computational
materials

npj

ARTICLE

www.nature.com/npjcompumats

W) Check for updates

End-to-end differentiability and tensor processing unit
computing to accelerate materials’ inverse design

Han Liu

Mathieu Bauchy (*%

2% Yuhan Liu**, Kevin Li**, Zhangji Zhao®, Samuel S. Schoenholz®, Ekin D. Cubuk®, Puneet Gupta® and

Numerical simulations have revolutionized material design. However, although simulations excel at mapping an input material to
its output property, their direct application to inverse design has traditionally been limited by their high computing cost and lack of
differentiability. Here, taking the example of the inverse design of a porous matrix featuring targeted sorption isotherm, we
introduce a computational inverse design framework that addresses these challenges, by programming differentiable simulation on
TensorFlow platform that leverages automated end-to-end differentiation. Thanks to its differentiability, the simulation is used to
directly train a deep generative model, which outputs an optimal porous matrix based on an arbitrary input sorption isotherm
curve. Importantly, this inverse design pipeline leverages the power of tensor processing units (TPU)—an emerging family of
dedicated chips, which, although they are specialized in deep learning, are flexible enough for intensive scientific simulations. This

approach holds promise to accelerate inverse materials design.

npj Computational Materials (2023)9:121; https://doi.org/10.1038/s41524-023-01080-x

INTRODUCTION

Numerical simulations have transformed the way we design
materials’. For instance, density functional theory and molecular
dynamics excel at predicting the properties of materials based on
the knowledge of their composition and atomic structure®3. This
makes it possible to replace costly trial-and-error experiments by
simulations so as to screen in silico promising materials*. However,
numerical simulations are of limited help to tackle inverse design
problems (i.e., identifying an optimal material featuring optimal
properties within a given design space)®”’. Indeed, although
numerical simulations are typically faster and cheaper than
experiments, their computational burden usually prevents a
thorough exploration of the design space (e.g., the systematic
exploration of all possible materials’ compositions)®. In addition,
traditional numerical simulations are usually not differentiable,
which prevents their seamless integration with gradient-based
optimization methods®'°. These limitations—which are reminis-
cent of the state of machine learning before automatic
differentiation became popular''—have limited the use of
numerical simulations in inverse design pipelines'?.

To address this issue, it is common to replace simulations by a
differentiable surrogate predictor machine learning model, which
aims to approximately interpolate the mapping between design
space parameters (e.g., the material's structure) and the target
property of interest’'?'3, Following this approach, Generative
Networks (GNs)> have been used for inverse design application
using, for instance, autoencoders'®, generative adversarial net-
works'®, or generative inverse design networks'? The generator
can then be combined with the differentiable surrogate predictor
in the same pipeline so as to be trained by gradient back-
propagation'?'617_ However, this approach can result in difficul-
ties associated with the fact that the generator and predictor must
both be trained, either simultaneously or sequentially. In addition,

the ability of the generator to discover new unknown, potentially
non-intuitive material designs (i.e., which are very different from
those in the training set) is often limited by the accuracy and
generalizability of the surrogate predictor’~’. Then the question is,
can we avoid using surrogate predictor? With the recent
expansion of automatic differentiation technologies'®'®, differ-
entiable programming platforms—such as TensorFlow?°, JAX?!,
and TaiChi?>—are rapidly developing and getting attention for
differentiable simulation applications®>?%, including molecular
dynamics'®'" and robotic dynamics®®. However, as differentiable
programming remains largely unexplored in material simulations,
the potential of directly training a generator based on a
differentiable predictor has received less attention.

Here, to address the challenges facing surrogate predictor, we
introduce a deep generative pipeline that combines an end-to-
end differentiable simulator with a generator model. Note that the
present work is a fully developed version of our recent report in a
conference proceeding?®. We illustrate the power of this approach
by taking the example of the inverse design of a porous matrix
featuring targeted sorption isotherm—wherein the sorption
isotherm corresponds here to the amount of adsorbed liquid
water in the porous structure as a function of relative humidity.
This is enabled by the implementation of an end-to-end
differentiable lattice-based density functional theory code in
TensorFlow?®2!, We show that the trained generative model is
able to successfully generate porous structures with arbitrary
sorption curves. Moreover, this generator-simulator pipeline
leverages the power of tensor processing units (TPU)—an
emerging family of dedicated chips?’, which, although they are
specialized in deep learning, are flexible enough for intensive
scientific simulations. This approach holds promise to accelerate
the inverse design of materials with tailored properties and
functionalities.

'SOlids inFormaTics Al-Laboratory (SOFT-Al-Lab), College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China. >AIMSOLID Research, Wuhan 430223,
China. 3Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab), Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095,
USA. “*Department of Computer Science, University of California, Los Angeles, CA 90095, USA. *Google Research, Brain Team, Mountain View, CA, USA. ®Department of Electrical
and Computer Engineering, University of California, Los Angeles, CA 90095, USA. *®email: happylife@ucla.edu; bauchy@ucla.edu

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

npj

http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-023-01080-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-023-01080-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-023-01080-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-023-01080-x&domain=pdf
http://orcid.org/0000-0002-4899-9998
http://orcid.org/0000-0002-4899-9998
http://orcid.org/0000-0002-4899-9998
http://orcid.org/0000-0002-4899-9998
http://orcid.org/0000-0002-4899-9998
http://orcid.org/0000-0003-4600-0631
http://orcid.org/0000-0003-4600-0631
http://orcid.org/0000-0003-4600-0631
http://orcid.org/0000-0003-4600-0631
http://orcid.org/0000-0003-4600-0631
https://doi.org/10.1038/s41524-023-01080-x
mailto:happylife@ucla.edu
mailto:bauchy@ucla.edu
www.nature.com/npjcompumats

H. Liu et al.

Porous matrix

1.0 : '

Water adsorption isotherm
1 I 1 I 1 I L

Pw =0

Aeverage pore water
density p,, (a.u.)

0.0 T T

N x N grid 0 20

{Mi p)Inxn RH =2.5%

State of site /:
(i, pi)

pji. pore water
density (0~1)

0 (solid, black, p;j=0)

m = {1 (pore, white)

Fig. 1

bl

Numerical simulation of water sorption in a porous matrix. The porous matrix is represented by an N-by-N grid, wherein each pixel i

40 60 80 100
Relative humidity RH (%)
Pi RH =50.0% RH =90.0%

of the grid can be filled with solid (n;=0) or be a pore (n;=1). p; is the density of water in the pore and is calculated by iteratively applying
Eg. (1) until convergence at each relative humidity (RH), where RH increases from 0 to 100% to yield the sorption isotherm, and p;=0 and 1
denote that the pore is fully empty or saturated with water, respectively.

RESULTS
Numerical simulation of water sorption in porous matrices

To establish our conclusions, we take a close inspection on the
conventional numerical simulation exemplified by water sorption
in a target porous matrix. Figure 1 illustrates the water sorption
simulation for a toy porous matrix represented by a square N-by-N
lattice, where each pixel i of the grid can either be filled with solid
(ni=0) or be a pore (n;=1), and the initially empty pores can be
gradually filled with water upon increasing relative humidity (RH),
with the pore water density p; =0 and 1 representing that the
pore is fully empty or saturated with water, respectively. At each
RH, the equilibrium density of water in each pore is computed by
lattice density functional theory (LDFT)?32°, Details about the LDFT
formalism are provided in the Methods section. Based on this
formalism, the water density p; at a given pixel i is given by Eq. (1)
(see Methods section), where p; depends on the state of its 4
neighbors, which is essentially a convolution operation. At each
RH, the equilibrium fraction of water is determined by iteratively
applying Eq. (1) on each pixel until a convergence in the {p} values
are obtained. The sorption isotherm of the porous matrix is then
determined by computing the equilibrium values of {p;} for all RH
values ranging from 0 to 100% with an increment dRH = 2.5%. At
each increment step K, namely, at RH =K x dRH (herein, K=1{0, 1,
2,3, ..., 39)), the equilibrium water density values {p}™ serve as
the starting configuration to calculate {p}*" at the subsequent
step K+ 1. More details of the numerical simulations can be found
in the Methods section.

End-to-end differentiable reformulation of the sorption
simulation

Such (LDFT) simulations are traditionally not differentiable. Here,
to address this limitation, we decompose Eq. (1) into a series of
mathematical operations that can be implemented as differenti-
able computation layers in TensorFlow. Figure 2 shows the
differentiable simulation architecture, where we decompose Eq.
(1) into three layers, namely, (i) the input layer, (ii) the CONV layer,
and (iii) the output layer. Note that the CONV layer represents the
convolution operation in Eq. (1)—i.e., one of the operations that

npj Computational Materials (2023) 121

can be efficiently performed by TPUs. The input layer consists of
three parallel layers associated with three input matrices,
respectively, where one input matrix {n;},,, is fed into the
output layer, and the other two matrices {p;}y, y and {1 —n;}yxn
are fed into two parallel CONV layers. Then the two CONV layers
conduct the convglution operation >jilweoj] gnd Z//i[Wmf(1 -
n;)] (see Eq. (1) in Methods section), respectively, wherein j/i
indicates 4 neighbors of pixel i. Finally, the two convolution
outcomes (denoted as C1 and C2) together with the input matrix
{ni}nx n is fed into the output layer that conducts the remaining
mathematical operation of Eq. (1), namely, p; = HE,W'ZW At
each RH, we repeat this three-layer block (i.e, the decomposed
layers of Eq. (1)) for M times in series, which is equivalent to
iteratively solving Eq. (1) until a convergence in the water density
is achieved. Importantly, since all layers share the feature of
automatic differentiation in TensorFlow, the gradient of each layer
can back propagate to enable end-to-end differentiation.

Accuracy of the differentiable simulator

We now evaluate the accuracy of the reformulated differentiable
simulator. Figure 3a shows a comparison between the sorption
curve of a porous matrix computed by the reference (undifferenti-
able) simulator and its reformulated differentiable counterpart,
where the area between the two curves defines the percentage
loss L of the differentiable simulation. We then evaluate the
average percentage loss of the differentiable simulator using a
large validation set of 8769 porous matrices. Figure 3b shows the
validation set of grids featuring a diverse population of reference
sorption curves (computed by the reference simulator), as
characterized by a wide distribution of the reference curves’
sinuosity index S,, where S, is calculated as the ratio of the
curvilinear length along the curve over the straight-line length
between end points of the curve. Figure 3¢ shows the percentage
loss L for the validation set as a function of the number of
convolution layers M. As expected, larger M yields more iterations
of Eg. (1) to facilitate the convergence of water density, thus
enhancing the simulation accuracy, and when M =100, L reduces
to a miniscule level so that the differentiable simulator is as

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

Porous
matrix

Milnxn

{1 —nidxn

KM Pl
Initial water _{{)l_ iv_XI_V_ <
density at [
Kth RH
OUTPUT-
INPUT INPUT-K,M CONV-K+1,1 Ke1 1
20 x 20 20 x 20 20 x 20 x 1 20 x 20

<
0Py, kxaru/0M; ap;tt fapM

npj

H. Liu et al.
Equiibium Adsorption
) /. water density isotherm
at Kth RH { }
_____ Pw K xdRH 1
________ w, 1Xm
{ i %I}VM ﬂw,ﬁdeH
\\
\
- \\ r”
- - o
=== Pw,KxdRH Pw,1xdRH
1
dRH = —
10
INPUT- CONV- OUTPUT-
Ket, M=t KelM Ke1,M OUTPUT
20x20 20x20x1 2020 1x40
<
K+1,M K+1,M-1
ap; /9p;

Fig. 2 End-to-end differentiable reformulation of the sorption simulation. The sorption simulation (viz, the iteration of Eq. (1)) is
reformulated as a series of convolutional (CONV) layers in TensorFlow. Note that Eq. (1) is essentially a convolution operation, and M

consecutive CONV layers are mathematically equivalent to iterating Eq. (1) M times until a convergence in the water density {p;

¥ is achieved

at the Kth relative humidity (RH), where RH increases from 0 to 100% with a constant increment dRH and an increment index K, namely, RH = K

x dRH.

accurate as the reference simulator. Further, Fig. 3d shows the
average percentage loss (L) of the differentiable simulator at
M=100 as a function of S, for the validation set, where
the differentiable simulator exhibits a satisfactory accuracy
of (L) =~0.36% for the whole range of S,. Overall, these results
demonstrate that, by reformulating the LDFT simulation into a
succession of convolutional layers, the sorption simulator enables
TPU-adaptive computing and end-to-end differentiability without
accuracy deterioration.

Seamless integration of the differentiable simulator with an
inverse design generator

Due to its end-to-end differentiability, the reformulated sorption
simulator can be seamlessly integrated with an inverse design
generator. Figure 4a shows the architecture of the generator-
simulator pipeline. Taking as inputs a targeted sorption isotherm,
the generator transforms the curve into a porous matrix, which is
subsequently fed to the differentiable simulator to compute the
real sorption curve of the generated porous matrix. Note that the
generator is designed as a structure of dual, parallel deconvolution
blocks, where each block is fed with half of the input curve. These
two blocks aim to specifically generate small and large pores,
which are saturated with water at low and large RH, respectively.
More details about the architecture of the generator-simulator
pipeline are provided in the Methods section. Since each layer of
the pipeline is differentiable, the generator can then be optimized
by gradient backpropagation in TensorFlow so as to minimize the
difference between the input and output sorption curves. Note
that, here, the convolutional layers of the simulator are hard-
coded with fixed weights and, hence, are not optimized. This is
key advantage of our approach since it avoids difficulties arising
from the simultaneous optimization of the generator and
predictor in traditional implementations of generative pipelines.

Training the inverse design generator by differentiable
knowledge

We now focus on the training of the generator-simulator pipeline.
Upon their seamless integration in gradient backpropagation, the
generator is essentially trained by differentiable knowledge
encoded into the simulator, rather than a preset training set,
thus promoting the generator to learn the underlying physics.
During the training process, a grid size N = 20 (i.e., 20 x 20 lattice)

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

yields about 7 million parameters to be optimized for the
generator, while the simulator comprises about 4000 convolution
layers to compute. The loss function L is defined as the percentage
loss between the input and output sorption curves, as illustrated
in Fig. 4b. The generator is trained based on a training set of
6,400,000 sorption isotherm curves and then subsequently
evaluated based on a test set of 8769 curves (see Fig. 3b). More
details of the training and test sets can be found in the Methods
section. Figure 4c shows the evolution of test set loss L as a
function of the number of training epochs, where the batch size is
set as 64 and each epoch contain 1000 batches. We find that the
accuracy of the generator plateaus after 50 epochs (which
corresponds to a training size of 3,200,000). Figure 4d shows the
average loss (L) as a function of the reference curve sinuosity S,
in the test set after 100 training epochs. We find that the
generator exhibits an average prediction loss of 3%, which is here
considered very good (see below). More details of the pipeline
training can be found the Methods section.

Training acceleration by tensor processing unit (TPU)
computing

Considering the large depth of the simulator and the number of
parameters to be optimized in the generator, the training process
comes with a significant computational cost. To mitigate this issue,
as a pioneering experiment, the training is conducted on TPUs?’,
TPU is a family of dedicated chips that assemble different
computing units for machine learning applications°. Figure 5a
shows a schematic of the TPU computing system composed of
both software and hardware architecture, where TensorFlow is a
software used to compile program ready for TPU computing on
TPU chip. In contrast to general purposes processors (i.e., CPUs
and GPUs), TPUs are specifically designed as matrix processors
thanks to their matrix unit (MXU)3'32, Although TPUs have been
extensively used for deep learning, their application to numerical
simulations has thus far remained limited®3. However, TPUs exhibit
enough flexibility to have the potential to accelerate a broader
range of computations. Figure 5b shows the training time per
batch as a function of both grid size and batch size on a TPU-v3-8
chip with 8 cores and 16 GB memory per core?’. The
computational performance is compared with the training time
yielded by a NVIDIA A100 GPU with 40 GB memory. All
benchmarks are conducted on Google Colab using the same

npj Computational Materials (2023) 121

npj

H. Liu et al.

a o \ I) b Se . I . I .
Percentage loss L (%) & |#of samples = 8769
|= Area between curves / 1 L 2 L
= 2
B 2
8 0.5 Sinuosity of reference S, |- € 4+ L
< (§=1) é Set of
L 5] o |
— Conventional simulator (Reference) 2 Vagc:%téon
— Differentiable simulator @
0.0 T T T ao T T T T T
0 50 100 1.0 1.1 1.2 1.3
RH (%) Sinuosity index of reference curve S,
c . L d o
M=100
9 . Accurate g 05 o
~ = . . L0 - O, —
- simulation g (L)=0.36 ﬁ’m —
==t [y DD
0 T T f T T + 0.0 T T T T T
0 50 100 150 1.0 1.1 1.2 1.3
Number of convolution layers M S

Fig. 3 Accuracy of the differentiable simulator. a Comparison between the sorption curve of a porous matrix computed by the reference
(undifferentiable) sorption simulator and its reformulated differentiable counterpart. The area between curves (grey area) defines the
percentage loss L. The sinuosity index of reference (black) sorption curve S, is characterized as the ratio of the curvilinear length along the
curve over the straight-line length between end points of the curve. b Distribution of S, for a validation set of 8769 porous matrices.
¢ Percentage loss L for the validation set as a function of the number of convolution layers M. The grey window (M > 100) indicates the range
where the differentiable simulator is as accurate as the reference simulator. d Average percentage loss (L) as a function of S, at M = 100. The
blue line represents the average percentage loss for the validation set.

Hard-coded with fixed weights

a Adsorption Porous Adsorption
isotherm HiohRH block matrix isotherm
A Igh- OCI .
_ High-RH .
— activation {1- 771}”?“"
--- 1=~ Fi-=1 < s
Pw,40 Ssel PR | I S | N Pw,40
B) /*’/ » 1\<41\,1 {0l K+1,M
I . LINXN #JNXN
{Pw,K}lxw :::::; Y . {pW'K}lle
Low-RH block / vt
A - KM S~ -a, /’/ ~~~~~ Pide i
Pwi ’—‘,—‘ {/’i}y\"xw Pw.K Pw
e [ceivaton ouTPUT
1x40 1x40
Backward training: Gradient backpropagation on TensorFlow
b 1.0 I . C P U S NP R d 5 . L L .
N Loss function L (%) = =~ {7 Testset Grid size N=20 | | B Testset |
o~ i =
i Area between curves /1 | < 8] Batch size =64 - 44 O L
g 0.5 Training set: é °] Optimized N g 3] Sy (02300
- -1 : ; o 7] r S [um} ~
= F Identical input/output S 4- generator | o | I
/] - d L o
J1 L %] 2 - -
} — Target output (Reference) &8 21 epoch = 1000 batches = | oo I
00 ! - - Forward output - 0 7 Training size = 64000 x epoch ; oo
. T T T — T T T T T T T
0 50 100 0 20 40 60 80 100 1.0 1.1 1.2 1.3
RH (%) Number of training epochs Sinuosity index of reference curve S,

Fig.4 Training an inverse design generator by the differentiable simulator. a Architecture of the generator-simulator training pipeline. The
generator is designed as a structure of dual, parallel deconvolution blocks, where each block is fed with half of the input curve {p,,«} that
represents low- and high-RH range signal, respectively. The associated porous matrix {n} predicted by the generator is subsequently fed to the
differentiable simulator for validation. The forward output of the simulator is then compared with the targeted output—which is the same as
generator input {p,, }—to calculate the loss function used for backward training on TensorFlow. b Loss function L (grey area) for a target
output (blue line). ¢ Evolution of the test set loss L as a function of the number of training epochs. The test set contains 8769 reference
sorption curves (see Fig. 3b). The plateau in the grey window indicates that the generator has reached optimal prediction performance.
d Average test setloss {L) as a function of the sinuosity index of reference curve S, at epoch = 100. The blue line represents the average loss

for the test set.

npj Computational Materials (2023) 121

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

H. Liu et al.

npj

TPU software: TensorFlow

Compile program for TPU computing

TPU core TPU core
£S5
-'gm | Scalar / Vector units | | Scalar / Vector units |
I
T = =
£ ! TPU chip ! ! 2
Ke)
ze Matrix unit (MXU, Main
-35:» “E’ computing power): 128 x 128 MXU MXU
multiply-accumulate operation
c d
b @ CORPT N A i R 300 ———L—
| < = 34 GPU N=20f ; 7
> | s £ 3 E 15
L i g] O TPU g 1
ﬁ ' 2 o [Q200 | 7 -
i =t o) D 1 ut-of-memor
At 10° ‘)
!\ ‘ 8‘ 3100_5 = 5 -ai,é regions -
S i 100 £ £ . E S04
= =] [o 21 o
‘ ; E_) . 4x fasterl r % UJD—,' 777777777 GPU
| = = i | i L
S 1071 —
N0 160 5 S ., |Foas2
i 256 40 80 = e T I e e 0 — T
< Grid size N 60 120 180 240 300 0 100 200 300
Batch size Grid size N

Fig. 5 Training acceleration by Tensor Processing Unit (TPU) computing. a Schematic of the TPU computing system composed of both
software and chip hardware, where TensorFlow is a software used to compile program ready for TPU computing on TPU chip. The TPU chip
contains 2 cores, and each core is an assembly of different computing units specific for machine learning, where the main computing power
arises from the matrix unit (MXU) capable of 128 x 128 multiply-accumulate operation. b Comparison of the training time per batch as a
function of the grid size N and batch size offered by Google’s TPU-v3-8 (with 8 cores and 16 GB memory per core) and an NVIDIA A100 GPU
with 40 GB memory. All benchmarks are conducted on Google Colab using the same TensorFlow code and single precision (float32).
¢ Comparison of the training time per batch between TPU and GPU as a function of batch size for N = 20. d Out-of-memory regions of TPU
(red line) and GPU (blue line) training for 2D (solid line) and 3D (dash line) grids in the parameter space of grid size N and batch size, where the

lines represent the out-of-memory boundary.

TensorFlow code and single precision (float32). Figure 5c further
describes the TPU and GPU training time as a function of batch
size for grid size N = 20. We find that, especially for large grid size
and batch size, the deliciated TPU hardware results in a training
time that is several times faster than that offered by the GPU
hardware considered herein (more than 4x faster, see Fig. 5c).
These results highlight the exciting, largely untapped potential of
TPU computing in accelerating computationally-intensive scien-
tific simulations (i.e, besides traditional deep learning
applications).

Note that we conduct the comparison using an up-to-date
version of TPU (TPU-v3-8) and GPU (GPU-Nvidia-A100). During this
comparison between TPU and GPU, their hardware architectures
are rapidly updated on the way to achieve better performance®?,
where TPU and GPU excel at matrix multiplication and parallel
computing, respectively. Relying on their different strategies to
accelerate numerical computing, we nevertheless find that the
training pipeline does not gain any acceleration contribution from
TPU computing with respect to GPU at the batch size of 64, which
suggests that small batch size does not leverage the computing
power of MXU operation and parallel compilation in TPU, as
compared to the highly paralleled GPU computing. Notably,
despite the fast execution speed of GPU-A100, TPU-v3-8 can
outperform GPU-A100 at certain parameter settings of grid size
and batch size (see Fig. 5¢). In practice, we adopt a batch size of 64
for GPU training, while a batch size of 256 for TPU computing to
expedite the training, and the prediction accuracy of generators
under both the training settings exhibit an excellent agreement
with each other.

Besides the execution speed, we further investigate the TPU
and GPU memory usage under various training settings to

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

evaluate the accessible design space of the gird model. Figure
5d shows the out-of-memory regions in the parameter space of
grid size and batch size for the training pipeline in both the format
of 2D grids (present format) and 3D grids (see the format below).
Importantly, we find that the TPU computing generally exhibits
smaller out-of-memory regions than its GPU counterpart, which
echoes the fact that, for the same training pipeline, TPU hardware
is delicately designed to reduce the demanding requirements of
computing resources®®. As such, TPU computing offers an
attractive opportunity to access the design space that runs out
of memory on GPU, promising to accelerate the training pipeline
and extend its accessible design space.

Accuracy of the inverse design generator

Finally, we evaluate the accuracy of the trained generator on the
test set (which comprises more than 8000 target sorption
isotherms). After training, we find that the generator exhibits an
average prediction loss of 3% (see Fig. 4d), which is here
considered very good. Figure 6a offers an illustration of three
porous matrices that are generated so as to present three
archetypical sorption isotherms wherein: (i) full water saturation
occurs at very low RH (which arises in the presence of very small
pores), (ii) water saturation is delayed and occurs at very large RH
(which is a consequence of large pores), and (i) an intermediate
case (with medium-size pores). Overall, we find that the generator
model is able to predict realistic porous matrices, with expected
length scales for the pores. Importantly, the simulated sorption
curves of the generated porous structures exhibit all the features
(in terms of trend, convexity, and value) as the target sorption
curves.

npj Computational Materials (2023) 121

npj

H. Liu et al.

a x = {Ni}nxn

Simulator S(x)

Generator G(S(x))
| L

1.0 .
Low-RH
. 1/ condensation r
=]
S 0.5 Medium-RH -
< condensation
1 High-RH [
condensation
0.0 T T T
0 50 100
_ RH (%)
Medium o . A)
pore ' Target (
s S{G(S(x
__ 4| — Prediction (())
3
8 0.5 ~
<&
0.0 T T T .
0 50 100
RH (%)
b .
1.0 . !
— Target
— Prediction 0.5
- Low-RH High-RH — o0
S 05 response response Low-RH activation:
2 Small pore
<
0.0 : I : o 00
0 50 100 Combination pores of High-RH activation:
RH (%) different sizes Large pore

Fig. 6 Accuracy of the inverse design generator. a lllustration of three porous matrices that are generated so as to present three archetypical
sorption isotherms associated with small, medium, and large pores. b Porous matrix generated for a target sorption curve y = x. The activation

patterns of low- and high-RH block are also provided.

As a final test of the generator, we assess the ability of the
generator to predict a porous structure featuring a target identity
sorption curve y = x. This is an especially challenging test set case
since (i) the sorption curve is not included in the training set, (ii)
such a smooth sorption curve (with no sudden jump in water
sorption) requires a complex, continuous pore size distribution,
and (iii) this case corresponds to maximum degeneracy—unlike
the cases of a 1-pixel or (N-1)x (N-1) pores, which present a
limited number of possible solutions. Once again, we find that the
generator yields a very realistic generated porous matrix, which, as
expected, exhibits a combination of small, medium, and large
pores (see Fig. 6b). Notably, the real sorption curve (computed by
the simulator) of the generated porous matrix indeed exhibits a
very close match with the y = x target, where the curve deviation
at high RH is likely ascribed to the limited capacity at grid size
N =20 to create giant pores that can delay the condensation up
to RH = 1. This confirms that the generative model has learned the
basic physical rules governing water sorption in porous media
(e.g., small and large pores get saturated as low and high RH, etc.)
and can successfully predict new unknown porous structures
featuring tailored arbitrary sorption curves. In that regard, the fact
that the generator is directly trained based on the simulator
(rather than on surrogate model that approximates reality by
learning from finite training set examples) is key to ensure that the
generator is not limited by the accuracy of the predictor, or its

npj Computational Materials (2023) 121

ability to extrapolate predictions to grids it has never been
exposed to during its training.

By designing as a dual, parallel-block structure (see Fig. 3a), the
generator shows not only high prediction accuracy but also
enough simplicity and interpretability out of the inductive bias (as
compared to a single, giant-block structure). After training, we find
that the activation patterns of these two blocks can specifically
generate small and large pores that are saturated with water at
low and large RH, respectively (see Fig. 6b), in agreement with the
basic physics of fluid sorption that small and large pores exhibit
early and delayed condensation behavior, respectively?®2°, These
results a posterior demonstrate that the physics-informed machine
learning framework offers a reasonable balance between model
accuracy, simplicity, interpretability, and extrapolability3>.

Mapping the 2D grids to 3D porous matrices

To associate the 2D grid to its 3D real material representation, we
evaluate herein how much of these 2D grid designs will translate
upon moving to the 3D matrices space. Note that the LDFT
simulation has been well established in both the format of 2D and
3D lattice to describe capillary condensation of disordered porous
materials?®35, and in a recent study®’, we have demonstrated that
the 2D lattice model can offer water sorption behaviors in
excellent agreement with the water sorption isotherms in cement

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

H. Liu et al.

N lattice

Equivalent

a -
3D mapping
N2 |attice
b 10 L . C .
— 2D lattice |
— 3D lattice

|— 3D convolution L

3D versus 2D lattice

OJ

S 05 | 115_ 14.79% |- /\-: 1
< N db <

0.0 . , , 10 ,

0 50 100 1.0 1.1

RH (%)

Fig. 7 Mapping the 2D grids to 3D matrices. a lllustration of 3D representation for the predicted 2D grid targeting the sorption curve y = x.
The 3D cubic lattice has 6 nearest neighbors per voxel and is equivalent to a multilayer grid (=3 layers) under periodic boundary condition.
b Comparison of the sorption curve between the 2D and 3D lattice, where the sorption curves are computed by conventional LDFT
simulation. The result of differentiable 3D lattice simulation using M= 100 consecutive 3D convolution layers is also added for comparison.
c Average percentage loss (L) of sorption curve when translating from 2D grids to their 3D representations, as a function of the sinuosity
index of reference curve S, in the validation set. The blue line represents the average loss for the validation set. d Average percentage
loss {L) of sorption curve between conventional and differentiable 3D lattice simulation, as a function of S, at M= 100. The green dash
represents the average loss for the validation set. The average loss for differentiable 2D lattice simulation (black dash) is added as a reference.

pastes. However, the abstract space of 2D grid is an extensive
simplification of the real material space, while real materials are
significantly complicated in terms of system size, dimensionality,
and pixel state. These complexities make the simulation of real
materials heavily rely on the capability of computing hardware,
including execution speed and memory limitation.

Despite its simplicity, the 2D grid simulation nevertheless
provides an indicative representation of its real material counter-
part formulated by 3D porous matrix. Figure 7a provides an
example of mapping an 2D grid to its 3D matrix representation,
where the 2D convolution operation (with 4 nearest neighbor
pixels) in LDFT simulation is modified as 3D convolution (with 6
nearest neighbor voxels), and the sorption isotherms for the 2D
and 3D lattice are shown in Fig. 7b. Figure 7c further provides their
average percentage loss L) as a function of the reference curve
sinuosity S, in the validation set. We find that the percentage loss
of translation from 2D to 3D lattices’ sorption isotherms is about
14.8% for the whole range of S,. This translation loss is not trivial
but indicates that the sorption isotherms exhibit very similar trend
when translated from 2D to 3D lattices. Overall, these results
illustrate the close correlation between the toy 2D model and its
3D real material representation.

Generalization to 3D porous matrices’ inverse design

Besides mapping 2D grid to its 3D representation, we investigate
herein the direct applicability of this inverse design approach to
the real material space formulated by 3D porous matrix. To this
end, relying on the same generator-simulator pipeline (see
Fig. 4a), the sorption simulation of 3D porous matrices is readily
implemented by modifying the 2D convolution layer to 3D
convolution layer, where we find that the differentiable 3D lattice
simulator is as accurate as the conventional LDFT simulator and
exhibits a miniscule average percentage loss of 0.88% for the

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

validation set (see Fig. 7d). Then the generator is designed to
predict a cubic grid with grid size N =10, as illustrated in Fig. 8a,
which is then fed into the differentiable 3D lattice simulator for
validation. More details about the architecture of the generator-
simulator pipeline are provided in the Methods section. Using the
same training scheme as that of 2D grid model, Fig. 8b shows the
average loss (L) as a function of the reference curve sinuosity S,
in the test set after 100 training epochs. We find that the
generator exhibits an average prediction loss of 2.9%, close to the
prediction loss of 33% in 2D grid model. These results
demonstrate that the 3D generator excels at inverse design in
3D space to generate 3D porous matrices with target sorption
isotherms. As such, the inverse design approach can flexibly
extend to 3D grid model in real material space.

However, compared to 2D model training, 3D model training at
the same gird size N incorporates a new dimension’s computation
that theoretically increases the computational cost N times. This
constitutes a significant burden on the execution speed and
memory for this 3D workflow. To rationalize the applicability of
this approach to 3D design space, we evaluate herein the
execution speed and memory usage of 3D grid model training
on both TPU and GPU hardware. Using the same benchmark
scheme as that of 2D grid model (see Fig. 5b), Fig. 8c shows the
comparison of the training time per batch as a function of the grid
size N and batch size offered by TPU-v3-8 and GPU-A100, and
Fig. 8d further describes the TPU and GPU training time as a
function of batch size for grid size N=10. We find that, at large
batch size of 256, the TPU computing can modestly expedite the
training to be slightly faster than GPU training (1.1x faster, see
Fig. 8d), in harmony with the faster TPU training for 2D grid model.
Despite their similarity in TPU acceleration, 2D and 3D grid model
exhibits a huge difference of computational burden at the same
grid size, which renders the 3D model easily run out of memory on
the current version of TPU and GPU (see Fig. 5d), with the

npj Computational Materials (2023) 121

npj

. Liu et al.

NE lattice

3D porous matrix

1.0

— Target

Design

b 5 L 1 L 1 L
| O Testset |
4 O -
—~ 3 %J—D_WD 2.93%|

X — oo
o = -
- D -
1_ —

0 T T T T T
1.0 1.1 1.2 1.3

S

— 3D prediction

3
8 0.5 -
Validate <&

0.0 : T T
0 50 100
RH (%)
-~ d
T @1odell.l.
.S E’ A GPU N=10
T S {0 TPU -
©Q ©
02 & o
8 5 0.8 - =
1 (0] o l
£] 7 i
s £
0*1-8 e 1.1x faster|
= £] L
‘© £
= © Float32
E 04—

60 120 180 240 300
Batch size

Fig. 8 Generalization to 3D porous matrices’ inverse design. a lllustration of applying the generator-simulator pipeline to inversely design a
3D porous matrix targeting the sorption curve y = x. The 3D lattice generator predicts a cubic grid with grid size N = 10, which is then fed into
the differentiable 3D lattice simulator for validation. b Average test set loss {L) as a function of the sinuosity index of reference curve S, after
100 training epochs. The blue line represents the average loss for the test set. ¢ Comparison of the training time per batch as a function of the
grid size N and batch size offered by TPU-v3-8 and GPU-A100. d Comparison of the training time per batch between TPU and GPU as a

function of batch size for N=10.

maximum grid size N=20 for GPU and N =30 for TPU in the
accessible design space, which, however, illustrates the TPU
potentiality in requiring less computing resource than GPU to
extend the 3D design space thereof.

Inverse design of porous solids with target hysteresis
behavior

Finally, relying on the 3D model, we extend this approach to design
porous solids with target hysteresis behavior. Figure 9a offers an
illustration of the adsorption and desorption process in a 3D porous
matrix, and its hysteresis curve is provided in Fig. 9b. By inputting
the entire hysteresis curve into the generator-simulator pipeline,
the loss function L is defined as the sum of the percentage loss for
both the adsorption and desorption isotherm, as illustrated in Fig.
9c. The training and test sets are the same as before except that
each sorption isotherm is followed by a desorption isotherm to form
the hysteresis curve. Details about the preparation of training and
test sets are provided in the Methods section. Using the same
training scheme as before, Fig. 9d shows the average loss (L) asa
function of the sinuosity index of adsorption isotherm S, in the test
set after 100 training epochs. We find that the generator exhibits an
average prediction loss of 4.7% for the whole range of S,, which is
here considered very good.

Figure 10 offers an illustration of porous matrices generated for
various target hysteresis behaviors. By inputting a linear curve y = x
with zero hysteresis, the generator provides a porous matrix
exhibiting nearly linear adsorption isotherm but a pronounced
hysteresis (see Fig. 10a)—which turns out an intrinsic phenomenon
rooted in the complex metastability of disordered porous solids?3=6,
so that the hysteresis cannot be an arbitrary design. By inputting the
output (real) hysteresis curve, Fig. 10a shows the porous matrix
generated to present this target input hysteresis, and the predicted
hysteresis offers a close match to its input curve. As a further
validation, Fig. 10b offers an illustration of porous matrices

npj Computational Materials (2023) 121

generated to present the target hysteresis behaviors associated to
small and large pore matrix, respectively, where, indeed, the input
and output hysteresis agree well with each other. Overall, these
results highlight the flexibility of this approach to extend to
complex curve properties such as hysteresis behavior.

DISCUSSION

Overall, this work establishes a robust pipeline to enable the
inverse design of materials by leveraging an end-to-end
differentiable simulation as predictor. The fact that the generator
is directly trained based on a simulator rather than on a surrogate
machine learning model is key to ensure that the generator is not
limited by the accuracy or extrapolation ability of the predictor.
Compared to previous inverse design approaches using optimiza-
tion or traditional generative models®~’, the present approach
eliminates the prerequisite of a predefined dataset by integrating
differentiable knowledge into the inverse design pipeline, so that
a material’s inverse design is unbiased to the initial dataset and
can accurately extrapolate to a design space away from the
training space. As a key enabler of this approach, we adopt TPUs
to accelerate the training of the generator by gradient back-
propagation in TensorFlow. This illustrates the exciting possibilities
of TPU computing to accelerate scientific numerical simulations.
Although our results are built upon a toy sorption model, this
research has several scientific and societal implications. First, this
work illustrates the benefits of integrating differentiable simula-
tions in machine learning pipelines—which is key to accelerate
the discovery of new materials. Second, our results establish TPU
computing as a promising route to accelerate scientific simula-
tions, which are ubiquitous in various applications (drug discovery
by molecular dynamics, architectural design by finite element
method, weather forecast predictions, etc.)'=. Finally, the ability to
design new porous structures with tailored sorption isotherms

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

H. Liu et al.
9
RH =5% 30% 100% 30% 20%
Adsorption Desorption
b 1.0 TR S c 1.0 TR S d10 - ——,
1”7 ' =7 : ' O Testset
I Hysteresis | Loss function L = b F
| | area A, i | ! Lagsors * Loesors | 8 -
I I 4 -
- i — LDesorW Lpgsor — 6 N
3 I 3 I : B
8 0.5 I - 8 05— I - OIS 4.65%)
< : < y S s T I
i ey .] m |
] ! L] ! /'— Adsorption
' — Adsorption - - Desorption 24 -
b -- Desorption i -... Target (A4 =0)
0.0 : T . 0.0 ; T . 0 —T—
0 50 100 0 50 100 1.0 1.1 1.2 1.3
RH (%) RH (%) S,

Fig. 9

Inverse design of porous solids with target hysteresis behavior. a lllustration of the adsorption and desorption process in a 3D

porous matrix targeting the adsorption curve y = x. b Sorption hysteresis behavior of the 3D matrix, where the area between adsorption and
desorption isotherm is defined as the hysteresis area Ay. ¢ Loss function L for a target output, where L consists of both the percentage loss of
adsorption isotherm Lagsor, and desorption isotherm Lpeson. The target output is herein set as a linear curve y = x with Ay = 0. d Average test
setloss (L) as afunction of the sinuosity index of adsorption isotherm S, after 100 training epochs. The blue line represents the average loss

for the test set.

could leapfrog several important applications, including for CO,
capture®33° and gas separation?®*'. In addition, designing new
porous structures featuring a smooth, continuous sorption
isotherm (i.e., as close as possible to the y = x target used herein)
is important for drug delivery applications, to ensure that drugs
are continuously released at a constant rate in a given
environment#243,

METHODS
Lattice density function theory (LDFT) of sorption
We consider a simplified model of porous matrix by using (i) a
square N-by-N lattice (see Fig. 1a) and (ii) a cubic N lattice (see
Fig. 8a). In this lattice, the state of each pixel (or voxel) i is given by
the knowledge of (n; p;), where n;=0 and 1 indicate that the pixel
is filled with solid or is a pore, respectively, and p; is the density of
water in the pore upon increasing relative humidity (RH). In the
scenario of water sorption in nanoporous grids, the pixel size is
approximately the size of one single water molecules, i.e., 3 A per
dimension, and the sorption isotherm is dependent on pore pixel
distribution and the resultant pore size (rather than grid size N)*’.
pi=0 and 1 denote that the pore is fully empty or saturated with
water, respectively. Based on the LDFT formalism, the water
density p; at a given pixel i is given by:

Ni
>, ey (1) KT) (1)

P =

1+e
where p is the chemical potential (which depends on RH), k is the
Boltzmann constant, T is the temperature, wg is interaction energy
between two neighboring pixels that are filled with water, wyys is
the interaction energy between a pixel filled with water and a
substrate (i.e., a neighboring pixel filled with solid), and j/i are the
pixel IDs of the 4 neighbors of pixel i (note that, to avoid any
surface effect, periodic boundary conditions are applied)?°. Details
of the LDFT formulism behind Eq. (1) are provided in the following.

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

According to LDFT?%2° the equilibrium {p} at a given RH is
computed by minimizing the configuration’s grand potential
function Q({p;}):

O({pi}) =kT Z,[Pi'n(Pi) + (n; = pi)In(n; — py)]
— W Z@-) PiPj — Wt Z(U) [o:(1 =) +p;(1 —)]
—uy_.p;
)

where (ij) indicates the sums are restricted to distinct nearest
neighbor pairs, u is calculated by u = g, + kT In(RH), where
T=298K, u,, is the chemical potential of water at saturated state
and can be estimated as p,, = wgx ¢/2 (here, the coordination
number ¢ =4 for 2D lattice and ¢ = 6 for 3D lattice). wy is derived
from the critical temperature of water (T.=647K) and
wg = 4kT./c. wpe is calculated from the interaction ratio
parameter y = Wps/Wg, Where y>1 indicates a hydrophilic
substrate and y <1 a hydrophobic substrate (here, y=1.5). By
minimizing Eq. (2) with respect to {p}, the solution of equilibrium
{o} is rewritten as an iteration loop of Eq. (1) until convergence,
where the convergence condition is set as 1/N? Z,(pim) —
pft>)<10’1° between two consecutive loop t and t+ 1. p; is
calculated at each RH for RH = 0-to-100% with an increment dRH
(here, dRH = 2.5%). Initially, the equilibrium p; = 0 when RH = 0. At
each increment step K, the equilibrium water density values {p}*"
at RH =K x dRH serve as the starting configuration to calculate
{o}** 1 at the subsequent step K+ 1 by iteratively applying Eq. (1)
until a convergence in the {p;} values is obtained. Finally, the water
sorption isotherm {p,, }, 4, is obtained by calculating the average
pore water density p,, = (0;) = 1/N*3_,(p;) at each of the 40 RH
increments. Relying on the same computation process, we flip the
40 RH values to obtain the desorption isotherm and the hysteresis
curve thereof {p,},g- More detailed descriptions of LDFT of
sorption can be found in Ref. %°.

npj Computational Materials (2023) 121

npj

H. Liu et al.
10
a -1‘0 1 I 1 -1 0 1 I 1
3 3
S 0.5 - 8 05— -
< , <
g — Predict - 1 — Predictf
— Target (A4 =0) — Target
0.0 T , T 0.0 T , T
0 50 100 0 50 100 Predict
RH (%) RH (%)
b 1.0 L :
3
8 0.5 -
<
1 — Predict|
— Target
0.0 , .
Target 0 50 100 Predict
RH (%)
1.0 ' '
3
S 0.5 -
<
1 — Predict|
— Target
0.0 , ;
Target 0 50 100 Predict
RH (%)

Fig. 10 Accuracy of the generator using hysteresis behavior input. a Porous matrix generated for a target hysteresis behavior that is
associated to a porous matrix pre-generated by inputting a linear curve y = x with Ay = 0. b Porous matrices generated for target hysteresis
behaviors that are associated to a small and large pore matrix, respectively.

Architecture of the generator-simulator pipeline

The generator is designed as a structure of dual, parallel
deconvolution blocks (see Fig. 4a), where each block is fed with
half of the input sorption isotherm {p,,},, 4o Or hysteresis curve
{Pw}1x s0- In detail, the low- and high-RH block is fed with the low-
and high-RH half signal of the input {p,,}, i.e., a 1-by-20 array each
for adsorption isotherm or 1-by-40 array each for hysteresis curve.
Then the two blocks show the same structure, which consists of 4
layers in series, that is, (i) a fully connected dense neural layer
(DENSE) that contains 20 x 20 x 64 = 25600 neurons and outputs a
1-by-25600 array for 2D lattice or that contains
10x10x 10 x 8 =8000 neurons and outputs a 1-by-8000 array
for 3D lattice; (ii) a reshape layer (RESHAPE) that transforms the
one dimensional 1-by-25600 for 2D lattice or 1-by-8000 for 3D
lattice array into a three dimensional 20-by-20-by-64 for 2D lattice
or a four dimensional array 10-by-10-by-10-by-8 for 3D lattice
array; (iii) a deconvolution layer (DECONV) that contains 64
channels with a 20x20 filter size and outputs a three dimensional
20-by-20-by-64 array for 2D lattice or that contains 8 channels
with a 10x10 filter size and outputs a four dimensional 10-by-10-
by-10-by-8 array for 3D lattice; (iv) a convolution layer (CONV) that
contains 1 channel with a 3x3 filter size and outputs a two-
dimensional 20-by-20 array for 2D lattice or a three-dimensional
10-by-10-by-10 array for 3D lattice. The activation function of each
layer is set as ‘ReLU’ function, and batch normalization has been
applied to the output of each layer to accelerate the training
process**. Finally, the two 20-by-20 array for 2D lattice or 10-by-

npj Computational Materials (2023) 121

10-by-10 array for 3D lattice obtained from the low- and high-RH
block—which are denoted here as low- and high-RH activation,
respectively—are concatenated in parallel and are fed into the
generator’s output layer, namely, a convolution layer that contains
1 channel, uses a 3 x 3 filter size and a ‘binary sigmoid’ activation
function, and outputs a 20-by-20 prediction gird {n;},o, 5, for 2D
lattice or a 10-by-10-by-10 prediction grid {n;},ox10x10 for 3D
lattice. The generator output {n;} is then fed into the differentiable
simulator for validation. This configuration would go through
M =100 consecutive blocks of TensorFlow-based layers (i.e., the
decomposed operations of Eq. (1) programmed in TensorFlow, see
Fig. 2) at each of the 40 RH increments to obtain the output
sorption isotherm {p,} .4 and, if needed, continue the
computation at each of the flipped 40 RH points to obtain the
desorption isotherm and the output hysteresis curve thereof

{Pw}ixsor

Preparation of the training and test sets

The training set contains 6,400,000 target sorption curves. These
curves are generated automatically from a self-defined generative
function. This function aims to produce as many as possible curves
that are monotonically non-decreasing but vary differently in
terms of trend, convexity, and value. Although this generative
curve are not real sorption isotherms, they possess most
important features of real sorption curves and cover all possible
variations of real sorption isotherms. There are different ways to
define the generative function. Here we propose one type of

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

generative function that satisfy the above requirements. This
function generates 20% ‘stepwise’ curves and 80% ‘anchor-based’
curves. According to the general classification of sorption
isotherms*>46, the ‘stepwise’ and ‘anchor-based’ generative
function enable an efficient description of, respectively, the
saturation and monotonicity feature in real sorption isotherms.
By discretizing the curve as a one dimensional 1-by-40 array
{Pw }1x 20 the ‘stepwise’ curves are designed as an array where the
first n elements =0 and the last (40—n) elements = 1, where the
integer n is uniformly randomized from 1 to 39. The ‘anchor-
based’ curves are designed by first defining an ‘anchor’ element
from the 1-by-40 array, where the anchor is the n-th element, and
we uniformly randomize its index n from 1 to 39 and its value A
from 0 to 1. Then, regarding all the elements before the anchor,
the increment D of their value between two consecutive elements
can be expressed as D=ef/>" efx A, where R is a random
number sampled from a normal distribution with a zero mean and
a standard deviation of o (here, o = 4). Similarly, regarding all the
elements after the anchor, the increment D of their value between
two consecutive elements can be expressed as
D=ef/> 4 ,efx (1 —A). Both the ‘stepwise’ and ‘anchor-
based’ curves can be generated efficiently to create a large
training set covering a diverse population of sorption curves. The
hysteresis curves are generated using the same ‘stepwise’ and
‘anchor-based’ generative function by setting the desorption
curve ahead of the adsorption curve. The stepwise desorption
curve inherits all features from the stepwise adsorption curve
except that the maximum index of zero elements is no larger than
n. The anchor-based desorption curve inherits all features from the
anchor-based adsorption curve except that the anchor value is no
less than A.

Finally, the test set are real sorption curves to evaluate the
generator’s prediction accuracy. Here, we create a test set that
contains 8769 real curves. These curves are generated by the
sorption simulator using a large set of grids (see Fig. 3b), which
includes 8769 diverse and random grid patterns. These random
grids are generated using the following strategy: By providing
some reference curves and initial grid configurations, the test set
grids are generated by varying the initial grids to approach the
reference sorption curves using particle swarm optimization—
where the grid variation rule is based on the competition between
local best grid and global best grid (see Refs. 4~%° for the
mathematical formulation), and the variations end up when the
local and global best grids become the same. Note that the end
grids are highly dependent on the selection of initial grids and
may exhibit sorption curves away from the reference curves. Since
the variation paths are biased to their initial grids—which are
generated on purpose to exhibit pronounced differences, the
grids on the different variation paths would inherently remain
distinctive in pore patterns (including different symmetries). All
these grids during the variation are collected to constitute the test
set of 8769 girds.

Training of the generator-simulator pipeline

In the training process, we first set the grid size N=20 for 2D
lattice and N =10 for 3D lattice, and the batch size = 64 for GPU
training and 256 for TPU training acceleration. Then we train the
pipeline for 100 epochs and each epoch contains 1000 batches.
The loss function used herein is the percentage loss L between the
forward output and the reference target curve (see Fig. 4b), that is,
the area between the forward curve and the reference curve. Note
that, since both the solid phase and pore phase in a porous matrix
shows some continuity within their phase, some regularization
term can be applied to the training process to simultaneously
accelerate the training and improve the prediction accuracy®.
Here, the regularization term designed for the generator output is
defined as " 37,[n;—n;|/4N* for 2D lattice and

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

H. Liu et al.

npj

v >2/iln; = n;| /6N? for 3D lattice, which panelizes a solid site
neighbored by a pore, or vice versa. In other words, the
generator's output gird would favor continuous solid phase or
continuous pore phase. Then we select the Stochastic Gradient
Descent (SGD) optimizer to minimize the loss function®*. The
momentum is set as 0.9 to accelerate gradient descent?°. The
learning rate is initially set as 1072 and gradually decays by a
factor of 0.1 after a patience of 10 epochs?°. Finally, a validation
step is applied to the pipeline after each training epoch using the
test set of 8769 sorption curves.

DATA AVAILABILITY

All data needed to evaluate the conclusions of this study are present in the paper,
and all relevant data are available from Dr. Han Liu upon reasonable request.

CODE AVAILABILITY

All codes needed to evaluate the conclusions in the paper are provided at GitHub/
SOFT-Al-Lab and available from Dr. Han Liu upon reasonable request.

Received: 31 December 2022; Accepted: 2 July 2023;
Published online: 13 July 2023

REFERENCES

1. Levchenko E. V., Dappe Y. J. & Ori G. Theory and simulation in physics for
materials applications: cutting-edge techniques in theoretical and computational
materials science. In Springer Series in Materials Science, Vol. 296, 1-286 (Springer
Cham, 2020).

2. Agrawal, A. & Choudhary, A. Perspective: materials informatics and big data:
Realization of the “fourth paradigm” of science in materials science. APL Mater 4,
053208 (2016).

3. Mauro, J. C. Decoding the glass genome. Curr. Opin. Solid State Mater. Sci. 22,
58-64 (2018).

4. Pyzer-Knapp, E. O, Suh, C, Gémez-Bombarelli, R, Aguilera-Iparraguirre, J. &
Aspuru-Guzik, A. What is high-throughput virtual screening? A perspective from
organic materials discovery. Annu. Rev. Mater. Res. 45, 195-216 (2015).

5. Sanchez-Lengeling, B. & Aspuru-Guzik, A. Inverse molecular design using
machine learning: generative models for matter engineering. Science 361,
360-365 (2018).

6. Liao, T. W. & Li, G. Metaheuristic-based inverse design of materials — A survey. J.
Materiomics 6, 414-430 (2020).

7. Noh, J,, Gu, G. H,, Kim, S. & Jung, Y. Machine-enabled inverse design of inorganic
solid materials: promises and challenges. Chem. Sci. 11, 4871-4881 (2020).

8. Liu, H., Fu, Z, Yang, K., Xu, X. & Bauchy, M. Machine learning for glass science and
engineering: a review. J. Non-Cryst 4, 100036 (2019).

9. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J.
Comput. Phys. 117, 1-19 (1995).

10. Wang, W., Axelrod, S. & Gémez-Bombarelli, R. Differentiable molecular simula-
tions for control and learning. In Machine Learning for Molecules Workshop at
NeurlPS 2020. No. 32 (2020).

11. Schoenholz, S. S. & Cubuk, E. D. JAX, M.D. A framework for differentiable
physics. In Advances in Neural Information Processing Systems. Vol. 33,
11428-11441 (2020).

12. Chen, C-T. & Gu, G. X. Generative deep neural networks for inverse materials
design using backpropagation and active learning. Adv. Sci. 7, 1902607 (2020).

13. Dan, Y. et al. Generative adversarial networks (GAN) based efficient sampling of
chemical composition space for inverse design of inorganic materials. NPJ
Comput. Mater. 6, 1-7 (2020).

14. Kingma, D. P. & Welling, M. An introduction to variational autoencoders. Found.
Trends Mach. Learn. 12, 307-392 (2019).

15. Goodfellow, I. et al. Generative Adversarial Nets. In advances in neural informa-
tion processing systems 27 (2014).

16. Kim, B., Lee, S. & Kim, J. Inverse design of porous materials using artificial neural
networks. Sci. Adv. 6, eaax9324 (2020).

17. Liu, Z, Zhu, D., Rodrigues, S. P., Lee, K-T. & Cai, W. Generative model for the
inverse design of metasurfaces. Nano Lett 18, 6570-6576 (2018).

18. Paszke, A. et al. PyTorch: an imperative style, high-performance deep learning
library. In Advances in Neural Information Processing Systems. Vol. 32, No. 4399
(2019).

npj Computational Materials (2023) 121

11

npj

H. Liu et al.

12

20.

21.
22.
23.

24,

25.

26.

27.
28.

29.

30.
31.
32

33.

34.

35.

36.

37.

38.

39.
40.
41.

42.

npj Computational Materials (2023) 121

. Griewank, A. & Walther, A. Evaluating Derivatives: Principles and Techniques of

Algorithmic Differentiation, 2nd edn. (Society for Industrial and Applied Mathe-
matics, 2008).

Abadi, M. et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Distributed Systems. In Proceedings of the 12th USENIX conference on Operating
Systems Design and Implementation 265-283 (2016).

Frostig, R., Johnson, M. J. & Leary, C. Compiling machine learning programs via
high-level tracing. In SysML Conference 2018, February 2018, Stanford, CA USA.
Hu, Y. et al. DiffTaichi: Differentiable Programming for Physical Simulation. in
International Conference on Learning Representations (2020).

Herndndez, A. & Amigé, J. M. Differentiable programming and its applications to
dynamical systems. Preprint at https://doi.org/10.48550/arXiv.1912.08168 (2020).
de Avila Belbute-Peres, F., Smith, K., Allen, K., Tenenbaum, J. & Kolter, J. Z. End-to-
End Differentiable Physics for Learning and Control. In Advances in Neural
Information Processing Systems. Vol. 31, No. 3572 (2018).

Hu, Y. et al. ChainQueen: A Real-Time Differentiable Physical Simulator for Soft
Robotics. In 2019 International Conference on Robotics and Automation (ICRA)
6265-6271 (2019).

Liu, H. et al. End-to-End Differentiability and Tensor Processing Unit Computing
to Accelerate Materials’ Inverse Design. In Machine Learning for Engineering
Modeling, Simulation, and Design Workshop @ NeurlPS (2020).

Google Cloud Tensor Processing Units (TPUs). https://cloud.google.com/tpu.
Kierlik, E., Monson, P. A., Rosinberg, M. L. & Tarjus, G. Adsorption hysteresis and
capillary condensation in disordered porous solids: a density functional study. J.
Phys.: Condens. Matter 14, 9295-9315 (2002).

Kierlik, E., L. Rosinberg, M., Tarjus, G. & Viot, P. Equilibrium and out-of-equilibrium
(hysteretic) behavior of fluids in disordered porous materials: theoretical pre-
dictions. Phys. Chem. Chem. Phys. 3, 1201-1206 (2001).

Wang, Y. E., Wei, G.-Y. & Brooks, D. Benchmarking TPU, GPU, and CPU Platforms
for Deep Learning. Preprint at https://doi.org/10.48550/arXiv.1907.10701 (2019).
Lu, T,, Chen, Y-F., Hechtman, B., Wang, T. & Anderson, J. Large-scale discrete
fourier transform on TPUs. IEEE Access 9, 93422-93432 (2021).

Huot, F., Chen, Y.-F., Clapp, R., Boneti, C. & Anderson, J. High-resolution imaging
on TPUs. Preprint at https://doi.org/10.48550/arXiv.1912.08063 (2019).

Yang, K, Chen, Y.-F.,, Roumpos, G. Colby, C. & Anderson, J. High performance
Monte Carlo simulation of ising model on TPU clusters. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis (2019).

Jouppi, N. P. et al. TPU v4: An Optically Reconfigurable Supercomputer for
Machine Learning with Hardware Support for Embeddings. In Proceedings of the
50th Annual International Symposium on Computer Architecture. No. 82, 1-14
(2023).

Liu, H. et al. Predicting the dissolution kinetics of silicate glasses by topology-
informed machine learning. Npj Mater. Degrad. 3, 1-12 (2019).

Kierlik, E,, Monson, P. A., Rosinberg, M. L., Sarkisov, L. & Tarjus, G. Capillary con-
densation in disordered porous materials: hysteresis versus equilibrium behavior.
Phys. Rev. Lett. 87, 055701 (2001).

Zhang, Y., Liu, H., Zhao, C,, Ju, J. W. & Bauchy, M. Deconstructing water sorption
isotherms in cement pastes by lattice density functional theory simulations. J.
Am. Ceram. Soc. 104, 4226-4238 (2021).

Sneddon, G., Greenaway, A. & Yiu, H. H. P. The potential applications of nano-
porous materials for the adsorption, separation, and catalytic conversion of
carbon dioxide. Adv. Energy Mater. 4, 1301873 (2014).

Sumida, K. et al. Carbon dioxide capture in metal-organic frameworks. Chem. Rev.
112, 724-781 (2012).

Boyd, P. G, Lee, Y. & Smit, B. Computational development of the nanoporous
materials genome. Nat. Rev. Mater. 2, 17037 (2017).

Nugent, P. et al. Porous materials with optimal adsorption thermodynamics and
kinetics for CO, separation. Nature 495, 80-84 (2013).

Anglin, E. J., Cheng, L., Freeman, W. R. & Sailor, M. J. Porous silicon in drug delivery
devices and materials. Adv. Drug Deliv. Rev. 60, 1266-1277 (2008).

43. Horcajada, P. et al. Porous metal-organic-framework nanoscale carriers as a
potential platform for drug delivery and imaging. Nature Mater 9, 172-178 (2010).

44. Bishop, C. M. Pattern Recognition and Machine Learning. (Springer, New York),
(2006).

45. Thommes, M. et al. Physisorption of gases, with special reference to the eva-
luation of surface area and pore size distribution (IUPAC Technical Report): Pure
Appl. Chem 87, 1051-1069 (2015).

46. Cychosz, K. A. & Thommes, M. Progress in the physisorption characterization of
nanoporous gas storage materials. Engineering 4, 559-566 (2018).

47. Christensen, R. et al. Interatomic potential parameterization using particle swarm
optimization: case study of glassy silica. J. Chem. Phys 154, 134505 (2021).

48. Wang, D., Tan, D. & Liu, L. Particle swarm optimization algorithm: an overview.
Soft Comput 22, 387-408 (2018).

49. Perez, R. E. & Behdinan, K. Particle swarm approach for structural design opti-
mization. Comput. Struct. 85, 1579-1588 (2007).

ACKNOWLEDGEMENTS

H.L. acknowledges funding from the Fundamental Research Funds for the Central
Universities under the Grant No. YJ202271. M.B. acknowledges the National Science
Foundation under the Grant No. DMREF-1922167. TPU computing time was provided
by a grant allocation from Google’s TensorFlow Research Cloud (TFRC) program.

AUTHOR CONTRIBUTIONS

Conceptualization: M.B. Methodology, Writing (review and editing): H.L. and M.B.
Investigation: H.L,, Y.L, KL. and Z.Z. Visualization H.L. Supervision: H.L, S.S., EC, P.G.
and M.B. Writing (original draft): H.L.

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Correspondence and requests for materials should be addressed to Han Liu or
Mathieu Bauchy.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

BY Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

https://doi.org/10.48550/arXiv.1912.08168
https://cloud.google.com/tpu
https://doi.org/10.48550/arXiv.1907.10701
https://doi.org/10.48550/arXiv.1912.08063
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	End-to-end differentiability and tensor processing unit computing to accelerate materials’ inverse design
	Introduction
	Results
	Numerical simulation of water sorption in porous matrices
	End-to-end differentiable reformulation of the sorption simulation
	Accuracy of the differentiable simulator
	Seamless integration of the differentiable simulator with an inverse design generator
	Training the inverse design generator by differentiable knowledge
	Training acceleration by tensor processing unit (TPU) computing
	Accuracy of the inverse design generator
	Mapping the 2D grids to 3D porous matrices
	Generalization to 3D porous matrices’ inverse design
	Inverse design of porous solids with target hysteresis behavior

	Discussion
	Methods
	Lattice density function theory (LDFT) of sorption
	Architecture of the generator-simulator pipeline
	Preparation of the training and test sets
	Training of the generator-simulator pipeline

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION

