A Routing Framework for Quantum Entanglements
with Heterogeneous Duration

Yuhang Gan, Xiaoxue Zhang, Ruilin Zhou, Yi Liu, and Chen Qian
University of California, Santa Cruz

Abstract—Entanglement routing is a fundamental problem in
the network layer of quantum networks, which has become
an increasingly popular research topic. This paper addresses a
common problem of existing entanglement routing algorithms:
they assume the Synchronized Single-time-slot model (SynSts)
that requires all entanglement generation and swapping to be
completed in a single time slot. This model does not align
with future large-scale quantum networks that will incrementally
deploy heterogeneous devices: old ones generate short-duration
entanglements while advanced devices can generate long-duration
entanglements. Forcing long-duration entanglements to finish in
one time slot will result in sub-optimal routing performance. This
paper presents a new routing framework for quantum entan-
glements with heterogeneous duration, including a Synchronous
Multi-time-slots (SynMts) routing model and two algorithms
to manage routing requests and link states. The framework is
designed in such a generalized way that all existing algorithms de-
signed for the SynSts model can still run with the SynMts model
while achieving higher performance. We conduct experiments
using three recently-proposed routing algorithms and find they all
achieve evident throughput improvement in the new framework.

I. INTRODUCTION

Recently, quantum networks have been experiencing rapid
development as a new type of network architecture that uses
special hardware (quantum repeater equipped with quantum
memory) to enable the transmission of quantum bits (qubits)
[1] [2]. A quantum network enables unconditional security
[3] [4] of the transmitted information by a physical statement
called the no-cloning theorem [5]. Besides, it enables several
important applications such as distributed quantum computing
[6], [7] and quantum key distribution (QKD) [8] [9]. Quantum
networks are not designed to replace the classic Internet.
Instead, it complements the Internet to deliver certain crucial
information that is difficult to deliver on the Internet, such as
shared quantum states for distributed quantum computing and
secret keys that need to be shared.

There are two main types of quantum networks. The first
type transmits qubits in a hop-by-hop manner [10], similar to
the “store-and-forward” packet switching networks. However,
it requires all repeaters in the network to be trusted, which
is only applicable for private networks and is an impractical
assumption in future large-scale quantum Internet [11]. The
second type relies on entanglement routing [12] [11] based
on the DLCZ protocol [13], which attempts to first establish
entanglements (called external links) between every pair of
consecutive repeaters along the way from the source to des-
tination, and uses these external links to establish an end-to-

Quantum Node
Quantum Memory

Quantum Channel

External Link

@ ® (i.e. entangled photon pair)
He vy A
B — j— Internal Link
“ “ ______ (i.e. entanglement swapping)
N R D .
®—®  S-D Connection

(b) After Swapping
Fig. 1: Entanglement Swapping

end source-destination (S-D) connection through entanglement
swapping [14]. Fig. 1 shows an example of entanglement
swapping. To deliver a qubit from S to D, S creates a
shared entanglement pair (p,q) with a neighboring repeater
R, using two qubits: p at S and ¢ at R. Similarly, D creates a
shared entanglement pair (m,n) with R. Then R performs an
entanglement swapping (also called Bell state measurement)
on g and m. After that, an S-D connection is established with
p and n. S can then deliver a qubit to D. From a networking
perspective [11], we can consider there are two external links
(p,q) and (m,n) and one internal link (g, m) that connect the
whole end-to-end path from S to D. This paper focuses on the
entanglement routing problem [12] [11], which is a method to
find end-to-end paths consisting of external and internal links.

Most solutions of entanglement routing use the
Synchronized Single-time-slot model (SynSts model) [11] [15]
[16] [17]. This model requires that every qubit transmission
is completed in one time slot. It assumes all repeaters
generate the entanglements with their neighbors and complete
swapping within a time slot. The model strongly implies that
all repeaters in the network carry similar hardware; hence
their entanglements have similar lifetimes within a time-slot
duration.

We argue that this model does not align with the evolu-
tion of future quantum networks. Similar to the history of
the Internet, building a large-scale quantum network for public
users is a long-term task and consists of numerous incremental
deployments of repeaters with heterogeneous hardware. Hence,
those heterogeneous devices will co-exist because they are
deployed at different times and by different network providers
— there is no way to shut down a shared quantum network
entirely and replace all old hardware with upgraded ones.
We examine the recent designs using SynSts model [11] [15]
[16] and find that the typical length of each time slot is 1-



2 seconds. Moreover, the recent development of advanced
quantum network hardware enables quantum memory to store
photons with high fidelity for several minutes or even longer
[18] [19] [20] [21], which is much longer than one time-
slot. Therefore, the restriction that “the network must clear
all external links at the end of each time slot” of the existing
SynSts routing model will definitely result in sub-optimal
results because this model forces advanced devices to use the
same short entanglement time as the old devices.

In this paper, we develop a quantum network routing
framework with a new Synchronous Multi-time-slots (SynMts)
model to keep external links with heterogeneous time duration.
This model is a perfect balance to achieve two objectives that
are necessary steps for future quantum networks: 1) support
heterogeneous devices with different entanglement duration,
and 2) allow adaptation of the existing algorithms of the
SynSts model to the new model. The model sets the time
duration of an entanglement of weak devices to be within
one time slot and the stronger devices that are deployed
incrementally generate entanglements that last for multiple
time slots. We put forward a new parameter, “Slots To Live”
(STL), to quantify the capability of quantum memory to
maintain external links, which corresponds to the "Time To
Live” (TTL) of traditional networks.

The new routing framework introduces several new research
issues that need to be addressed. For example, which requests
should be served and which links should be used in the
current time slot? Intuitively short-duration links are preferred
to use first and long-duration links can be saved to use in
future slots. However, when combined with network traffic
patterns and resource contentions, these problems can be
complex. We introduce two algorithms, a request management
algorithm and a predictable link scheduling algorithm. A
network typically encompasses multiple routing requests, each
of which demands the transmission of one or more qubits.
Consequently, every transmission request persists within the
network for a duration, representing diverse network flows.
Given the finite resources available in the network (e.g.,
limited quantum memory), efficient management among flows
is imperative for attaining enhanced network throughput. In
our framework, we propose ReqUp, a request management
algorithm responsible for managing the state of various trans-
mission requests. By sorting requests prior to executing the
routing algorithm, ReqUp ensures higher resource utilization.
Although preserving external links across multiple time slots
can augment network efficiency, link retention may increase
network link state complexity and lead to potential resource
occupancy issues, ultimately diminishing network throughput.
To mitigate these concerns, we introduce a predictable link
scheduling algorithm to optimize link retention and disposal,
maximizing resource utilization and circumventing resource
occupancy problems.

To our knowledge, this is the first work that considers
a quantum network with heterogeneous entanglement
duration on mixed types of devices, which is an inevitable
step of developing future quantum networks. The proposed

framework resolves the limitation of most existing algorithms
that requires all operations of qubit transmission to be com-
pleted in one time slot. We summarize the main contributions
of our work as follows:

o We analyze the literature on quantum network hardware,
find out the limitations of the existing SynSts routing
model and propose the SynMts routing model that aligns
with the development of quantum hardware, because
supporting heterogeneous devices is an inevitable step in
building future quantum networks.

e In the new framework, we design a request manage-
ment algorithm, ReqUp, which improves the network
resources utilization in the network and a predictable
links scheduling algorithm to manage the links in the
network. With these two management algorithms, we
show that many existing routing algorithms proposed for
the SynSts model [11], [15] can be easily extended to run
in the SynMts model.

e We conduct simulation experiments and analysis. The
results show that many existing entanglement routing
algorithms such as Q-PASS [11], Q-CAST [11], and
REPS [15] receive clear performance improvements in
the proposed framework compared to using the SynSts
routing model.

The rest of the paper is organized as follows. In Section II,
we discuss the quantum network model, background, and our
observations that motivate this work. Section III presents the
proposed framework with the SynMts model. In Section IV,
we analyze the benefit brought by the proposed framework and
discuss the adaptability of the framework for rapidly evolving
quantum network hardware. Section V presents the simula-
tion results to demonstrate the advantages of the proposed
framework. The related work is discussed in Section VI. We
conclude this work in Section VII.

II. NETWORK MODEL, BACKGROUND, AND MOTIVATION
A. Quantum network model

We briefly present the quantum network model that will be
used in this work.

Quantum node. A quantum node in a quantum network is
a device that carries quantum memory and quantum repeater
functions. It can be the source, destination, or an intermediate
node for a multi-hop path. Quantum memory is responsible
for storing photons. Source and destination nodes use their
quantum memory to store information qubits. And repeater
nodes use their memory to store entangled photon pairs to
establish external links between two adjacent repeaters. One
quantum memory can store only one qubit. One node usually
has about tens of quantum memory.

Classic Internet. Each node in a quantum network also
carries the functions of the classic Internet. All nodes can
communicate directly using the Internet.

Routing information base (RIB). Similar to existing quan-
tum network architecture [15], [22]-[24], there is a central
network controller called the routing information base (RIB) to



P1 P2 P3 P4

Routing & QMem-
QChnl Assignment
Input: Network

Place Internal Links
Receive SD Pairs Exchange classical|

Input: External Link

Requests: ~ Topology > information .
(S;, D;) Output: Selected Paths e.o. link state ’
and Assigned QMem & ® Output: Internal Links
QChnl i

One time slot

Fig. 2: SynSts model with a 4-Phases time slot [11] [15] [16]

compute routing paths and schedule available quantum links,
which runs in a central cloud and connects all quantum nodes
via the Internet. It adds extra 100ms latency to each time slot.

Quantum channels and links. A quantum channel is a
physical medium (e.g., optical fiber) that transmits entangled
photon pairs to establish external links. The process of gen-
erating external links between two neighboring nodes has
two steps: 1) Generate a pair of entangled photons by an
entanglement generator located inside one of the nodes. 2) The
generator distributes the pair of entangled photons to the two
nodes using a quantum channel. Each node uses a quantum
memory to store its photon. When both nodes successfully
store their photons, we say that the two nodes share an entan-
glement or a logical external link between them. Therefore, to
establish an external link between adjacent nodes, we need to
assign an exclusive quantum channel between the two nodes
and one quantum memory for each of them.

Entanglement routing. The successfully established exter-
nal link can directly transmit qubits between adjacent nodes.
For nodes without direct quantum channels, we need to find
a path from the source S to the destination D using a
routing algorithm, and then establish external links between
the intermediate repeater nodes one by one. After that, each
intermediate repeater node performs an entanglement swap-
ping operation on two photons belonging to two different
external links. If this process is successfully performed inside
every intermediate repeater node, we end up with a source-
destination (SD) connection and can use this connection to
transmit a qubit from S to D, as shown in Fig. 1. A sequence
of qubits for the same SD pair is called a flow and applications
request flows to the network. The above process is also known
as DLCZ protocol [13]. Most current entanglement routing
algorithms use the Synchronous Single-time-slot (SynSts)
routing model [11] [15] [17]. A network-level synchronized
time interval is called a time slot. A time slot is divided
into 4 phases as shown in Fig. 2. In each phase, the network
sequentially completes “receive SD pairs requests”, “routing
and establish external links”, “communicate external links
states”, and ““establish internal links and transmit qubits”. And
based on the assumption in the SynSts model that quantum
memory can only store entangled photons for one time slot,
all established external links and internal links need to be
cleared after a transmission attempt is completed. Therefore,
the routing of each time slot can be considered independent.
Successfully established external links cannot be used in the
subsequent time slots.

B. Characteristics of Quantum Networks

1) Quantum links are unreliable: In practice, photons can
easily get lost in a quantum channel (e.g., optical fiber). In
addition, quantum memory may also fail to preserve photons.
Therefore, the above process of establishing external links
does not always succeed and is probabilistic. Even if the
external links are successfully established, they have to meet
the quality requirements of the task. Fidelity is a parameter
that measures the quality of the external link [25] [11] [22].
If the fidelity of the external linkis lower than the threshold
required by a task, this link cannot be used. In fact, the
transmission success rate of photons in the optical fiber decays
exponentially with distance.

2) Network traffic has temporal and spatial locality:
The traffic flow pattern of quantum networks is similar in
consecutive slots. This is due to the bandwidth limitation of
the quantum networks, where a successfully established SD
connection can only transmit one qubit. Therefore, even if
an SD request needs to transmit only 1000 qubits (much
smaller compared to traditional networks, where the maximum
transmission unit of an Ethernet frame is 1500 bytes), 1000
successfully established SD connections are required. SD pairs
will be relatively stable over a period of time. We say the traffic
state of quantum networks has temporal and spatial locality.

3) Existing SynSts model has unnecessary waste: The cur-
rent SynSts routing model is based on the assumption that
“quantum memory is not powerful enough to store entangled
photon with a high fidelity for more than one time slot”. This
will reset all allocated hardware resources (mainly quantum
memory and quantum channel) and clear all external links
at the end of each time slot, regardless of whether they are
used or not. The current SynSts model default to a time slot
of about 1-2 seconds. However, according to recent quantum
hardware development advanced quantum memory is able to
store qubit state for several minutes [18] [19] [26] [20]. Recent
and future quantum memories are able to maintain external
links with high fidelity for multiple time slots. Hence forcing
all quantum memory to finish in one time slot results in sub-
optimal performance.

C. Key Observations and Motivation

By summarizing the above characteristics of quantum net-
works, we present some observations that have not been
fully considered in existing entanglement routing design:

o Link establishment is probabilistic and the link state of a
quantum network is highly dynamic;

o The network traffic pattern for consecutive slots is similar.
e Some quantum memories are now good enough to keep
external links for much longer time than one time slot;

e Maintaining an external link is more likely to succeed

than re-establishing it.
o The unused external links in each time slot are wasted in
the existing SynSts model.

So, an intuitive idea is that if we keep some of the established
but unused external links and reuse them in subsequent time



slots, we can improve the success rate of establishing SD
connections and improve the network’s performance.
Therefore, we propose our Synchronous Multi-time-slots
(SynMts) quantum network routing model. Our model follows
the overall 4-Phases process in SynSts model to ensure gen-
erality. Compared to the SynSts model, the link state in our
model is more complicated. In a time slot, it is likely that
newly established links and old links exist simultaneously.
This makes the system design more difficult. To ensure the
generality and flexibility of our model, we provide appropriate
abstractions. Many existing routing algorithms using the
SynSts routing model can also be adapted to run with
the SynMts model with little modification. Our task is then
to design algorithms that manage links and flow requests to
maximize routing performance across different time slots.

III. DESIGNING ROUTING FRAMEWORK WITH THE
SYNMTS MODEL

A. Overview

In the proposed SynMts model, we define a new parameter
to quantify the lifetime of each external link: Slots To Live
(STL), which indicates how many time slots the external
link can last in the network. Each external link has two
related parameters: maximal STL (maxSTL) and remaining
STL (rmnSTL). We define strong links to be those whose
maxSTL > 2, while weak links are those whose max ST L
are 1. The existing SynSts model can be treated as a special
case in the SynMts model that all the external links are weak
links. We define three operations on each existing strong link
in a time slot: Use to be used for existing requests, Reserve for
the next time slot, and Release to free the quantum memory.

In a given time slot, newly established external links and
alive strong links reserved from previous time slots with
rmnSTL > 1 may exist at the same time. This makes the
overall link states of the network more complicated. Therefore,
we propose to split the entanglement routing design space into
the network layer and link layer and keep the routing algo-
rithm only running at the network layer while the link states
management takes place at the link layer by an independent
link scheduling algorithm. Previously in the SynSts model,
all routing designs are in the network layer and there is no
need to manage the link state. The new framework with the
SynMts model uses the link layer to decide whether to use,
reserve, or release each link based on the flow requests and
provide a proper abstraction for the network layer. The routing
algorithm can only consider the case where maxSTL = 1
for all external links, in line with the original SynSts model.
Therefore all existing entanglement routing algorithms can still
be used in the SynMts model.

The new algorithms that are needed in the link layer include:

Request management. In the SynMts model, the routing
information base (RIB) is responsible for request manage-
ment, routing, resource allocation, and link scheduling. With
multiple simultaneous requests coming, first-come first-serve
(FCFS) may cause unfairness or starvation among requests.
Thus, a rational request management algorithm is needed

P1 P2 P3

Input: requests: Path & Link Calculation .
Input: Network Topology & Link
(S Dy) P> State;
Output: Selected Paths, reused
strong links and new established
external links;

/Exchange classical
> information

a. Run ReqUp-Sorting e.g. link state

Phase 2-1 : Existing Routing .
Algorithm to calulate Paths; Place Internal Links
Input: External

Link State;

a. Run ReqUp-Updating

b. Calculate links”
maxSTL & rmnSTL

c. Schedule alive
strong links

d. Set hardware

Phase 2-1I: Nodes locally reuses
alive strong links and establish
new external links; Output: Internal

Links

A

P5 P4

Fig. 3: Overview of SynMts model

to ensure both efficiency and fairness. Also, some requests
may suffer from extremely slow transmission speeds due
to link failures or intense resource contention in quantum
networks and cannot be satisfied before the request timeouts.
Hence all future resources spent on them will be wasted. We
call them straggler requests and it is necessary to promptly
detect straggler requests and remove them. We propose the
request management algorithm, called ReqUp, including two
processes: Sorting and Updating. ReqUp-Sorting sorts the
requests at the beginning of each time slot according to their
priority to gain higher network efficiency and better fairness.
And ReqUp-Updating is responsible for updating request
states, detecting and removing the straggler requests in the
network at the end of each time slot.

Link scheduling. The SynMts model allows strong links to
be kept for multiple time slots, but maintaining them consumes
hardware resources. Thus, a link scheduling algorithm is
needed to reserve the links that will likely to be reused and
release other links. We propose a predictable link scheduling
algorithm, which retains strong links for unfinished requests
and uses a prediction algorithm to determine which links
to retain or release for completed requests. The predictor
comprises a key-value pairs table and uses Bloom filters to
predict the usage of links. At the end of each time slot, alive
strong links are categorized as Use, Reserve, or Release.

We then present the process of the SynMts model in one
time slot as shown in Fig. 3.

o In Phase 1, the RIB runs the request management algo-
rithm, ReqUp-Sorting, to sort all the requests according
to their priority.

o In Phase 2, there are two sequential parts:

— Phase 2-I: Network layer routing algorithm calcu-
lates the paths as well as allocates corresponding
hardware resources.

— Phase 2-1I: Based on the routing results, each node
locally first uses its existing strong links to satisfy
some of the links assignments and then tries to build
other external links using the remaining hardware
resources at the link layer.

o Phase 3 and 4 are the same as the SynSts model [11], to



communicate external links states, and establish internal
links to transmit qubits respectively.
e In Phase 5 at the end of each time slot,

— The maxSTL and rmnSTL parameters are calculated
and updated for each existing strong link according
to the task fidelity requirement in this time slot.

— The RIB executes the requests management algo-
rithm, ReqUp-Updating, to update the requests’ sta-
tus.

— The RIB then runs the Predictable Link Scheduling
algorithm, determining the actions for all remaining
strong links - to Use, Reserve, or Release - within
the network and broadcasting the decision to each
node.

— Each node removes expired strong links, links of the
“Release” state, and weak links, and finally resets
the hardware.

B. Phase 1

Request management: ReqUp-Sorting. At the beginning
of Phase 1, the network receives multiple S-D requests.
The RIB is responsible for maintaining request status,
including the size of the data to be transmitted and
the timeout for each request. Based on this status
information, the RIB can better allocate resources and
schedule requests. To achieve higher network efficiency and
fairness, ReqUp-Sorting is designed to sort the requests
based on priority before routing and resource allocation.
Requests with higher priority will be served first, and
others can only allocate the remaining resources. We
use a S5-tuple to represent the metadata of each request:
((src, dst), transBits, sentBits, elpasedSlots, total Slots).
The first tuple denotes the source and destination of the
request, followed by the size of the data to be transmitted,
the size of the data already transmitted, the number of time
slots elapsed, and the maximum timeout of the request. The
priority of each request is defined as follows:

y 1 n y sentBits
Q
totalSlots — elapsedSlots 2

6]

o transBits

This formula consists of two terms. The first term mainly
indicates how soon the current request will time out, while
the second term shows the progress of the current transmis-
sion request. When sorting requests, we consider both time
and progress factors: requests closer to the time-out have a
higher priority to minimize the probability of request time-out
failures; requests with faster progress have higher priority, so
they can be completed sooner and release resources for new
requests. The framework can also adjust the weight of these
two terms by assigning «; and ao different values.

C. Phase 2

Network layer routing. In Phase 2-1, the routing algo-
rithm computes paths without the knowledge of the actual
link states. We let the routing algorithm run on a “virtual

network topology with complete hardware resources”. Just
like in traditional networks, the routing algorithm runs only
at the network layer and does not care about the link states.
The routing algorithm only needs to consider single-time-slot
scenarios, in line with the SynSts model. Therefore, existing
routing algorithms under the SynSts model can also be used
directly in the new framework with little modification.

Link layer hardware resource allocation. After computing
paths for all the requests in Phase 2-I, the RIB distributes the
path information to each node. At the link layer, each node
manages its resource independently and assigns resources to
build external links. After receiving the computed paths, each
node allocates hardware resources to establish external links
accordingly. Nodes will not start building external links at
this time. They first check available strong links remaining
from the last time slot locally. If the strong links could meet
the fidelity requirement of the requests, the nodes directly use
them for the paths. If the paths cannot be fulfilled by the
existing strong links, nodes will then establish new external
links according to the path requirements.

D. Phase 5

Links’ STL calculation. For each external link, nodes
locally obtain the corresponding STL parameters based on the
reliability of their quantum memory and the task requirements
of link fidelity. For instance, if a task demands a minimum
fidelity of 85% for links, and one time slot lasts for 2 seconds,
a link can be maintained for approximately 20 seconds before
its fidelity decays to 85%. The maximum STL for this link
would be 10 in this case. The rmnSTL is initialized to maxSTL
upon the successful establishment and decreases as time flows.
The link is considered expired when the rmnSTL becomes
0. At the beginning of Phase 5, each node calculates the
STL parameters of its remaining unused strong links. The
RIB collects the updated STL parameters of all the remaining
strong links from nodes for future use in link scheduling.

Request management: ReqUp-Updating. In Phase 5, the
RIB needs to update the state of the requests according to the
transmission results of the current time slot. To achieve this,
we introduce the ReqUp-Updating algorithm. The pseudocode
of ReqUp-Updating running in the central controller is shown
in Algorithm 1. First, the RIB counts the amount of data
transmitted for each request during the current time slot
and updates the sentBits (Lines 2-3). Then, the controller
increases the values of elapsedSlots by 1 (Line 4). For
completed requests (sentBits == transBits) and time-out
requests (elpasedSlots totalSlots), the RIB removes
them from the request pool (Lines 6-10). The RIB also needs
to remove those straggler requests that cannot be satisfied
before it expires (Lines 11-13). We define a flow is a straggler
if:

elapsedSlots sentBits

totalSlots
where f; and f, are two thresholds for the remaining time and
transmission progress respectively. For example, with f; =
0.75 and fo = 0.25, a request is considered a straggler request

> f1 && < fo 2

transBits



(a) Alive Strong Links  (b) Calculate Path and As-

sign Links

(c) Establish New Links

(d) Record Link and Reset
Hardware

Fig. 4: Example of SynMts Routing Model

if 75% of the time has elapsed but less than 25% of the data
has been transmitted.

Algorithm 1 ReqUp - Updating
Input: R = {r;},5 = {s;}
/I R: Set of all existing requests 7; in network

/I'S: Set of all requests r;’s 5-tuple states
Output: Updated R, S

1: for each five-tuple state s; € S do
2:  succ; < Succeeded transmission number of request r;
in this time slots;
sentBits; < sentBits; + succ;;
elapsedSlots; < elapsedSlots; + 1;
end for
/I F : Finished requests set;
/I T : Time-out requests set;
F' <+ Subset of all requests that sentBits == transBits
in R;
9: T' < Subset of all requests that elapsedSlots ==
totalSlots;
1: R« R-F-T;
11: // S : Straggler requests set;
12: S <« Subset of all requests that
JeBts < gy in B
13: R« R-S;
14: /[ N : New coming requests set;
15 R+ R+ N;
16: Update S according to R
17: return R, S

o S A

elpasedSlots
totalSlots

> f1 &&

Predicatable link scheduling. In the SynMts model, unused
strong links in the current slot can be reserved for future use
in the subsequent time slot, because generating a new link in
the next slot is probabilistic and does not always succeed. On
the other hand, not all strong links should be reserved, because

(S, D) pairs | (4,D)| (B, F) (H,M)
Bloom Filters b, b, b

n—1

(E,R)

n

L] 1]ol1fo]1]

Za\

(B,0) (AE)
Fig. 5: Link Usage Predictor Table Example

reserving external links still consumes quantum memory. If a
link will not be used in the future, reserving it is a waste. For
instance, in Fig. 4a, a strong link I3 : (r, ) is reserved from the
last time slot. In the current time slot, a new request (A, D)
comes in, and the RIB computes the path A — E — D for
this request. This request cannot succeed because node E does
not have enough quantum memory to build an external link
with D. Its quantum memory is locked by the reserved strong
link /3.

We propose a predictable link scheduling algorithm to
manage strong links to maximize efficiency and save costs.
By predicting link usage, we can maintain necessary links to
improve S-D connection success rates and release unnecessary
links. Considering the spatial locality of the network flows,
we assume that the network situation in two consecutive time
slots are similar, and the routing paths are similar as well.
Thus, the algorithm makes all alive links related to the paths
of unfinished requests continue to be reserved in the following
time slot. For other links, we need to determine the benefits of
retaining them. We use a prediction table to estimate whether
new requests will utilize them, reserving those anticipated to
be used and releasing those not expected to be used.

The prediction table uses Bloom Filters [27], which are
probabilistic data structures for membership queries, to record
the links of paths that are used in the current slot. Fig. 5 shows
the structure of this predictor. The main body of the predictor
is a key-value pair table, where the keys are the (src,dst)
tuples of the most recent x requests in the network, and the
value is a Bloom filter. The Bloom filter contains all the edges
the routing algorithm has chosen for the current (src,dst)
since the predictor table entry was created. We update the
corresponding Bloom filters based on routing results at the end
of each time slot. For example, the edge (B,C) and (A, E)
are selected for request (A, D) in the current time slot. The
prediction table will update the corresponding entries in the
Bloom filter of this request to be 1.

For each unused strong link, if the Bloom Filter returns
positive, the link will be reserved. Otherwise, it will be
released. After getting all these results, the RIB sends the
reserve/release information to all nodes.

E. Example of Routing with the SynMts model

We show an example of the proposed framework with nine
nodes in the network in Fig. 4. Suppose in time slot ¢;_1, there



are three requests in the network: (B, D), (A, S) and (A, G).
The routing algorithm assigns path p; : (B — C — D) for
request (B, D), but only successfully established I1:(m,n).
The path assigned for request (A,G) is p2 : (A - E —
K — @G), with l3:(p, q) and l3:(r,t) successfully established,
while the edge (K, G) failed to establish an external link. And
for request (A, S), routing algorithm calculates the ps : (A —
F — S), with only l4:(g, h) established. Thus SD connections
cannot be built for these three requests. And these unused links
are left in the network. Fig. 4a shows the network at the end of
time slot ¢;_; before running the Predictable Link Scheduling
Algorithm. Links [1, l2, I3, and [4 are all alive strong links. The
maxSTL and rmnSTL of these links are locally computed
and updated by their end nodes, and then sent to the central
controller, as shown in Table I.

TABLE I: STL Table Example

ti—1 t;
Strong Link | maxSTL  rmnSTL | maxSTL  rmnSTL
1 3 2 3 1
l2 4 3 4 2
I3 4 3 - -
g 4 3 4 2
lg 5 4

We assume that in time slot ¢;_1, request (A4, G) and (B, D)
are both timeout or fulfilled via other paths. So in Phase 5,
both requests (A, G) and (B, D) are marked as committed
and removed from the requests queue. (A, .S) has not finished
yet and will be executed again in the next time slot ¢;. Then,
the RIB runs the Predictable Link Scheduling Algorithm to
manage the remaining links, determining whether to reserve
or release them. First, for unfinished (A, S), the action of link
ly can be directly updated to Use. Suppose we have a new
request (A, D) to be executed in the next time slot ¢;. For this
request, we assume it has shown up in the network before,
and the predictor table has a corresponding entry and a Bloom
filter by for it already, as shown in Fig. 5. According to by,
the routing path for request (A, D) may pass through edges
(B,C) and (A, E) corresponding to Iy and I3, so these two
links are set to be Reserve, while I3 is Release.

The routing algorithm calculates two paths for (A, D):
ps: (A—- B —C — D)and ps : (A - E — D) (as
shown in Fig. 4b). py can use [; directly. We only need to
establish ls:(4, ) and I7:(x,y), and thus increase the success
rate of connection establishment. For ps, I, retained from
time slot ¢;_; can be used directly. We still need to build
external links between (A, E) and (E, D). The released I3
freed up the quantum memory in node E, which can be
used to establish I5:(r,s) for path ps, avoiding resource
contention; otherwise, /5 could not be established. Finally for
(A, S), the routing algorithm still assigns p3. We reuse l4 and
establish new lg : (u,v). At the end of Phase 2, as shown in
Fig. 4c, p4 fails to establish an external link on edges (C, D),
while ps successfully established /5. Next, in Phases 3 and
4, nodes perform entanglement swapping and try to build SD

connections. In Phase 5, we update link states, schedule the
alive strong links (/; and lg in this example) and reset other
hardware.

IV. PERFORMANCE ANALYSIS

We quantify the performance improvement of the SynMts
routing model. For a quantum network G = (V| E), we set
d SD pair requests in a time slot on average, and the routing
algorithm computes b paths for each SD pair with an average
width of ¢ for each path, meaning there are c parallel links
at each edge of the path. Ideally, the throughput (# of SD
connections) of the network is dbc. However, the establishment
of both external links and internal links is probabilistic. We
first define the success rate of each external link as p;,7 € F
and the success rate of each internal entanglement swapping in
each repeater node as ¢;,j € V, and we assume that the length
of one path is [. Then the probability that an SD connection
is successfully established is

l
QZHM

-1
i=1  j=

45 3)
1

We set the expectation of p; to be p, the expectation of
¢; to be ¢ and the average path length is [ hops, then the
expectation of an SD connection establishment success rate in
the network is Q = p'@~!. The expected throughput of the
overall network is dbcQ. So, there are M = dbc(1— Q) finally
failed SD connections. B

In Phase 2, there will be M) SD connections that succeed
in establishing every external link (but may still fail in Phase
4), we call them P2 succeeded connections. Thus, there will
be M (1 —pW) Phase 2 failed connections, and their average
length is Ip. So we have a total of L; = M(1 — p')lp
established external links. Since we do not assume that the
routing algorithm will try to reuse them, these links will be
directly reserved for the next time slot.

In Phase 4, M ;E(l) SD connections will try to establish
internal links. We assume that when entanglement swapping
is performed, it is tried sequentially along the path. So
it may fail at any repeater node. The expectation of the
number of final remaining links in an SD connection is
S=0-2)"0A - +(1-3)"A—q)+ ... +(1—(i+
)¢~ (1= q) + oot (1= (1= 1) (1~ ). ie.

1—2
S=(1-q)> (- (i+1)q'

Therefore, in phase 4, there will eventually be Ly =
MpWIS unused links. At the end of a time slot, we will have
L = Ly + Lo links reserved for the next time slot ;1.

We then calculate the performance gain of using these alive
strong links at the next time slot #;;;. In time slot ¢;4, we
assume that these links are evenly distributed among each SD
connection that will be attempted, with a usage rate of 3, (0 <
B < 1). So each SD connection has an average of m = %
alive strong links. The probability of successful establishment

of each SD connection is Eq. 3, and if we use alive strong links



instead of assigned links, then the expectation of successful
establishment of each SD connection will be

I—m -1

Q=1]r]]w
i=1 7j=1

i.e., the performance of the network will be improved by
Q-Q
Q

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our SynMts
model through simulations by extending an existing quantum
network simulator that is open-sourced [11]. One simula-
tion generates random network topologies with the required
network parameters. The performance of the main hardware
resources and the SD pair requests are set according to the
given parameters.

A. Methodology

1) Network Topology: We randomly generate the network
topology and set the entire quantum network to be distributed
in a 100 x 100 unit square, each unit can be treated as
1km. To generate a specific quantum network, we need to set
node number n, average edge degree Ly, the average external
links establishment success rate E),, the average internal links
success I7; and the average number of quantum memory each
node has. The length of each edge is at least < 5—?1. Besides,
we generate edges between nodes following the Waxman
model [28].

2) Requests Distribution: Taking into account the possi-
bility that the traffic patterns of quantum networks exhibit
similar features to the Internet. such as following the Zipfan
distribution [29]-[31], we generate the routing requests with
a Zipfan distribution characterized by a parameter o = 1.05.

3) Metrics and Parameter Selection: We use several routing
algorithms to run in the proposed framework with the SynMts
model and demonstrate their throughput improvement com-
pared to their performance with the SynSts model. We use the
absolute throughput improvement and relative improvement
ratio as the main performance metrics. In order to assess
the effectiveness of the ReqUp-Sorting requests management
algorithm, we initially let each request’s time-out limitation
(# of totalSlots) be equal to the number of transmitted bits
(# of transBits). To examine the performance of the Link
Scheduling algorithm, we adopt the “Link Hit Ratio” as the
principal metric, which represents the proportion of the alive
strong links reserved in the previous time slots that are selected
by the routing algorithm in the current time slot.

We vary the number of nodes n within the set
{50, 100, 200, 400}, the average successful establishment rate
of external links FE, within {0.1,0.2,0.3,0.4,0.5}, and the
success rate of internal links ¢ within {0.1,0.2,0.3,0.4,0.5}.
We select the number of simultaneous requests running in the
network from {5, 10, 15, 20, 25}. The maximum maxzST L for

strong links is 5, and the proportion of strong links in the
network, r, is chosen from {0.0,0.2,0.4,0.6,0.8,1.0}. When
r is 0.0, the link scheduling algorithm is disabled; only the
requests management algorithm is executed.

4) Default Parameters: To control variables, we set the
default settings as follows: the number of nodes, n = 100; the
average success rate of external link establishment, £, = 0.3;
the success rate of internal links, ¢ = 0.3; and the average
number of quantum channels between adjacent nodes is 6. The
number of quantum memories per node is uniformly chosen
from 20 to 25. We assume the efficiency of quantum memory
is 1 (qubits can be stored and read out successfully every time).
We set the default to have 10 requests running simultaneously
in each time slot. The transmission size of a single request is
chosen with equal probability from 16 to 32 bits. The default
proportion of strong links 7 in the network’s external links is
0.6, with the average maxSTL of each strong external link
being 5. We set the maximal size of the predictor table to
100, the size of each Bloom filter to 500, and rebuild a new
predictor table every 50 time slots.

For a given set of parameters, we simulate 10,000 time slots
on ten different network topologies and provide the average
results.

B. Evaluation results

We chose three different types of recent entanglement
routing algorithms to implement in the original SynSts model
and the proposed framework and compared the results. These
algorithms are Q-PASS, Q-CAST [11], and Redundant Entan-
glement Provisioning and Selection (REPS) [15]. Q-PASS is
an offline algorithm that computes all paths in the initialization
step. Q-CAST is an online algorithm that calculates the paths
online based on the link state and remaining resources in the
network. And REPS is a network flow optimization based
routing algorithm. The code of Q-PASS and Q-CAST is
publicly available [11]. As the REPS code is not publicly
available, we endeavored to implement it as faithfully as
possible based on the descriptions provided within the research
paper.

1) Throughput improvement: Figures 6 to 9 display the
throughput for the three distinct types of routing algorithms
executed on the SynMts model in comparison to the original
SynSts model. And Figures 10 to 13 show the relative im-
provement ratios of the throughput. Under default parameters,
the throughput improvement for all three algorithms, Q-PASS,
Q-CAST, and REPS, is notable, with average increases of
23%, 32%, and 9%, respectively. This outcome shows the
effectiveness of the SynMts transmission model. In particular,
since the most significant difference between the SynMts
model and the SynSts model is that the SynMts model attempts
to preserve alive strong links across time slots, Fig. 10 shows
the variation of throughput improvement with the average
success rate of external links. The improvement ratio gradually
decreases as E, increases. This trend occurs because, as
E, increases, the success rate of re-establishing an external
link rises, subsequently reducing the benefit of preserving an



B 2:5] = qcastims) m - Q-CAST(Mts) m - Q-CAST(Mts) O 4.0 = Q-CAST(Mts)
Q % Q-CAST 0 2.51 « qQ-casT Q2.5 % Q-CAST % Q-CAST
O 2.07  Reps(mts) - 9 Q-PASS(Mts) 9 Q-PASS(Mts) D 3:57  Reps(uts) )
o T + 2.07 — REPS(Mts) - 2.0 @ Q-PASS 3.0 REPS x
315 — o > REPS — =3 ~~ REPS(Mts) 305 Q-PASS(Mts) e
E o E‘ 15 @ oesse o7 T 1 _8-1-5 REPS gZ‘O o Q-PASS =
o 1.0 o S10]° o< Z
=3 o o S51.04 T v = 515 = . a
205 a o © o5 - <] 1.0 o .
< g <05 o <% £ 101,
Fo.0 = & F 0.0 | Foslt
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 50 100 200 400 5 10 15 20 25
Average Ep Swapping success rate V| # S-D pairs in one time slot

Fig. 6: Throughput vs. external Fig. 7: Throughput vs. internal

Fig. 8: Throughput vs. net- Fig. 9: Throughput vs. # of S-

links success rate links success rate work size D pairs

= < 1.6 = x = X

c X % Q-PASS c % Q- c % Q-PASS -~ c % Q-PASS %

E 13 - = Q-CAST %’ 15 - g_z/:sSsT QE) 135] & QCAST g 1.4{ = Q-CAST §

o X REPS o REPS 0130 REPS .-~ > o REPS *

g L6 214 - 3 - 2 X

° \ o X o » 013 -

515 «& 5 e &1.25 I3

E14 — g13 e £ * —

13 e = _ < 120 S12 \7
20 T 27 | Z

= 11 i ®11 © B 11

g 1o &) 1o &) 1.10 g

0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 50 100 200 400 5 10 15 20 25
Average Ep Swapping success rate V]| # S-D pairs in one time slot

Fig. 11: Relative improvement
vs. internal links success rate

Fig. 10: Relative improvement
vs. external links success rate

external link. Nevertheless, given that the real-world maximum
success rate of establishing an external link at the quantum
network link layer does not surpass 0.5, the benefits yielded
by the SynMts model remain substantial.

2) Link reuse rate: We define the link reuse rate as the
proportion of preserved alive strong links in the current time
slot that are used in subsequent time slots. To validate the
efficiency of our link scheduling algorithm, we conducted a
comparative analysis with Random and Greedy algorithms.
The Greedy algorithm preserves all alive strong links at the
conclusion of each time slot, whereas the Random algo-
rithm decides whether to retain a link with a probability of
0.5. Figure 14a demonstrates the throughput improvement
ratios for the three routing algorithms under various link
scheduling algorithms. The Random algorithm exhibits the
lowest improvement ratio, as it indiscriminately releases 50%
of the alive strong links in the network. Without resource
competition, this will reduce the available alive strong links in
the next time slot by 50%, causing resource waste and reduced
network efficiency. Greedy and our predictable link scheduling
algorithm show quite similar performance improvement ratios.
To better illustrate the difference in performance between the
Greedy algorithm and the proposed link scheduling algorithm,
we show the link reuse rate of the two algorithms (Predictable
Link Scheduling and Greedy) in Fig.14b, which is the propor-
tion of retained alive strong links reassigned by the routing
algorithm in subsequent time slots. This metric represents
the proportion of preserved alive strong links employed in
subsequent time slots. Our predictable link scheduling al-
gorithm possesses a higher link reassigning rate, signifying
reduced resource waste and a decreased likelihood of resource
competition.

3) Link lifetime: Fig. 15 shows the CDF of the average
link lifetime when setting the lifetime of the links to infinity,
i.e., maxSTL = oo in three different routing algorithms. One
link will not expire before it is used in this setting. It can be

Fig. 13: Relative improvement
vs. # of S-D pairs

Fig. 12: Relative improvement
vs. network size

R 0.94
= Random | @ 0.92
: Predict | © *
: = Greedy | 0907
' 2 oae| - omssimr
- )
. 2 0.867 Q-PASS(Mts)-Greedy
. o 0.841 o o-cast(mts)
v 0.821 = Q-CAST(Mts)-Greedy ~—_
. C .80 — REPSMts ~
. | 0‘78 REPS(Mts)-Greedy
o 1000 pass  Q-CAST  REPS 01 02 03 04 05
Routing Algorithm Average E,

(a) Link Scheduling Algorithm vs.
Speed Up Ratio

(b) Predictable and Greedy Com-
parison

Fig. 14: Link Scheduling Algorithm Comparison

0.9
0.8
0.7
06 —— Q-PASS(Mts)
—— Q-CAST(Mts)
REPS(Mts)

'n

0 0.5

]
0.4
0.34/
0.2

0.1

0.0

25 30 35 40 45 50 55 70 75

Average Lifetime of Links (slots)

0 5 10 15 20 60 65

Fig. 15: Link Lifetime CDF

seen that even if the maxz ST L = oo, most of the links of the
three algorithms will be used and consumed soon after they are
established. For the three different types of algorithms (REPS,
Q-CAST, and Q-PASS), the ratio of the average lifetime < 5
links in the network to 64.86%, 86.42%, 84.50%.

The reason for this phenomenon is the locality of network
traffic. Usually, quantum network traffic has a stronger locality
compared to traditional networks, hence the traffic conditions
within several adjacent time slots will be similar. The SD
requests of the first and next several time slots will partially



-+t
c 1.351 =
] I %
£ 1.301 i S— e
&
21251 %
sl -%- Q-PASS
g— 1.20 o Q-CAST
= 1.154 REPS
£ 1104
© 1.051
& 1.001

0.0 0.2 0.4 0.6 0.8 1.0

Strong Link Rate r

Fig. 16: Speed Up vs. Strong Link Ratio

overlap, and therefore the paths computed by the routing
algorithm in these time slots will also quite overlap. The links
established in the first time slot but not used are reserved
for the several next time slots and will be chosen with a
high probability. The remaining new links are established in
the second time slot, and the old links and the new links
are combined to form a complete SD connection. Therefore,
most of the strong links created in the first time slot but not
successfully used will be selected and consumed in the next
several time slot. This is also consistent with the traffic locality
of the quantum network and verifies the effectiveness of the
SynMts model.

4) Incremental deployment: As the hardware of quantum
networks, especially quantum memory, is evolving rapidly,
quantum networks may have hardware with different perfor-
mances within a network. Strong and weak links may exist
in a network simultaneously, and the proportion of these
two will gradually change with the evolution of the quantum
networks. The SynMts model is naturally suitable for fast-
growing hardware because we consider the lifetime of links
to maximize the utilization of strong links. Fig. 16 shows
how the performance of different algorithms varies with the
proportion of strong links to the total number of links under
the default parameters settings. We let the ratio of strong links
of all links 7 vary in the set {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. It can
be seen that the performance of the network increases with the
increase of the strong link ratio. Notice that, even when the r
is 0.0, the improvement for Q-PASS and Q-CAST is not 1.0.
This is because the ReqUp algorithm provides a more efficient
order of requests by sorting and detecting straggler requests.
REPS is a global network flow algorithm, so the order of the
requests will not be considered during routing. The results
show that all three different types of routing algorithms can
benefit more from the strong link ratio increasing by using the
framework with the SynMts model in continuously evolving
quantum networks.

5) Scalability: Finally, we evaluate the scalability of the
SynMts model. We still use default parameters. We let the
number of nodes n vary within the set {50, 100, 200, 400}
and observe the performance of the algorithm. Fig. 12 shows
that the algorithms running on the SynMts model have an
improvement ratio on throughput greater than 1.0.

VI. RELATED WORK

The quantum networks routing problem has received special
attention. The studies of this field can be divided into two
parts: routing frameworks and routing algorithms. The routing
framework design aims to design a reasonable network archi-
tecture and technology stack, while the routing algorithm aims
to design a particular routing algorithm to improve the trans-
mission performance of the network. In recent years, several
transmission protocols and network architectures have been
proposed. [32] proposed a high-level quantum network stack,
but did not consider some critical parts, such as establishing
links is probabilistic. [25] proposed a link layer protocol
that provides a robust entanglement generation service and
proposed a quantum network stack inspired by the TCP/IP
stack. [33] designed a single time slot network layer quantum
data plane protocol based on [25]. Some complementary func-
tional allocations for entanglement distillation have also been
proposed to complement the existing network stack [34] [35],
but they do not take into account the difference in reliability
of different quantum network hardware and are limited to a
single time slot routing model.

In the field of routing algorithm design, many algorithms
have been proposed [36] [12]. Shi and Qian [11] define the
SynSts model and propose Q-PASS and Q-CAST that can
run on arbitrary network topology. Zhao et al. [15] propose a
network flow based optimization to provide additional backups
to cope with possible failures when creating external links.
Chakraborty et al. [37] propose to guarantee the fidelity of
a connection by limiting the length of routing paths. A cen-
tralized entanglement distillation and fidelity guarantee route
schedule is also proposed [22]. All these algorithms are based
on the SynSts model. Link scheduling algorithms [23] [24]
[38] have also been proposed for quantum networks. However,
none of these methods consider heterogeneous devices in
quantum networks and resource reuse and scheduling across
time slots.

VII. CONCLUSION

This paper identifies a common problem of all existing
entanglement routing algorithms: they all assume the SynSts
routing model that requires all entanglements to be used in the
current time slot. We propose the SynMts model that is aligned
with the future quantum networks that include heterogeneous
devices. In addition to the SynMts model, we present the new
routing framework that includes request and link scheduling
algorithms across multiple time slots. Analysis and simulation
results show that the new routing framework can effectively
exploit the advantages of long-duration entanglements and
achieve higher throughput for the network even when using
the same routing algorithms.

ACKNOWLEDGMENT

The authors were partially supported by NSF Grants
1750704, 1932447, and 2114113, and DoE Grant DE-
SC0022069. We thank the anonymous reviewers for their
comments.



[1]

[2]

[3]

[4]

[6]
[7]

[8]

[9]
[10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

REFERENCES

Z.-S. Yuan, Y.-A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J.-W.
Pan, “Experimental demonstration of a bdcz quantum repeater node,”
Nature, 2008.

H.-J. Briegel, W. Diir, J. I. Cirac, and P. Zoller, “Quantum repeaters: the
role of imperfect local operations in quantum communication,” Physical
Review Letters, 1998.

M. S. Sharbaf, “Quantum cryptography: An emerging technology in
network security,” in Proceedings of IEEE International Conference on
Technologies for Homeland Security (HST), IEEE, 2011.

J. Yin, Y. Cao, Y.-H. Li, S.-K. Liao, L. Zhang, J.-G. Ren, W.-Q. Cai, W.-
Y. Liu, B. Li, H. Dai, et al., “Satellite-based entanglement distribution
over 1200 kilometers,” Science, 2017.

J. L. Park, “The concept of transition in quantum mechanics,” Founda-
tions of physics, 1970.

R. Van Meter and S. J. Devitt, “The path to scalable distributed quantum
computing,” Computer, 2016.

A. S. Cacciapuoti, M. Caleffi, F. Tafuri, F. S. Cataliotti, S. Gherardini,
and G. Bianchi, “Quantum internet: networking challenges in distributed
quantum computing,” IEEE Network, 2019.

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key
distribution and coin tossing,” Proceedings of IEEE International Con-
ference on Computers, Systems, and Signal Processing (CCSP), 1984.
A. K. Ekert, “Quantum cryptography and bell’s theorem,” in Quantum
Measurements in Optics, 1992.

C. Elliot, “Building the quantum network,” New Journal of Physics,
2002.

S. Shi and C. Qian, “Concurrent entanglement routing for quantum
networks: Model and designs,” in Proceedings of ACM SIGCOMM,
2020.

M. Pant, H. Krovi, D. Towsley, L. Tassiulas, L. Jiang, P. Basu, D. En-
glund, and S. Guha, “Routing entanglement in the quantum internet,”
npj Quantum Information, 2019.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance
quantum communication with atomic ensembles and linear optics,”
Nature, 2001.

R. Van Meter, T. Satoh, T. D. Ladd, W. J. Munro, and K. Nemoto, “Path
selection for quantum repeater networks,” Networking Science, 2013.
Y. Zhao and C. Qiao, “Redundant entanglement provisioning and selec-
tion for throughput maximization in quantum networks,” in Proceedings
of IEEE INFOCOM, IEEE, 2021.

Y. Zeng, J. Zhang, J. Liu, Z. Liu, and Y. Yang, “Multi-entanglement
routing design over quantum networks,” in Proceedings of IEEE INFO-
COM, IEEE, 2022.

A. Farahbakhsh and C. Feng, “Opportunistic routing in quantum net-
works,” in Proceedings of IEEE INFOCOM, 1EEE, 2022.

Y. Wang, M. Um, J. Zhang, S. An, M. Lyu, J.-N. Zhang, L.-M. Duan,
D. Yum, and K. Kim, “Single-qubit quantum memory exceeding ten-
minute coherence time,” Nature Photonics, 2017.

C. E. Bradley, J. Randall, M. H. Abobeih, R. Berrevoets, M. Degen,
M. A. Bakker, M. Markham, D. Twitchen, and T. H. Taminiau, “A ten-
qubit solid-state spin register with quantum memory up to one minute,”
Physical Review X, 2019.

H. Bartling, M. Abobeih, B. Pingault, M. Degen, S. Loenen, C. Bradley,
J. Randall, M. Markham, D. Twitchen, and T. Taminiau, “Entanglement
of spin-pair qubits with intrinsic dephasing times exceeding a minute,”
Physical Review X, 2022.

Y. Ma, Y.-Z. Ma, Z.-Q. Zhou, C.-E. Li, and G.-C. Guo, “One-hour
coherent optical storage in an atomic frequency comb memory,” Nature
communications, 2021.

Y. Zhao, G. Zhao, and C. Qiao, “E2e fidelity aware routing and
purification for throughput maximization in quantum networks,” in
Proceedings of IEEE INFOCOM, 2022.

M. Ghaderibaneh, H. Gupta, C. Ramakrishnan, and E. Luo, “Pre-
distribution of entanglements in quantum networks,” in IEEE Inter-
national Conference on Quantum Computing and Engineering (QCE),
pp. 426436, 2022.

P. Fittipaldi, A. Giovanidis, and F. Grosshans, “A linear algebraic frame-
work for quantum internet dynamic scheduling,” in /EEE International
Conference on Quantum Computing and Engineering (QCE), pp. 447—
453, 2022.

[25]

[26]

(27]
[28]

[29]

(30]

[31]

[32]
[33]
[34]

[35]

(36]

(371

(38]

A. Dahlberg, M. Skrzypczyk, T. Coopmans, L. Wubben, F. Rozpedek,
M. Pompili, A. Stolk, P. Pawelczak, R. Knegjens, J. de Oliveira Filho,
et al., “A link layer protocol for quantum networks,” in Proceedings of
ACM SIGCOMM, 2019.

C. P. Anderson, E. O. Glen, C. Zeledon, A. Bourassa, Y. Jin, Y. Zhu,
C. Vorwerk, A. L. Crook, H. Abe, J. Ul-Hassan, et al., “Five-second
coherence of a single spin with single-shot readout in silicon carbide,”
Science advances, 2022.

B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, 1970.

B. M. Waxman, “Routing of multipoint connections,” IEEE journal on
selected areas in communications, 1988.

W. Fang and L. Peterson, “Inter-as traffic patterns and their
implications,” in Seamless Interconnection for Universal Services.
Global Telecommunications Conference. GLOBECOM’99.(Cat. No.
99CH37042), vol. 3, pp. 1859-1868, IEEE, 1999.

Y. Zhang, L. Breslau, V. Paxson, and S. Shenker, “On the characteristics
and origins of internet flow rates,” in Proceedings of the 2002 conference
on Applications, technologies, architectures, and protocols for computer
communications, pp. 309-322, 2002.

J. Wallerich, H. Dreger, A. Feldmann, B. Krishnamurthy, and W. Will-
inger, “A methodology for studying persistency aspects of internet
flows,” ACM SIGCOMM Computer Communication Review, vol. 35,
no. 2, pp. 23-36, 2005.

A. Pirker and W. Diir, “A quantum network stack and protocols for
reliable entanglement-based networks,” New Journal of Physics, 2019.

W. Kozlowski, A. Dahlberg, and S. Wehner, “Designing a quantum
network protocol,” in Proceedings of ACM CoNEXT, 2020.

R. Van Meter and J. Touch, “Designing quantum repeater networks,”
IEEE Communications Magazine, 2013.

L. Aparicio, R. Van Meter, and H. Esaki, “Protocol design for quantum
repeater networks,” in Proceedings of the 7th Asian Internet Engineering
Conference, 2011.

S. Brand, T. Coopmans, and D. Elkouss, “Efficient computation of the
waiting time and fidelity in quantum repeater chains,” IEEE Journal on
Selected Areas in Communications, 2020.

K. Chakraborty, D. Elkouss, B. Rijsman, and S. Wehner, “Entangle-
ment distribution in a quantum network: A multicommodity flow-based
approach,” IEEE Transactions on Quantum Engineering, 2020.

A. Chandra, W. Dai, and D. Towsley, “Scheduling quantum teleportation
with noisy memories,” in IEEE International Conference on Quantum
Computing and Engineering (QCE), pp. 437-446, 2022.



