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Abstract— Robotic deployments in human environments have
motivated the need for autonomous systems to be able to
interact with humans and solve tasks effectively. Human
demonstrations of tasks can be used to infer underlying task
specifications, commonly modeled with temporal logic. State-
of-the-art methods have developed Bayesian inference tools to
estimate a temporal logic formula from a sequence of demon-
strations. The current work proposes the use of experiment
design to choose environments for humans to perform these
demonstrations. This reduces the number of demonstrations
needed to estimate the unknown ground truth formula with low
error. A novel computationally efficient strategy is proposed
to generate informative environments by using an optimal
planner as the model for the demonstrator. Instead of evaluating
all possible environments, the search space reduces to the
placement of informative orderings of likely eventual goals
along an optimal planner’s solution. A human study with
600 demonstrations from 20 participants for 4 tasks on a
2D interface validates the proposed hypothesis and empirical
performance benefit in terms of convergence and error over
baselines. The human study dataset is also publicly shared.

I. INTRODUCTION

Interest in robotics applications has been increasingly
shifting from purely autonomous industrial settings towards
more assistive use cases among humans. Such problem
domains necessitate robots to adapt to a wide variety of
tasks potentially specified by humans. Wider adoption of
automation requires removing some of the traditional ac-
cessibility barriers of rigorous scientific knowledge in robot
programming. Frameworks need to be designed to effec-
tively recover the structure of task constraints and objectives
like the motivating scenarios in Fig 1 (top). Here, before
helping with a recipe, the autonomous framework can use
human demonstrations to first recover a representation of the
underlying task. This motivates efficient inference of task
specifications from humans to reduce the need for expert
knowledge, demonstration effort, and error.

Different representations exist for task constraints and
objectives [1]-[4]. Formal methods have been rigorously
studied with linear temporal logic (LTL) [5] being a com-
monly used encoding for Al tasks that have been applied to
robotics applications [6]-[8]. LTL augments first-order logic
and proves useful in expressing a wide variety of general task
specifications. Note that femporal in LTL primarily pertains
to ordering task actions and a discrete notion of time. As a
motivating example, consider a recipe for apple pie dictating
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Fig. 1. A collaborative application (top) with a human demonstrating the

recipe for apple pie to a robot. Task objective inference from demonstrations
(bottom left) can be improved by experiment design (bottom right).

that we mix in milk before flour and apples, while we do not
add salt or pepper at any point (Fig 1 (top)). We can express
such an example in LTL.

Existing planners capable of handling LTL constraints
require syntactically sound formulae as inputs. These input
formulae can tend to be unintuitive and verbose to non-
experts. A robot programmer needs time and expertise in
formal methods to design these inputs. To provide easier
mechanisms to define such task specifications, existing lines
of work [9]-[11] have shown that human demonstrations
can be effective. Here a demonstrator can teach the task
representation to the robot. Existing methods have focused
on making the inference process efficient given a set of input
demonstrations (similar to Fig 1 (bottom left)). State-of-the-
art Bayesian inference tools [9] have been developed, as well
as methods [11] that model the conditions of demonstrator
optimality to optimize task inference over demonstrations.
In these works, there exists an implicit assumption or need
for diverse demonstrations which an expert demonstrator can
carefully introduce. There is also a preference for shorter,
over-constrained specifications. In the recipe example the
following diversity in demonstrations is required to recover
that apples and flour can be swapped — add milk then flour
then apples and add milk then apples then flour.

It is important to note that a non-expert demonstrator
might have no natural propensity toward introducing demon-
stration diversity for identical experiments. This propels our
primary hypothesis that experiment design can serve as a



way to obtain informative and diverse demonstrations from
non-expert human demonstrators. This reduces the number of
demonstrations required to infer the true (potentially under-
constrained) underlying task specification. Using principles
from experiment design imposes a computational bottleneck.
Naive strategies to explore assignments that rearrange the
environment forming the demonstration interface become
combinatorially intractable as the number of objects, regions,
and locations increases. We propose an efficient experi-
ment design strategy by generating environments informed
by an optimal planner as an approximate model for the
demonstrator. At a high level, we first identify the likely
global constraints. Then we can identify a permutation of
eventual goals that maximally challenges the current ordering
constraint estimates. In spatial settings, the regions associated
with goals can be placed in sequence along an optimal
path that respects global constraints. Such an environment
incentivizes the demonstrator to provide a demonstration
distinct from previous ones. We validate this strategy in a
human study via a 2-D interface that is designed to be similar
to benchmarks in state-of-the-art works [9]-[11].

Our primary contributions in the current work are as
follows: a) we use experiment design to reduce the number
of demonstrations needed to infer task specifications from
humans; b) we propose an efficient environment design
mechanism by using an optimal planner as a model for
the demonstrator; ¢) we validate our hypothesis in extensive
human studies with 600 experiments on a 2D interface with
20 non-expert participants where our method outperforms the
state-of-the-art by needing fewer demonstrations and always
converging to low error estimates within 10 demonstrations,
d) we publicly share the dataset from the humans study.

II. RELATED WORK

Formal Methods: Formal methods have been used to
model complex robotic systems, affording various kinds of
guarantees on behavior. These techniques are essentially
combinations of specification, verification, and implementa-
tion. Various grammars [12] have been proposed to specify
requirements, each differing in the kinds of behaviors they
can express. LTL [5], used in this work, is particularly
suitable to robotics applications since it can encode temporal
constraints.

Planning under Logical Specifications: Logical for-
malisms can be used to generate plans that satisfy input
requirements. Sampling-based planners [13], [14] have been
adapted to deal with such formal constraints [15]. Beyond
lower-level motion planning, these are effective tools to
express constraints on manipulation planning [16], [17].
Further, LTL specifications have also been shown effective in
improving upon learned demonstrations [7]. These lines of
work assume as inputs well-formed formulas that correctly
capture the underlying true constraints. Constructing these
expressions typically requires expertise in formal methods.
In contrast, we focus on inferring accurate estimates of these
task specifications from non-expert human demonstrations.

Learning Models from Demonstrations: Learning

from demonstration (LfD) has been widely applied to
robotics [18], [19]. Here an expert agent provides demon-
strations in an attempt to transfer concepts to the robot.
This is framed as a reward learning [2], [20] problem.
It is non-trivial to convert a reward function to a logi-
cal specification [21] that yields stronger guarantees and
certificates. Learning [22] in human interactions has been
applied to shared task knowledge focusing on continuous-
time reactivity but not for recovering general temporal logic
specification.
Inferring Logical Specifications: Given the benefits af-
forded by formal methods, there has been recent interest
in effectively inferring these representations. This has been
examined from the perspective of describing differences in
demonstrations [23]. Inferring LTL has been reduced to a
boolean satisfiability problem over an equivalent alternating
finite automaton [24] in the presence of positive and negative
examples. Decision trees have also been shown to be effec-
tive at inferring logical specifications given a set of traces.
Prior work has used the principle of maximum entropy
to infer a specification given candidates [10]. Inference has
also been cast as a constraint satisfaction problem given a
finite set of demonstrations [25]. These methods need a large
set of diverse demonstrations (or an expert demonstrator)
or risk converging to overfitted estimates of the true task.
Optimization techniques (given an objective function) have
shown promise [11], [26]. The hard assumption of a cost
function allows for an iterative search for a satisfying formula
with a lower cost [11] - in the case that the demonstration
happens to be at a minimum, the search for counterexamples
will terminate (despite the possibility of learning an over-
constrained formula). The current work connects to this
line of work [11] in its use of an assumed model of the
demonstrator to inform the process, though we do so for
experiment design. The work proposed in this work builds
upon state-of-the-art that frames this problem in a Bayesian
context [9] - such a method relies on the assumption of a
diverse dataset to avoid learning an over-constrained formula.
We use this underlying inference scheme in the current work.
Active Learning: Active learning [27], where an expert
is involved in the inference process, has been applied to
specification learning to improve efficiency. These techniques
have been successfully applied to reward learning [2] to learn
complex reward landscapes with improved data complexity.
The requirement of a handcrafted feature space (for reward
functions) has been relaxed [28] - the human expert is asked
to guide the system to regions where a feature (to be learned)
is highly expressed. In the context of formal methods, all
grammars are expressed over symbols that abstract the raw
states. Active learning methods have been able to learn
these symbols [29] via interactions. In the context of LTL
inference, this has been posed as the system querying for
positive or negative labels to performed actions [30] where
the queries are sampled to reduce uncertainty. This requires
that negative examples are not explicitly unsafe to perform.
We note that advances in active learning stem from the field
of experiment design [31], which has also inspired our work.



III. PROBLEM FORMULATION

In this section, we set up the core task specification
inference problem. A demonstrator D provides demonstra-
tions in an environment £. The environment contains a set
of k regions {R1,- Ry} which induce interactions along
a demonstration. The demonstration can correspond to a
recording of some degrees of freedom of a robot in teleoper-
ation or possibly the tracked motions of the demonstrator’s
hand. A demonstration is a continuous trajectory d over time
t. D executes a satisfying demonstration to some underlying
task objective of interest 7 which is unknown. So, T(d)
evaluates to TRUE for satisfying demonstrations.

We recover discrete symbolic representations from such
continuous demonstrations. The task domain has an input
set of predicates IT = {p;}. Symbolic predicates p; record
region interactions and evaluate to TRUE or FALSE de-
pending upon the point along the demonstration and the
location of the regions. For example, consider a predicate
associated with visiting goal regions which is TRUE when
the agent passes through a region. Of note here is where
the goal region is in the environment and at what part of
the demonstration the region is traversed. We produce a
discrete symbolic trace of predicate evaluations along the
continuous demonstration. We find this trace by using an
evaluation of all the predicates, E(d(t)) = v. A trace over
the entire demonstration corresponds to a discrete' sequence
o« = {v1,--+,vp}, v; € [TRUE,FALSE]/". For a single
demonstration d in the environment &, interactions with
regions produce a trace a.

Specifically, we are interested in an LTL formula ¢+ for
representing tasks. 7 (d) evaluates to TRUE when the « cor-
responding to d satisfies ¥7-. Two formulae can be compared
by computing the difference between sets of satisfying traces
using Jaccard distance (intersection over union).

Multiple demonstrations can be obtained for the same
task objective by querying the demonstrator multiple times.
An experiment constitutes each such query with the "
experiment involving &;, d;, a;.

Task Specification Inference Problem: The problem of
inferring the task specification that demonstrations are satis-
fying over multiple experiments.

Input: The method takes as input the symbolic predicates
II, evaluation function F, and a human demonstrator D.
A sequence of N experiments generates a sequence of
demonstrations (d;);e1,..., v in environments (&;);e,... N]-
Output: An estimate of the task specification ¥ipferred-
Objective: Reduce the error between ¥inferred and ¥ and
reduce the number of experiments required, N.

IV. FOUNDATIONS

This section outlines the underlying probabilistic inference
problem. Note that we will use the convention of boldening
to distinguish distributions and domains 9 from samples ).
Given a domain of possible formulae %, any probabilistic

'In our implementation we consider the discrete instants at which the
predicate evaluations change.

model that takes a prior P(%|do,...,d;—1) and demonstra-
tion d; and outputs a posterior P(¥|dy,...,d;—1,d;) can
be used by our method. We use the inference procedures
proposed in state-of-the-art work [9]. Since the space of
LTL formulas is computationally prohibitive for inference,
previous work [9] has proposed a subset of this space
following the template,

1/" = 1/)obs A wgoals A 'l/"order~ (D
This comprises three components: (1) Global constraints
1ops represent the set of propositions, or predicate-variable
evaluations, that must always hold TRUE. (2) Eventual goals
Ygoals represent the set of predicate-variable evaluations that
must hold TRUE at some point temporally over the demon-
stration. (3) Temporal order ¥,,4e represent the temporal
ordering constraints among the predicate evaluations.

A Bayesian approach to inference lets us continually
update beliefs in light of new demonstrations. Further, it
provides significantly more information than the maximum a
posteriori (MAP) estimates alone. At the heart of inference
lies the use of Bayes’ rule in this context,

PWldo, dv, ... ds) = P(d;9)P(|do,d1,...,di—1)

> yey PW)P(dild)
To make the problem tractable, the inference [9] assumes
Yobs, Wgoals aNd Porder can be inferred simultaneously.
Priors: For 1055 and 1Pgoats, priors are constructed using
Bernoulli trials for each predicate-variable evaluation in the
discrete domain. For %o qer, sSampling priors is equivalent to
sampling forests of DAGs of temporal constraints [32].
Likelihood: Previous work [9] specified P(d;|t¢) in terms
of the number of constraints |1)| and some small e,

P(di|vs) if di =1y
P(di|thy) if d; by
Previous work [9] used the tools set
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Baseline Inference:
up in this section within a high-level loop visually outlined
in Fig 1 (bottom left) to obtain an estimate of Yinferred-
A Bayesian update to obtain the posterior is done via
Markov Chain Monte Carlo implemented in PyMC3 [33].
The VYinferreda 1S @ conjunction of MAP estimates for each
distribution, as in Eq. 1.

winfcrrcd = MAP("/Jobs) A MAP("/’goals) A MAP("/)order)~

The discussion thus far formulates the necessary inference
tools that can recover the task specification given a sequence
of N demonstrations. What is conspicuously missing is any
consideration of the environment or a way to get more useful
demonstrations, both of which affects the experiments.

V. METHOD

The current section outlines the key methodological contri-
butions of the current work. Fig 1 (bottom right) outlines the
broad structure of the proposed framework. The high-level
contribution is the introduction of environment design over
the baseline inference framework. The information obtained
from inference, P(%|dy,...,d;—1), is used in the design
stage to come up with an environment &; that can aid
inference in the i‘” step. The primary hypothesis will follow.
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Fig. 2.  Environment generation steps in an example spatial task with
visit() predicates over obstacles and goal regions. (Left: ) The estimates of
global constraints, and ordering of likely eventual goals. (Middle: ) A start,
obstacle region, and last goal are randomly placed in the environment and
optimally solved. (Right: ) The other goals placed along optimal solution.

Hypothesis [Informative Environment Design]: Varying
the environment, &;, across demonstrations di,---dy by
accounting for the expected utility of the demonstrations in
environments can yield improvements in terms of reducing
the number of experiments N and the error between Yinterred
and the unknown ground truth task .

This problem can be framed as a search over all possible
environments, that maximizes an expected utility function
based on the posterior after ¢ — 1 demonstrations. This
is referred to as Bayesian experiment design (BED) [31].
Designing an experiment can require an iteration over all
possible demonstrations for each possible experiment which
is computationally intractable. Consider the case of a 800
sq. pixel interface with 6 regions and a 100px discretization.
This maps to 5.3 x 1019 possible environments. A reduction
to a simpler search space is essential.

First we describe a trace a* which maximizes a utility.
Starting from the previous formula estimate 9 after ¢ — 1
demonstrations, o* and the formula set 1.+ provides the
highest utility, for e.g., information gain, demonstration
diversity, etc. We then need an environment from o*.

We assume that an optimal planner is a useful model
of a (near-)optimal demonstrator satisfying 17 to obtain a
demonstration d =~ optPlan(&, ¥1).

For example, in a spatial task setting we expect human
demonstrators to provide short satisfying paths (reducing the
Euclidean path length). This allows us to model the human
demonstrations with (near-)optimal solutions for the formula.
Also, if we start from a demonstration, we can generate
environments where the demonstration is optimal. Now, with
the optimal demonstrator as our model, we can narrow down

an environment of interest as follows given a*:
E* | d* = optPlan(E%,¢) Vi € ¢+, @™ = E(d*) (4)

A. Efficient Environment Generation

Fig 2 outlines how we reduce the search space of all
possible environments and demonstrations to the following:
(1) Estimate global constraints and eventual goals
(2) Identify informative sequence of eventual goals
(3) Generate an environment which is designed around the
optimal traversal of the informative goal sequence.

If we have an ordering of these regions (Fig 2 left) we can
design a corresponding environment (Fig 2 middle, right).
We first need estimates of 1ops and 1Pgoais. The remaining
required predicate-variable evaluations need to happen in
some order (Porder) and involves k likely eventual goals.
Informative Goal Permutation: We start from the current
estimate of the ordering constraints (¥orger) given previous
demonstrations. Some pairwise ordering constraints between

Algorithm 1: INFORMEDINFERENCE
input : demonstrator D, predicates II, evaluation F
output: LTL formula %iyferred
/* priors sampled as in [9] x/
1 Ygoals; Yobs: Yorder < priorDistribution()
2 while not rerminate do
3 if notConfident(¥obs, ¥goats) then
4 L & « randomEnv(Ygoats , Yobs )

/* generate informative environments */
5 else

6 L Vgoats < informedGoalSeq(Yorder )

& <+ informedEnv(¥goats, MAP (%obs) )

/+ query demonstrator & update estimate «/
8 d < getDemonstration(D, £)
9 BayesianUpdate(Ygoats, Yobs ; Yorder, trace(d, E))

return MAP (Yops) A MAP (Yg0a1s) A MAP (Yorder)

—
=)

eventual goal predicates will be estimated to be more likely
(supported) than others in opger. A permutation of eventual
goals is likewise some ordering of these predicates. We can
assign higher utility to permutations that contradict highly
supported pairwise ordering constraints. Since highly sup-
ported pairwise orderings were likely previously observed,
the higher utility permutation is expected to be one that
has likely not been observed yet. Intuitively, an environment
designed around such a permutation incentivizes a (near-
) optimal demonstration that is distinct from the previous
demonstrations and challenges the current ordering estimate
the most. This promotes informative, diverse demonstrations.
Optimal Planning for Environment Generation: Here
we provide a way to address Eq 4 and generate such an
environment. Consider that the order of & likely eventual goal
predicates correspond to a sequence of regions R - - Ry.
First, all the global constraint regions can be placed in the
environment randomly. Then a start of the demonstration is
connected using optPlan to a sampled location of the last re-
gion Ry. This demonstration is (near-)optimal and crucially,
stays (near-)optimal for Ri---Ry in a new environment
where the remaining regions R - - - R;_1 are sampled along
the demonstration in order (see Fig. 2).

B. Algorithm

Algorithms 1, 2, and 3 outline the steps in our method.
Algorithm 1 is the high-level loop which designs an environ-
ment (lines 3-7), queries the demonstrator using experiments
(line 8) to obtain demonstrations, and updates the distribu-
tions (line 9). The output task specification is a combination
of the MAP estimates of the temporal formula distributions.
The process begins with random environment design when
the discrimination of global and eventual goal constraints
shows low confidence (high entropy). Once the likely goals
are identified informed environment design is used.

Algorithm 2 generates an informed sequence of eventual
goals. It takes as input the ordering constraint distribution
and iterates over the domain to score the support of each
constraint-edge in each formula within a priority queue



Algorithm 2: INFORMEDGOALSEQ

input : "l’order

output: permutation over likely eventual goals
1Q+0;C+0;c+0
/* populate priority queue of constraints */
for ¢ € domain(Yorder) do

L for ¢ € getConstraintEdges(y) do

PRI N

L @ < updateQueue(e, score(e))

/* decide which constraints to challenge x/
5 while not contradiction(C U reverse(c)) and
random(0, 1) < Tinform do
6 | C <« CUreverse(c)
L ¢ + popMostSupportedConstraint(Q)

=

8 return randomSatisfyingPermutation(C)

Algorithm 3: INFORMEDENV

input : permutation ¥goa1s = (g1, - - gk ), Yobs
output: environment £

1 do

2 {Zops} + sampleLocations(¢ops)

3 x5 ¢ sampleDemoStart()

/+ sample last goal location %/
4 ¥ + sampleLocation(gy )
/* optimal satisfying path %/

5 d + optPlan(xs, z, {obs})

/* sample intermediate goals along path */
6 fort« 0, ie(1,---,k—1) do

7 |t < random(t,1); a « d(t)

/* create environment and add noise x/
8 & « update(z, {z}, - 2h}, {zobs})

9 & « addNoise()

while not isValid(&)

return &

"
= =

(Q). The most supported edges will be our candidates for
challenging. We go down the priority queue (lines 5-7) and
try building a temporal constraint by adding the challenged
(reverse) edge. The process stops when a contradiction is
reached (i.e., the reverse edge violates previously added
constraints) or an exploration dropout (I'inform) 18 triggered.
The output is a goal permutation satisfying constraints in C.

Algorithm 3 uses the permutation of goals to construct an
environment. The global constraint regions are first located
in the scene. The start of the demonstration is sampled, and
the final goal location is sampled. An optimal planner is
invoked for the planning problem to connect the start to
the final goal while respecting the global constraints. The
choice of the planner depends on the domain [13], [14], [34].
The other goals g; - - - gr—1 are placed at sampled locations
along the optimal path in order (lines 6-7). The environment
is updated with these locations for regions (line 8). Line 9
accounts for some noise that is added to the locations. The
process continues till the assignment of the locations creates
a valid environment. This validity depends on the domain (for
instance overlaps between regions might be not allowed).

TABLE I
TASK OBJECTIVE Y1

Yobs = O(—maroon; A —maroonsz)
ngoals = <>(red Ablue A green A yellow)

ID  Yorder Constraint DAG

1 —blue U red A ngreen U blue A R—-B—-G—Y
—yellow U green

2 T no ordering

3 —green U blue B—G

4 —green U blue A =yellow U blue Y+~B—G

VI. HUMAN STUDY RESULTS

This section outlines details of the human experiments and
results that demonstrate the efficacy of our proposed method.
Human Participants: We recruited 20 participants from a
pool of university students with low familiarity to robotics
and temporal logics, assessed via a pre-study questionnaire.
The participants were divided into 4 equal groups and were
presented standardized instructions across experiments.
Study Interface: We designed a 2-D interface using PyGame
where a user can freely move around a 'robot’ (Fig 3) using
the keyboard. The interface during the study presented 6
regions, split between 4 differently colored diamonds (red,
blue, green, yellow), and 2 maroon rectangles. For each of
these objects, a predicate, visit() evaluates to true if the robot
intersects with the region. Such a 2-D interface is a standard
benchmark in state-of-the-art [9]-[11] exploring LTL.
Study Conditions: Each of the 4 groups of 5 participants
evaluated a different LTL formulae varying in temporal
constraints involving the colored regions (Table I). Each
formula was converted to natural language instructions (like
Fig 3 left). Participants for a formula were shown identical
instructions. The trace data was recorded for each trial.
Each participant was shown 10 different environments for
3 different underlying methods each. This provided a total
of 600 human demonstrations across all the trials. The order
of the presented methods were randomized. Between each set
of 10 experiments the participants were given a 60s break.
The participants were given an anonymized survey about
their background, understanding of the task, and qualitative
experience with the interface at the end of the protocol.
Methods and Metrics: We benchmark the proposed
framework (informed) against two comparison points, the
baseline [9] where the environment is not affected across
demonstrations, and a random environment generation strat-
egy. During each run of 10 experiments (participant, method,
formula) we recorded the MAP estimate after each additional
demonstration. The Jaccard distance error from the ground
truth is reported as averages for each formula in Fig 4.
Analysis: Formula 1 (Fig 4 top left): The first formula
is completely constraining, i.e. there is a unique satisfying
trace. Trivially, all three cases perform well since the space
of valid demonstrations is uniquely restricted.

Formula 2 (Fig 4 top right): Formula 2 covers the opposite
case, where there are no temporal constraints placed upon
the task. In the baseline case, the participants tend to provide



Avoid all the Maroon rectangular objects and
Visit all the diamond shaped objects
* Youmust have visited the Red diamond before you
can visit the Blue diamond
* You must have visited the Red diamond before you
can visit the diamond
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Fig. 3.

A motivating example of the interface used in the human study. (Left:) Instructions specifying maroon obstacles, and ordering constraints for

red(R), blue(B), and green(G) diamonds. (Right four:) Our approach over 4 experiment examples with the snapshot showing the path (dotted pink) and
the position of the robot at the end of the demonstration. The first is a random environment. The right three generate environments that a) are confident
about maroon being global constraints, and b) place an informative permutation of goals (GBR, RGB, BGR respectively) along an optimal path. Consider
the second experiment. The current estimate supports B after R from the previous demonstration. The second environment is optimized to incentivize a
demonstration with GBR. The fact that the demonstrator still chooses R before B is informative. Experiment design effectively makes inference converge.
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Fig. 4. Benchmarking results for 4 different task specification formulae.
The X-axis displays the number of demonstrations, while the Y-axis
represents the error from the true formula. Each plot is averaged over the
5 participants assigned to the each formula. The 90% confidence interval
is also visualized. Informed (ours) consistently shows faster convergence to
an estimated formula with low error.

very similar demonstrations - this infers an over-constraining
ordering. The random case performs significantly better. Our
method outperforms both the baselines by incentivizing the
demonstrations that ’challenge’ existing formula hypothesis
Formula 3 (Fig 4 bottom left): Next, we consider a formula
with a single temporal constraint that blue must be visited
before green. Here too the baseline fails to converge, while
random has slow progress. The proposed method rapidly
converges within 10 demonstrations.

Formula 4 (Fig 4 bottom right): Formula 4 induces an
additional constraint to formula 3, i.e. blue must be visited
before both green and yellow. As earlier the performance
benefits are evident.

Note: Non-expert demonstrators can provide erroneous
constraint-violating demonstrations. Despite associated fluc-
tuations to the estimation process, our method converges
more accurately to task specifications than the baselines.

Conclusions: The hypothesis introduced in this work that
environment design can lead to efficient inference of task
specification is validated by the empirical performance. The

recorded data further supports the hypothesis that humans
are (near-)optimal demonstrators of task specifications in the
category of problems studied.

Dataset: The data from 600 human demonstrations is also
shared in a dataset 2 that contains for each experiment a)
a trace of symbolic predicate evaluations, b) the time taken
by the participant, c¢) the ground truth, d) the estimate of
the formula, e) error to the ground truth, alongside the
anonymized survey responses.

VII. DISCUSSION

We have demonstrated in this work that experiment design
yields significant improvement in terms of reducing demon-
stration effort for non-expert demonstrators and inferring the
task specifications with low errors. The work leveraged an
optimal planner as a model for demonstrations to efficiently
generate informative environments. Our hypothesis was val-
idated in a human study with non-expert participants where
data was recorded over 600 experiments with 20 non-expert
participants. Furthermore, the dataset of the recorded trials
is also publicly shared. While the experiments conducted in
this work were limited to a 2D interface, the formulation
is broadly applicable and lends itself to more sophisticated
applications involving physical robots and interactions.

Beyond 2D, the proposed method remains efficient as
long as a (near-)optimal planner is a good model for
the human demonstrator. For instance, consider a tabletop
problem where the planar coordinates of objects and the
projection of the demonstrator’s hand can resemble the 2-D
interface shown. The choice of accurate distances and costs
to reasonably model a demonstrator will be studied in future
work. A compelling future direction to explore are human-
robot interaction challenges for a robot to actively manipulate
environments for gathering useful demonstrations.

Additionally, there are improvements that could be ex-
plored in the underlying baseline inference framework [9]
that can sample and explore a more general class of temporal
formulae. The connections between demonstrator optimality
conditions [11] to the proposed process can also be explored
for more general task domains. The work carves out a
concrete improvement in the right direction towards enabling
efficient interactions between intelligent systems and non-
expert humans to infer tasks in collaborative applications.

Zhttps://github.com/KavrakiLab/sobti2023-icra-data
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