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ABSTRACT

Memory latency and bandwidth are significant bottlenecks in de-
signing in-memory indexes. Processing-in-memory (PIM), an emerg-
ing hardware design approach, alleviates this problem by embed-
ding processors in memory modules, enabling low-latency memory
access whose aggregated bandwidth scales linearly with the number
of PIM modules. Despite recent work in balanced comparison-based
indexes on PIM systems, building efficient tries for PIMs remains
an open challenge due to tries’ inherently unbalanced shape.

This paper presents the PIM-trie, the first batch-parallel radix-
based index for PIM systems that provides load balance and low
communication under adversary-controlled workloads. We intro-
duce trie matching—matching a query trie of a batch against the
compressed data trie—as a key building block for PIM-friendly index
operations. Our algorithm combines (i) hash-based comparisons
for coarse-grained work distribution/elimination and (ii) bit-by-
bit comparisons for fine-grained matching. Combined with other
techniques (meta-block decomposition, selective recursive replication,
differentiated verification), PIM-trie supports LONGESTCOMMONPRE-
FIX, INSERT, and DELETE in O(log P) communication rounds per
batch and O(I/w) communication volume per string, where P is
the number of PIM modules, [ is the string length in bits, and w is
the machine word size. Moreover, work and communication are
load-balanced among modules whp, even under worst-case skew.
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1 INTRODUCTION

As data-intensive applications have become increasingly prominent
in the past decades, the ever-widening gap between computation
speed and memory access speed has made data movement the dom-
inant cost and main bottleneck in modern systems. This problem,
often referred to as the memory wall [65], can now be potentially
solved by emerging processing-in-memory technologies [42].
Processing-in-memory (PIM), a.k.a. near-data-processing (NDP),
enables computation to be executed on computation units embed-
ded in memory modules. Instead of fetching data through the mem-
ory and cache hierarchy to the CPU as in traditional von Neumann
systems, PIM pushes computation to the memory modules, reduc-
ing the energy consumption of data movement and leveraging
the performance gains arising from having aggregated memory
bandwidth that scales linearly with the number of modules.
Although the idea of PIM dates back to the 1970s [56], it is now
re-gaining research attention due to the development of 3D-stacked
memory [28], which enables the production of real PIM systems. At
least hundreds of academic works on PIM architecture design have
been published (see the references of [5, 32, 42]), while real-world
commercialized PIM systems have also been launched [34, 58].
Most of the prior work focuses on systems improvements, in
applications such as databases [17, 35], genome analysis [3, 64, 67],
graph processing [1, 39, 43, 51, 69], neural networks [27, 33, 60, 61],
security [2, 25, 38], and matrix multiplication [23, 66]. Very few
works design PIM-friendly data structures from an algorithmic
view [18, 19, 40], or provide good theoretical guarantees. The
Processing-in-Memory (PIM) Model [29] is the latest (and maybe
the only) model for analyzing parallel algorithms on PIM systems.
This paper focuses on the design of PIM-friendly radix-based
indexes that repeatedly perform parallel execution of a batch of
queries/operations (batch-parallel) and support keys of variable
length bit-strings. Radix-based indexes support LONGESTCOMMON-
PreFIx (LCP), SUBTREE QUERY, INSERT and DELETE operations.
Radix-based indexes (radix trees, tries) are important search
structures introduced in textbooks [48], and widely used in linux
kernels [45, 46], in-memory storage [68], and IP routing [54, 63].
They are the only family of search structures designed to inherently
support variable-length keys. Moreover, they are often faster in
practice than other search structures on shared-memory machines
[6, 16, 36]. A recent convincing example is from SetBench [4], the
most efficient open-source implementation of comparison-based
trees. In their latest evaluation [55], radix-based ART-OLC [37]
outperforms all other comparison-based structures in most cases.
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A h Space IO rounds (per batch) Communication (per operation, in words)
pproaches (in words) LCP INSERT/DELETE ~ SUBTREE LCP INSERT/DELETE SUBTREE
Distributed Radix Tree | O(Lp/w + np) O(l/s) O(l/s) O(np) O(l/s) O(l/s) O(l/s+Ls/w+ng)
Distributed x-fast trie* O(Lp) O(logl) O(logl) O(np) O(logl) o) O(Ls)
PIM-trie O(Lp/w +np) | O(logP)* O(log P)T O(log P)* | O(l/w)* o(l/w)t O((I +Ls)/w +ng)*

Table 1: Space, IO rounds, and communication of different approaches on the PIM Model. Key parameters are defined in Table 2.
In addition, [ is the bit-string length of the given operation, and s is the span of the radix tree (i.e., the fanout is 2°). (#) denotes
that the structure supports only fixed-sized strings with [ = O(w) bits, in which case [/w = O(1). A SUBTREE query returns a trie
S, with Lg and ng as defined in Table 2. (*) denotes a whp bound (with high probability in P). (1) denotes an amortized bound.

Nevertheless, because the shape of a radix-based index depends
on the set of strings being stored, it can be highly imbalanced
with height up to the length of the longest string. This creates two
main challenges for adapting existing radix trees or tries to the
PIM setting: (C1) how to map their nodes/edges to PIM modules in
a way that achieves good load balance across the modules, while
minimizing the communication required to answer queries (as noted

n [29], there is an inherent tension for PIM between load balance
and low communication), and (C2) how to avoid serial bottlenecks
when dealing with long strings. Table 1 (first two rows) summarizes
the performance of taking traditional radix trees and x-fast tries
and randomly hashing them to PIM modules, in terms of the space
for each data structure, the number of communication rounds (IO
rounds), and the total communication, for various operations (LCP,
INSERT/DELETE, SUBTREE)—full details in Sections 2 and 3. The
family of fast tries (x-fast tries [62], y-fast tries [62], z-fast tries [8])
are explicitly designed to address challenge C2, but x-fast tries and
y-fast tries support only fixed-length keys, and how to address
challenge C1 for z-fast tries is still an open problem.

To address these challenges, we present PIM-trie, a skew-resistant
batch-parallel radix-based tree that has good asymptotic guaran-
tees in the PIM Model (Table 1, third row). It is not only the first
radix-based index designed for PIM systems, but also the first radix
tree that asymptotically benefits from batch-parallel processing, for
worst-case data and query skew. It builds upon the idea in z-fast
tries of combining both a radix tree and a hash table, addressing
challenge C1 and other challenges.

We introduce trie matching as the core idea in our algorithm
design, which exploits the benefits of batch-parallel processing.
The set of strings in the index is stored on PIM modules as a data
trie, a hybrid of a radix tree and hash values to further exploit PIM
parallelism. A query trie is constructed upon the batched operations,
and the matched trie information between this query trie and the
data trie is vital in all operations. The tree component of the data
trie is decomposed into blocks. Each block is a sub-trie stored on
the same PIM module, while distributed meta-blocks are used to
organize the block metadata. We give a selective recursive replication
of meta-blocks into child meta-blocks, to ensure load balance and to
further reduce communication without increasing the space bound.

To resolve potential false-positive query results due to hash
collisions, we introduce a verification procedure. It does not increase
our asymptotic bounds due to our differentiated handling of critical
blocks, whose number proved to be bounded, and non-critical blocks
handled by the attached last bytes.

In summary, our PIM-trie supports batch-parallel operations
(LoNGESTCOMMONPREFIX, SUBTREE QUERY, INSERT and DELETE) on
variable-length bit strings. These operations have efficient bounds

Notation Definition

P Number of PIM modules
M CPU cache size (in words)

w Word size (in bits); values are O(w) bits

N Total size of data to be stored (in words)

nr Number of key-value pairs to be stored in trie T

Lt Aggregate length of bit-string edges in trie T (in bits)
or Size of compressed trie T (in words);

Note: QO = O(Lt/w + nT)
kr Average length of bit-string keys in trie T (in bits)

krm Maximum length of bit-string keys in trie T (in bits)

Itm Maximum edge length in trie T (in bits)

Xp/Xg/Xpm Metric X of the data/query/match trie

Kp Block size upper-bound (in words)

Ky  Meta-block size upper-bound (in #hash_values)
Ksm  Meta-block size lower-bound (in #hash_values)

Table 2: Definition of all notations.

in the PIM Model even under adversary skew of query and data,
outperforming PIM-based radix trees and fast tries.

The paper is organized as follows. Section 2 reviews the PIM
Model and other preliminaries. In Section 3, we discuss the most
closely related work, listing some of the building blocks we used
from them and addressing their drawbacks in the settings of PIM-
friendly radix-based trees. Section 4 describes the key techniques of
PIM-trie and their analyses in the PIM Model. Section 5 introduces
the procedures of the operations supported by PIM-trie and their
asymptotic bounds. Section 6 presents conclusions.

2 PIM MODEL

We use the Processing-in-Memory Model (PIM Model) [29] as
the theoretical abstraction of PIM systems. Prior work [30] has
shown experimentally that the PIM Model is a good match for
the well-studied commercial PIM system from UPMEM, which is
an example of a class of PIM systems referred to as bank-level-in-
memory-processing (BLIMP) [20]. We believe that the PIM Model
is a good match for BLIMP systems and other near-data-processing
(NDP) systems, although not a good match for processing-using-
memory systems [42, 49] (because such systems can perform only
a few operations in the memory module, not arbitrary code).

The PIM Model consists of a host CPU side and P PIM modules
(the PIM side). The CPU side is a multicore processor with a shared
on-chip cache of M words. Each PIM module combines a small
memory of O(N/P) words (where N denotes the problem size),
called the PIM memory, and a weak but general-purpose compute
unit called the PIM processor. The host CPU can load programs
to PIM modules, launch them, and detect their completion. The
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host CPU can access both its on-chip cache and the local memory
of PIM modules, but each PIM module can access only its own
PIM memory. The host CPU communicates with PIM modules by
directly reading/writing their respective local memories in parallel.
The model assumes that programs run in BSP-like synchronous
rounds [59], where at each round, the CPU side can (1) perform local
computations, (2) write a buffer of data to each PIM module’s local
memory, (3) launch PIM programs and wait for their completion,
and (4) read a buffer of data from each PIM module’s local memory.

To analyze algorithms with both CPU and PIM sides, the model
combines both shared-memory and distributed metrics. For local
computations on the multicore CPU, it assumes a binary forking
model [13] with a work-stealing scheduler [15] and measures the
CPU work (total number of instructions of all cores) and CPU depth
(work on the critical path). For CPU-PIM communication, it mea-
sures the number of IO rounds and the IO time, which is the max-
imum number of word-sized messages to/from any PIM module.
For PIM programs, it measures the PIM time, which is the maxi-
mum work on any one PIM processor. For algorithms with multiple
rounds, the maximums are derived separately for each round, and
summed across rounds. Because both IO time and PIM time con-
sider the maximum across all PIM modules, it is critical to design
algorithms that ensure good load balance among PIM modules,
even under adversarially chosen (skewed) workloads.

DEFINITION 1 ([29]). An algorithm is PIM-balanced if it takes
O(W/P) PIM time and O(I/P) IO time, with W and I, respectively,
the sums of PIM work and communication across all P PIM modules.

In other words, each PIM module asymptotically performs an
equal fraction of the total work and total amount of communication.
In this paper, we will bound the total communication and prove
PIM-balance whp, thereby bounding the IO time. We frequently use
the following weighted balls-into-bins lemma to prove PIM-balance:

LEmMMA 2.1([29,47]). Placing weighted balls with total weight W =
>, w; and each w; < W/(PlogP) into P bins uniformly randomly
yields O(W /P) weight in each bin whp.

3 RELATED WORKS
3.1 Tries and Variants

Trie. Tries are tree structures that store key-value pairs with bit-
string keys. All descendants of an inner node in the tree share a
common prefix formed by the path to this node. When searching
through a trie, an inner node decides which child to traverse based
on the query key. A binary trie, for instance, determines whether
to go to the left or right child based on each bit of the query key.
Binary tries do not necessarily perform well, since their heights
are equal to the key length, k, in bits. Patricia tries [41] introduce
the path compression technique, which reduces the tree height by
omitting nodes with only one child and thus compressing the paths.
Radix Tree. Radix trees (or compressed tries) allow each node to
represent s bits of a key instead of just one. They also use path
compression. Each inner node can support an array of 2° child
pointers, and an s bit chunk of the key is used to index into each
inner node when querying. The s here is called the span. The tree
height is reduced to at most k/s. However, the 2°-sized child array
is often not fully utilized in practice, causing space inefficiency.
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Adaptive radix trees (ARTs) [36] resolve this problem by dynam-
ically adapting the node structure with a variable array size based
on the number of children, enabling both large span and good space
efficiency. The worst-case space overhead is proved to be a constant
number of bytes per key-value pair for arbitrary long keys.

Height optimized tries (HOTs) [10, 11] introduce another solu-
tion that dynamically varies the number of bits considered at each
node and introduces compound nodes, which enable a consistently
high fanout and thereby good cache efficiency. However, there is
no nontrivial bound on the height of a compound tree.

Fast Trie. Fast trie is another family of tries that leverage hashing to
achieve logarithmic query costs relative to key length. The earliest
work on x-fast tries [62] constructs hash tables on each level of the
original binary trie. Meanwhile, each inner node in the trie that
does not have a left (right) child stores a pointer to its predecessor
(successor) leaf node. When querying, the x-fast trie carries out a
binary search on the query string to find whether a prefix string
exists in the hash table on the corresponding level. For a string with
length k, this binary search returns the longest prefix as well as
predecessor/successor queries in O(log k). However, the x-fast trie
takes O(nk) space as well as O(k) update cost. The y-fast trie [62]
was designed to reduce these costs. Buckets of comparison-based
indexes with size ©(k) are constructed near the leaves, and x-fast
tries are used only in the top levels to index into the O(n/k) buckets.
In this way, y-fast tries achieve O(n) space and O(log k) update
cost, while keeping O(log k) query cost, for fixed-length keys.
The dynamic z-fast trie [8] was proposed to support arbitrary-
length key strings. For machine word size w, it can handle strings
of length up to 2%, and queries/updates of key x are supported in
O(|x|/w + log |x|) time and O(|x|/B + log |x|) I/Os (in the cache-
oblivious model [21]). The key mechanism is fat binary search [7].

3.2 PIM-Friendly Indexes

Most indexes today are bottlenecked by memory bandwidth. Previ-
ous works try to overcome this bottleneck with the large aggregated
memory bandwidth of PIM modules. However, the design of the
index needs to be reconsidered to make effective use of many inde-
pendent PIM modules. Two key challenges must be considered: (1)
the algorithm should have low CPU-PIM communication, otherwise
it will hit the memory wall like traditional algorithms for non-PIM
indexes, and (2) the algorithm should have balanced communica-
tion, work, and space requirements across PIM modules, otherwise
any stragglers will slow down the whole system. We divide previous
PIM-friendly indexes into two categories, as follows.

Range-partitioned Indexes. Some prior works utilize PIM by
using range partitioning [18, 19, 40]. The key space is divided into
disjoint key ranges using a small set of separator keys that fit into
the host CPU cache. Elements in the key ranges are then partitioned
among PIM modules. The separators are managed by the CPU.

This type of index achieves low CPU-PIM communication—
constant per element for both point and range operations—because
after local CPU lookups, the operations are directly sent and exe-
cuted by the corresponding PIM module. A limitation of this so-
lution, however, is the load imbalance among PIM modules under
skewed workloads. In the worst case, all queries target the key range
of a single PIM module, serializing the entire batch of queries.
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Skew-resistant Indexes. To solve this problem, two prior ap-
proaches focus on the load imbalance issue under skewed work-
loads [29, 30]. Both solutions build a batch-parallel PIM-optimized
skiplist for integer keys that support operations with both accurate
keys (get, update, insert, delete) and inaccurate keys (predecessor,
range query). They first randomly distribute skiplist nodes to PIM
modules for skew resistance, then horizontally divide the index into
multiple layers and use different replication policies in each layer
to reduce communication. The PIM-tree data-structure [30], for ex-
ample, is a three-layer comparison-based index for PIMs. It uses full
replication in the top layer, a partial selective replication method
called shadow subtrees in the middle layer and purely distributed
storage in the bottom layer. This solution is not readily applicable
for tries, however, because tries can be arbitrarily unbalanced.

3.3 Building Blocks

Although the approach for PIM-trees [30] cannot directly be used
for tries, two key ideas—push-pull search and selective replication—
can be adapted, so we describe them here in more detail.

Push-Pull Search. Push-Pull Search is introduced to avoid imbal-
ance among PIM modules, as randomly distributing nodes in a tree
does not guarantee load balance without further design. In tradi-
tional non-PIM skip lists, point queries are executed by pointer
chasing from root to leaf, forming a search path. A straightforward
but inefficient query algorithm for PIM is to arbitrarily distribute
the nodes among the PIM modules and visit them one by one along
the search path by remote accesses. In addition to being commu-
nication inefficient, this approach suffers from load imbalance in
skewed workloads: many queries can share nodes on their search
paths, causing imbalance across PIM modules. For example, prede-
cessor queries with different keys but the same answer will have
exactly the same search path, causing contention on every node.
In Push-Pull search, this straightforward algorithm is called the
Push method. The Pull method is then introduced to alleviate the load
imbalance: when the number of queries to the same node exceeds a
fixed number, the node is fetched to the CPU side and comparisons
are executed on the CPU side instead. The combination of the
Push and Pull methods guarantees load balance for any workload,
although by itself this approach does not reduce communication.

Selective Replication. Selective replication is a replication strat-
egy used in PIM-based balanced search trees, guaranteeing load-
balance and constant communication per tree search. For each of
the selected randomly-distributed inner nodes in a PIM-based tree,
its entire subtree is replicated and stored on the same PIM module
as the node. When a search query reaches this inner node, all fur-
ther searching downwards can be carried out locally on the same
PIM module, avoiding any further pointer chasing across modules.
Selective replication is applicable only when the subtree(s) can fit
into the local memory of a single PIM module.

The primary benefit of selective replication is that it guarantees
load balance when combined with Push-Pull search. When there
are few searches to a subtree, these queries are pushed through the
selective replicas and only constant communication is needed per
search. When the number of searches on a subtree is sufficiently
large and can cause load imbalance if all executed by the same
replica, the node on the current level is pulled to the CPU for
searches to proceed. Selective replicas are used in the nodes on the
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next layer if the search distribution is relatively balanced; otherwise
nodes are recursively pulled. This pulling incurs only amortized
constant communication per query.

Applying selective replication to all nodes in the bottom log P
levels of a balanced tree would increase by a ©(log P) factor both (i)
the space and (ii) the work required to update the replicas under in-
sertions/deletions. Instead, PIM-trees do not replicate their bottom
O(loglog P) levels. This guarantees linear space, no asymptotic
increase in insertion/deletion costs, and O(loglog P) IO rounds.
3.4 Limitations of Prior Work
We cannot simply use algorithms from prior PIM-friendly indexes
to get ideal tries. Range-partitioning indexes are not suitable for
skewed workloads because they suffer from severe load imbalance.
Techniques in prior skew-resistant indexes cannot be applied to tries
directly, because they require a balanced tree with (i) limited height
and (ii) a constant factor decrease in size from the bottom level
leaves to the top level root. Specifically, as tries are not balanced,
they cannot be horizontally divided into layers with decreasing
size bounds. Directly applying the PIM-tree replication strategy
can cause a factor of P (or even n) space amplification.

Deploying prior radix-based indexes on a PIM system is also
non-trivial. Table 1 illustrates the CPU-PIM communication bounds
for queries by different approaches, showing that simple transfor-
mations of traditional indexes fail to reach competitive bounds. The
first approach is to build a PIM-friendly radix tree by distributing
tree nodes uniformly randomly to PIM modules, in order to miti-
gate load imbalance. The CPU-PIM communication required by this
approach, however, is not smaller than the CPU-Memory communi-
cation for traditional in-memory radix trees, providing no benefits
for having PIM modules. Moreover, querying a string of [ bits can
take O(l/s) words communication. This bound is worse than ours
because the radix span s must be several times smaller than w, since
inner nodes support 2° child pointers. The number of IO rounds
is also higher. The second approach is to adapt x-fast tries to PIM
systems by using PIM hash tables [30], but such tries can support
only integers of I = O(w) bits and require O(I) space (in words)
per integer. We could reduce space consumption to O(I/w) words
if an efficient distribution strategy were proposed for the buckets
in y-fast tries, but y-fast tries still support only integer keys. The
z-fast trie algorithm is a serial algorithm with good bounds in both
work and space by combining a radix tree and a hash table. We are
motivated by this combination, and realize that a hash table can act
like a load distributor that parallelizes the workload to utilize PIM
modules. This new use does not exist in serial z-fast tries. Also, all
these algorithms have bad IO rounds bounds for SUBTREE queries.

4 OUR APPROACHES

Overview. PIM-tries are batch-parallel skew-resistant PIM-friendly
binary radix trees supporting LONGESTCOMMONPREFIX (LCP) queries,
INSERT, DELETE, and SUBTREE QUERY for keys of arbitrary length
bit-strings. Being a batch-parallel algorithm, PIM-tries take a batch
of same-type operations as input, and execute them in parallel
as in [30, 50]. Minimum batch sizes are required for load balance,
and batch sizes are assumed to be O(M) so that a batch fits in the
CPU cache. Motivated by radix trees, fast tries, and skew-resistant
indexes, we design PIM-tries with three key optimizations: (1) a
new execution layout to avoid replicated computation in the input
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batch, as we build a query trie upon the queried keys then do paral-
lel lookup for the entire query trie; (2) using hash value comparisons
for parallelism, load distribution, and work elimination; and (3) a
hash value manager supporting effective hash value comparison
by a recursive decomposition strategy over dynamic tries.

The hash value comparison in PIM-tries may generate false
positives in the case of hash collisions. The collision probability can
be reduced by using more bits while hashing; we also introduce a
verification process to eliminate false positives.

Basic Structures and Terminology. Before introducing PIM-tries,
we clarify the underlying trie structure and terminologies used. We
use a binary radix tree (i.e., a binary compressed trie) as the basic
structure in our paper. The term "trie" refers to a binary radix tree
rather than its standard definition, an uncompressed k-ary search
tree, for simplicity. For a standard radix tree storing n (key, value)
pairs, path compression omits all nodes with only one child except
those being the end of a key, leaving only O(n) nodes and edges in
total. We call these nodes compressed nodes, and edges compressed
edges as they remain after path compression. A compressed node
either has two children, or is the endpoint of a stored key, or both.
Compressed nodes do not represent all prefixes stored in a radix
tree, and those not included are also valid prefixes required for LCP,
INSERT, etc. We introduce hidden nodes to represent these implicit
prefixes. There can be multiple hidden nodes on each compressed
node. Combining both types of nodes, we have a bijection between
all nodes and all valid prefixes. The node depth of a node is the
length of its represented string (in bits). The word “node” refers to
both types of nodes unless explicitly specified.

All compressed nodes/edges physically exist in PIM-tries and are
each referred to by a (PIM module ID, local memory address) pair
(called a PIM address). Every node has pointers to all its adjacent
edges, and vice versa. Hidden nodes do not exist physically, so we
refer to them by pairing the address of its host edge and its position
on the edge (in bits). The node representing the key of a (key, value)
pair holds the value (assumed to take O(1) words) locally.

Although nodes and edges are distributed in CPU and PIM mod-
ules, pointers between them are never remote pointers, because
PIM-tries always store a trie at CPU or at a single PIM module. A
PIM-trie achieves this by decomposing itself into a bunch of uncon-
nected small tries called blocks and distributing in block granularity.
Every trie T with nt strings stores all its compressed nodes, com-
pressed edges, and an array of pointers to all compressed nodes to
enable efficient parallel tree operations. For example, the treefix
operations [53], including rootfix operations and leaffix operations,
can be executed in O(nt) work and O(log nt) depth whp. This ar-
ray also enables efficient decomposition—given a set of K partition
nodes, we can generate K stand-alone tries, where each node con-
tains the ID of its corresponding node in the original trie—in O(nr)
work and O(log nt) depth whp. We use parameter L to denote the
total number of trie nodes, which is also the aggregated lengths of
all edges. The space consumption for T is Q7 = O(Lt/w + nT).

PIM-tries use hashing as a key technique. The term node hash
represents the hash value of the string represented by a node. Hash
values are stored in hash tables [24] of linear space and whp O(k)
work (and O(log™ k) PRAM depth or O(log k) binary forking depth)
for batched lookups, inserts and deletes with batch size k.
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VAN VAN

(Original) Data Trie
Figure 1: The figure displays an example of an LCP query
with a data trie and a query trie generated from a batch of
query strings. Useless hidden nodes are omitted, and values
are drawn as attached gray triangles. The matched trie is
marked in red, and may end on hidden nodes. Matching
results are represented as dashed pointers.

Algorithm 1: QTrieConstruct
Input: The batch of operation keys, Q

Output: The query trie, QT
1 Qsorted = StringSort(Q)
2 lcp = AdjacentLCPArray(Qsorsed)
3 return QT = PatriciaGenerate(Qsg,seds Icp)

4.1 Query Trie and Trie Matching

PIM-trie relies on two key structures: the data trie and the query
trie. The data trie is the main structure containing all data stored
in the index, and the query trie is a novel structure containing all
keys considered by a batch of operations. A query trie and a data
trie (before future optimizations) are shown in Figure 1. Processing
operation batches by using a whole query trie rather than one-by-
one enables PIM-trie to avoid processing shared common prefixes
among strings in the batch. This idea improves both computation
and communication, and also has benefits in reducing contention.

Query Trie Construction. We build the query trie as a prepro-
cessing step for every new batch. It is built and stored in the CPU
cache. The construction algorithm is shown in Algorithm 1, and
the theoretical guarantees in Lemma 4.1.

LeEmMA 4.1. Constructing a query trie can be done in O(ng(1 +
ko/w)loglogng) CPU work and O(log? ng) CPU depth whp.

Proor. Regarding construction in Algorithm 1, string sorting [26]
is O(np(1 + kg/w) loglogng) work and O(log? ng/loglogng)
depth on the binary forking model. Constructing the LCP array be-
tween adjacent string pairs [52] is O(ngkg /w) work and O(log? ng)
depth. Constructing a Patricia trie with the LCP array [14] costs
O(ngkg/w) work and O(log? ng) depth whp. O

Trie Matching Operation. We use trie matching operation as a
key subroutine in our method. It compares the query trie generated
by the current batch with the data trie to derive a shared part
between them. This shared part, called the matched trie, represents
all common prefixes between two tries, and is stored as a collection
of node reference pairs between query trie nodes and data trie
nodes. Figure 1 shows an example, with the matched trie in red.
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1 hash() || 2hash(“101”) || 3hash(“10107) || *
00
0000 111
001 1
PIM module 3 PIM module 2 PIM module 4

Query Trie

l Hash value manager hash(“”), hash(“101”), hash(“1010”) ‘

Figure 2: Left side: The data trie in Figure 1 decomposed
and distributed randomly among PIM modules with mirror
nodes marked as dashed circles and the hash value manager
omitted. Right side: A query trie decomposed by data trie
block root hashes, with each block in a gray box marked with
its matching block ID. The final matched trie is in red.

Let Lys denote the total number of matched trie pairs. The full
matching information contains Ly; = O(Lg) pairs, taking O(Lg)
communication to record data trie node references, thus breaking
our bounds. Therefore, we only derive O(ng) matchings for com-
pressed nodes of the matched trie and the query trie. As shown in
Figure 1, a trie matching operation builds red dashed arrows.

4.2 Hybrid Hash Trie

The PIM-trie stores string data among the PIM modules and enables
efficient search by using a hybrid method of trie and hash compar-
isons. We combine both methods because using only one would
fail to fully utilize the PIM system. For instance, simply randomly
distributing the trie nodes to the PIM modules suffers from (serially)
pointer chasing O(np) steps when processing highly-skewed data.
Using hash comparisons only, on the other hand, is also insuffi-
cient. Assuming a fast trie structure where we calculate the node
hash for every data trie node, and store a pointer to the node in the
hash table, trie matching is executed by doing a hash join: it looks
up query trie nodes in the hash table, then all matched node pairs
will be found because they have the same node hash. However, this
solution brings a dilemma in case of path compression: if we only
store compressed nodes of the data trie in the hash table, we miss
potential matched node pairs if one data trie hidden node matches
with one query trie node; if we store all data trie nodes, the hash
table will take O(Lp) words space, O(w) times more than storing
only the trie. A similar dilemma also exists on the query trie side, as
we miss possible answers if we look up only compressed nodes, or
cause too much communication otherwise. One example is shown
in Figure 1, where compressed nodes 1, 3, 4 match with compressed
nodes while 2 matches with a hidden node; common prefix "10100"
are represented by hidden nodes in both tries. In this approach, we
get worse space and communication bounds for a correct result.

Tree Decomposition with Hash Values. PIM-tries combine the
trie structure with hashing. We decompose the data trie into blocks
of similar sizes, compute node hashes for their roots as metadata,
and distribute these blocks uniformly randomly to PIM modules.
An example is shown on the left side of Figure 2 where the data trie
in Figure 1 is decomposed and distributed. Each (data trie) block
contains the root node hash and the trie block. This decomposition
replicates block root nodes as mirror nodes in the block contain-
ing the node’s parent, represented by dashed circles in Figure 2.
We omit details about metadata management by the hash value
manager (see Section 4.4) and focus on trie blocks in this section.
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Differently from the approach without hashing, we avoid remote
pointer chasing by using block root hashes instead, abandoning
all inter-block remote pointers. The trie matching algorithm starts
with a comparison between block root hashes and hashes of all
nodes in the query trie, and a trie matching operation between
the current block and the subtree of V is triggered if and only if
the block root matches the query trie node V. Furthermore, trie
matching operations over all blocks can be run in parallel, even
without waiting for the results of their parent blocks.

Block Size and Blocking Algorithm. Data tries are divided into
blocks of O(Kg) = O(log? P) words, making O(Qp/Kp) blocks. All
block roots are compressed nodes, and long compressed edges of
more than Kp words are cut into pieces by adding compressed nodes
in the middle to avoid oversized blocks, introducing O(Lp/(w-Kg))
new compressed nodes.

For the blocking algorithm, PIM-tries reduce the problem to a
parallel tree partitioning problem with weighted nodes, where the
weight of each node is the total size of itself and two child edges.
We use the parallel tree partitioning algorithm of [9], but extend
it to a weighted version. To divide the tree of n nodes into blocks
of B nodes, the unweighted algorithm (1) generates the Euler tour
of a tree, (2) marks one out of every B nodes as base nodes, and
(3) marks all lowest common ancestors of base nodes. The marked
node set makes an ideal partition for the tree. For the weighted
version, we assign the node weight to the Euler tour array, calculate
the prefix sum, and pick nodes whose prefix sum exceeds a multiple
of Kp as base nodes. This algorithm generates roots for O(Qp/Kp)
blocks of size less than Kp in O(n) work and O(log n) whp depth.

LEMMA 4.2. PIM-tries take O(Lp/w + np) words space.

Proor. Every PIM-trie contains multiple distributed trie blocks
and a hash value manager. The aggregated size of the trie blocks is
O(Lp/w + np), as the data trie takes O(Lp/w + np) words space
before decomposition. Only O(Lp /(w-Kp)+np) additional space is
required after, including O(Lp /(w - Kg)) new compressed nodes as
long edge cuts and O(1) sized data per block. The space complexity
of the hash value manager is proved in Lemma 4.7. O

4.3 Trie Matching Algorithm
The data trie block root hashes enable parallel block matching by
decomposing the query trie, but matching all blocks in parallel
breaks our communication bound. In the worst case, each query
trie node can match with a different data trie block root, dividing
the query trie into O(Lg) blocks for parallel matching, breaking
our bounds even if only one word communication is used per block.
However, most blocks are not critical. Though there can be up
to O(Lg) blocks, all but O(ng) blocks are simply edges connecting
two matched hidden nodes as ends and contain no compressed
nodes, as the query trie only has O(ng) compressed nodes. We call
these blocks non-critical blocks. For example, a query trie after root
hash matching is shown in Figure 2, where blocks are in gray boxes,
and nodes representing (e, "101", and "1010") are roots of block 1,
2, and 3, respectively. Blocks 1 and 3 are critical blocks, but block
2 is not. During the trie matching process, we ignore non-critical
blocks and only match critical blocks unless verification is required.
The verification process will be discuss later in Section 4.4.3.
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Algorithm 2: Trie Matching

Input: The Query trie, QT, in CPU cache. The hash value
manager, HVM.

Output: The matched trie as node reference pairs, Match[..]
1 QueryBlockRoot[..] = HVM.MatchCriticalBlock(QT)
2 QueryBlock[..] = Span(QueryBlockRoot[..])

// only for O(ng) critical blocks
3 parallel for i < 1 to #CriticalBlocks do

4 DataBlock[i] = QueryBlock[i].matchBlockReference
5 PIMID[i] = DataBlock[i].PIMID
¢ parallel for i « 1 to #CriticalBlocks do
7 if QueryBlock[i].size < K then
8 Send QueryBlock[i]: CPU — PIMppipyi]
// executed on PIM modules locally
9 Match[i][..] = Match(QueryBlock[i], DataBlock[i])
10 Fetch Match[i][..]: PIMpryp[;) — CPU
1 else
12 Fetch DataBlock[i]: PIMpypqrp(;] — CPU
// executed on CPU locally
13 Match[i][..] = Match(QueryBlock[i], DataBlock[i])

return Union;(Match[i][..])

-
-

Algorithm 2 depicts pseudo-code for our trie matching algorithm.
The hash value manager generates critical block roots together with
references to their matching data trie blocks, and stores them on the
CPU side (Line 1). We then expand these roots to stand-alone blocks
(Line 2) on the CPU side. Blocks generated by this expansion can
be larger than the actual critical block by absorbing all child non-
critical blocks (for example, block 2 will be absorbed into block 1 in
Figure 2), but these additional bits will be filtered out automatically
in the local trie matching process. Since actual data trie blocks are
in PIM memory, we use the Push-Pull technique to decide where
to match local trees (Line 6-13). We get the final result by merging
results in different blocks (Line 14). The actual Push-Pull process
takes 5 rounds: (1) push small query trie blocks (Line 8), (2) PIM
calculation (Line 9), (3) fetch results (Line 10), (4) pull for small
data trie blocks (Line 12), and (5) CPU calculation (Line 13). In this
paper, we merge these rounds into a single one in pseudo-codes for
simplicity. A serial depth-first search is used as the local matching
algorithm between blocks, and details about this algorithm will
be introduced at the end of Section 4.4.2. A minimal batch size is
required for the Push-Pull technique. The hash value manager and
the solution to hash collisions will be introduced later in Section 4.4.

THEOREM 4.3. For a query trie with sizeQp = Q(P log® P), the trie
matching algorithm requires O(Qg/P) IO time, O(log P) IO rounds,
0(Qg) CPU work, O(log? P+logw log P+log(nplom)) CPU depth,
and O(Qg log w/P) PIM time, with all bounds holding whp.

Proor. We prove IO bounds for Algorithm 2 here and leave the
work bounds to Lemma 4.11. Bounds for the hash value manager
will be proven in Lemmas 4.8 and 4.10. All bounds hold whp because
of the verification costs for potential hash collisions.

According to the Push-Pull technique, the communication of
each query trie critical block is the minimal between its own size
and the block size limit Kg. Therefore, the total communication is

| Hash Table |

Figure 3: A meta-tree example on the top left, where meta-
block roots are marked in red. The replicated master-tree
and its hash table are drawn in red on the bottom left. Meta-
blocks generated from the meta-tree are shown on the right.

Meta-Blocks

no more than the sum of the sizes of all query trie critical blocks,
which is O(Qg) = O(Lp/w + ng), because only O(ng) additional
data is introduced (O(1) per critical block) after decomposing a
query trie of size O(Lg/w + ng). For load balance, note that data
trie blocks are uniformly randomly distributed, so messages are
between CPU and uniformly random target PIM modules with
maximum size Kg = O(Qp/Plog P). Combining these conditions
ensures O(Qgp/P) 10 time whp according to Lemma 2.1. O

4.4 Hash Value Manager

The hash value manager manages the metadata of data trie blocks:
their root hashes. It is used in the first step of trie matching, where
we derive critical blocks by matching between hash values of all
O(Lg) query trie nodes and that of all O(Qp/Kp) data trie block
roots in O(Lg/w + ng) words communication. Designing a hash
value manager is challenging when we want both low communica-
tion and load balance. If it calculates node hashes on the CPU side,
sending all O(Lg) node hashes breaks our communication bound.
Another solution is to send the trie and calculate node hashes on the
PIM side. This approach overcomes the communication problem,
but it brings additional challenges as it requires the matching pairs
of trie nodes and block root hashes to be on the same PIM module.

We observed that we need sufficient locality for low communi-
cation, and sufficient randomness for load balance. The selective
replication technique (Section 3.3) is such combination, but its de-
sign is only applicable to balanced search trees, not to tries that can
have much larger height. Motivated by this technique, we design a
new distribution strategy in the hash value manager.

The hash value manager organizes block root hashes into a
meta-tree, a directed tree with nodes representing blocks and edges
representing block connections: if block A contains a mirror node
of the root of block B, nodes for A and B are connected in the
meta-tree. Every meta-tree node contains the root hash and the
PIM address for the block it represents. The meta-tree does not
physically exist as a whole tree, but instead as similar-sized pieces
distributed randomly in PIM modules, forming meta-blocks. Each
meta-block also maintains a hash table that maps block root hashes
to its meta-tree nodes. Similarly, a master-tree and its hash table
are built to organize meta-blocks. The master-tree physically exists
and is replicated in all PIM modules. An example is shown on the
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Algorithm 3: HashMatching: to decompose a trie accord-
ing to node hashes in a hash table

Input: A trie. A hash table.

Output: A set of partition nodes.
1 GenerateHashValues(Trie)

2 for compressed edges in Trie do

3 for compressed nodes on the edge bottom-up do
4 if node.hash in HT then
// Find critical block root
5 Set node.matchBlockReference
6 Root.append(node)
7 break

8 return Root[..]

left side of Figure 3. A meta-tree with 12 nodes is shown in the top
left corner. It is decomposed into two meta-blocks with their IDs
and PIM IDs attached, shown on the right side. The master-tree
and its hash table are drawn in red on the bottom left corner. As
for Figure 2, its meta-tree can be represented as — — .

We set the meta-block size threshold as Kyig = P. Meta-trees
have degree up to O(Kp) = O(log? P), because all O(Kp) leaves of
a data trie block can be mirror nodes of child block roots.

Trie Matching. Every meta-block represents multiple blocks, form-
ing a single connected component in the data trie. Therefore, the
data trie now has a two-layer decomposition: first by meta-block
roots, then by block roots. The trie matching algorithm runs by ap-
plying the same decomposition to the query trie: it first divides the
query trie into meta-blocks, then into blocks, and finally performs
the actual matching. There is also the idea of critical query trie meta-
blocks. The first step that derives critical meta-blocks is shown in
Algorithm 4, where we first divide the query trie into O(P log P)
similar sized master-blocks (Line 1), then do HASHMATCHING be-
tween the hash table of the master-tree and the block (Algorithm 3)
at PIM modules to generate query trie meta-block roots (Line 2-6).

Algorithm 4 is load balanced because it sends similar-sized blocks
to random PIM modules, but a load balanced matching between
meta-blocks to divide query trie into blocks is hard in case of large
query trie meta-blocks. The load balanced matching algorithm will
be introduced in Section 4.4.1; optimizations to reduce work in
Section 4.4.2; and verification in Section 4.4.3.

Hash Function. PIM-tries have requirements on the hash function,
and the minimum of which is incremental, because after decom-
posing a query trie into blocks, the full string of a node may not
exist in the block, therefore the hash function needs to generate
node hashes from a prefix hash (the block root hash) and a suffix
string (see Definition 2). Many commonly used incremental hash
functions in practice are even further binary associatively incremen-
tal (see Definition 3), such as rolling polynomial hashing [31] and
CRC [44]. This property enables internal parallelism in node hash
generation by parallel prefix sum [12] and rootfix scan [53].

DEFINITION 2. A hash function h(-) for bit-strings is incremental,
if for any bit-string C = AB concatenated by bit-strings A and B, it
gives a function f(-,-) that can output h(C) = f(h(A), B), using only
the hash value h(A) and the bit-string B.

Algorithm 4: MatchCriticalMetaBlock: decompose query
trie to critical meta-blocks

Input: The Query trie, QT, in CPU cache.
Output: QueryMetaBlockRoot][..]
// MasterBlock[..]: QT divided into O(PlogP)
similar sized blocks
1 MasterBlock[..] = Decompose(QT, QT.size/(P log P))
2 parallel for i < 1 to #MasterBlock do
3 Send MasterBlock[i]: CPU — PIM, 4ndom(1..p)
// Executed on PIM
4 QueryMetaBlockRoot[i][..] =
HashMatching(MasterBlock[i], MasterTree.HashTable)
5 Fetch QueryMetaBlockRoot[i][..]: PIM — CPU
6 return Union;(QueryMetaBlockRoot[i][..])

11 2.3
PIM4 PIM1
| Hash Table | HT |

[ HashTable |
¥

PIM3
9]
| Hash Table | Hash Table

Figure 4: Meta-block trees generated from Figure 3 with cut
nodes for meta-blocks in blue.

| Hash Table |

DEFINITION 3. A hash function h(-) for bit-strings is binary as-
sociatively incremental, if for any bit-string C = AB concatenated
by A and B, it gives a binary associative operation & that outputs
h(C) = h(A) @ h(B), using only the hash values h(A) and h(B) and
their lengths, without knowing bit-strings A or B.

LEMMA 4.4. Hashing all keys in an unprocessed batch with a binary
associatively incremental hashing can be done in O(ng(1+ko/w))
CPU work and O(log(ngkop)) CPU depth, by applying parallel
prefix sum to each of the keys in word granularity.

4.4.1 Recursive Meta-block Decomposition Trying to match
between meta-blocks directly at PIM modules can cause load imbal-
ance, because we may send a large critical meta-block to a single
PIM module. For example, if no hash match is found between the
query trie and any meta-block roots, the whole query trie will be
sent to the PIM module of the root meta-block. Similar problems
occurs in block matching, where the Push-Pull technique is ap-
plied as a solution. However, the same solution does not work for
meta-blocks because of the size difference (log? P vs. P, respec-
tively). Simply fetching a meta-block of P words to CPU can cause
imbalance given our Q(Plog® P) limit on batch sizes.

To solve this size problem, we divide meta-blocks into smaller
meta-blocks in order to re-enable the Push-Pull technique. We
recursively decompose meta-blocks while ensuring that each still
represents a connected component in the data trie. In each step, we
select the node that minimizes the size of the child meta-block, then
cut all its child edges. We recursively apply the division until the
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size drops below threshold Ksyg = Kp = log2 P. In two examples
in Figure 4, we set K = 7 and Kgpp = 3; each meta-block tree is
in a gray box; and the cut node is marked in blue. Child meta-blocks
are distributed and stored at random PIM modules, and a meta-block
tree is generated, connecting them by remote pointers. The height
of this tree is O(log P) according to Lemmas 4.5 and 4.6. Only root
meta-blocks in meta-block trees are inserted to the master-tree.

LEMMA 4.5. For any unweighted directed out-tree of n nodes, there
exists a cut node such that if we remove all its out-edges, the maximum
remaining tree contains no more than (n+ 1)/2 nodes.

LEMMA 4.6. Assuming a meta-block tree with O(Kyp) nodes and
a pre-defined constant a < 1, if it is true for all meta-blocks in the
meta-block tree that all its children have size less than a fraction of
its own size, the meta-block tree height is O(log(KympB))-

LEMMA 4.7. The hash value manager takes O(Qp) = O(Lp/w +
np) words of space.

Proor. The size of the hash value manager is linear to the num-
ber of root hashes it stores after internal replication, including
root hashes of O(Qp/Kg) = O(Qp/log? P) different blocks and
O(Qp/Kg/KmB) = O(Qp/(Plog? P)) different root meta-blocks.
Block root hashes are replicated O(log Kjy;g) = O(log P) times ac-
cording to the height of the meta-block tree, and meta-block tree
root hashes are replicated P times in the master-tree. Thus, the hash
value manager contains O(Qp) hash values with O(Qp) space. O

Note that after this decomposition, the master-tree and the meta-
block tree combine to form a hierarchical decomposition of the
data trie of bounded height. The data trie is first decomposed into
meta-blocks by the master-tree, then further divided by root hashes
of meta-block tree nodes layer by layer into blocks. With this bal-
anced hierarchy, we can now apply the Push-Pull strategy to divide
large query trie meta-blocks into blocks without load imbalance:
whenever its size exceeds the threshold log* P, we pull the matching
meta-block’s O(log? P) child root hashes to divide it into smaller
ones. We do this recursively until the block is small enough for a
push, or the meta-block tree leaves are reached and then pulled.
The full algorithm for deriving critical blocks from query trie is
described in Algorithm 5, where the recursive decomposition is in
Line 4-16, and Push-Pull in Line 17-27.

LEMMA 4.8. IO bounds in Theorem 4.3 hold for Algorithm 5.

ProOF. We prove the IO time separately for push and pull. In
push rounds, blocks are sent from CPU to PIM for HASHMATCHING,
where the query trie is sent only twice (once in Algorithm 4) in
blocks of O(Qp/P log P) words, guaranteeing load balance. There
are O(log P) pull rounds according to the meta-block tree height,
and we pull O(log? P) data for each of the 0(Qo/ log* P) oversized
blocks in each round, adding up to O(Qgp /P log P) total IO time. O

The key challenge in meta-block design is its low-cost compati-
bility to INSERTs/DELETEs. Newly generated/removed blocks may
break the assumption in Lemma 4.6. We will discuss in Section 5.2.

4.4.2 Optimizations to Reduce Work The work inefficiency
of Algorithm 5 comes from two sides: (1) it calculates hashes for
all O(Lgp) nodes in HASHMATCHING; and (2) it decomposes large
query trie blocks of size O(Qp) in linear work in each pull round,
adding up to O(Qgp log P) total work. In this section, we introduce
optimizations that reduce the CPU work to O(Qp) whp and the PIM
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Algorithm 5: MatchCriticalBlock: decompose query trie
to critical blocks
Input: The Query trie, QT, in CPU cache.
Output: QueryBlockRoot[..]
1 QueryMetaBlockRoot[..] = MatchCriticalMetaBlock(QT)
QueryMetaBlock[..] = Span(QueryMetaBlockRoot[..])
3 Threshold = Kspp - log? P = log* P
4 while QueryMetaBlock.size > 0 do
5 parallel for QMB in QueryMetaBlock[..] do

)

6 if QMB.size < Threshold then

7 ‘ QueryMetaBlockSmall.append(QMB)

8 else if QMB.matchingMetaBlock is not a leaf then

9 DMB = QMB.matchDataMetaBlockReference

10 hashes|[..] = DMB.ChildRootHash[..]

11 references[..] = DMB.ChildMetaBlock[..]

12 Fetch hashes, references: PIM — CPU

13 Root[..] = HashMatching(QMB,
HashTable(hashes][..], references]..]))

14 Block[..] = Span(Root][..])

15 QueryMetaBlockNext.append(Block[..])

16 QueryMetaBlock[..] = QueryMetaBlockNext][..]

// Pull for QueryMetaBlocks.size > threshold
17 parallel for QMB in QueryMetaBlock[..] do

18 DMB = QMB.matchDataMetaBlockReference

19 Fetch DMB: PIMpp— CPU

20 Root[..] = HashMatching(QMB, DMB.HashTable)
21 QueryBlockRoot[..].append(Roots)

// Push for QueryMetaBlocks.size < threshold
22 parallel for QMB in QueryMetaBlockSmall[..] do

23 DMB = QMB.matchDataMetaBlockReference

2 Send QMB: CPU — PIMp B

25 Root[..] = HashMatching(QMB, DMB.HashTable)
26 Fetch Root[..]: PIMppg— CPU

27 QueryBlockRoot[..].append(Root)

28 return QueryBlockRoot[..]

time to O(Qg log w/P) whp to meet our bounds. We first reduce
the number of hashes by string alignment, then use a batch-parallel
euler-tour tree [57] to maintain query trie blocks. A local matching
algorithm for blocks is introduced at the end, which follows similar
ideas of our optimizations in work reduction.

Efficient HaAsHMATCHING. To reduce the number of hashes com-
puted, we compute for only a small proportion of nodes to cut the
trie into fixed-length tries, then obtain the matching using fast tries.

To be specific, we select pivot nodes on the query trie—nodes
whose depth (string length) is a multiple of w bits. We generate all
O(Lt/w) pivot node hashes on CPU when generating the query
trie. We define the bottommost pivot ancestor of a node as its host
pivot, and a pivot node is a host pivot of an edge if it is the host
pivot of any node on this edge. We will miss matching points if we
only consider pivot nodes, therefore additional steps are introduced
for a complete result, starting by a data augmentation on block root
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Figure 5: An example for HASHMATCHING. Pivot nodes ap-
pear as red squares. One pivot-rooted block is outlined in
red. The blue circle represents a critical block root, which
matches the blue meta-tree node. On the right is the two-
layer index, including the hash table and y-fast tries com-
bined with validity vectors. Gray strings in the meta-tree do
not exist physically.

hashes. For each meta-tree node, assuming that it represents a data
trie block B, whose root represents a string S, so that it physically
contains hash(S) and address(B), we now add to this node: (1)
the length of S, (2) the hash value of the longest prefix of S whose
length is a multiple of w, denoted as hash(Spre), and (3) the suffix
of S after Spre, denoted as Syem. Note that |Syem| < w.

The HASHMATCHING algorithm is modified to utilize this addi-
tional data. Our modification is different for CPU and PIM side
execution, as they have different inputs. In CPU side execution
(pull), O(log2 P) data about child meta-blocks are fetched to CPU
to divide a large query trie block. We augment the query trie for
efficient division: (1) a hash table is built to map pivot hashes to
pivot nodes, (2) a z-fast trie of height w is built for every pivot node
as shortcuts to all its hosting compressed nodes. (Z-fast tries are
compressed binary radix trees supporting lookup with cost O(log h)
whp for height h and linear additional space.) For the fetched in-
formation of every block root in a pull round, we first lookup its
hash(Spre) in the hash table, then its Syer, in the relative z-fast trie
to find the exact match position, each taking O(log w) work whp.

In PIM side execution (push), query trie blocks of size O(log? P)
are sent to meta-blocks for critical block roots. To support this
operation, we change the hash table in each meta-block to a two-
layered index, where the first layer maps hash(Spre) to the second
layer, and the second maps from Sy¢n, to meta-tree nodes. During
the matching process, we lookup all pivot hashes in the hash table,
then for every edge, we pick its bottommost hit host pivot node as
its critical pivot. The match point is no more than w bits deeper
than the critical pivot, so we build the string S;.,,,, going downward
from the critical pivot until gathering w bits or reaching the end of
the edge. However, the critical block root may not be on this string
(see Figure 5 for an example), making it impossible for us to directly
find the node by a simple lookup of S/, in the second layer.

To solve this problem, we do not directly find the critical block
root, but find it or one of its direct children. The second layer index
can be described as follows: (1) it maintains a set K of strings, all less
than w bits, (2) For a query string Q, it returns string K;, whose LCP
with Q (LCP(K;, Q)) is the longest among all strings in K, and there
is no Kj who has the same LCP but is a prefix of Kj, in O(log w).
The last requirement ensures that we find a direct child rather than
an arbitrary node in the subtree. We store Sy¢, of block roots in
this structure. Once we query S;.,,, it will return Sy¢p, of either the
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critical block root or its direct child, which leads us to the node by
an additional hash table from S, to meta-tree node addresses.

The second layer index combines a y-fast trie and a table. Every
Srem of a block root is padded into two (w-bit) integers, SO and S1,
by adding 0s and 1s at the end, and both are inserted into the y-fast
trie. As different strings may be padded into the same integer, for
every padded integer, a w-bit validity vector is stored in the table to
record all valid prefixes. For a query, its string Q is padded similarly
into Q0 and Q1, then we lookup their predecessor and successor in
the y-fast trie. Taking the predecessor of Q0, Q0,, as an example,
we calculate its LCP with Q, then do a binary search on the validity
vector of Q0 to find the shortest valid string longer than the LCP,
or the longest valid string shorter than the LCP if no one is longer,
and take it as the result. A similar process is executed for both the
predecessor and the successor of Q0 and Q1, and the shortest one
of those with the longest LCP is the final result. It takes O(log w)
time whp to lookup, insert, delete a string in this structure, and we
are guaranteed to find the correct string by a single query.

Figure 5 gives an example of this case when the critical block root
is an ancestor of the critical pivot, but we still find its child through
the two-layer index. In this example, we have w = 3. We first lookup
hash(“000000”) in the hash table, then pad S,,,, = “0” into “011”
(also “000”) and lookup in the y-fast trie to find a predecessor (an
exact match in this case), and finally do binary search on the validity
vector to find Syep = “01” for the child of our target meta-tree node
(marked in blue). The whole process is marked in red.

LEMMA 4.9. Hashing all nodes in an already constructed trie with
a binary associatively incremental hashing can be done in expected
O(Lg/w + ng) CPU work and O(log(ngloa)) depth whp.

Proor. We first apply parallel prefix sum [12] to hash pivots
on each edge locally, in O(Lg/w) work and O(log(nglom)) depth;
then we use rootfix scan [53] on the trie, which costs O(ng) work
in expectation and O(log ng) depth whp. O

Efficient Block Partition. According to the height of meta-block
trees, we use O(log P) pull rounds in Algorithm 5 (Line 4-16) to
divide oversized blocks into smaller ones that will not cause load
imbalance. In each round, there are O(Qg/ log* P) oversized blocks
with total size O(Qp), and we fetch O(log? P) child meta-block
root hashes and references to divide each block, adding up to
0(Qo/ log? P) divisions. Although the position of all divisions can
be found in O(Qg log w/log2 P) time, it takes O(Qp) work each
round if we partition the oversized block physically into multiple
stand-alone tries, adding up to O(Qg log w) total CPU work.

We realize that this tree decomposition problem is a dynamic
forest problem with edge deletions and subtree size queries, and
choose the batch-parallel Euler tour tree [57] as the solution. The
basic idea of this data structure is to use augmented skip lists to
maintain the Euler tours, which supports edge insertions and dele-
tions by splits and merges of skip lists and subtree queries by values
augmented on skip list nodes. For a forest with n nodes, this algo-
rithm solves a batch of k edge insertions, edge deletions, or subtree
size queries in O(k log n) work and O(log n) depth whp.

LEmMMA 4.10. Work bounds in Theorem 4.3 hold for Algorithm 5.
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PRrOOF. Pre-processing all pivot hashes takes O(Qg) CPU work
and O(log(lgmng)) depth. We then prove work bounds separately
for push and pull in Algorithm 5. For push, the total work (number
of instructions) on PIM modules is O(Lg/w + ng log w) whp be-
cause the y-fast trie lookup with O(log w) whp cost only happens
once per edge, but the total PIM time is O(Qg log w/P) because
of the load imbalance when some block has more nodes than the
others. For pull, there are O(log P) rounds. In each round we pull
0(Qo /log? P) node hashes to divide oversized query trie meta-
blocks. Locating these divisions takes O(Qg log w/log? P) work
whp and O(log w) depth whp by z-fast tries, and dividing the meta-
block takes O(Qp /log P) work whp and O(log P) depth whp by the
dynamic forest algorithm. Adding these all up gives our bound. O
Efficient Local Matching. Using a serial depth-first search as
the local trie matching algorithm takes work linear in the total
size of the two blocks, which can be O(w) times more than the
size of a small query block, breaking our bounds in PIM time. The
method to reduce it to O(log w) is similar to that used in the hash
value manager: we pick pivot nodes in the data block (with length
kw, k € Z), and build a z-fast trie of height w bits on every pivot as
a shortcut to compressed nodes hosted by this pivot and pivots of
the next level (with length (k + 1)w). Trie Matching is executed by
a DFS for all pivot nodes and compressed nodes in the query block.

LEMMA 4.11. Work bounds in Theorem 4.3 hold for Algorithm 2.

Proor. The pull side on the CPU takes work linear in the query
trie and depth linear in the block size O(log? P). For PIM work, the
number of z-fast trie lookups is the total number of pivot nodes and
compressed nodes in the query block, which is linear in its size. O

4.4.3 Verification Hash collisions can cause false positives and
thus incorrect results. We design a verification process to effec-
tively correct this. By setting a hash length of 5log, N = O(w)
bits and triggering a global re-hash once the tree size is squared,
hash collisions occur with probability O(1/N). A global PIM hash
table [30] ensures no hash collision between data trie block roots
by triggering global re-hashes once a collision is found. Given the
infrequency of re-hashing, the maintenance cost does not change
our (amortized) INSERT bounds.

A collision between a query trie and a data trie can cause an in-
correctly partitioned query trie and thus a wrong matching process.
The key challenge is to detect these collisions. Once a collision is de-
tected, we rectify the partitioning, then redo the matching process,
until no collision exists. The number of redo rounds is linear in the
number of simultaneous collisions, whose probability decreases
exponentially to O(1/N), making all bounds in Theorem 4.3 whp.

All critical blocks go through the bit-by-bit matching process,
and these results report hash collisions. However, we cannot afford
to verify all O(Lg) non-critical blocks in this way, because it will
take O(Lg) communication, which breaks our bounds. We instead
verify them during HASHMATCHING by the hash value manager.
Notice that non-critical blocks only exist as consecutive sequences
in the middle of edges, and every such sequence has an critical
block root as the bottommost end. For PIM side HASHMATCHING,
after finding a critical block root and its matching meta-tree node
V, it locates the matching meta-tree nodes of these non-critical
blocks, which are the closest ancestors of V. We augment the meta-
tree node by (1) the last w bits of its represented string S, denoted
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as Sjgss» (2) a shortcut pointer to an arbitrary meta-tree ancestor
whose depth is k € [w/2, w] bits smaller than the node’s depth.
Short non-critical blocks with less than w bits are verified by S;,;,
chasing shortcut pointers for speedup, and long ones are returned
as critical blocks. CPU side HASHMATCHING matches all blocks, so
short non-critical blocks are directly verified by S;,,;. The bounds
in Theorem 4.3 still hold with verification introduced.

5 PIM-TRIE OPERATIONS

In this section, we introduce operations supported by PIM-trie, and
show how trie matching can be used to efficiently implement them.

5.1 LoNGESTCOMMONPREFIX

A LoNGESTCOMMONPREFIX (LCP) query finds the LCP between
the query string and all strings stored in the PIM-trie. Because
the result is a prefix of the query string, we only need the length.
This query can be easily solved by trie matching results: the length
is the node depth of the bottommost matching ancestor of the
string’s representing query trie node. For example, in Figure 1,
string “101001” is represented by node 6. Its LCP length 5 can be
found by the node depth of its ancestor.

To find LCPs for a batch of strings, we build the query trie,
perform trie matching, then run a parallel rootfix on the query trie
for results. Combining these bounds gives its final bound.

5.2 INSERT and DELETE

INSERT. To INSERT a batch of strings, we insert the unmatched
subtrees of the query trie into the data trie, which updates both
distributed data trie blocks and the hash value manager.

Update blocks. Unmatched query trie subtrees are inserted to
the matching node of their roots. For example in Figure 2, the
unmatched subtrees are in black and should be inserted into block
1 and 3. The required information is derived by the matched trie
after a trie matching. The in-block insert process is the same as
in traditional tries, and is executed on CPU (for large subtrees) or
PIM (for small subtrees) based on the Push-Pull threshold. New
blocks may be oversized after insertion. In this case, they are sent
to CPU and re-partitioned by the blocking algorithm mentioned
in Section 4.2, where additional info for block roots is also derived.
Newly generated blocks are re-distributed to random PIM modules.

Update the hash value manager. Root hashes (and other auxiliary
data) of the newly generated block should be inserted into the
hash value manager. As all new blocks are children of the existing
blocks, only meta-blocks holding the parent block’s root hash need
insertion, and we send new root hashes to them.

Insertions to the meta-block tree brings new problems: the cut
vertex may no longer be the optimal cut in the new subtree, breaking
the balanced structure of the meta-block tree and its height bound.
For example, adversaries can insert many new blocks at the end of
a flat list of blocks, degenerating the meta-block tree into a flat list.

Motivated by the scapegoat tree [22], we keep meta-block tree
height bounds by rebuilding in case of sufficient imbalance. To be
specific, for any meta-block in the meta-block tree with a child
whose size exceeds «a fraction of its own size, a new cut vertex is
selected and its meta-block subtree is rebuilt completely. The rebuilt
process is always executed on the CPU side in O(nlogn) work and
O(log? n) depth whp for a meta-block with n nodes. Setting « as
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a predefined parameter larger than 0.5, this rebalancing protocol
ensures that the tree height bound holds according to Lemma 4.6.
Besides imbalanced meta-blocks, oversized ones also need main-
tenance to meet size limits for roots and leaves of the meta-block
tree. For a leaf meta-block exceeding Ksyp nodes, we select its
cut vertex to generate its children in the meta-block tree. For a
root meta-block exceeding Kyp nodes, all its children are upgraded
to roots of separate meta-block trees, and their root hashes are
inserted to the master-tree. This policy may bring O(log? P) under-
sized root meta-block to the master-tree, but is still O(Qp) space.

DELETE. To DELETE a batch of strings, we remove the matched
trie from the data trie. The process is similar to INSERT, by updating
the distributed trie blocks first and then the hash value manager.

For block-level deletion, query trie blocks are sent to data trie
blocks for local deletion. A special notice is required for mirror
nodes (block root replicas), as they should not be deleted until the
entire subtree of its representing block root is completely removed.
For example in Figure 2, we should not remove the mirror node in
block 1 unless both blocks 2 and 3 are removed completely. To solve
this, we record each query trie block attempting to completely delete
its matching data trie block; then use a parallel leaffix operation
to find completely deleted subtrees; finally do the local deletion.
Undersized blocks are merged into their parents. Another challenge
is that non-critical blocks may also need deletion. Long non-critical
blocks are treated as critical, and short ones never completely delete
a block, so only those with a critical block as a child need deletion,
and the number of those is linear to that of other blocks.

For hash value manager updates, block removal is applied at
meta-blocks as node removal. The rebalance protocol is the same
as INSERT. Undersized internal nodes in the meta-block tree delete
all their children, and undersized root meta-blocks are merged into
their parent meta-blocks in the master-tree if both are undersized.

Load Balance. In case when a skewed INSERT/DELETE batch is
applied all into the same meta-block, there can be O(Qg/ log? P)
updates to a single meta-block in one round, which is severely
load-imbalanced for Q(Plog® P) batch sizes.

Note that the structure of the meta-block tree is a selective repli-
cated one, as every meta-block tree node caches the information in
its subtree in its meta-tree piece. The data on each meta-block can
be categorized into: O(log? P) critical information, including its
own root hash, pointers and root hashes of child meta-block, and
meta-tree pieces for leaves; and O(P) non-critical infor, including
meta-tree pieces for internal nodes. If we set the threshold in Algo-
rithm 5 to 0, we get correct trie matching results using only critical
information, though with asymptotically more communication.

Our solution to load imbalance is similar to [29] — always keep-
ing critical information up-to-date and delaying non-critical info
updates on some meta-blocks with unfinished markers. Whenever
the number of unfinished nodes exceeds P log P, additional update
rounds are activated until the number drops below. With a bounded
number of unfinished nodes, Theorem 4.3 still holds.

Compared to [29], there are two new challenges in PIM-trie.
First, reading meta-blocks of O(P) words to CPU for merging/re-
partitioning causes load imbalance. We solve this by not fetching
these blocks directly, but merging their child meta-blocks stored in
different PIM modules. Second, while y-fast trie insertions(deletions)
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take amortized O(log w) time, they take worst-case O(w), which
can cause PIM time imbalance. They can be de-amortized by using
a weight balanced tree as the internal binary search tree, and de-
amortizing the internal x-fast trie by adding a layer of indirection,
borrowing ideas from concurrent data structures.

THEOREM 5.1. For an INSERT/DELETE trie with sizeQg = Q(P log® P),
PIM-tries require O(Qp/P) amortized IO time, O(log P) amortized
IO rounds, O(Qg) amortized CPU work, O(log? P + logwlogP +
log(nglom)) span whp, and O(Qg log w/P) amortized PIM time.
5.3 SUBTREE QUERY
A SUBTREE QUERY returns a trie including all (key, value) pairs
whose key contains the given string as a prefix. Traditional indexes
solve them by pointer chasing, which may take O(np) IO rounds
in the worst case. PIM-tries solve them in O(log P) IO rounds.

Using trie matching, we find a target node for every non-trivial
SUBTREE QUERY; its result is the subtree of this node. A primary
observation is that if a block (meta-block) root is in the subtree, the
whole block is in this subtree. Thus, the result subtree consists of
the subtree within the target node’s block, and the children of this
block. We can fetch and merge all these components by slightly
modify the trie matching to return all child block references rather
than only the matching block. This takes no additional IO rounds.
To ensure load balance, we do not fetch large meta-tree subtrees
(containing block references) directly from a single meta-block, but
by merging its children in O(log P) more IO rounds.

THEOREM 5.2. For a SUBTREE QUERY trie with size Qo = © (Lo /w+
ng) = Q(P log5 P), and result size Qgr = ©(Lr/w + ng), PIM-tries
requires O((Qp + Qr)/P) IO time, O(log P) IO rounds, O(Qp + QR)
CPU work, O(log? P + log wlogP + log(nglom)) CPU depth, and
O((Qg logw + Qr)/P) PIM time, with all bounds holding whp.

6 CONCLUSION

This paper presents PIM-trie, the first batch-parallel radix-based in-
dex designed for processing-in-memory (PIM) systems. It supports
LCP, SUBTREE, INSERT, and DELETE on variable-length strings, and
simultaneously achieves high load balance, low communication,
and low space overhead with good theoretical bounds in the PIM
Model, regardless of adversary skew in data and queries. Key tech-
niques introduced in this paper include (1) trie matching between a
query trie and data trie, (2) a block-wise decomposition and selective
recursive replication of the data stored on the PIM side supported
by hashing management, and (3) a verification procedure with dif-
ferentiated handling of critical and non-critical blocks. Future work
includes designing PIM-friendly algorithms and data structures
supported by these key methods (such as suffix trees and graph
processing), as well as implementing PIM-trie on real PIM systems.

ACKNOWLEDGMENTS

This research was supported by National Key Research & Develop-
ment Program of China (2022YFB2404202), Natural Science Foun-
dation of China (62141216), NSF grants CCF-1910030, CCF-1919223,
CCF-2028949, and CCF-2103483, VMware University Research Fund
Award, Parallel Data Lab (PDL) Consortium (Alibaba, Amazon, Da-
trium, Facebook, Google, Hewlett-Packard Enterprise, Hitachi, IBM,
Intel, Microsoft, NetApp, Oracle, Salesforce, Samsung, Seagate, and
TwoSigma), Tsinghua University Initiative Scientific Research Pro-
gram, and Beijing HaiZhi XingTu Technology Co., Ltd.



o

=

=

[

=

PIM-trie: A Skew-resistant Trie for Processing-in-Memory

REFERENCES

[1] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi.

2015. A scalable processing-in-memory accelerator for parallel graph processing.
In 2015 ACM/IEEE 42nd Annual International Symposium on Computer Architecture
(ISCA). 105-117. https://doi.org/10.1145/2749469.2750386

Shahanur Alam, Chris Yakopcic, and Tarek M. Taha. 2022. Memristor Based
Federated Learning for Network Security on the Edge using Processing in Mem-
ory (PIM) Computing. In 2022 International Joint Conference on Neural Networks
(IJCNN)). 1-8. https://doi.org/10.1109/[JCNN55064.2022.9891986

Shaahin Angizi, Naima Ahmed Fahmi, Wei Zhang, and Deliang Fan. 2020. PIM-
Assembler: A Processing-in-Memory Platform for Genome Assembly. In 2020
57th ACM/IEEE Design Automation Conference (DAC). 1-6. https://doi.org/10.
1109/DAC18072.2020.9218653

Maya Arbel-Raviv, Trevor Brown, and Adam Morrison. 2018. Getting to the Root
of Concurrent Binary Search Tree Performance. In 2018 USENIX Annual Technical
Conference, USENIX ATC 2018, Boston, MA, USA, July 11-13, 2018, Haryadi S.
Gunawi and Benjamin Reed (Eds.). USENIX Association, 295-306. https://www.
usenix.org/conference/atc18/presentation/arbel-raviv

Kazi Asifuzzaman, Narasinga Rao Miniskar, Aaron R. Young, Frank Liu, and
Jeffrey S. Vetter. 2023. A survey on processing-in-memory techniques: Advances
and challenges. Memories - Materials, Devices, Circuits and Systems 4 (2023),
100022. https://doi.org/10.1016/j.memori.2022.100022

Nikolas Askitis and Ranjan Sinha. 2007. HAT-Trie: A Cache-Conscious Trie-Based
Data Structure For Strings. In Computer Science 2007. Proceedings of the Thirtieth
Australasian Computer Science Conference (ACSC2007). Ballarat, Victoria, Australia,
January 30 - February 2, 2007. Proceedings (CRPIT, Vol. 62), Gillian Dobbie (Ed.).
Australian Computer Society, 97-105. http://crpit.scem.westernsydney.edu.au/
abstracts/CRPITV62Askitis.html

Djamal Belazzougui, Paolo Boldi, Rasmus Pagh, and Sebastiano Vigna. 2009.
Monotone Minimal Perfect Hashing: Searching a Sorted Table with O(1) Ac-
cesses. In Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete
Algorithms (New York, New York) (SODA °09). Society for Industrial and Applied
Mathematics, USA, 785-794.

Djamal Belazzougui, Paolo Boldi, and Sebastiano Vigna. 2010. Dynamic Z-Fast
Tries. In String Processing and Information Retrieval, Edgar Chavez and Stefano
Lonardi (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 159-172.

Naama Ben-David, Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Yan
Gu, Charles McGuffey, and Julian Shun. 2016. Parallel Algorithms for Asym-
metric Read-Write Costs. In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA). 145-156.

Robert Binna, Eva Zangerle, Martin Pichl, Giinther Specht, and Viktor Leis. 2018.
HOT: A Height Optimized Trie Index for Main-Memory Database Systems (SIG-
MOD ’18). Association for Computing Machinery, New York, NY, USA, 521-534.
https://doi.org/10.1145/3183713.3196896

Robert Binna, Eva Zangerle, Martin Pichl, Glinther Specht, and Viktor Leis.
2022. Height Optimized Tries. 47, 1, Article 3 (apr 2022), 46 pages. https:
//doi.org/10.1145/3506692

Guy E. Blelloch. 1993. Prefix Sums and Their Applications. In Synthesis of Parallel
Algorithms, John Reif (Ed.). Morgan Kaufmann.

Guy E. Blelloch, Jeremy T. Fineman, Yan Gu, and Yihan Sun. 2020. Optimal Parallel
Algorithms in the Binary-Forking Model. ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA) (2020), 89-102.

G. E. Blelloch and J. Shun. 2011. A Simple Parallel Cartesian Tree Algorithm and
its Application to Suffix Tree Construction. In ALENEX.

Robert D. Blumofe and Charles E. Leiserson. 1999. Scheduling Multithreaded
Computations by Work Stealing. J. ACM 46, 5 (1999).

Matthias Bohm, Benjamin Schlegel, Peter Benjamin Volk, Ulrike Fischer, Dirk
Habich, and Wolfgang Lehner. 2011. Efficient In-Memory Indexing with Gen-
eralized Prefix Trees. In Datenbanksysteme fiir Business, Technologie und Web
(BTW), 14. Fachtagung des GI-Fachbereichs "Datenbanken und Informationssys-
teme" (DBIS), 2.-4.3.2011 in Kaiserslautern, Germany (LNI, Vol. P-180), Theo Harder,
Wolfgang Lehner, Bernhard Mitschang, Harald Schoning, and Holger Schwarz
(Eds.). GI, 227-246. https://dl.gi.de/20.500.12116/19581

Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan Hassan, Brandon Lucia,
Rachata Ausavarungnirun, Kevin Hsieh, Nastaran Hajinazar, Krishna T. Mal-
ladi, Hongzhong Zheng, and Onur Mutlu. 2019. CoNDA: Efficient Cache Co-
herence Support for near-Data Accelerators. In Proceedings of the 46th Inter-
national Symposium on Computer Architecture (Phoenix, Arizona) (ISCA ’19).
Association for Computing Machinery, New York, NY, USA, 629-642. https:
//doi.org/10.1145/3307650.3322266

[18] Jiwon Choe, Andrew Crotty, Tali Moreshet, Maurice Herlihy, and R Iris Bahar.

2022. Hybrids: Cache-conscious concurrent data structures for near-memory
processing architectures. In Proceedings of the 34th ACM Symposium on Parallelism
in Algorithms and Architectures. 321-332.

[19] Jiwon Choe, Amy Huang, Tali Moreshet, Maurice Herlihy, and R. Iris Bahar.

2019. Concurrent Data Structures with Near-Data-Processing: an Architecture-
Aware Implementation. In ACM Symposium on Parallelism in Algorithms and

SPAA ’23, June 17-19, 2023, Orlando, FL, USA

Architectures (SPAA). 297-308.

Alexandar Devic, Siddhartha Balakrishna Rai, Anand Sivasubramaniam, Ameen
Akel, Sean Eilert, and Justin Eno. 2022. To PIM or not for emerging general
purpose processing in DDR memory systems. In ISCA °22: The 49th Annual
International Symposium on Computer Architecture, New York, New York, USA,
June 18 - 22, 2022, Valentina Salapura, Mohamed Zahran, Fred Chong, and Lingjia
Tang (Eds.). ACM, 231-244. https://doi.org/10.1145/3470496.3527431

Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran.
1999. Cache-Oblivious Algorithms. In IEEE Symposium on Foundations of Com-
puter Science (FOCS). 285-298.

Igal Galperin and Ronald L. Rivest. 1993. Scapegoat Trees. In Proceedings of
the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms (Austin, Texas,
USA) (SODA ’93). Society for Industrial and Applied Mathematics, USA, 165-174.
Christina Giannoula, Ivan Fernandez, Juan Gémez Luna, Nectarios Koziris, Geor-
gios Goumas, and Onur Mutlu. 2022. SparseP: Towards Efficient Sparse Ma-
trix Vector Multiplication on Real Processing-In-Memory Architectures. Proc.
ACM Meas. Anal. Comput. Syst. 6, 1, Article 21 (feb 2022), 49 pages. https:
//doi.org/10.1145/3508041

J. Gil, Y. Matias, and U. Vishkin. 1991. Towards a theory of nearly constant
time parallel algorithms. In IEEE Symposium on Foundations of Computer Science
(FOCS).

Saransh Gupta and Tajana Simunié¢ Rosing. 2021. Invited: Accelerating Fully
Homomorphic Encryption with Processing in Memory. In 2021 58th ACM/IEEE De-
sign Automation Conference (DAC). 1335-1338. https://doi.org/10.1109/DAC18074.
2021.9586285

Torben Hagerup. 1994. Optimal Parallel String Algorithms: Sorting, Merging
and Computing the Minimum. In Proceedings of the Twenty-Sixth Annual ACM
Symposium on Theory of Computing (Montreal, Quebec, Canada) (STOC ’94).
Association for Computing Machinery, New York, NY, USA, 382-391. https:
//doi.org/10.1145/195058.195202

Jaehoon Heo, Junsoo Kim, Sukbin Lim, Wontak Han, and Joo-Young Kim. 2022.
T-PIM: An Energy-Efficient Processing-in-Memory Accelerator for End-to-End
On-Device Training. IEEE Journal of Solid-State Circuits (2022), 1-14. https:
//doi.org/10.1109/JSSC.2022.3220195

Joe Jeddeloh and Brent Keeth. 2012. Hybrid memory cube new DRAM architec-
ture increases density and performance. In 2012 Symposium on VLSI Technology
(VLSIT). 87-88. https://doi.org/10.1109/VLSIT.2012.6242474

Hongbo Kang, Phillip B Gibbons, Guy E Blelloch, Laxman Dhulipala, Yan Gu, and
Charles McGuffey. 2021. The Processing-in-Memory Model. In Proceedings of the
33rd ACM Symposium on Parallelism in Algorithms and Architectures. 295-306.
Hongbo Kang, Yiwei Zhao, Guy E. Blelloch, Laxman Dhulipala, Yan Gu, Charles
McGuffey, and Phillip B. Gibbons. 2022. PIM-tree: A Skew-resistant Index for
Processing-in-Memory. PVLDB 16, 4 (2022), 946-958. https://doi.org/10.14778/
3574245.3574275

Richard M. Karp and Michael O. Rabin. 1987. Efficient randomized pattern-
matching algorithms. IBM Journal of Research and Development 31, 2 (1987),
249-260. https://doi.org/10.1147/rd.312.0249

Donghyuk Kim, Chengshuo Yu, Shanshan Xie, Yuzong Chen, Joo-Young Kim,
Bongjin Kim, Jaydeep P. Kulkarni, and Tony Tae-Hyoung Kim. 2022. An Overview
of Processing-in-Memory Circuits for Artificial Intelligence and Machine Learn-
ing. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 12, 2
(2022), 338-353. https://doi.org/10.1109/JETCAS.2022.3160455

Ji-Hoon Kim, Juhyoung Lee, Jinsu Lee, Jachoon Heo, and Joo-Young Kim. 2021. Z-
PIM: A Sparsity-Aware Processing-in-Memory Architecture With Fully Variable
Weight Bit-Precision for Energy-Efficient Deep Neural Networks. IEEE Journal
of Solid-State Circuits 56, 4 (2021), 1093-1104. https://doi.org/10.1109/JSSC.2020.
3039206

Young-Cheon Kwon, Suk Han Lee, Jachoon Lee, Sang-Hyuk Kwon, Je Min Ryu,
Jong-Pil Son, O Seongil, Hak-Soo Yu, Haesuk Lee, Soo Young Kim, Youngmin
Cho, Jin Guk Kim, Jongyoon Choi, Hyun-Sung Shin, Jin Kim, BengSeng Phuah,
HyoungMin Kim, Myeong Jun Song, Ahn Choi, Daeho Kim, SooYoung Kim, Eun-
Bong Kim, David Wang, Shinhaeng Kang, Yuhwan Ro, Seungwoo Seo, JoonHo
Song, Jaeyoun Youn, Kyomin Sohn, and Nam Sung Kim. 2021. 25.4 A 20nm 6GB
Function-In-Memory DRAM, Based on HBM2 with a 1.2TFLOPS Programmable
Computing Unit Using Bank-Level Parallelism, for Machine Learning Applica-
tions. In 2021 IEEE International Solid- State Circuits Conference (ISSCC), Vol. 64.
350-352.

Donghun Lee, Jinin So, MINSEON AHN, Jong-Geon Lee, Jungmin Kim,
Jeonghyeon Cho, Rebholz Oliver, Vishnu Charan Thummala, Ravi shankar JV,
Sachin Suresh Upadhya, Mohammed Ibrahim Khan, and Jin Hyun Kim. 2022.
Improving In-Memory Database Operations with Acceleration DIMM (AxDIMM).
In Data Management on New Hardware (Philadelphia, PA, USA) (DaMoN’22).
Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages.
https://doi.org/10.1145/3533737.3535093

Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The adaptive radix tree:
ARTful indexing for main-memory databases. In 2013 IEEE 29th International
Conference on Data Engineering (ICDE). 38-49. https://doi.org/10.1109/ICDE.
2013.6544812



SPAA ’23, June 17-19, 2023, Orlando, FL, USA

[37]

[38

[39

[40

[41

[42]

[43

[44]

[45

[46]

[47

[48]

[49

[50

[51

[52]

[53]

Viktor Leis, Florian Scheibner, Alfons Kemper, and Thomas Neumann. 2016.
The ART of Practical Synchronization (DaMoN ’16). Association for Computing
Machinery, New York, NY, USA, Article 3, 8 pages. https://doi.org/10.1145/
2933349.2933352

Dai Li, Akhil Pakala, and Kaiyuan Yang. 2022. MeNTT: A Compact and Efficient
Processing-in-Memory Number Theoretic Transform (NTT) Accelerator. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 30, 5 (2022), 579-588.
Xing Li, Rachata Ausavarungnirun, Xiao Liu, Xueyuan Liu, Xuan Zhang, Heng
Lu, Zhuoran Song, Naifeng Jing, and Xiaoyao Liang. 2022. Gzippo: Highly-
Compact Processing-in-Memory Graph Accelerator Alleviating Sparsity and
Redundancy. In Proceedings of the 41st IEEE/ACM International Conference on
Computer-Aided Design (San Diego, California) (ICCAD °22). Association for
Computing Machinery, New York, NY, USA, Article 115, 9 pages. https://doi.
org/10.1145/3508352.3549372

Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu. 2017. Concurrent
Data Structures for Near-memory Computing. In ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA). 235-245.

Donald R. Morrison. 1968. PATRICIA—Practical Algorithm To Retrieve Infor-
mation Coded in Alphanumeric. Journal of the ACM (JACM) 15, 4 (Oct. 1968),
514-534.

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun.
2023. A Modern Primer on Processing in Memory. Springer Nature Singapore,
Singapore, 171-243. https://doi.org/10.1007/978-981-16-7487-7_7

Newton, Virendra Singh, and Trevor E. Carlson. 2020. PIM-GraphSCC: PIM-
Based Graph Processing Using Graph’s Community Structures. IEEE Comput.
Archit. Lett. 19, 2 (jul 2020), 151-154. https://doi.org/10.1109/LCA.2020.3039498
W. W. Peterson and D. T. Brown. 1961. Cyclic Codes for Error Detection. Proceed-
ings of the IRE 49, 1 (1961), 228-235. https://doi.org/10.1109/JRPROC.1961.287814
Nick Piggin. 2006. A lockless pagecache in linux—introduction, progress, perfor-
mance. In Linux Symposium. 241.

Sonny Rao, Dominique Heger, and Steven Pratt. 2005. Examining Linux 2.6
page-cache performance. In Linux Symposium. 79.

Peter Sanders. 1996. On the Competitive Analysis of Randomized Static Load
Balancing. In Workshop on Randomized Parallel Algorithms (RANDOM).

Robert Sedgewick and Kevin Wayne. 2011. Algorithms, 4th Edition. Addison-
Wesley.

Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali
Boroumand, Jeremie S. Kim, Michael A. Kozuch, Onur Mutlu, Phillip B. Gib-
bons, and Todd C. Mowry. 2017. Ambit: In-memory accelerator for bulk bitwise
operations using commodity DRAM technology. In Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO 2017, Cambridge,
MA, USA, October 14-18, 2017. ACM, 273-287. https://doi.org/10.1145/3123939.
3124544

Jason Sewall, Jatin Chhugani, Changkyu Kim, Nadathur Satish, and Pradeep
Dubey. 2011. PALM: Parallel architecture-friendly latch-free modifications to B+
trees on many-core processors. Proceedings of the VLDB Endowment 4, 11 (2011),
795-806.

Wonbo Shim and Shimeng Yu. 2022. GP3D: 3D NAND Based In-Memory Graph
Processing Accelerator. IEEE Journal on Emerging and Selected Topics in Circuits
and Systems 12, 2 (2022), 500-507. https://doi.org/10.1109/JETCAS.2022.3155654
Julian Shun. 2014. Fast Parallel Computation of Longest Common Prefixes. In SC
’14: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. 387-398. https://doi.org/10.1109/SC.2014.37
Julian Shun, Yan Gu, Guy E. Blelloch, Jeremy T. Fineman, and Phillip B. Gibbons.
2015. Sequential Random Permutation, List Contraction and Tree Contraction
are Highly Parallel. In ACM-SIAM Symposium on Discrete Algorithms (SODA).

14

[54

[55

[56

o
=

(58]

[59

[60

[61]

[65]

[66

[68

[69

Hongbo Kang et al.

431-448.

Keith Sklower. 1991. A Tree-Based Packet Routing Table for Berkeley Unix. In
Proceedings of the Usenix Winter 1991 Conference, Dallas, TX, USA, January 1991.
USENIX Association, 93-104.

Anubhav Srivastava and Trevor Brown. 2022. Elimination (a, b)-trees with fast,
durable updates. In PPoPP 22: 27th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, Seoul, Republic of Korea, April 2 - 6, 2022,
Jaejin Lee, Kunal Agrawal, and Michael F. Spear (Eds.). ACM, 416-430. https:
//doi.org/10.1145/3503221.3508441

Harold S. Stone. 1970. A Logic-in-Memory Computer. IEEE Trans. Comput. C-19,
1(1970), 73-78.

Thomas Tseng, Laxman Dhulipala, and Guy E. Blelloch. 2019. Batch-parallel
Euler Tour trees. In SIAM Meeting on Algorithm Engineering and Experiments
(ALENEX). 92-106.

UPMEM. 2023. UPMEM Technology. https://www.upmem.com/technology/.
Accessed January 5, 2023.

Leslie G Valiant. 1990. A bridging model for parallel computation. Commun.
ACM 33, 8 (1990), 103-111.

Junpeng Wang, Haitao Du, Bo Ding, Qi Xu, Song Chen, and Yi Kang. 2022. DDAM:
Data Distribution-Aware Mapping of CNNs on Processing-In-Memory Systems.
ACM Trans. Des. Autom. Electron. Syst. (dec 2022). https://doi.org/10.1145/3576196
Zhao Wang, Yijin Guan, Guangyu Sun, Dimin Niu, Yuhao Wang, Hongzhong

Zheng, and Yinhe Han. 2020. GNN-PIM: A Processing-in-Memory Architecture
for Graph Neural Networks. In Advanced Computer Architecture, Dezun Dong,
Xiaoli Gong, Cunlu Li, Dongsheng Li, and Junjie Wu (Eds.). Springer Singapore,
Singapore, 73-86.

Dan E. Willard. 1983. Log-logarithmic worst-case range queries are possible in
space O(N). Inform. Process. Lett. 17, 2 (1983), 81-84.

Gary R. Wright and W. Richard Stevens. 1995. TCP/IP Illustrated, Volume 2: The
Implementation. Addison-Wesley.

Ting Wu, Chin-Fu Nien, Kuang-Chao Chou, and Hsiang-Yun Cheng. 2022. Re-
PAIR: A ReRAM-based Processing-in-Memory Accelerator for Indel Realignment.
In 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE).
400-405. https://doi.org/10.23919/DATE54114.2022.9774715

Wm. A. Wulf and Sally A. McKee. 1995. Hitting the Memory Wall: Implications
of the Obvious. SIGARCH Comput. Archit. News 23, 1 (mar 1995), 20-24. https:
//doi.org/10.1145/216585.216588

Xinfeng Xie, Zheng Liang, Peng Gu, Abanti Basak, Lei Deng, Ling Liang, Xing Hu,
and Yuan Xie. 2021. SpaceA: Sparse Matrix Vector Multiplication on Processing-in-
Memory Accelerator. In 2021 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). 570-583. https://doi.org/10.1109/HPCA51647.
2021.00055

Fan Zhang, Shaahin Angizi, Naima Ahmed Fahmi, Wei Zhang, and Deliang
Fan. 2021. PIM-Quantifier: A Processing-in-Memory Platform for mRNA Quan-
tification. In 2021 58th ACM/IEEE Design Automation Conference (DAC). 43-48.
https://doi.org/10.1109/DAC18074.2021.9586144

Huanchen Zhang, David G. Andersen, Andrew Pavlo, Michael Kaminsky, Lin
Ma, and Rui Shen. 2016. Reducing the Storage Overhead of Main-Memory OLTP
Databases with Hybrid Indexes. In Proceedings of the 2016 International Conference
on Management of Data, SIGMOD Conference 2016, San Francisco, CA, USA, June
26 - July 01, 2016, Fatma Ozcan, Georgia Koutrika, and Sam Madden (Eds.). ACM,
1567-1581. https://doi.org/10.1145/2882903.2915222

Mingxing Zhang, Youwei Zhuo, Chao Wang, Mingyu Gao, Yongwei Wu, Kang
Chen, Christos Kozyrakis, and Xuehai Qian. 2018. GraphP: Reducing Communi-
cation for PIM-Based Graph Processing with Efficient Data Partition. In 2018 IEEE
International Symposium on High Performance Computer Architecture (HPCA).
544-557. https://doi.org/10.1109/HPCA.2018.00053



	ABSTRACT
	1 Introduction
	2 PIM Model
	3 Related Works
	3.1 Tries and Variants
	3.2 PIM-Friendly Indexes
	3.3 Building Blocks
	3.4 Limitations of Prior Work

	4 Our Approaches
	4.1 Query Trie and Trie Matching
	4.2 Hybrid Hash Trie
	4.3 Trie Matching Algorithm
	4.4 Hash Value Manager

	5 PIM-TRIE Operations
	5.1 LongestCommonPrefix
	5.2 Insert and Delete
	5.3 Subtree Query

	6 Conclusion
	ACKNOWLEDGMENTS
	REFERENCES

