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ABSTRACT

Fly ash from the coal combustion at electric plants is commonly used for partially replacing

portland cement in concrete production. Because of the varying nature of the coal source and

the different processing protocols, different fly ashes exhibit wide ranges of physical and

chemical characteristics, resulting in distinct impacts on concrete strength. Thus far, the most

adopted method for assessing a given fly ash is specified by ASTM C618, Specification for Coal

Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, wherein a series of influential

chemical and physical features can be correlated to fly ash’s strength activity index (SAI).

However, limited knowledge is available on how exactly the individual material attribute affects

SAI, so accurately predicting the SAI remains out of reach. Here, we take advantage of recent

advances in machine learning to reveal the origins of fly ash’s SAI. Leveraging a data set com-

prising 2,158 fly ash samples, we trained neural network models to predict 28-day SAI based on

the sole knowledge of ASTM C618 material attributes. The results demonstrate that SAI is a

complex property that does not systematically follow the conventional Class C/F classification.

To gain a deeper insight into this matter, we further quantify the influence of each attribute on

SAI as captured by the machine learning model.
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Introduction

Fly ash is the major by-product of coal combustion as generated from electric power

plants. Among all the utilizations of this material, fly ash is extensively used as a supple-

mentary cementitious material (SCM) for partially replacing portland cement in the
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production of concrete, which has been broadly adopted over decades.1–3 Because the pro-

duction of cement—a key component of concrete materials—is involved with a substantial

amount of carbon dioxide emissions (which accounts for roughly 10 % of the total emis-

sions caused by human activities),4 reducing the usage of cement is thus far the most ef-

fective approach for curbing the release of carbon in the concrete industry. In that regard,

partially replacing cement with fly ash is among the most important means to fulfill the

low-carbon manufacturing of concrete materials. In addition to the environmental benefit,

the use of fly ash is further associated with a series of practical advantages for concrete

production, such as refining both fresh and hardened properties of concrete and lowering

the raw material cost.5–7 Arguably, fly ash represents one of the most successful cases of

waste-to-resource recycling in engineering practices.

Despite the tremendous attractions of using fly ash as an SCM, the addition of

unqualified fly ashes can be detrimental to concrete performance, causing diminished

strength, delayed setting time, larger shrinkage, incompatibility issues with the chemical

additives, etc.8,9 To minimize the potential adverse effects of the addition of fly ashes in

concrete, a list of constraints have been specified by ASTM C618, Specification for Coal Fly

Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, to avoid unfavorable fly

ashes.10 As the main concern revolves around the impact on concrete strength, because of

the abundance of fly ashes in history, the most adopted guideline is established on an

empirical rule that the strength active fly ash (known as Class C fly ash) should have more

than 18 % calcium oxide (CaO). Although this rule has been widely accepted in practice,

previous studies have discussed that it can lead to a huge volume of strength active fly ashes

being incorrectly classified.5,11–14 More recently, given the aggravated conflict between the

increasing demand for fly ash in concrete production and the decreasing trend of the fly

ash production itself because of the wind-down of coal-based electric plants,15–17 the crude

empirical-based rule for identifying strength active fly ashes has become obsolete. To mit-

igate the shortage of fly ashes, it is pertinent to develop high-throughput screening meth-

ods that can offer an accurate prediction of the strength potential of the raw ashes.

Over the past decades, many studies have proposed more robust testing methods to

quantify the chemical reactivity of fly ashes by characterizing their dissolution rate,18,19

hydration heat,20 amorphous phases,21 etc. Thanks to recent advances in computational

material science, the chemical reactivity of fly ashes and the mechanical properties of the

reaction products have also been successfully predicted based on different theories, such as

thermodynamic modeling,22,23 micromechanical modeling,24 and topological constraint

theory.18,25 Extensive reviews of such advances in testing and modeling of the fly ash re-

activity can be found in the literature.3,9,26,27 However, though those approaches can offer

some critical knowledge on the fundamental mechanisms governing the complex chemical

reactions involved in fly ash reactivity, they are generally not well-suited for supporting

high-throughput screening approaches. In that regard, a common concern is that those

advanced approaches often require accurate quantifications of the crystalline and amor-

phous phases in fly ash, which makes it practically difficult to implement them at a large

scale in real production. In addition, some of the knowledge of the behavior of fly ashes

observed under simplified reaction environments may not be transferred to its strength

potential in concrete mixtures.

In comparison, it may be more suitable to use the strength activity index (SAI) speci-

fied in ASTM C311, Standard Test Methods for Sampling and Testing Fly Ash or Natural

Pozzolans for Use in Portland-Cement Concrete, and ASTM C618 standards for the fly ash
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screening. Admittedly, this approach offers less insight into the chemical reactivity of fly ashes from a funda-

mental level—for instance, a well-known concern of using SAI to describe the strength potential of fly ash is

related to the testing protocols specified by this standard (e.g., 20 % cement replacement by mass and 7 and

28 days of curing time), which may lead to a false-positive indication of the actual reactivity of some inert mineral

additives, especially for those with fine particle sizes.13,14,28 However, the use of SAI has nevertheless remained the

most accepted approach for indicating the influence of fly ash on concrete strength in practice.10,29 Some appeal-

ing merits of using SAI are based on the considerations that (i) it offers an intuitive indication of the contribution

of a fly ash to the concrete strength, (ii) a huge amount of fly ashes from varying coal sources and production

conditions have been systematically evaluated with SAI, which allows us to study the strength potential of fly

ashes from the novel perspective of big data, (iii) it is a performance-based criterion, as compared with the pre-

scription-based constraints on material attributes, and (iv) there is no need for the industrial practitioners to

adopt either a new standard or a new test method. With that said, a primary obstacle to adopting SAI for

high-throughput fly ash screening lies in the time-consuming experimental work needed for lab testing, which

is impractical to be applied on a massive scale in daily production.

The new demand for sustainable concrete construction necessitates a more precise and rapid approach to

infer the strength activity of fly ashes. To this end, the precursor can be characterizing the material attributes that

influence SAI. Because the fly ash’s material property alters with the production, processing, and storage con-

ditions,3,15,30–32 a batch-by-batch characterization is preferred for the proper classification of fly ashes, which

requires real-time testing. Across the different characterization methods, X-ray fluorescence (XRF) may be most

suitable because of its ease of implementation and the compositional information it provides. Further, using XRF

has an innate fit with the established testing standard for fly ash—ASTM C311,29 wherein XRF is designated for

testing the bulk chemical composition of fly ashes. The correlation between the bulk composition and the presence

of crystalline and glassy phases in fly ashes has long been recognized since the 1970s.33–36 The reactivity of a fly ash

was found to be primarily governed by that of the amorphous phase (which is analogous to the alkaline earth

aluminosilicate glasses), whereas, in contrast, crystalline phases were found to be fairly inert.2,18 Besides, the re-

activity can be further affected by other factors, such as the particle size and the presence of unburnt residues

as well as the reaction environment in hydrated cement.26,27 Previous studies have also investigated the influence

of the bulk composition of the major components on the strength activity of fly ashes, such as CaO,37–41 silicon

dioxide (SiO2),
37–39 aluminum oxide (Al2O3),

37,38,44 and ferric oxide (Fe2O3).
42 In that regard, network-modifying

species (i.e., species like CaO that tend to depolymerize the atomic network of the amorphous phase) generally tend

to increase the reaction kinetics.18,25,43 However, despite the importance of SAI, little effort has been seen in pre-

dicting the SAI value directly based on the bulk chemical composition of fly ash.

To promote the optimal use of fly ashes in the design of sustainable concrete materials, it is of special interest

to explore the possibility of inferring fly ash’s SAI from its fundamental material attributes. In this regard, recent

advances in artificial intelligence offer a promising path forward. In particular, machine learning modeling has a

unique strength of establishing the prediction without the need for explicit knowledge because the model can be

self-driven with the given data for optimizing its prediction.44 The success of using machine learning for pre-

dicting a vast variety of properties of materials has been increasingly reported by recent studies,45–53 including the

determining the reactivity of fly ashes.54–56 To the best of our knowledge, however, the idea of using machine

learning to infer the SAI of fly ash has not been explored by previous research.

This study aims to investigate the use of machine learning for predicting fly ash’s strength activity based on

the sole knowledge of its bulk material attributes. This study is of special significance for a rapid determination of

the SAI of fly ashes. Because this machine learning–based prediction bypasses the need for experimental work, it

can greatly improve the efficiency of classifying fly ashes and, therefore, promote the optimal use of fly ashes in

concrete production. Note that the strength activity investigated in this study is more of a performance metric of

fly ash than a measure of its underlying chemical reactivity. Although the former is fundamentally contingent on

the latter, it can be inappropriate to interpret the results the other way around—so cautions should be taken when

making inferences to the reactivity of fly ash. To enable a robust machine learning analysis, we first built a large
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data set from an industrial database recording the ASTM C618 parameters of a large variety of fly ashes. The

curated data set comprises a total of 2,158 samples that correspond to a mix of Class C, F, and N and a small

portion of noncompliant fly ashes. The material attributes considered for the SAI prediction include nine chemi-

cal contents and one physical property (i.e., fineness). In terms of the machine learning analysis, we developed a

neural network model for the SAI prediction. After optimizing this model, its prediction accuracy was evaluated

from multiple approaches, and the results indicate that the neural network model is capable of predicting the SAI

values with remarkable accuracy. Afterward, we further interrogated the model on how SAI is influenced by each

material attribute, whereby novel insights on fly ash’s SAI are reversely extracted from the machine learning

analysis.

Methodology

THE FLY ASH DATA SET

Data are vital to enable any machine learning analysis. To this end, we curated a data set based on the data

provided by a major fly ash manufacturer in the United States. This data set comprises the ASTM C618 test

results of 2,158 fly ash samples ranging over a large variety of chemical compositions, conditions, and sources.

These samples broadly cover Class C, F, and N fly ashes as well as a small portion of noncompliant ashes. A total

of 10 features are adopted in the curated data set for predicting SAI, which are summarized in Table 1. In contrast,

as the focus of this study is investigating the influence of fly ash material attributes on its strength potential, some

performance-based parameters (e.g., water demand and autoclave expansion) and oxide features that are present

in low quantities phosphorous oxide (P2O5) and titanium dioxide (TiO2) are not considered in the data set. In

addition, the density of fly ash is not accounted for because it is correlated to the composition of the major oxides

in Table 1.

In terms of the variation of the 10 predictive features within this data set (see Table 1), their distributions can

represent the compositional variation of the different types of fly ashes used in concrete production. Based on

ASTM C618-19,10 the nine chemical features (mass fractions of the oxides in the bulk material) and one physical

feature (fineness, mass fraction of particles retained on the 45-μm sieve) are considered. On average, the nine

compositional features considered herein as input sum up to 97.4 % of the total mass of the fly ashes. Based on the

chemical requirements of ASTM C618—i.e., the contents of SiO2+Al2O3+ Fe2O3, CaO, sulfur trioxide (SO3),

moisture, and loss on ignition (LOI)10—459 (21.3 %), 1,578 (73.1 %), and 89 (4.1 %) samples in this data set are

classified as Class C, F, and N fly ashes, respectively. The remaining 32 (1.5 %) samples are noncompliant as per

ASTM C618.

As for the target of the machine learning prediction, the 28-day SAI varies between 74 and 114, wherein the

percentage here indicates how the 28-day strength of a mortar with 20 % comprising fly ash compares with that of

a reference mortar with no replacement.10 Among all, about a quarter of the samples exhibit an SAI that is larger

than 100. This fraction roughly echoes with the fraction of Class C fly ashes that are presented in this data set.

TABLE 1
Distribution of the ASTM C618 parameters in the fly ash data set involved in this study

Statistics SiO2, % Al2O3, % Fe2O3, % SO3, % CaO, % MgO, % TotalAlk,a % Moist, % LOI, % Fineness, % 28 d SAI

Percentile 0th 24.6 9.2 1.5 0.0 0.8 0.5 0.5 0.0 0.0 3.2 74.0

25th 42.4 18.1 4.9 0.6 6.0 1.9 1.6 0.1 0.3 16.9 90.0

50th 51.7 19.3 5.9 0.7 11.3 2.8 2.1 0.1 0.6 20.0 94.0

75th 56.7 21.2 7.5 1.3 17.7 4.5 2.9 0.1 1.8 23.7 99.0

100th 66.8 29.5 28.4 18.2 43.2 10.3 9.6 0.6 13.1 47.1 114.0

Mean 49.7 19.6 7.1 1.2 12.9 3.2 2.3 0.1 1.3 20.2 94.6

Standard deviation 8.9 3.0 3.7 1.6 8.0 1.7 1.1 0.1 1.7 5.2 6.6

Note: a Total alkali, which equals Na2O+ 0.658K2O.
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Although we observe some level of correlation between bulk and amorphous phase compositions, no direct,

obvious transformation/correlation rule exists. From the perspective of machine learning, the large range of com-

positions and SAI values featured in this data set is key to enabling the training of a robust, comprehensive

predictive model, i.e., a model that can be applied to a wide range of fly ashes.

MACHINE LEARNING MODELING

To model the SAI of fly ash based on the features prescribed in the section “The Fly Ash Data Set,” we conduct the

machine learning analysis by using artificial neural networks (hereinafter, neural network). As one of the most

frequently used machine learning models, the neural network is known for its efficiency in learning the pattern

embedded in the data set (and therefore, good prediction accuracy) and its flexibility in handling different types of

data and machine learning tasks (such as the regression task in this study).57

In terms of the implementation, we build the neural network model on PyTorch, which is a high-

performance machine learning library in Python.58 The design of the neural network herein generally follows

the pipeline established in a previous study.54 Given the size of the fly ash data set and the number of features and

based on our previous machine learning tasks,53,59 the neural network model is built with two layers of hidden

neurons, which contain 10 and 6 artificial neurons, respectively. To ensure the model’s learning efficiency,

our modeling scheme also includes (i) adding Rectified Linear Unit activation and Batch Normalization

between the hidden layers and (ii) preventing the model from overfitting on the noise in the data by using

L2 Norm for weight decay as well as (iii) using a small batch size of 128 for data loading when training the

model. In addition, we couple the Adam optimizer in PyTorch with the mean square error loss function for

the model optimization.

As for the actual modeling optimization, we use 85 % of the total samples in the fly ash data set to train the

neural network while holding the other 15 % for evaluating the prediction accuracy of the trained model (as a

blind test on the 15 % never-seen samples). Within the 85 % training set, 20 % of the samples are selected for

determining the optimal hyperparameters (i.e., the model parameters that need to be preset before the actual

optimization),57 which is typically known as the validation set. To ensure a fair split of samples between the

85 % training set and the 15 % test set (as well as the selection of the validation set) such that the feature dis-

tribution is not biased in either set, we implement stratification sampling for dividing the data set, using technical

details that have been adopted in several studies.45,54,63 To obtain the best accuracy for predicting fly ash SAI,60

we carry out a grid search on the training set samples to determine the optimal hyperparameters of the

neural network model, which include learning rate and weight decay. To this end, the searching of these

two hyperparameters is set within their common ranges (10−1 to 10−4).61 Based on the results averaged from

10 stratified train-test splits, the optimal learning rate and weight decay are determined as 1 × 10−3 and 7 × 10−3,

respectively.

For the grid search of optimal hyperparameters, the prediction accuracy is primarily assessed based on the

coefficient of determination (R2), where the result is 1 for a perfect prediction without any error) of the validation

set samples, whereas root mean square error (RMSE) and mean absolute percentage error (MAPE) are also cal-

culated to support the model evaluation.44 It should be noted that neural networks do not require a specific

configuration of their network structure, settings, and hyperparameters to yield a model of good accuracy,

so the previously stated modeling scheme and parameters only serve as a reference and other configurations

may also be plausible.

SHAPLEY ADDITIVE EXPLANATIONS ANALYSIS FOR MODEL INTERPRETATION

In comparison with the prediction accuracy, the interpretability of a machine learning model is arguably equally

or even more important for material research because it opens up the possibility of “reverse learning” from ar-

tificial intelligence (and a meaningful knowledge extraction thereof). Recent advances in the field of artificial

intelligence have seen a series of methods for inferring the true relationship as learned by a machine learning

model, such as through specific schemes of data sampling and shuffling.62,63 Herein, after obtaining the optimal
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neural network model for predicting SAI, SHapley Additive exPlanations (SHAP) analysis is implemented for

interpreting the trained model.61

In simple terms, SHAP analysis is a statistical approach that assesses the marginal contributions of the input

features (e.g., material attributes of a fly ash sample) to an outcome that is resulted from their combined effects

(e.g., fly ash’s SAI value), in which the marginal contribution is presented as Shapley values.64 Note that the

Shapley value can be either positive or negative, corresponding to the direction of the marginal contribution

—this is, either increasing or decreasing the value of the outcome. In a previous study, SHAP analysis has been

demonstrated as a powerful method to understand the role of major oxides in fly ash to the rigidity of its atomic

network.54 In this study, SHAP analysis is used to reveal the data patterns from the trained neural network model

regarding (i) how SAI is jointly determined by the 10 features considered for modeling, (ii) the importance of each

feature on the model prediction, and (iii) the isolated effect of each feature on SAI. Further details about the

implementation of SHAP analysis are provided in the section “Model Interpretations.”

Results

CORRELATIONS BETWEEN THE FEATURES AND SAI

To obtain an overall evaluation of the nature of the fly ash data set, we first determine the correlation between

each pair of inputs and output based on a direct linear fitting. The correlations are normalized and presented as a

correlation heat map in figure 1, where the highest level of correlation is displayed in dark red color. Here, because

each entry is fully correlated to itself, all correlations along the −45° diagonal line are equal to the highest value, 1.
We find that CaO and magnesium oxide (MgO) both exhibit a strong positive correlation with the 28-day SAI.

This echoes the fact that the content of CaO is typically used for discriminating Class C from F fly ashes10 and that

these network-modifying oxides tend to increase the reactivity of fly ashes,18,25,43 which, in turn, further improve

their strength activity. For this pair of oxides, the high correlation between CaO and MgO also indicates that these

oxides tend to accompany each other. In contrast, SiO2 and fineness both exhibit a negative correlation with the

SAI. The negative correlation between SiO2 and SAI is in agreement with the fact that silicon atoms act as network

formers in glasses and tend to increase the topological rigidity of the glass atomic network within fly ashes,

thereby making fly ashes less chemically reactive and thus reducing their strength activity.37,44 In turn, the neg-

ative correlation between fineness and SAI arises from the fact that chemical reactivity is typically proportional to

FIG. 1

Correlation matrix

between all the input

features and the 28-day

SAI (28d SAI) output for

the samples in the fly ash

data set. The correlation

of each pair is color-

coded from dark red

(positive) to dark blue

(negative), based on

linear fitting. Note that

TotalAlk equals Na2O+

0.658K2O.
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the specific surface area of fly ashes. As for the other features, the correlation analysis from figure 1 also suggests

that Fe2O3, Al2O3, Total Alkali (TotalAlk), and LOI all have slightly negative influences on the 28-day SAI (fol-

lowing a roughly decreasing order). No obvious effect can be observed from this analysis for SO3 and moisture.

It is also worth noting that a negative correlation exists between CaO and SiO2 (also Al2O3), which indicates

that the influence of the major oxides in fly ash on SAI is further intricated by the fact that increasing the content

of one oxide unavoidably leads to content changes of the other oxides. This issue highlights a major challenge

of isolating the sole effect of a feature on SAI. This point will be further addressed in the section “Model

Interpretations.”

To gain a more intuitive view of the correlations in the fly ash data set, we further inspect the correlation

between each input feature and the 28-day SAI, as displayed in figure 2. Note that the plots in figure 2 are color-

coded based on the density of the scatters, and the feature ranges are truncated to focus on the most populated

region. In general, a rough agreement can be established between the results shown in figures 1 and 2 in which the

positive or negative feature correlations to 28-day SAI in figure 1 can be perceived from figure 2. An interesting

finding from figure 2 is that the data distributions of some features appear to be fairly heterogeneous or discrete.

Upon inspecting the notable clusters, we find it unintuitive to identify any first-order correlations for the majority

of the noticeable clusters in the feature-SAI plots, whereas a few identifiable correlations are marked as follows:

(i) the samples featuring high CaO content (>18 %) but very low SAI values (see fig. 2E) have very high SO3

contents (of around 10 %); (ii) MgO has an isolated cluster at low SAI values (see fig. 2F) wherein those samples

systematically exhibit low Al2O3 (around 50 %) but high SiO2 contents (around 50 %); (iii) in the case of TotalAlk,

a clear bifurcation is observed between 1.5 and 2.5 % (see fig. 2G), wherein the lower cluster can be correlated with

very low SO3 contents (merely about 0.5 %); (iv) fineness shows a diverged trend between 15 and 25 % (see

fig. 2J), and, in comparison, the samples in the low-SAI cluster have low CaO contents (below 7 %). The presence

of some of these clusters might be due to the different coal sources and processing protocols in fly ash

production.3,38,65

Furthermore, it is important to note that the exact feature correlations in figure 2 are not clear enough for

establishing a direct mapping from each of the input features (or simple feature combinations) to the 28-day SAI.

For example, when the CaO content equals 15 %, the 28-day SAI can vary significantly between 85 (i.e., largely

inactive) and 103 (i.e., active). Similarly, such a wide variation is also seen in the case of fineness because the SAI

exhibits a great variability at fixed fineness values. From the standpoint of maximizing the strength efficiency of

fly ashes, the aforementioned observation indeed illustrates the difficulty of predicting fly ash’s SAI based on the

sole knowledge of the basic material attributes.

MODEL PREDICTION OF THE 28-DAY SAI

Based on the pipeline established in the section “Machine Learning Modeling,” we obtained an optimized neural

network model for predicting the 28-day SAI with the sole inputs of the 10 input features as prescribed by ASTM

C618. The prediction performance of this model on the 85 % training set and the 15 % test set (this is, the holdout

samples that are used to assess the true model accuracy when generalizing to new samples) is compared in

figure 3, where the scatters are color-coded to indicate the density of the distribution. It can be seen from

figure 3A that the majority of the training samples are distributed along the line of equality between the true

SAI values of 85 and 100, suggesting a good prediction accuracy of the neural network model for fly ash samples of

relatively low strength activity (e.g., Class F fly ashes). At the less populated region of an even lower SAI value

(<85), the model shows a tendency to overpredict SAI. This is likely due to the fact that there is only a small

portion of samples with such a low SAI value (see Table 1), so the model cannot get sufficiently trained to offer an

accurate prediction for that region, as also reported in several other machine learning–related studies.45,53,63,66 For

the strength reactive fly ashes with an SAI higher than 100, although the model predictions appear to be slightly

tilted clockwise, the SAI values of most samples are still accurately estimated. Note that the model does not predict

any SAI value higher than about 107 (see fig. 3A). This is likely a consequence of the very limited number of fly
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FIG. 2

Correlations between

the individual input

features and the 28-day

SAI: (A) SiO2, (B) Al2O3,

(C) Fe2O3, (D) SO3, (E)

CaO, (F) MgO, (G) Total

Alkali, (H) Moisture, (I)

Loss on Ignition, and (J)

Fineness. In these plots,

the local density of the

scatters increases from

blue to red. The circled

regions in several of

these plots are data

clusters identified to

correlate with the

presence of other

features (see text).
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ash samples showing very high SAI values so that the model is unable to learn how to properly predict SAI in this

regime.

Compared with the training set, the model achieves fairly closed prediction performance on the test set

samples. This observation is suggested by the similar overall distribution of the data points in figure 3B and

is further supported by the comparable accuracy metrics (i.e., R2, RMSE, and MAPE) between the two sets.

Taking MAPE of the test set as an example (see fig. 3B), the model has an average prediction error of merely

2.2 %, which is rather impressive. Overall, this evaluation demonstrates that the neural network model does not

show a sign of either underfit (i.e., cannot predict the true SAI well enough) or overfit (i.e., cannot achieve the

same performance on the test set). More importantly, because the test set samples are never involved in the model

training process, the results indicate that the neural network model has a strong ability to offer robust SAI pre-

diction for new fly ash samples. Altogether, the various pieces of evidence presented in this section support that

our model can offer a robust prediction of fly ash’s SAI, and this model is especially applicable for predicting fly

ashes within an SAI range from approximately 85 to 105—which is well representative for fly ashes that are

compliant to ASTM C618.

MODEL INTERPRETATIONS

To further investigate the data patterns that are learned by the machine learning model, we then proceed to

interpret the optimized neural network model presented in the last section. Machine learning models are conven-

tionally well known for their abilities to make accurate predictions yet lack transparency for people to rationalize

how the input features are mapped to the output prediction (i.e., a black-box model), with neural networks as a

typical example. Thus, the challenge of interpretation constitutes a major hindrance to the broader adoption of

machine learning analyses in material research, which needs to be established on explicit evidence and knowledge.

Herein, we adopted the SHAP to decode the relationship between the 10 input features and fly ash’s 28-day

SAI that is hidden in the latent space of our neural network model.61 Through computing and comparing the

Shapley value of the complex interactions between the features involved in the model predictions, the SHAP

analysis aims at assessing the marginal contribution of each feature to the prediction of a machine learning model.

FIG. 3 Predicted vs. actual 28-day SAI of the samples of the (A) training set (i.e., for training the neural network model)

and (B) test set (i.e., for evaluating the ability of the trained model to generalize on new samples). The dashed line

in these plots indicates perfect agreement.
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In short, a positive Shapley value correlates to a positive marginal contribution that increases the value of the

model prediction from its average over the entire data set (stated another way, a positive relative impact on the

model prediction) and vice versa.61,64 Further details about the implementation of SHAP are given in the section

“SHapley Additive exPlanations Analysis for Model Interpretation.”

Here, we first compared the Shapley values (i.e., relative impact to 28-day SAI) for all 10 input features, as

summarized in figure 4. In this figure, the scatters on each row correspond to the distribution of the relative

impact from a feature over all the samples in the fly ash data set, in which the relative impact gradually shifts from

negative to positive from left to right. For comparison, the values of each feature are normalized to enable the

scatters of all features to be displayed on the same color scale, from minimum (in blue) to maximum (in pink); in

addition, the variation of the local thickness in each cluster corresponds to the distribution of the feature values

between the extremities. In general, the horizontal span of the clusters of each feature corresponds to its range of

impact, meaning that impactful features are expected to exhibit wider spreads. In that regard, the oxides that are

most influential to 28-day SAI include, in roughly descending order, SiO2, CaO (as well as MgO), Al2O3, and

Fe2O3, which cover the main composition of fly ashes. For the instance of SiO2, this analysis suggests that the

28-day SAI systematically decreases as the SiO2 content becomes higher in fly ashes (moving from the blue to the

pink end), whereas only a small portion of the samples in this data set are seen with relatively low SiO2 contents

(also seen in Table 1). In comparison, this analysis indicates that a higher content of CaO generally indicates a

larger 28-day SAI.

A somewhat surprising finding from this SHAP summary plot is that the physical attribute, fineness, appears

to be more influential than any single oxide content, where a clear and consistent increase of the relative impact

on SAI is observed as fineness becomes progressively smaller (i.e., fly ash particle size decreases). This implies that,

regardless of the chemical composition of fly ash, reducing the particle size can be a generic yet effective approach

to improve its strength activity. This point is consistent with the long-established understanding of the effect of fly

ash’s fineness on concrete strength, wherein finer fly ash particles are expected to be more reactive because of their

higher specific surface area available for the pozzolanic reaction.40,67–69 In that regard, mechanical treatments

such as vibratory milling have been proven to be an effective approach to enhancing the reactivity of fly ash,70

although reducing the fineness also tends to increase the material processing cost and water demand for the

concrete bleeding process.71,72

To gain a more detailed model interpretation, we then narrow the analysis down to the marginal contri-

bution belonging to each feature. This is fulfilled by plotting the actual feature value (not normalized) against its

FIG. 4

Summary of the SHAP

analysis comparing the

relative impact

(i.e., marginal

contribution) of each

input feature to the

28-day SAI, based on all

2,158 samples in the fly

ash data set. For ease of

understanding, the

relative impact is aligned

to the same scale of SAI.
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Shapley values corresponding to each sample in the fly ash data set. The feature-specific SHAP results are dis-

played in figure 5. Unlike the direct feature-property correlation that treats each feature independently (see

fig. 2), the SHAP plots in figure 5 present the influence of each feature, which considers the synergistic effect

between the feature of interest and all the other features. This is valuable because a standalone feature may be

trivial by itself, but it becomes much more influential when combined with some other features—which is a more

reasonable indication of its true influence.

Compared with the feature correlations in figure 2, we first observe that the SHAP analysis from figure 5

provides more consistent feature trends, which implies a successful extraction of the feature’s marginal contri-

bution. In terms of the features that exhibit notable effects from figure 2, their SHAP results generally suggest the

same trends, as judged from the slope of the scatters. For example, increasing fineness or the content of SiO2 or

Fe2O3 tends to reduce the 28-day SAI of fly ashes, but larger SAI values can be expected if the CaO or MgO

content becomes larger, which is in line with the established studies.37–41 On the other hand, the effects of several

weaker features become more phenomenal based on SHAP. Taking LOI as an example, figure 5I indicates that

this feature should have a slightly negative influence on SAI, which is expected because LOI is mostly attributed to

the fact that unburnt impurities tend to slow down the reaction of fly ash and increase the water demand.73

Similarly, a clearer influence is also observed on moisture. In contrast, the machine learning model does not

learn a clear effect of TotalAlk, where its marginal contribution seems to be barely changed with the content

variation.

The largest difference is found on SO3, where it shows a positive correlation in figure 2D yet a negative

effect is obtained based on SHAP in figure 5D. Although the effect of SO3 on SAI is less prominent as compared

with the other major oxides, previous studies have reported mixed observations on its influence on the strength

of concrete containing fly ashes. It is generally expected that SO3 imposes setting retardation on concrete mix-

tures and a high SO3 content typically weakens the hardened cement paste because of the increased risks of

sulfate attack and expansion.74,75 However, it has also been observed that the final strength of a self-cementi-

tious fly ash hydration system can be improved upon increasing SO3 content.
76 In practice, ASTM C618 re-

stricts a maximum SO3 content of 5 % in fly ashes,10 whereas the same prescription is also given for portland

cement by ASTM C150, Specification for Portland Cement.77 Thus, it should be reasonable to expect a decline

of SAI at an elevated level of SO3 content in fly ash. In that regard, the direct correlation misleadingly suggests a

contrary trend; however, the true effect of SO3 is nevertheless revealed by the model interpretation. As for the

misleading trend suggested by the direct correlation, it may be attributed to the fact that SO3 has a positive

correlation with CaO (see the correlation map in fig. 1). Consequently, the true effects of SO3 are obscured by

its correlation with CaO. This issue represents a typical challenge involved in data interpretation. In this

sense, it is encouraging that the right pattern is captured by the machine learning model and can be further

interpreted into meaningful insights that can advance our knowledge of fly ash materials from a novel

perspective.

The aforementioned observation may also be applicable to Al2O3, where the direct correlation suggests it

has an optimal content at around 19 % (see fig. 2B) while the machine learning model captures that the 28-day

SAI increases with Al2O3 monotonically. The latter agrees well with our previous observation that the presence

of Al2O3 in fly ash tends to increase its strength activity by reducing the rigidity of the atomic network.54

Another interesting observation for Al2O3 is that this oxide exhibits two distinct slopes at low and high

contents, where figure 5B shows that Al2O3 is more influential on SAI when its content is less than about

20 %. This could be related to the different roles played by Al2O3 in modifying the atomic structure when

comparing aluminum-poor peralkaline silicate glasses and aluminum-rich peraluminous silicate glasses ma-

terials (both of which apply to fly ashes).37,38,44,78 Although this finding needs to be further verified with experi-

ments, it provides intriguing insights regarding the real influence of Al2O3 on SAI. Further investigation on this

point may help develop new activation strategies of fly ashes, such as blending fly ashes with different Al2O3

contents.
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FIG. 5

Feature-based SHAP

analysis showing the

relative impact (i.e.,

marginal contribution) of

each input feature to the

28-day SAI, where the

feature values are based

on the actual scale: (A)

SiO2, (B) Al2O3, (C)

Fe2O3, (D) SO3, (E) CaO,

(F) MgO, (G) Total Alkali,

(H) Moisture, (I) Loss on

Ignition, and (J)

Fineness. To assist the

comparison, the vertical

and horizontal dash lines

indicate the mean value

of each feature and the

zero marginal

contribution,

respectively. For ease of

understanding, the

relative impact is aligned

to the same scale of SAI.
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Conclusions

In this work, we investigate a large fly ash data set with machine learning techniques. To this end, we build a

neural network model to predict the fly ash’s 28-day SAI based on the sole input of 10 material attributes as

specified in ASTM C618. Further, we implement SHAP analysis to extract insights from the “black-box” neural

network model. The major findings of this study are remarked as follows:

• Fly ash’s SAI cannot be accurately inferred based on its direct correlation with any single ASTM C618
attribute. Although the CaO content is found to be the most positively correlated to 28-day SAI, the con-
ventional rule of using CaO content (>18 %) to differentiate the strength active fly ash (i.e., SAI >100) does
not hold for many samples in the fly ash data set. In fact, a considerable portion of strength active samples
exhibit low CaO contents down to 10 %.

• Our optimized neural network model achieves remarkable accuracy in predicting the 28-day SAI. This is
demonstrated from its predictions for the test set samples (i.e., the holdout samples that are never involved
in the model training), wherein the average prediction error is merely 2.2 %. To the best of our knowledge,
this is the first time that a machine learning model is reported to be capable of predicting SAI.

• The neural network model is successfully decoded for interpreting the influence of each feature on SAI as
captured by machine learning. A broad agreement is observed between machine learning and established
studies on the major features (e.g., CaO, SiO2, and fineness). Further, the effects of the minor features are
clarified.

Overall, it is rather encouraging to find that machine learning can achieve high accuracy for predicting SAI

and further offer meaningful insights on how SAI is synergistically determined by the individual material attrib-

utes. From a practical perspective, this approach provides a superior way for determining the strength activity of

fly ashes, which can significantly promote the high-throughput screening of fly ash for fulfilling the goal of sus-

tainable concrete construction. More importantly, this study offers a paradigm of knowledge extraction from

artificial intelligence for the broader adoption of machine learning techniques in material research.
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