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ABSTRACT

Distributed quantum sensing network has the potential of en-
hancing the precision in estimating a global function of local
parameters by utilizing an entangled probe, compared with
that achieved with separable probes. This advantage is of-
ten characterized as a quadratic improvement of the quantum
Cramér-Rao bound (QCRB). This argument is incomplete in
that QCRB assumes a team of all-powerful sensors that can
perform arbitrary joint measurements allowed by quantum
mechanics. An immediate question arises as to whether such
an advantage persists for isolated sensors with physically mo-
tivated constraints in their measurement strategies. In this pa-
per, we first consider local operations and classical communi-
cation (LOCC) strategies and prove that the QCRB is indeed
asymptotically attainable for arbitrary pure probe states, by
extending previous work on single-parameter estimation [1].
We further numerically analyze a more restricted scenario
where the sensors can only make independent local measure-
ments, and provide evidence that the QCRB is not informative
enough for comparing different probe states.

Index Terms— Distributed Quantum Sensing, Cramér-
Rao Bound, Local Operations and Classical Communication,
Local Measurement

1. INTRODUCTION

The study of sensing and metrology through the lens of quan-
tum mechanics was rooted in early investigations of uncer-
tainty relations in quantum statistical parameter estimation
[2—4], showing fundamental limitations of quantum measure-
ments in the ultimate achievable precision. Complementary to
the limitations was the discovery that by fully utilizing quan-
tum resources such as entanglement in the sensing physical
systems (called probes), it is possible to achieve higher pre-
cision than using separable probes [5—8], which is at the core
of a variety of applications ranging from gravitational wave
detection [9] to clock synchronization [10, 11].

Last decade has seen growing interest in understanding
the limitations and advantages of multi-parameter quantum
sensing [12-14]. Compared with the single-parameter case,

the role of quantum entanglement in estimating multiple pa-
rameters is more elusive and depends on the exact setting of
the problem [15, 16], mainly because of the difficulty in deal-
ing with incompatibility of quantum measurements arising
from the noncommutative nature of quantum mechanics [17]
and the inconsistency in how people count resources.

Distributed quantum sensing emerges as a special sce-
nario of multi-parameter quantum sensing, where a team of
sensors are located at distant nodes in a quantum network and
each parameter of interest is independently encoded through a
quantum channel that acts nontrivially only on a single node.
One usually assumes the existence of a centralized source that
can prepare a global probe state under certain resource con-
straint and transmit the probes to individual sensors. This
model of quantum sensor network was first introduced and
analyzed by Proctor et al [18]. They showed that there is no
advantage by using entangled probe states or global measure-
ments if our goal is to estimate all the unknown parameters
simultaneously. On the contrary, more interesting is the case
where we only aim to estimate a global function of the param-
eters without having to know every one of them. It is in this
case where quantum entanglement does help, as pointed out in
[18] and manifested in later work that deals with similar and
more concrete settings including atomic sensors [19, 20], lin-
ear optical network [21], Gaussian continuous-variable sys-
tems [22-24], etc.

Most work in this line of research relies on the mathe-
matical tool of quantum Cramér-Rao bound (QCRB) [25,26],
a generalization of the Cramér-Rao bound (CRB) from clas-
sical statistical estimation theory [27]. The merit of using
QCRSB is that it provides a precision lower bound that only
depends on the quantum state being measured, regardless of
what measurement is performed, hence the optimization of
the probe state and that of the measurement procedure can be
decoupled. Moreover, in many cases including ours, it can be
proven that this lower bound can actually be asymptotically
attained by some quantum measurement [14, 28,29]. How-
ever, there is no guarantee in the experimental feasibility of
the measurement. In principle it could be the case that ar-
bitrarily complicated measurement that projects onto highly
entangled subspaces is needed to saturate QCRB. Previous
work got around this issue in an ad-hoc way: first optimizing
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QCRB over the probe state, then devising a practical mea-
surement strategy, and finally checking that the measurement
strategy indeed saturates the optimized QCRB. This approach
worked because the sensing problems considered were well-
behaved and shared nice symmetry. When the local param-
eters contribute unevenly to the global function, or when the
probes are transmitted with noise [30,31], it becomes unclear
whether it is still reasonable to optimize QCRB anyway in
the first step and then hope for finding a feasible saturating
measurement.

Motivated by the above observation, it is important to
understand whether QCRB is still an informative bound in
distributed quantum sensing with geographically constrained
measurement strategies. First, we look at measurements that
can be realized by local operations and classical communi-
cation (LOCC) [32], which is usually considered as free re-
source in entanglement theory. In this case, we prove that
QCRB is tight for any pure probe state. Next we consider the
more restricted local measurement (LM) strategy. We resort
to numerical methods to identify the looseness of QCRB, by a
case study of two metrologically important probe states with
the existence of local decoherence.

2. DISTRIBUTED QUANTUM SENSING NETWORK
AND QUANTUM CRAMER-RAO BOUND

We consider a network of s distributed sensors with identical
underlying finite-dimensional Hilbert space H. A centralized
source prepares a multipartite quantum state pg = [1g) (¢o|
of s particles, then transmits them to the sensors. Each parti-
cle k undergoes a local quantum channel Eéf) before reaching
the sensor k, hence the final probe state becomes

po = <® 55’,?) (po) » )
k=1

where 6 = (61,...,05) € R® denotes the array of unknown
parameters that are independent of each other, meaning there
are no prior correlations between the values of the parameters.

We are interested in estimating a linear function g(0) :=
v 10 of the parameters, where v € R? is a known vector
that is normalized such that ||v||2 = 1 to fix irrelevant scales.
There is no loss of generality by assuming linearity because
we can approximate a general smooth function by a linear one
if we already have sufficiently good a priori knowledge about
the true values of the parameters [20].

In order to estimate g(8), the sensors perform a positive
operator-valued measure (POVM) M = {E, }_ on pg, yield-
ing classical statistical outcome x according to the probability
distribution [32]

pme(r) =TrlpeEyl. 2

We point out here that we limit our discussion to the asymp-
totic regime, which means that the above process is repeated

v times and we care about the asymptotic behavior of the
protocol in the limit ¥ > 1. From the observed data X =
(z™,...,2")) we then construct an estimator §(X).

The figure of merit that we aim to minimize is the mean
squared error

mse(3) = Eo [(3(X) — 9(8))°]. )

where g is a short-hand notation for Ey . . Note that
M, 08

normally in the design of a sensing protocol one needs to op-
timize over three ingredients: the initial probe state |1g), the
measurement M, and the estimator §. In this paper, we are
primarily interested in the measurement strategy, hence we
will assume |1p) is given. As for the estimator, we follow the
standard approach in statistical estimation theory by imposing
additional constraint that g be locally unbiased (abbreviated
Lu.). That is, the following should hold at the ground truth

value of 6:
{ Eg [9(X)] = 9(6)

VoEo [§(X)] = Vg(6) @

It is known that for any statistical model p?”, any lL.u. estima-
tor satisfies the classical Cramér-Rao bound (CRB):

1 1
mse(g) > o (Vg)" Folpe)™'Vg = ;UTFC(pe)_l’U, )

where I denotes the classical Fisher information matrix de-
fined by Fo(pe)re = Eu~pe [(Ok Inpo(z)) (OrInpe(z))],
Yk, ¢ € [s], where O, = 0/00),. It is allowed that F be sin-
gular as long as its kernel space is orthogonal to v, then F; !
means the pseudo-inverse in general. A noteworthy property
of CRB is that for large v it is asymptotically saturable, for
example, by the maximum likelihood estimator [27]. There-
fore, we are left with the minimization problem:

1
Inin/i\ﬂnize F(M) := v Fo(prme) v (6)
v

The mere requirement that M be a valid POVM leads to
the famous matrix inequality Fo(pa,e) < Fo(pe). Here
Fq is the quantum Fisher information matrix [26] defined
by Fo(pe)re := 3 Tr[po{Ly, Le}], Vk, £ € [s], and Ly, is
the kth symmetric logarithmic derivative (SLD) operator im-
plicitly defined by dxpg = 3 {Lk,pe}, where {4, B} =
AB + BA denotes the anticommutator of two operators. This
gives rise to a measurement-independent lower bound of the
minimization problem in (6), the QCRB:

. 1 _
min 7 (M) > ;’UTFQ(pg) v, (7)

In the noiseless case where the parameter-imprinting
channels Sé]:) are unitary, pg = |tg) (¥e| is a pure state, then
one can show that the above QCRB is actually tight! [14,28].

UIn fact in the pure model one does not need the assumption that 6;,s are
encoded locally to show the tightness of QCRB.
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However, if we restrict M to range only over LOCC or LM,
then the gap between the left- and right-hand sides of (7) has
not been well-studied.

3. RELATED WORK

As mentioned above, our work is motivated by literature
showing the quantum advantage of estimating a linear func-
tion of local parameters [18—23]. Rubio et al [33] considered
the more general task of simultaneously estimating multiple
linear functions, in both the asymptotic and non-asymptotic
regime, but with their analysis limited to qubit sensors that
are correlated in a symmetric way. Other works also exist that
discuss the effects of noise [34] and remedies through error
correction [35]. We do not attempt to reach such generality
in this paper but stick with the simplest model of estimating a
single linear function with many repetitions of the protocol.

Our result involving LOCC measurement strategies di-
rectly builds upon previous work by Zhou et al [1]. There the
authors proved, among others, that one-way LOCC POVM
is always QCRB-saturating for pure states parametrized by a
single parameter. We essentially generalize the “single pa-
rameter” assumption to “single linear function”. On the other
hand, for mixed states, one-way LOCC POVM falls short of
attaining the QCRB, even in the single-parameter case, with
the Werner state being a counterexample [36].

It is also worthwhile to mention another thread of research
[37,38] that introduced a hierarchy of measurement-induced
Fisher information, which is essentially the maximum clas-
sical Fisher information achievable by a restricted family of
POVMs. Compared with our work, theirs focused on bipar-
tite single-parameter quantum states and put special emphasis
on the distribution and transfer of Fisher information among
subsystems as well as its relation to other measures of non-
classical correlations such as quantum discord.

4. DISTRIBUTED QUANTUM SENSING VIA LOCC

Let’s consider the LOCC measurement strategies. In this
model, each sensor implements a local POVM whose el-
ements may depend on the measurement results broadcast
from other sensors in the previous rounds. A further restric-
tion is the so-called one-way LOCC measurement, which
takes a simple form

T2|T Ts|T1,e,Ts—1"

®

where {E(k)

. } is a POVM acting exclusively on
ElT1,. o 2r—1 .

the kth sensor, for each k and each value of 1, ..., x,_1. We
are able to show the following result by a reparameterization

argument.

Theorem 1 For any pure probe state pg = |ig) (Vg|, the
QCRB in (7) for estimating a linear function g(0) := v'0

of the unknown parameters 0 can be saturated by a one-way
LOCC measurement.

5. DISTRIBUTED QUANTUM SENSING VIA LM

Sometimes even LOCC is unrealistic due to the lack of reli-
able quantum memory—the quantum state stored in the sub-
system quickly decoheres before the classical message from
other parties has been received. This motivates us to study
the most restrictive scenario where the sensors can only per-
form local measurements whose basis choices are indepen-
dent of each other. Mathematically this means we can write
the POVM elements as

Ez=EV®E®?®...0 EY. ©9)

Even though we cannot identify a general criterion for
LM strategies to saturate the QCRB, we give numerical evi-
dence that when the noise in the transmission channel is non-
negligible, the QCRB can be misleading and it may be non-
trivial to find a good LM strategy.

To simplify our discussion, we consider qubit probes—each
particle is a two-level system—that are originally prepared
in a given state |1)g) and then each suffers from a local de-
polarizing noise channel with efficiency 7 before reaching
the corresponding sensor. The unknown parameter 6y, is im-
printed onto the state via a local unitary rotation that we take
to be along the z axis. We assume that noise only exists in the
resource distribution process but not during the measurement.
Hence, we can calculate the final pre-measurement state:

po = UsNZ* (|vo0) (vo|) U§, (10)

where Up = @} _, 79" 0/2 and N, (o) == no + 21
Since the parameters are encoded locally, we can always off-
set our prior knowledge to be centered at & = 0, and hence
we will only consider local estimation at that point. More-
over, the global function is chosen to be the (scaled) average

-
: _ (1 1
of the parameters, i.e., v = (ﬁ’ cee ﬁ) .

For |¢g), we pick two metrologically important states,
the Greenberger—Horne—Zeilinger (GHZ) state |GHZ) =

% (|0>®S + \1)®8> and the symmetric Dicke state ’D§/2> =

1 ®s/2 ®s/2
\/@ Eperm |+> | >
over all permutations of the particles and |+) are the eigen-
states of the Pauli X operator [8]. These two states have
been shown to offer an advantage in estimating the average of
the parameters, yielding a mean squared error that is s-times
smaller than separable probes. However, it is also established
that under local independent noise, this advantage quickly
degrades to at most a constant-factor improvement [30,31].

Before showing our numerical results, it is important to
point out that in the lossless case, both the GHZ state and

(for even s) where the sum is
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the Dicke state admit a simple QCRB-saturating LM strat-
egy, where each sensor makes a projective measurement in
the {|4),|—)} basis. In fact, this measurement basis is opti-

al and quantum CRB

0 a4 a2 3n/4 n
P

(a) GHZ state

]
4
O
z
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S
S
=]
51
<

0 a4 a2 3n/4 z
¢

(b) Dicke state

Fig. 1. Classical CRB (curved lines) with respect to the az-
imuthal angle ¢ of local projective measurement basis on the
equator of the Bloch sphere, for (a) GHZ state with 4, 5, 6
qubits and (b) symmetric Dicke state with 4, 6, 8 qubits. The
noise level is taken to be 7 = 0.8. The corresponding QCRBs
are also plotted as horizontal lines.

mal not only at & = 0 but also simultaneously for any 6.
Thanks to the permutation symmetry of |y}, v, and our
noise model, we can focus on LM strategies that are uniform

among different sensors, i.e., {Eéll)} =...= {Eg(cs)} .
T Ts

Since the classical Fisher information matrix Fc(pag,e) as a
matrix function of the POVM M is monotonic under post-
processing of the measurement outcome [26], it follows that
we can restrict to rank-one POVMs, i.e., where each element

is of rank 1 Eg(cl,:) x e;’?> <e;(v]f;) ‘ Another useful observation

is that Pauli Z measurement on both the GHZ state and the
Dicke state is insensitive to unitary rotation around the z axis,

hence we make the further restriction that the projection basis

‘e;’;’)> lies on the equator of the Bloch sphere. Indeed, we

numerically find that the sensitivity decays very quickly when

(k)

the direction of |eg, > deviates the equator.

In Fig 1 we plot the classical CRB v Fc:(pat.0) ™ 0] ,_,
with respect to the azimuthal angle ¢ of the projection basis
when we perform local projective measurement {IIy, I — IIp}
where IIy = |eg) (eg| and |eg) = % (|0) + €™ |1)). No-
tably, the standard {|+) ,|—)} basis employed in the lossless
case becomes useless, and we need to carefully adjust the
azimuthal angle ¢ for achieving the optimal sensitivity. This
is more obvious in the GHZ state, where we find that the
optimal value of ¢ is an odd multiple of 7. When s becomes
large, it becomes essential to ensure high precision on ¢ for
the measurement apparatus to achieve meaningful estimation
performance. From this perspective, we find that Dicke state
is more advantageous than GHZ state for noisy sensing in
that the former has a larger span of values of ¢ that are useful.
Nevertheless, in both cases, for the class of measurements we
consider, we observe that the QCRB cannot be saturated and
we need to look into more detail to understand the metrologi-
cal usefulness of a general mixed probe state. Our numerical
results are generated using the QuTip Python package [39].

6. CONCLUSION

We have considered the task of estimating a linear function
of local parameters in a distributed quantum sensing network
and questioned the achievability of QCRB for a group of
geographically separated sensors. We answered the question
in the positive for any pure probe state when the sensors
can cooperate using LOCC. However, when taking into ac-
count noise in the resource distribution process and allowing
only independent local measurements, we gave numerical
evidence that QCRB is not an informative measure of the
metrological usefulness of the probe states. This calls into
the search for a tighter estimation bound that is inherent to lo-
calized measurement strategies. More realistic noise models
including those that occur in the measurement should also be
considered in a practical setting. Another future research di-
rection is to analyze the same question in the non-asymptotic
regime, where it is also interesting to understand the achiev-
ability of the Bayesian versions of the QCRB.
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