principles
(SOSP’13) (Nov. 2013).

Xu, T., AND ZHoU, Y. Systems Approaches to Tackling Configuration
Errors: A Survey. ACM Computing Surveys (CSUR) 47, 4 (July 2015).
ZHANG, J., RENGANARAYANA, L., ZHANG, X,, GE, N., BALA, V., XU, T., AND
Zuou, Y. EnCore: Exploiting System Environment and Correlation
Information for Misconfiguration Detection. In Proceedings of the
19th International Conference on Architecture Support for Programming
Languages and Operating Systems (ASPLOS’14) (Mar. 2014).

ZHANG, Y., YANG, J., JiN, Z., SETHI, U., RoDRIGUES, K, LU, S., AND
Yuan, D. Understanding and Detecting Software Upgrade Failures in
Distributed Systems. In Proceedings of the 28th ACM Symposium on
Operating Systems Principles (SOSP’21) (Oct. 2021).

	Abstract
	1 Introduction
	2 Background
	3 Motivating Study
	4 Technique
	4.1 Operation Model
	4.2 Test Strategy

	5 Design and Implementation
	5.1 Realizing State Transitions
	5.2 Generating State Declarations
	5.3 Test Oracles
	5.4 Reproduction and Debugging
	5.5 Implementation

	6 Evaluation
	6.1 Finding New Bugs and Vulnerabilities
	6.2 Test Efficiency
	6.3 False Positives
	6.4 Implications and Discussion

	7 Limitations and Future Work
	8 Related Work
	9 Concluding Remarks
	References

