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Abstract— Many methods that solve robot planning problems,
such as task and motion planners, employ discrete symbolic
search to find sequences of valid symbolic actions that are
grounded with motion planning. Much of the efficacy of these
planners lies in this grounding—bad placement and grasp
choices can lead to inefficient planning when a problem has
many geometric constraints. Moreover, grounding methods such
as naı̈ve sampling often fail to find appropriate values for
these choices in the presence of clutter. Towards efficient task
and motion planning, we present a novel optimization-based
approach for grounding to solve cluttered problems that have
many constraints that arise from geometry. Our approach finds
an optimal grounding and can provide feedback to discrete
search for more effective planning. We demonstrate our method
against baseline methods in complex simulated environments.

I. INTRODUCTION

Manipulation is essential for robotics. To efficiently plan
for manipulation, a robot must be able to reason over discrete
choices (what to do) and continuous actions (how to do it).
Task and Motion Planning (TAMP) [1–7] addresses these
problems with layered planning; TAMP methods use task
planning [8–10] to find action sequences (plan skeletons)
that are either resolved into continuous motion by motion
planning [11–13] or are declared infeasible (e.g., due to
motion planning timeout), thus requiring a new plan skeleton.

To find a continuous motion for a desired action, an action’s
parameters (e.g., how an object is grasped, where an object
is placed) must be determined. Finding parameters for a
plan skeleton (so called as it is missing these parameters) is
called grounding. Commonly, grounding is achieved through
discretization [1] or sampling [2, 3]. However, in cluttered
environments, discretization may not have sufficient resolution
to find a plan, and sampling is unlikely to produce parameters
that satisfy geometric constraints [14–18].

Consider Fig. 1, where the robot must set up the 8 blue
chess pieces. Given the clutter, height differences of the
pieces, and the robot’s hand geometry, many pieces can only
be grasped with certain hand poses and in a specific order.
Additionally, when problems are non-monotone (i.e., require
grasping a piece more than once), intermediate placement
locations must be found, which is highly non-trivial in
clutter [17, 18]. For example, in Fig. 1c–d, the blue rook
and other shorter pieces cannot be grasped while the queen
is adjacent to them—the queen must first be moved to an
intermediate location. Moreover, the queen can only be placed
at the goal after the shorter bishop is finalized.

All authors are affiliated with the Department of Computer Sci-
ence, Rice University, Houston TX, USA {carlosq, zak, tp36,
rahul.shome, anastasios, kavraki}@rice.edu. This
work was supported in part by NSF RI 2008720 and Rice University Funds.

Fig. 1. A cluttered manipulation scenario. a) Example start configuration of
the Chessboard problem. The robot must move all 8 blue pieces to achieve
the b) goal. c–d) Example of action infeasibility from geometry. Grasping
the short blue rook fails due to collision of the robot’s hand and the queen
(dark pink). The queen must be removed before the rook can be grasped.
Our method finds these constraints and solves cluttered scenarios like this.

In this work, we focus on improving the scalability of
TAMP—our contribution is a specialized grounding layer for
highly cluttered environments, which we demonstrate in a
TAMP framework. Our grounding layer is a mathematical
program capable of finding optimal (with respect to a user-
defined function) groundings for a plan skeleton. Moreover, if
a feasible grounding does not exist, constraints derived from
the infeasible model are added to a Satisfiability Modulo
Theories (SMT) solver [8] to find a new plan skeleton. The
instances of our grounding layer presented here are applicable
to a limited but important class of problems typically arising
in planar manipulation planning. The modeling choices in
the proposed formulation (see Sec. V-C) provide global op-
timality guarantees in contrast to more general formulations,
which we believe is critical for clutter.

In contrast to prior work, our approach does not rely on
discretization of the environment [1] or approximations of
free configuration space [19]. Unlike other optimization-
based TAMP methods [4, 20], the mathematical models used
by our method are designed for cluttered environments, and
effectively guide task planning to plan skeletons that meet all
geometric constraints. We demonstrate our method on several
simulated manipulation tasks, all of which are cluttered and
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present complex geometric relationships between the objects
and robot. We compare against state-of-the-art methods,
showing that our method can solve cluttered problems with
more objects and longer plans in less time.

II. RELATED WORK

Our work focuses on improving scalability of TAMP meth-
ods. In TAMP, a discrete symbolic planner and continuous
motion planner interact to find a plan that achieves a high-level
goal [1–7]. Our method is based on using an SMT solver for
TAMP, similar to [1, 21]—in these approaches, if grounding
an action with motion planning fails (e.g., due to planner
timeout), constraints are added to the SMT solver to generate
a new plan skeleton. However, these approaches require
discretized action parameters, which are represented as unique
symbols in the task planner. In contrast, our method leverages
constraint-based SMT solving without discretization—our
approach uses abstract symbols in the task planner which
are grounded through our novel optimization-based method.

Rather than discretizing action parameters, other ap-
proaches use specialized conditional samplers to ground
actions in plan skeletons [2, 3, 22]. However, for highly
cluttered environments, the chance of sampling feasible values
is low and thus impractical. Additionally, these methods can
be highly inefficient with interdependencies between variables
in the plan skeleton—a decision made early in the plan
can make it virtually impossible find feasible groundings for
actions further along [23]. Our optimization-based grounding
method jointly optimizes and grounds all geometric variables
in a plan skeleton, avoiding these problems.

To holistically tackle the TAMP problem, the methods
described in [4, 20] use nonlinear mathematical programs
over a plan skeleton, which ground action parameters in
stages. Similarly, our method grounds geometric variables
by optimizing over a plan skeleton. However, our framework
is specially suited for clutter. Under certain assumptions, our
formulations can efficiently discard infeasible plan skeletons
and help guiding the search towards feasible solutions by
providing feedback to the task planner. Recently, [7] extended
the method in [4] to discover conflicting geometric constraints
within factor graphs to inform the discrete layer of a TAMP
planner. In our approach, information about infeasibility
from our optimization-based grounder is transformed into
constraints which are added to the SMT-based task planner.

Other approaches proposed specialized motion planners
with hierarchical searches to find placement poses in cluttered
environments [16] or optimize grasp poses for computing fast
motions [24]. Our framework computes both optimal grasp
poses and placement locations in cluttered environments but
it does so within a TAMP framework, which makes it useful
for longer-horizon and more general robotic tasks.

A. Object Rearrangement

Object Rearrangement (OR) [15, 17, 18, 25] defines a class
of TAMP problems where the goal is a desired configura-
tion of objects. Most attention has been given to tabletop
rearrangement, where objects of similar geometry on a flat

Fig. 2. Representation of projections of the robot hand and objects into
the plane of manipulation for (left) AABB and (right) circles. Primitives Pt

o
and Pt

r are shown as colored geometric primitives with their parameters,
which are defined in Sec. V-B.

surface are grasped from above [25]. Compared to general
TAMP, in OR interactions between the robot and the objects
are simplified (e.g., top-down pick actions that are guaranteed
to be feasible). Despite these assumptions, OR is known to
be NP-hard [25]; complexity arises from constraints created
by collisions in object start and goal poses. These constraints
require finding intermediate object locations (necessary for
non-monotone problems), which is non-trivial [17].

Insights from OR are used in our optimization-based
grounding, which computes optimal intermediate placement
locations in cluttered scenes. Note that in OR, it is usually
assumed that all actions are feasible, and potential complex
robot-object dependencies are ignored, such as the ones shown
in this paper (e.g., Fig. 1). Our method does not assume action
feasibility, and is able to figure out if intermediate locations
are required based on feedback from our optimization-based
grounder and motion planning. Recent works [17, 18] have
analyzed OR in clutter, combining ideas from monotone
solvers and motion planning. However, they still lack the
capability of solving more general problems that TAMP
methods such as ours provide.

III. PROBLEM DEFINITION

We focus on robot manipulation problems with a set of
objects O in a workspace W ⊆ R3. We use the Planning
Domain Description Language (PDDL) [26] to define the
discrete task domain—the task planner finds a plan skeleton,
a sequence A = {a1, . . . , aK} of action operators in the
domain that transitions the system from the start to a goal.

We consider the class of problems of planar manipulation,
where all objects are placed on a plane. Here, the robot’s
parallel jaw end-effector first reaches a pre-grasp pose, and
then moves in a straight line in the workspace to attain the
grasp pose. The plane of manipulation Wĥ is defined by the
normal vector ĥ that represents the displacement of the robot’s
hand between pre-grasp and grasp poses. Mr : W → Wĥ
and Mo : W → Wĥ are projections from points in the
robot’s hand and an object o respectively to Wĥ. Fig. 2 shows
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Fig. 3. a) Baseline TAMP framework [1]. b) Proposed TAMP framework for
cluttered scenes. Our proposed TAMP framework optimization-based grounder
provides additional feedback to the SMT-based task planner and optimal
groundings to motion planning.

a visual representation of the these projections. Note that even
if the motion to a pre-grasp pose exists, the corresponding
motion from pre-grasp to grasp may not, i.e., due to geometric
constraints between the objects and the robot.

We will assume that a trajectory between pre-grasp and
grasp poses exists if the projections between the robot hand
and objects not being manipulated onto Wĥ do not intersect:

Assumption 1. Let X t
o and X t

r be respectively the space
occupied by object o and the robot at time t. Let ot =
{
⋃

Mo(x
t
o) | ∀xt

o ∈ X t
o} , rt = {

⋃
Mr(x

t
r) | ∀xt

r ∈ X t
r}. If

ot ∩ rt = ∅, then there exists a collision-free trajectory from
the configurations that achieve the pre-grasp pose to the
grasp pose.

The objects and robot’s hand at step t are represented as
sets of geometric primitives Pt

o and Pt
r in Wĥ:

Pt
o =

{⋃
ptoi | ptoi ⊆ Wĥ

}
,Pt

r =
{⋃

ptri | ptri ⊆ Wĥ

}
Our choices for ptoi and ptri are described in Sec. V-A. We
will assume that Pt

o and Pt
r are conservative approximations

of the objects and the robot hand at t:

Assumption 1a (Conservative Projection). Mo(x
t
o) ∈

Po, ∀xt
o ∈ X t

o and Mr(x
t
r) ∈ Pr∀xt

r ∈ X t
r .

IV. TASK AND MOTION PLANNING IN CLUTTER

We provide an algorithmic framework to solve TAMP prob-
lems for manipulation planning in clutter. The framework,
shown in Fig. 3b is based on [1]. It consists of an SMT solver
for task planning that produces plan skeletons. A motion
planner takes a plan skeleton that has been partially grounded
and computes motions for action operators. Failure to find a
motion plan introduces constraints that are used by the SMT
solver to generate new plan skeletons.

Instead of using sampling or discretization of geometric
variables to ground plan skeletons (Fig. 3a), our framework
incorporates a novel optimization-based grounding method
between the task planner and the motion planner (Fig. 3b).
Our grounding method takes a plan skeleton and jointly
optimizes geometric variables of ungrounded action oper-
ators – grasps and placements — before motion planning.
Importantly, information about infeasible problems from the
grounder is used to create new constraints that are added to the

SMT solver. This mechanism allows our method to effectively
consider geometric information at the task planner—which is
critical for highly geometrically constrained and cluttered
environments—without explicitly incorporating additional
geometric information at the symbolic level. In this paper,
we present instances of the grounding layer for classes of
problems in planar manipulation planning that cover a wide
variety of real-world applications. However, note that our
framework is general and can be extended to other classes
of problems.

V. OPTIMIZATION-BASED GROUNDING

The input of our grounding layer is a plan skeleton A,
the initial pose of all objects in W and the goal pose of a
subset Ogoal ⊆ O of the objects. Its output consists of optimal
values for the robot’s hand poses and intermediate placement
locations for objects that are not in Ogoal or a set of conflicting
constraints if the model is infeasible (see Fig. 3b). The values
of these geometric variables are critical to success in cluttered
problems—choosing poor values early in a plan can create
conflicts closer to the goal [16–18]. Note that these variables
are computed only for each discretized action in the plan
skeleton, i.e., when the robot grasps or releases an object.
Geometric variables in-between actions (i.e., transit/transfer
modes [27]) are handled by motion planning.

A. Robot and Objects Model

We propose using circles or axis-aligned bounding boxes
(AABB) to represent Pt

o and Pt
r. For a geometric primitive pti,

we represent its pose as Pt
i = (xt

i, y
t
i , θ

t
i) ∈ SE(2). The radii

ri (for circles) and width and height (wi, hi) (for AABBs) are
inputs to the optimization.

B. Optimal Grounding

An optimal grounding over a plan skeleton is a solution
to the following optimization problem:

min
P1:K

f(P1:K)

st. Pt
Ob(at)

∩Pt
k = ∅, ∀k ∈ O \Ob(at), ∀at ∈ A (1a)

Pt
r ∩Pt

k = ∅, ∀k ∈ O \Ob(at), ∀at ∈ A (1b)

P0
o = So,PK

u = Gu, ∀o ∈ O, ∀u ∈ Ogoal (1c)

Pt+1
o = Pt

o, ∀o ∈ O \Ob(at) (1d)

where Ob(at) corresponds to the object being manipulated
at action at, Pt =

{
Pt
r0, . . . ,Pt

r|Pt
r|
,Pt

o0, . . . ,Pt
o|Pt

o|

}
is the

stacked vector of poses for every object and robot primitive
at t, So and Gu are start/goal poses for objects o and u
and f is a user-defined convex function. In our experiments
(see Sec. VI), f is the sum of quadratic displacements over
objects that encourages minimal end-effector motion, but this
choice can change depending on the problem at hand.

Eq. (1a) and Eq. (1b) represent no intersection between
pairs of geometric primitives in Wĥ. Eq. (1a) forces the
primitives of the manipulated object at t to not intersect with
the primitives of other objects at that timestep. Similarly,
Eq. (1b) forces the primitives of the robot to not intersect
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with the primitives of the objects, except for the one being
manipulated. Eq. (1c) models the start and goal configurations
for object primitives and Eq. (1d) expresses that primitives of
an object will maintain their previous poses unless the object
is manipulated by the action at that timestep.

A solution to the optimal grounding formulation above is a
vector of the robot’s hand and object poses primitives for all
steps in A with the minimum value for the objective function
f for which trajectories between pre-grasp and grasp poses
are guaranteed to exist.

C. Primitive Parameterizations

Next, we show specific instances of the pairwise non-
intersection constraints Eq. (1a) and Eq. (1b) for two object
models: AABBs and circles. We note that the following
formulations both provide global optimality guarantees, that
is, if a solution is found, it is guaranteed to be the optimal
solution. Moreover, if the optimizer declares infeasibility, it
is because there exists subsets of the constraints that can
not be jointly satisfied. This fact is exploited by our solver,
as described in Sec. V-D. Note that other object models are
possible—Eq. (1) is agnostic to the specific implementation.

1) AABB: In this model, primitives in Pt
0 and Pt

r are
AABBs with parameters (x, y, w, h, θ). The robot can grasp
objects using hand orientations that are aligned with the axis
of the supporting plane, i.e., θ ∈ {0, π/2}. Two AABBs will
not intersect if at least one of the following constraints holds
(see Fig. 2):

C1 : x1 − z
(1)
1 /2 ≥ x2 + z

(1)
2 /2,

C2 : x2 − z
(1)
2 /2 ≥ x1 + z

(1)
1 /2,

C3 : y1 − z
(2)
1 /2 ≥ y2 + z

(2)
2 /2,

C4 : y2 − z
(2)
2 /2 ≥ y1 + z

(2)
1 /2,

z
(1)
i = (wi(1− bθi) + hibθi) ,

z
(2)
i = (hi(1− bθi) + wibθi)

(2)

where bθi ∈ {0, 1} indicates the orientation of the i-th AABB
(0 or π/2 respectively). In consequence, non-intersection
constraints can be expressed for each pair of AABB primitives
as the disjunctive constraint

∨4
i=1 Ci, which in turn can be

expressed as a conjunction of constraints with additional
binary variables [28]. The overall formulation becomes a
mixed-integer program (MIP), since it contains continuous
variables (for placement locations), binary variables (for
the grasping choice) and linear constraints. Mathematical
programs with these characteristics can be efficiently solved
using off-the-shelf solvers [29].

2) Circles: In this model all primitives are circles pa-
rameterized with (x, y, r, θ). The general form of the non-
intersection constraints can be written as:

∥Tw
1 (x1, y1, θ1)c1 − Tw

2 (x2, y2, θ2)c2∥2 ≥ (r1 + r2)
2 (3)

where c1, c2 are the centers of the circles in their local
reference frame and Tw

i are rigid transformations from the
local frame of primitive i to Wĥ (see Fig. 2). We also
consider hand orientations that are aligned with the axis

of the manipulation plane, i.e., θ1, θ2 ∈ {0, π/2}. In that
case, Eq. (3) can be expressed in general form as g(x) ≤ 0,
where g(x) is a non-convex quadratic function with both
integer and continuous variables, where:

Tw(x, y, θ)c =(cx + x+ cy + y)(1− bθ)

+ (x+ cx + y − cy)bθ
(4)

where bθ ∈ {0, 1} indicates whether θ is 0 or π/2. When
using this model, the problem is a non-convex mixed-integer
quadratically constrained program (MIQCP). Although non-
convex, modern optimization solvers can efficiently solve
these problems to global optimality using bilinear program-
ming and branch-cut techniques [29]. Although this model
permits continuous hand orientations, we have restricted it
to a discrete set to provide global optimality guarantees.
A formulation with continuous orientations may require
expressing the problem as a nonlinear program (NLP), where
these guarantees may not hold.

D. Providing Feedback to the Task Planner

When the grounding model is infeasible, information about
this infeasibility can be used to guide the task planner to
produce plan skeletons that are more likely to be feasible. Due
to the optimality guarantees of our grounding layer, this can
be achieved by identifying potential reasons of infeasibility
in the underlying optimization model, i.e., by identifying
conflicting constraints at the converged solution. We do
this by computing an Irreducible Inconsistent Subsystem
(IIS) [30, 31], a subset of inconsistent constraints that becomes
feasible when one is removed from the set. Within the IIS,
constraints Eq. (1a) and Eq. (1b) are identified and used
to construct symbolic expressions to block the actions and
groundings that originated them. In particular, we identify
the timestep t, the action operator at, the conflicting objects
Ob(at) and k to create the following symbolic constraint:

K∧
s=1

(
l
[s]
k → ¬a[s]t

)
where l

[s]
k is a proposition that evaluates a predicate related

to object k, e.g., whether the object is at a given location or
if the object is on top of another object. When added to the
task planner, these expressions will block operator at at every
timestep in the plan skeleton where the proposition holds.
For the examples in this paper, some of these constraints may
have the following intuition: “do not pick up object A from
location X while object B is in location Y ” or “do not stack
object A into object B when object C is at location X”, etc.
Modern optimization solvers [29] can efficiently compute an
IIS from an infeasible formulation, e.g., based on [32].

VI. EXPERIMENTS

We implement our method with Z3 [8] as the SMT solver,
RRT-Connect [13] in OMPL [33] through Robowflex [34]
and DART [35] for motion planning, and Gurobi 9.5 [29] for
our optimization-based grounder.
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Problem Planning Statistics Plan Statistics
Example Start Example Goal Method Total (s) TP GD IIS MP Makespan EE Disp. (m) Success

O
P-

3

SMP1 9.31±38.46 87% 13% 7.76±2.01 1.89±0.80 100%

SMP2 9.65±37.31 86% 14% 7.52±2.00 1.80±0.56 100%

OPT 0.19±0.07 79% 9% 13% 6.00±0 1.37±0.12 100%

OPT-IIS 0.21±0.01 60% 6% 29% 5% 6.00±0 1.37±0.10 100%

O
P-

4

SMP1 24.05±45.25 92% 8% 10.08±2.20 2.29±0.81 98%

SMP2 23.01±37.67 91% 9% 10.24±2.03 2.23±0.52 98%

OPT 0.81±0.19 84% 8% 8% 8.00±0 1.55±0.55 100%

OPT-IIS 0.71±0.02 63% 5% 29% 2% 8.00±0 1.52±0.24 100%

O
P-

5

SMP1 253.14±232.17 79% 21% 10.62±0.94 3.46±3.77 58%

SMP2 256.11±194.38 74% 26% 10.73±0.98 2.56±0.84 44%

OPT 6.29±3.63 92% 4% 4% 10.00±0 2.02±2.51 100%

OPT-IIS 2.08±0.04 72% 5% 23% 1% 10.00±0 1.74±0.48 100%

O
P-

6

SMP1 - - - - - - - 0%

SMP2 - - - - - - - 0%

OPT 124.49±100.72 93% 2% 6% 12.00±0 2.33±1.10 96%

OPT-IIS 6.72±0.97 83% 3% 15% 0% 12.00±0 2.34±1.92 100%

O
P-

7

SMP1 - - - - - - - 0%

SMP2 - - - - - - - 0%

OPT 301.80±299.32 95% 1% 4% 14.00±0 4.60±2.41 4%

OPT-IIS 19.98±3.75 89% 2% 9% 0% 14.00±0 4.13±4.58 100%

O
P-

8

SMP1 - - - - - - - 0%

SMP2 - - - - - - - 0%

OPT - - - - - - - 0%

OPT-IIS 62.90±13.88 93% 1% 6% 0% 16.00±0 4.90±4.65 98%

O
P-

9

SMP1 - - - - - - - 0%

SMP2 - - - - - - - 0%

OPT - - - - - - - 0%

OPT-IIS 144.43±41.29 95% 1% 3% 0% 18.00±0 6.22±4.95 94%

C
he

ss

SMP1 - - - - - - - 0%

SMP2 - - - - - - - 0%

OPT 490.24±198.55 100% 0% 0% 16.00±0 5.44±0.83 18%

OPT-IIS 456.44±206.40 98% 0% 2% 0% 17.04±1.09 5.49±1.28 96%

T o
w

er

SMP1 - - - - - - - 0%

SMP2 - - - - - - - 0%

OPT - - - - - - - 0%

OPT-IIS 11.51±2.37 93% 1% 6% 0% 14.00±0 3.60±2.17 96%

Table I. Summary of experiments. An example start and goal configuration of each problem are shown on the left. Each row represents 50 randomized
trials of each method with a 1000 second timeout, with mean ± standard deviation of successful runs. In OP-X, only the goal location of the light blue
cube is specified (indicated by the arrow and transparent cube in the start column). In Chess, the goal is to move all 8 blue pieces pieces to their starting
positions. Tower requires three specific blocks to be stacked at a goal location (highlighted in light blue). In planning statistics, the total time spent in
seconds is given, along with the mean percentage spent in task planning (TP), grounding (GD), IIS computation (IIS), and motion planning (MP). In plan
statistics, the plan’s makespan (total number of actions) and total end-effector displacement are given. The success rate of each method is on the right.

A. Simulated Environments

We have created highly cluttered environments where the
robot (a UR5 adjacent to the small table, shown in Fig. 1) is
tasked with achieving a high-level goal, described in PDDL.
All the environments require reasoning over complex object-
object and object-robot geometric relationships for axis-
aligned top-down grasps, making the manipulation problems
challenging. For all environments, we create a set of 50
different problems by randomly sampling the start and goal
states. All experiments have a total TAMP planning timeout
of 1000 seconds. Results are summarized in Table I.

a) Obstructed Pick X (OP-X): The robot needs to
move a short object surrounded by X − 1 taller objects to a
desired goal location. The close proximity and difference in
height makes grasping the short object impossible when next

to the taller objects. When moving the taller objects away,
placement locations need to be computed, which is expected
to be harder for higher X , due to less available space. These
experiments are modeled using the AABB model described
in Eq. (2) and demonstrate scalability of our method, as
difficulty increases with the number of objects.

b) Chessboard (Chess): The robot must setup the 8
blue pieces in their starting position (Fig. 1). The initial
configuration of both the red and blue pieces is randomly
sampled. Short pieces can not be grasped if next to a taller
piece, e.g., a king or a queen. Similarly, shorter pieces (e.g.,
bishops) can not be placed at their goal locations if tall pieces
have already been placed. This experiment is modeled with
circles, as described in Eq. (4), and demonstrates long-horizon
task plans that use general mesh representations for objects.
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c) Tower Assembling (Tower): The robot assembles a
tower from a subset of objects on the table. Each object is
distinct; chosen objects must be stacked in a specific order at
the goal. The objects have different heights, making manip-
ulation of the shorter objects next to taller objects infeasible.
Placement locations need to be grounded while considering
both geometric constraints and task-level constraints (e.g.,
object A is on object B, and if the goal is to stack them in
the same order, A has to be placed at a buffer to move B to
the goal). This problem is modeled with AABBs, and includes
challenges similar to OP-X, with increased difficulty in both
the task and motion planning domains.

B. Planning Domain

The task planning domain contains symbols for the start,
goal, and potential intermediate location of each object. We
define action operators that transfer an object from the start
(PICK), transfer the object to the goal (PLACE), as well as
specialized operators to use the intermediate location (PLACE-
BUFFER and PICK-BUFFER). For the Tower problem, there
are also actions to stack a block on top of another block
(STACK) and to remove a block from the top of a block
(UNSTACK). When a goal or intermediate location is used
in a plan skeleton, it becomes a variable that is decided by
the grounding method. This model is more efficient than
incorporating symbols for every location, region, grasp pose,
or other geometric information [6].

C. Results

We compare the performance of our framework against
variations of [1], described below. These methods can prune
multiple task plans by blocking state-action pairs for all the
steps in the horizon when motion planning fails. Additionally,
we compare our full framework with a variation that optimizes
over plan skeletons but that does not implement task planner
feedback:

• SMP1: A method similar to [1] that samples grasp poses
and intermediate locations for actions that require them.

• SMP2: Similar to SMP1, but if the sampled grasp pose
fails, a new attempt is made using a different grasp pose.

• OPT: A variation of our optimization-based grounding
method which does not give any feedback to the task
planner. When a plan skeleton is found infeasible by the
grounder, this method falls back to sampling.

• OPT-IIS: This is the full implementation of our method
as described in Sec. IV, including feedback from the
optimization model to the task planner.

To evaluate the methods we compute the total time taken by
the planner and we show the percentage of that time used for
task planning (TP), grounding (GD), IIS computation (IIS)
and motion planning (MP). We also compute statistics about
the plan, such as the length of the found task plan (Makespan),
the displacement of the robot’s end effector (EE Disp.) and
the percentage of problems solved (Success).

Table I summarizes results with a visualization of an
example start and goal for each environment. We first focus on
the OP-X set of experiments and compare the performance of

the baselines with our proposed framework when increasing
the difficulty of the problem. In all cases, task planning
time dominates over all the other steps in the pipeline.
However, it is noteworthy that the process of computing the
IIS becomes more expensive (in absolute time) for problems
with more pairwise collision constraints (e.g., OP-8, OP-9).
These results show the benefits of using our TAMP framework
for environments that are highly cluttered.

Methods based on sampling can solve almost all the
problems in OP-3 and OP-4 and around half of the problems
in OP-5, but fail to solve any problem in the hardest instances.
Note that when SMP1–2 find a solution, they take orders of
magnitude more time than OPT-IIS, most of which is spent
task planning. This happens because it is often the case that
the sampled grasp configurations and intermediate locations
are not feasible due to the clutter, forcing the planner to block
actions that could have been feasible if appropriate values
had been attempted. OPT is capable of solving OP-6, but
only a few instances of OP-7, and none of OP-8 and OP-9.
OPT-IIS solves almost all instances of the OP-X problems,
demonstrating the importance of both the optimization and
the feedback. Note OPT-IIS finds the plan with the minimum
makespan and lowest end-effector displacement.

Chess can be solved by OPT and OPT-IIS, but not by the
baselines that only use sampling. Baseline methods fail to
solve this problem within timeout, as task planning is very ex-
pensive and it is challenging to discover feasible sequences of
grasps for the pieces given the complex geometric constraints.
We note the high success rate of OPT-IIS, emphasizing the
strength of using feedback to guide the search.

Tower is also shown to be highly challenging for the
baseline methods. Here, complex relationships between ob-
jects prevent grasping and stacking of shorter objects next to
taller ones. For example, poorly chosen buffer locations for
unstacked objects will interfere with the goal location of the
tower. OPT-IIS can efficiently discover such relations through
feedback, while other methods completely fail.

VII. CONCLUDING REMARKS

We have proposed a novel optimization-based grounding
approach that enables TAMP methods to solve complex,
cluttered manipulation planning problems. Between the task
planner and motion planner, our novel grounding layer finds
optimal values for action parameters in a candidate plan
skeleton, and if no feasible grounding is possible, also
provides feedback to the task planner to guide search towards
feasible actions. Our grounding approach handles planar
manipulation, an important class of problems in TAMP, and
provides global optimality guarantees—in future work, we
plan to investigate broader classes of problems and object
approximations. Further investigation is also merited in the
use of infeasibility information to guide task planning, and
additionally how optimality guarantees can be used to provide
information to guide planning as well. We also plan to extend
our framework to cases where Asm. 1 does not hold, e.g.,
obstacles outside the plane of manipulation that prevent the
motion planner from finding a solution.



Accepted for publication at ICRA 2023 IEEE International Conference on Robotics and Automation
May 29 - June 2, 2023 London UK

REFERENCES

[1] N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and L. E. Kavraki.
“An incremental constraint-based framework for task and motion
planning”. In: Int. J. of Robotics Research 37.10 (2018), pp. 1134–
1151.
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