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Type II and IV twins with irrational twin boundaries are studied by high-resolution
transmission electron microscopy in two plagioclase crystals. The twin boundaries in
these and in NiTi are found to relax to form rational facets separated by disconnections.
The topological model (TM), amending the classical model, is required for a precise
theoretical prediction of the orientation of the Type II/IV twin plane. Theoretical pre-
dictions also are presented for types I, III, V, and VI twins. The relaxation process that
forms a faceted structure entails a separate prediction from the TM. Hence, faceting
provides a difficult test for the TM. Analysis of the faceting by the TM is in excellent
agreement with the observations.

dislocations | disconnections | twins | phase transformations

The topological model (TM) for type I twinning has been developed and shown to agree
with many observations, as summarized in refs. 1-3. The TM merges the crystallographic
topological theory (4) with the physical description of a disconnection—a defect with
dislocation and step character (5). The key feature is that the twinning disconnections
(TDs) glide on a low-index plane and propagate the twin. The TM for the complex
structures found in many minerals was presented in ref. 6 and applied for twins in
plagioclase (7, 8). For low-symmetry minerals with unit cells comprising many atoms,
the analysis is simplified if one considers a lattice of structural groups (6), which suffices
to predict the TD properties. One must understand the shuffling of the atoms within
the structural groups (6, 7) to determine the kinetics of twinning, but the detailed
description of shuffling is not needed to describe the twin structure as considered here.
The theoretical mechanism for type I twinning in low-symmetry crystals such as triclinic
plagioclase is presented in ref. 8. For most triclinic crystals, the twin parameters deviate
from those that characterize a type I twin, which motivated the definition of another
twin type (type III) (9).

The types of twins are defined by the twinning elements, the planes and directions
associated with the twinning shear. Instead of the historical representation of the
twinning elements, X; and K, for planes, #, and #n, for directions, as in refs.
10-12, we use a modified Frank notation (13) for the twinning elements;
for typel/lll: by =K, kb =K,, x;=1n, and y, = 1,, and for type I/IV:
k=K, k=K, x,= 1, and y,= n; (8-14). These are useful for character-
izing defects mechanistically, since 4, is always the glide plane, but one must recall that 4,
corresponds to different planes in the classical terminology, K] for type I and K, for type
IT. A slight modification from refs. 14 and 15 is that we use y instead of y because there
are already several other uses for y in the theory. The TM for type II twinning also has
been described (14-16). The focus here is on faceting of a type I or IV twin boundary.
Hence, we refer much of the theoretical details of the formation of the twins to the
earlier work (9).

In many cases, the irrational type II or IV twin interfaces are close to low-index, rational
planes in the matrix and twin. Faceting to such planes often occurs, driven by the reduction
in surface energy but at the cost of increased local strain energy from the defects with large
Burgers vectors that bound the facets. The irrational #, plane relaxes to a faceted structure,
with rational, low-index, terrace planes separated by disconnections. Faceting is a recovery
process and can be either dynamic or static. The TM is needed to precisely describe the twin
interfaces that are the origins of faceted structures (7-9). In what follows, we describe: a) the
mechanism of formation of type I and III twins and then of type Il and IV twins; b) the mech-
anism of partitioning of displacements; c) definitions of twin types; d) the faceting mechanism;
e) faceting in plagioclase and other crystals; and f) structures formed by static or dynamic
recovery. We also propose and analyze another type of twin, type VI, analogous to types 11
and IV, that can form by a recovery mechanism that entails periodic lattice dislocation emission.
The start of the faceting analysis is the end of the description of types I-IV twinning in ref. 9,
briefly summarized here.
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We present transmission electron microscope (TEM) results
for two plagioclase specimens, one from an olivine gabbro with
~An, labradorite, and one from an anorthosite with Ang; bytown-
ite. The oceanic gabbro was collected in Ocean Drilling Program
Hole 735B. These samples of crustal gabbro formed at the
Southwest Indian Ridge, experience stresses of 20 to 100 MPa
during deformation at temperatures of 700 to 850 °C, and then
cooled rapidly preserving the high-temperature deformation
microstructures (17). The bytownite is from the lower banded
series of the Stillwater intrusion (18). Some results for NiTi are
also summarized. Values of characteristic parameters for these
crystals are given in Supplementary Material. Lattice parameters
are represented as [100], [010], [001], [ag], [Bo],and [yl The
subscripts for the angle designations are used to avoid confusion
with characteristic angles in the TM.

Type I/1ll Precursor

As explained in ref. 9, the TDs are defined in a dichromatic pattern
(DP), the superposition of the twin and matrix lattices (9). To
represent the partitioning of displacements, the TDs have double
Burgers vector components 2bg and a step height /. The twin dis-
placements are defined in the plane of distortion (POD), with
normal 7, that contains all displacements, plane strains, and plane
rotation. Orthogonal coordinates are defined by #, the normal to
the twin plane, P, and a unit vector Q = n X P, parallel to . A
portion of the 3D projection of the DP for a type III twin is shown
in Fig. 14. A key feature is that the normal to the glide plane, P, is
nonparallel to the unit cell direction [010]; so the origins 0 and o’,
of P and the # vectors, differ. The projection of the DP along the
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POD normal , is presented in Fig. 1B, showing the twin angle a.
Fig. 1C is a projection along the glide plane normal for a type I
twin, revealing that the #vectors lie in the POD for type I. For type
I11, in Fig. 1D, the #vectors do not lie in the POD, with a variation
characterized by angle 6. Thus, the Burgers vector can be charac-
terized by either (£, — #,;) or the projected # vectors in Fig. 1C,

tTp_tMp=tT_tM [1]

Completing the characteristic parameters, the angle between 7
and [100],, is p.

There is a small difference between the TM and the classical
twinning model regarding a. In Fig. 1, the displacements are par-
titioned equally as required to satisfy the twin symmetry as
described in ref. 5. Twinning breaks the crystal symmetry, but the
symmetry elements, designated with a prime, are partly restored
in the DP. P is a twofold axis of symmetry 2°, or 2 ‘in some
low-symmetry crystals,

2b=2) tan a. [2]

In contrast, the classical (subscripts cl) theory (10-12) envisions
a simple shear relation 26,) = b tan 2a,. Since the simple (engi-
neering) shear ise = 24, / 5, TD motion does not produce a sim-
ple shear e. Instead, TD motion corresponds to symmetrical
simple shears /4 as in Fig. 2 (8, 13, 15). The classical model
must be amended except for small values of a. It can be amended
by adding a spacing defect to 4,; (19). The classical model is correct
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Fig. 1. (A) A DP for a type Ill twin in a generic plagioclase crystal showing b,ng, t,, = [010],, and t; = [010];. The step height is h = 2h, (B) Projection of the DP
along n showing the (010) glide plane k.P,bg.n, t,, =[010]), and t; = [010]; for a type IIl twin. (C) Projection of the DP along P showing that the ¢ vectors lie in the
POD for type I. (D) Projection of the DP along n showing that the t vectors lie out of the POD for type IlI, with the characteristic angle . (E) Projection along x4
showing angle y. Dashed vectors throughout the paper indicate that the vectors are projected.
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tip

Fig. 2. (A) TDs glide on the k, plane and accumulate in an array on plane
ko with elastic coherency strains. The rotation 2 « is confined to the twin. (B)
The plastic distortions partition equally to the matrix and twin, removing the
elastic strains. The matrix, twin, and bg vectors are symmetrically rotated by «
relative to the k, plane, which is in turn rotated by « relative to the ky planes. (C)
Pairs of tilt dislocations in the k, plane have Burgers vectors equal to the vector
sum of the b, vectors. (D) View along Q showing that the components of the
tvectors are equal and opposite, so there are no screw dislocation components
contributing to B. (E) The type II/IV mechanism entails pairs of TDs nucleating
and propagating laterally at the tip of a lenticular twin.

for high-symmetry cases where 6, is known, e.g., % <112>in
fce crystals. This preknowledge is not possible in low-symmetry
crystals and Eq. (2) must be used.

Type II/IV Twin Interface

Twinning Mechanism. The mechanism for type II twinning
entailing TD glide on a plane 4; was suggested in ref. 14 and
developed in detail in terms of the TM in refs. 15, 16, 20. A
flow chart, summarizing the TM procedure (8, 16) is included
in ST Appendix. The actual mechanism entails the motion of
unit TDs. However, to reveal the role of symmetry we consider
the hypothetical motion of double TDs followed by rotational
accommodation and dissociation. The TM type II interface 4,
is rotated from the interface /eg by angle a, as defined in Eq. (2).
Physically, as shown in Fig. 24, TDs glide on the 4, plane and
accumulate on the classical 49 plane in an array with long-range
coherency stresses. The classical, low-index twinning direction, )(g
lies on the £ plane. The strains and rotations then partition equally
to the matrix and twin, and the interface rotates by @. The actual
twin plane, 4,, is then rotated relative to both the twin and the
matrix /eg planes by @, as shown in Fig. 2B. A major consequence
of partitioning is that the twinning direction y, also is rotated by
a from the classical value, [0 1 0] for plagioclase. The partitioned
result is equivalent to having half the dislocations belonging to
the twin and half to the matrix. The vector sum of these is twice
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the dile Burgers vector, 26 =by; + by = by + b,y as shown
in Fig. 2C. The horizontal coherency components of b, and
b,r in Fig. 2D are equal and opposite and cancel, with no net
contribution to &. The screw components of b,y and b, inclined
to one another by y as in Fig. 1£ also are equal and opposite and
cancel, with no net contribution to &.

The difference between the type I/III mechanism, where the
classical model and the TM model agree except for the nonlinearity
in Eq. (2) (8, 20), and the type II/IV mechanism in Fig. 2, where
they do not agree, essentially arises because the former entails a
single distortion mechanism, simple shear, while the latter entails
two distortions, a simple shear and a rotation. After partitioning,
the # vectors and a for type II/IV are the same as for type I/111. The
consequence is that the partitioned #, plane is orthogonal to the
k; plane. Obviously, the irrational plane cannot contain a low-index
direction in triclinic crystals and other crystals, mostly low sym-
metry, where Q is irrational. In contrast, for example, for fcc crystals
with £, = (111), Qand y, are parallel to < 110 >. In summary,
the distinction between twin types II and IV is analogous to that
between twin types I and III. If § = 0, the twin is type IL. If 6 # 0,
the twin is type IV (8). One additional difference is that the [100]
vectors rotate out of the POD so that angle § is less than f,.

One limiting reference case is that for type II twins, where the
t vectors lie in the POD, with angles a; f,,7,, and 6, = 0. The
components are the same as those in Egs. (4-6) with the new
angles inserted. Also, for a given @, 4, is longer than & since
cosb, = 1. The other limiting reference case, discussed above, is
that where 7 lies in a low-index direction, favored when the
Peierls barrier is significant or in some anisotropic elastic cases.
This limit has angles a, f, = 0,7, and 8.

Partitioning Mechanism. The equipartitioning of displacements
normal to a twin plane or an interphase interface is a key feature
of the TM (1, 2). Such partitioning in types II/TV was introduced
inrefs. 9, 15, and 16. The partitioning in Fig. 1 Boccurs naturally,
although it is easier to envision when a is small. It is analogous
to partitioning at tilt walls or in phase transformations (1-3,
19). As a TD joins the tip of a growing tilt wall, the glide plane
is locally bent, Fig. 34, and the Burgers vector assumes the tilt
orientation. In other words, the distortional strains naturally
partition. However, the shear associated with the TD motion
causes a small step with disconnection character 4, and step
height 4, to form, Fig. 3B, as required by the conservation
of Burgers vector law (21). These disconnections are removed
by “glide”, the actual mechanism for small @ being a small
normal shift of the tilt wall, as simulated in ref. 22. For higher
tilc angles, partitioning also occurs by interface rotation, and
atomistic simulation would be required to elucidate the detailed
mechanism. The consequence of partitioning is a rotation of the
interface by a as shown in Fig. 1. As seen in Fig. 2, the final 4,
twin plane is always inclined to /eg and to both # vectors. Thus,
expanding on the discussion in refs. 23 and 24, the classical
description of a £, plane containing a low-index direction y,
(10-12) never applies for twins in triclinic and most other low-
symmetry crystals, and the actual y, almost always is irrational.
The rare exception occurs only for large a cases like fec 111}
twins. There, a is so large, 35.16 °, that while the original {111}
planes rotate away, new {111} planes rotate and become a 4,
twin plane with a rational y, direction parallel to [112]. The
classical result can be regarded as defining the reference plane
kg in Fig. 1, but it always differs from the equilibrium £, plane.
However, it always provides an approximate starting point.
Hence, we defined the types of twins by the following set of
conditions (9).
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Fig. 3. (A) An example where « is small. The elastic fields of the boundary
dislocations are partitioned and cause the glide plane to be curved near the
boundary (25). The matrix vector b, splits into the tilt vector b and a small
coherency disconnection with a Burgers vector by and a step height h=b.
(B) The disconnection glides away, contributing to the interface rotation by a.

Principle 1. The twin where rational ¢ 5, and t 1 vectors lie in the
POD in a DP is defined as a type I twin.

Principle 2. The case where no rational t vectors lie in the POD is
defined as a type Ill twin.

Principle 3. Atype Il twin is defined by the rational TD glide plane
k, = K, and rational translation vectors ¢, and t vectors in
the POD.

Principle 4. A type IV twin is defined by the rational TD glide
plane k, = K, and translation vector projections tyy, and tr,
that are irrational in the POD.

The caveat is that / must be relatively small to limit the
number of shuffles (24, 26), so the rational indices must be
low index. Equations for the various angles and vectors are
derived in ref. 8 and are summarized in ST Appendix along with
an expression for angle y.

Facet Plane

Faceting Mechanism. In all cases of interest, the irrational type
II/IV twin plane is close to a low-index plane, for example, (001)
for plagioclase. Faceting entails the formation of low-index facets
separated by disconnections. Faceting occurs if the decrease in
surface energy is greater than the increase in strain energy associated
with the disconnections. The determination of the multiple sets of
dislocations for a general boundary can be complex, as discussed
in ref. 21. Here, we know the line direction & = # and the facet
plane (001) that is near the twin boundary, and there is only
one set of dislocations in the final interface, so the procedure is
simpler. The analysis in Zjpe II/IV Twin Interface involves double
height and double Burgers vector disconnections to satisfy the
partitioning symmetry. Double disconnections and dislocations
are physically unstable, and the 24 dislocations would dissociate
to the equilibrium arrangement of unit & dislocations with half

40f12 https://doi.org/10.1073/pnas.2215085120

the spacing as shown for the array in Fig. 44. Inidally, in the actual
physical mechanism, TDs are deposited from the matrix, analogous
to Fig. 24, followed by rotational partitioning, as in Fig. 3, yielding
Fig. 4B. A hypothetical equivalent would be the deposition of half
the TDs from the matrix and half from the twin, automatically
satisfying the partitioning, but this is physically unrealistic because
the TDs must glide only in the twin to prevent profuse fault
formation. The opposite sign coherency components annihilate,
eliminating the local coherency strains, leaving the array in Fig. 4C
with spacings L. The (001) facet plane in Fig. 4D is inclined to the
type II/IV boundary by angle a as shown in Fig. 2B. Rotated relative
to the (001) plane, the dislocations have mixed character, with tile
and coherency components. The dipole in Fig. 4E is composed of
an array of dislocations, — &, opposite in sign to those in Fig. 4D,
and a disconnection with large Burgers vector, &y, step height 4,
and separation, L, Here, L is equal and opposite to the integral
Burgers vector of the boundary dislocations in the interval L,
and also has mixed character. Very near the b disconnection,
there are likely local pileup relaxations (27, 28), but as core-type
nonlinearities, these are not considered here. Under the constraint
imposed by the long-range field, the removal of the dislocations on
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-_—— _F;ce—t- pTafE
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E A (001) bo
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Fig. 4. (A) Double dislocations dissociate into unit dislocations. (B) Glide
dislocations bgM and bgM resolved onto the (001) plane. (C) Equivalent
representation as dislocations b after cancellation of opposite sign coherency
components. (D) The dislocations are deposited onto the (001) facet plane,
rotated from C, and assume mixed character in coordinates fixed on that
plane. (E) Dipole of opposite sign dislocations, — b, bounded by large, like-sign
disconnections, by, (F) Superposition of D and E creates a (010) facet bounded
by large disconnections. The facet can be represented as a continuous array
of infinitesimal Bilby dislocations as shown.
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the facet produces local coherency strains within a normal distance
~Lp from the interface according to St. Venant’s principle. The equal
and opposite dislocations on the facet plane annihilate when (d) and
(e) are superposed. The result is shown in Fig. 4F, coherent (001)
facets of spacing 2 L, are separated by disconnections with height
hp. The steps appear because the facets are inclined to the initial twin
plane. The removal of the unit defects from the facet results in local
coherency strains that can be viewed as arising from a continuous
array of infinitesimal Bilby dislocations (1), as indicated. The net
Burgers vector is the same before and after faceting, so the long-
range, strain-free rotation, 2 a, is unchanged. Physically, the arrays
in Fig. 4 A and B—i.e., the type II/V twins—have severe atomic
overlap and, if a low-index plane is nearby, the collapse into the facet
configuration should be spontaneous. For such a mechanism, there
is likely a distribution of lengths with an average spacing < Lp, >.
The absolute minimum spacing < Lp, >, is that where /4, is equal
to d, the lattice spacing of (001) facet planes: otherwise, there would
be a high-energy fault with misfit normal to the twin plane. In other
words, < Lp >, =d cote.

For type I twins, TDs attract at short range and then to form
disconnections with large step heights (29, 30). These steps are
equivalent in structure to type II/IV twins. If large enough, they
can relax by emitting lattice dislocations, converting the discon-
nections to pure steps. These have been observed in several metals
(31) and in labradorite (7). Miillner (31), for unit disconnections,
suggested that the disconnections bounding facets could be mobile
on the facet plane. This would not be the case for a type II twin,
but could apply if the interface was faceted because of the duality
in the Burgers vector description (9). While computer simulations
would be needed to specify the faceting mechanism, we postulate
that the local shifting of interface sites to form a facet, once initi-
ated, would spread spontaneously. Once the spreading is termi-
nated, the disconnection should be sessile, with a large Burgers
vector normal to the facet plane. Analogous to the type I case (29,
30), the local strain energy at a disconnection would be greatly
reduced if the accumulated disconnections have a Burgers vector
bp is greater than or equal to that of a lattice dislocation, the
disconnection can relax to a pure step or a disconnection with a
reduced dislocation content. The strain energy is minimized when
the result is a pure step, and this occurs when the step height A,
is that of a coincident lattice (32), or a near-coincident lattice (33),
normal to the facet interface. Then, the step height and the defect
spacing are increased. The linear elastic strain energy is zero when
the added dislocation is the negative of the net Bilby dislocation
content. Then, the pure step, equilibrium, average spacing is

<Lp>,=m<Lp>,,,=md cote. [3]

Here 2 is an integer, and 4 is the lattice spacing normal to the
facet plane. Factor 7 can be large, even for hcp crystals (30). In
an alternate view, the Bilby content in length L is equivalent to
an extended wedge disclination with strain energy associated with
the singularities at the ends. The fields of these singularities are
cancelled by the discrete dislocations.

Facet Characteristics. Facet formation is essentially the reverse of
the partitioning from Fig. 2 A and B by a different path, so the basic
DP is also the same, and # is unchanged, but angles & and y are
opposite in sign, as are the Burgers vectors. The (010) glide plane
intersects the (001) plane along [100] so the as-formed facet defects
have lines parallel to 7. The difference from the twinning case is
that the twin rotates to the matrix plane (001) as shown in Fig. 54,
so that both the matrix and twin vectors rotate by the same shear.
Unlike the twinning case, components that canceled for the twin

PNAS 2023 Vol.120 No.8 e2215085120

now add; so screw and coherency components appear as indicated
in Fig. 5 B and C, analogous to Fig. 1E. The screw component
rotation axis is P, with a rotation angle 7, and the line direction is
Q. The relevant final POD is (001); so the coordinates relative to
this facet plane are Pg, normal to (001), 7y, and Qp = ny X P.
Physically as in Fig. 4, dislocations do not move away from the
interface as parts of TDs. Instead, they are removed by locally
bunching up, and the # vectors rotate into the interface and create
a facet. Because of the stiffness of the long-range portions of the
crystals, the added length in the interface is suppressed, the facets
remain, but coherency strains are present. The removed dislocations
of Fig. 4D are then those in the twin and the matrix that remove
angles @ and y and cause the closure that creates the coherent facet.
'The basic angle & must be determined by the standard interrelations
of the lattice parameters. We use a simpler scheme to find the
other characteristics that is analytical once # and a are known.
The rotation of the twin follows by symmetry. The rotations are
consistent with the grain boundary theory in Chapter 19 of (21).

The diagrams relate to the double disconnections, but we present
the equations for the unit dislocation component as in Fig. 4D. We
first consider the limiting type IV reference case in Fig. 3F, where
the normal to the POD is 7o = [100] and b= by. A5 in Fig. 44,
the vector by is rotated by a about 7, and by ¥, about Q; so there
is an edge component normal to (010) with & // 7y and length,

b,, = by cos a cos y . (4]

There is also an edge coherency component parallel

to Q with &| | » and length,

b,, = by sin a cos y. (5]

After the closure by a, the [010] # vectors still lie in the (100)
plane inclined by y to (001). when viewed along Q - as in Fig. 5B.
Full closure is obtained by a set of screw coherency dislocations
as shown in the view along with &| |z and lengths,

b, = bysiny. (6]

More generally, the normal 7 to the POD is inclined by angle
f to n in the glide plane. The line of such a defect can be rotated
to be parallel to 7y, and the dislocation components are then
determined for this mixed dislocation with components & cos f
and & sin f. The portions of & cos f§ are given by Egs. (4-6), with
b replaced by & cos f and the subscript dropped. Thus, when
f # 0, the normal component with €| | has length,

b,,=b cos f cos a cos y.

(7]

The edge coherency component with &| | 7 has length,

b, =0b cos f sin @ cosy.

The screw component with €| |, has length,

b, = bcos fsin y.

The normal component with &| | #, has length,

beQ = bsin fcosa cosy.
(10]

As shown in Fig. 5C, there are two parts of & sin f. There is a
screw component & sin fwith €| | Q . There is also an edge coher-
ency portion — 4 cos ff.
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Fig. 5. (A) For the type IV case, the (001) facet plane with normal P, is rotated by ¢ relative to the k, plane. The type IV Burgers vector 2b has edge components
2 b,, normal to (001) and 2 b, parallel to (001). (B) The {010} t vectors lie in the (100) plane inclined to (001) by y,, so there is also a screw component 2 by. A
view along Q; for the type IV case indicating angle y and the screw component 2 b;. (C). View along Q. of the components of 2 b sin f. (D). Perspective view of

the facet plane.

The edge coherency components with &| | Q has length
b.g= —bcosfsin y. [11]

The screw coherency components with &| | Q£ has length

b,o = bsinPsin y. [12]

One limiting reference case is the type II case in Fig. 1C with
angles @, B, 7, and 6, = 0. The components are the same as
those in Egs. (4-6) with the new angles inserted. Also, for a given
a, by is longer than b since cosd, = 1. The other limiting reference
case, discussed above, with angles @y, f, = 0,7, and 8. In crystals
where [010] is normal to (010), f, ¥, and & are all zero, and the
equations simplify to a reduced form of Egs. (2) and (3). This
simplification is not possible for triclinic crystals, or some mon-
oclinic and rhombohedral crystals, but is likely for higher sym-
metry crystals. As an example, Eqs. (5-7) apply for near monoclinic
labradorite or for monoclinic NiTi, and the twins are type IV.

The structure of the interface when y =0 is presented in
Fig. 6A, parallel arrays of disconnections with tilt, coherency, and
screw components and orthogonal screw and edge coherency com-
ponents, as described by the equations. When y # 0, the structure
is that of Fig. 6B. These figures are general in the sense that no
coherent twin facet can have an extensive length for a twin termi-
nating within a crystal, whether the twin is a type I to IV twin, a
growth twin, a recovered deformation twin, or a blocky twin.
Extensive twin facets/terraces only exist for twin boundaries pass-
ing completely through a crystal or terminating at a grain bound-
ary or a defect junction. The Bilby dislocations on a facet constitute
a disclination with strain sources at the terminal singularities.
These must be compensated by dislocations or dislocation com-
ponents of disconnections. At the jogs where the dislocation lines
are displaced from one plane to the next, the dislocation character
changes on the jog plane.

60f 12 https://doi.org/10.1073/pnas.2215085120

Disconnection Loops

As seen in Fig. 14, for a given bg, f and 6 are not independent (7).
With the value f, when 6 = 0 as a reference, the interrelation is

6= f — Py [13]

This has significance for the mesoscopic lenticular twins. TDs
have a circular or elliptical shape in the glide plane. For a type I
twin in plagioclase with 6 = 0, the Burgers vector is pure edge,
b, = b,,, and both it and the line direction &, parallel to #, are
irrational. If the Peierls barrier were important, the line would
tend to relax to segments with & = [100], rotated by f and sepa-
rated by kinks. The screw orientation also has an irrational &, and
would tend to form segments with & = [001] separated by kinks
but with a different rotation f,. For the type III, # = 0 case the
edge line direction would be aligned with [100] with no kinks,
but because of the triclinicity, the screw line would still be inclined
by f, and would tend to form [001] segments separated by kinks.
These considerations carry over to the tilt disconnection loops for
cither type II or IV twins. Thus, in TEM views along [100] or
[001], one or the other would entail a kinked defect line.

Faceted Pericline Twins in Labradorite

Pericline twins in An (34) labradorite were studied in high-reso-
lutiontransmission electron microscopy (HRTEM) in ref. 7.
Fig. 74 shows a low-magnification view of the twin plane, and
Fig. 7B shows the disconnections that separate the facets. The
disconnections &p have an average spacing < Lj > of 200 nm.
The step height is 5.1 nm (7). The lattice parameters and the TD
and twin characteristics are presented in S/ Appendix. The value
of the parameter f is so close to 90° that it is effectively mono-
clinic. There are two bounds for facets formed from type II/IV
pericline twins in labradorite. Case A is type II with

pnas.org


http://www.pnas.org/lookup/doi/10.1073/pnas.2215085120#supplementary-materials

Downloaded from https://www.pnas.org by UNIV NEBRASKA LINCOLN LIB-ACQUISITION DEPT on April 19, 2023 from IP address 129.93.161.219.

Fig. 6. (A) Perspective view of a faceted interface when n = n,. (B) General
case where n # n.

a=390° p=1.117°6=0, y 20, and derived quantities
b=b,=0.0433 nm, h; =0.711 nm, the spacing between
(001) planes. We postulate that the minimum uniformly spaced
value or minimum average value if the spacings vary, <Lp >, . .
is that where & the sum of the Burgers vector components normal
to (001) in the interval <Lp>,. equals the spacing between
(001) planes. For other spacings, the added dislocation content
would be needed in the disconnection. Thus, there should be a
tendency for uniformity in the spacings, and this appears to be
the case in Fig. 4. This postulate gives< L, >, = 16.4 nm.Case
Bistype IVwith f =0, y = 0,and derived quantitiesa = 3.90°,

P———

2 pm

b=b,=0.0435nm, b, =0.0435°, There is a tiny screw com-
ponent, but it is numerically insignificant. This gives
<Lp>,,, =16.3 nm. The sharp HRTEM images for labradorite
(7), not the result for bytownite, imply that case B applies.

For labradorite 72 in Eq. (3) is 8. The m factor carries through
to type IV and to the facet; so the predicted < Lp, >, is 130 nm.
This is smaller than the observed < Ly >o0f 200 nm. In the model,
a facet is terminated when an emissary dislocation is injected,
leaving a dislocation at the interface to compensate the disclination
field of the facet. There is a small activation barrier for the nucle-
ation of such a pair, associated with the core energies. Thus, one
expects the length to exceed that ideal length <L, >, to provide
the driving force for nucleation. This process also would account
for the variation in the individual L, values. The crystallographic
rotation would be retained, and the angles would be unchanged
if emissary lattice dislocations with Burgers vectors [001] were
injected into the twin or matrix.

Observations of Type II/IV Twin Boundaries in
Bytownite

Twins in deformed An80 bytownite were also characterized. A
cross-polarized light micrograph is presented in Fig. 84, in which
Albite and Pericline twins can be seen. As expected, since the
structure is triclinic, the twin planes are not orthogonal. An area
containing a Pericline twin was extracted by focused ion beam
(FIB), pasted on a copper grid, and polished to make a TEM
specimen. A bright field image of the specimen is shown in
Fig. 8B, where a twin lamella is seen. To identify the faceting of
a Pericline twin boundary, one must accurately measure the ori-
entation relationship between the twin and the matrix. Kikuchi
patterns, sensitive to orientation change, can be collected with
cameras with high dynamic range and high resolution. With the
help of Kikuchi pattern simulations, the Euler angles were meas-
ured, and the angle of 20t was computed (35). For the matrix and
the twin, the Kikuchi poles near the center of patterns correspond
to [301] and [301], respectively. Thus, we obtained the orienta-
tion information for the twin and the matrix and demonstrated
it using Euler angles with the Bunge convention. From the view
of TEM images, the sample coordinate system is defined as the
figure in the middle. The sample coordinate system is defined in
the view of TEM images. The plane normal direction is the X-axis,
the leftward direction is the Y-axis, and the upward direction is
the Z-axis. Before the rotation defined by Euler angles is applied,
the X-axis of the sample coordinate system is parallel to the A-axis
of crystal, and the Z-axis of the sample coordinate system is

Fig. 7. TEM bright field images showing twin boundary in labradorite sample. (A) overview of the sample. (B) magnified images taken from red square in A,

which shows that the average spacing of disconnections is 200 nm.

PNAS 2023 Vol.120 No.8 e2215085120

https://doi.org/10.1073/pnas.2215085120 7 of 12



Downloaded from https://www.pnas.org by UNIV NEBRASKA LINCOLN LIB-ACQUISITION DEPT on April 19, 2023 from IP address 129.93.161.219.

parallel to the normal direction of the ¢ plane. The Euler angles
of the matrix are 306.73°, 164.16°, and 306.86°. The Euler angles
of the twin are 126.24°, 15.81°, and 52.046°. Based on this infor-
mation, the misorientation angle 2a between the standard type-1
twin and the observed type-II or IV twin is calculated to be 8.38°
using MTEX (36). As determined by the instrument goniometer,
the tilt of the respective diffraction patterns when viewed along
g=[100]wasy = 0.74 between the twin and matrix. The angle
between the Albite and Pericline twins in Fig. 84 is 85.3°. The
model in Fig. 1 predicts a value 90° — & = 85.8°, a little larger.
The difference arises because the surface normal must be slightly
inclined relative to 7 so that the apparent angle is reduced from
the true value.

Faceted Pericline Twins in Bytownite

The lower magnification TEM view of the twin plane, presented
in Fig. 94, reveals that the twin plane has also relaxed by faceting.
The facets are separated by disconnections with an average spac-
ing < Lj, > of 550 nm. The HRTEM view in Fig. 9B is not well
resolved since, as shown below, y # 0. So, there are screw disloca-
tion components to the disconnection and two separate relative
rotations of the twin and matrix. Thus, a clear two-dimensional
atomic resolution image could not be obtained. However, the step
height of the poorly resolved disconnection, determined by count-
ing terminating (001) planes in a view like Fig. 9B, is about 6 nm,
consistent with Fig. 94.

There are two reference bounds for facets formed from type 11/
IV pericline twins in bytownite. Case A is type II with y =0,
§=0, p,=11.77°, <Lp>,. =13.5nm,and the derived angle
a0, = 4.27°. This limit is obviously inconsistent with the presence
of y. Case B has the properties <Lp>, . =13.8 nm
oy =4.19°, n=mny,6,=11.77°, and derived anglesa;, = 4.10°
and y, = 0.854°. The measured results are case C, close to f = 0,
but the best fit is case C, with a« = 4.16°, f =1.62°, y = 0.74°
,6=10.1° 4,,=0.047 nm, 4., =0.018 nm, 4, = 0.033 nm,
b, =0.022nm, b, =0nm,b,;, =0.016nm,<Lp>,,, =13.7
nm, and <Ly >, ;. =29.3nm. With these minimum lengths, the
screw components would still have misfit along the defect lines.
If we add the postulate that the screw components must equal the
respective unit cell lengths, the results would be< L, >, . = 24.8
nm, and < Lp >, = 52.8 nm. The factor » for bytownite is 10
so Eq. (3) gives <Lp >0 = 528 nm. As with labradorite, this
length is smaller than the experimental value of 550 nm. The
scatter in Lp values is a little larger for the bytownite case. The

explanation of both differences is the same as for labradorite.
Thus, the results are in excellent agreement with the predictions
in ref. 8 and show consistency between theory and measure-
ments. The solution is close to the f# = 0limit expected for many
minerals where large Peierls barriers are likely. Anisotropic elas-
ticity could also favor the f = 0 limit. The theory and results are
matched by making angle a consistent. The agreement of the
theoretical and experimental values of ¥ provides an independent
result. Thus, the TM fits all the experimental findings well.

General Facet Structure

Relation to Grain Boundary Theory. For the most general twin
boundary, the displacements always have pure tilt symmetry.
When the irrational 4, boundary facets, the dislocation arrays
producing the associated rotations are not restricted to single
types of Burgers vectors as in the TD formation mechanisms
for types I to IV twins. Because the added dislocations form
an irrational array, there can be up to four sets of dislocations,
two edge arrays associated with orthogonal tilts and one screw
array associated with a twist, all relative to the low-index terrace.
This is analogous to the reduced von Mises criterion at a grain
boundary (21). If the screw arrays are orthogonal screws, they
are not independent, since, operating together they produce a
pure rotation without strain. However, both sets, which could be
cither edge or mixed in character (37) must be present to prevent
coherency stresses from appearing. There are three independent
systems that satisfy the compatibility condition that the €, €,
and €,,, strains in forming the boundary are the same in the two
crystals when the axes x and y lie in the boundary, Thus, to remove
any one of these sets in producing the facet, the mechanism is
as follows. The atomically spaced TDs entail atom-atom overlap
and should spontaneously relax, as described above, into discrete
disconnections &5 bounding the low-index terraces: the facets. The
net Burgers vector of the original discrete defects now resides in
the disconnection as &5, and the removal of the discrete defects
leaves an array of infinitesimal Bilby coherency dislocations on the
facets with a net b, equal and opposite to &), Fig. 4F, explicitly
demonstrated and simulated in ref. 1. These same considerations
apply to tilt grain boundaries, to kink bands and the interfaces
for shear type phase transformations when there is a large tilt
component to the TDs.

Other Type IV Observations. We have focused on twins in
plagioclase here, but faceted type II/IV twins are also observed
in other crystals. NiTi (38-41) for example, is an example of

Fig. 8. (A) Cross-polarized light micrograph of deformed bytownite, showing albite and pericline twins. (B) Bright-field TEM image of deformed bytownite

showing a pericline twin lamella.
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a type IV twin where the measured f is intermediate between
the upper and lower bounds described here. Twinning in NiTi,
generally has been analyzed as type 11, e.g., refs. 14, 20, 38—41.
However, the analysis in ref. 7 clearly shows that the nearest
t vectors, of the <110> type, do not lie in the POD: the twin is
type IV, not type II. The more detailed analysis here reveals that
the characteristics are as follows, including the data in refs. 37-39:
b,,=0.085nm, b,,=0.002 nm, beQ =0.011nm,a=7,86°, f=
7.34°. y=0.40°, and 6 =2.73°, L,=0.786 nm, Ly =6.07 nm.
The angles are small, but are consistent with the HRTEM results
in refs. 39 and 40, when viewed in the conventional [011]direction
parallel to 7. The major consequence of the small angle [011]
direction is that the structure is that of Fig. 65. The other boundary
studied in ref. 39 can be understood only if it is a double twin
boundary, possibly a result of a type IV twin nucleating during
unloading at a preexisting twin boundary, formed during loading.
The early HRTEM work (39, 40) clearly revealed faceting, and
anticipated the type IV analysis in several ways. Thick specimens,
viewed in the [011] direction close to Qp had poor resolution
because the (001) planes of twin and matrix diverged, indicating
that the angle between Qp and the [011] direction was nonzero.
They also observed a structure like that in Fig. 6B, implying that
the twin is type IV, and noted that spacing L, was much greater
than L, consistent with our calculations for bytownite. A similar
twin, type IV on one side, double twinning on the other, was
observed for Ni-Mn-Ga (42). The results here may be relevant
to that case also.

We anticipate that facets will occur for many type II/IV twins
when they are examined in HRTEM. In addition to the review
of twinning elements for minerals, the partial dislocations that
become components of TDs are reviewed in ref. 43. Preliminary
consideration indicates that the twins in triclinic devitrite (44) are
type IV twins, while those in trigonal Hg (45) are type II. Possibly,
other observation of twinning modes cited as type I or II may be

type III or IV when analyzed in the TM.

Recovered Twins and Large Steps

‘The type II/IV twins have distortion fields corresponding to those
of a tilt wall, because the relative displacements of twin and matrix
have mirror symmetry. This structure applies to unconstrained
twins that extend to free surfaces at each end or except near the
twin tips for lenticular twins with high aspect ratios. If the twins
are limited in length in the direction parallel to y,, there are large
incompatibilities. The fields of the discrete tilt walls are equivalent
to those of paired partial disclinations (46), wedge type if the step
is perpendicular to the glide plane (47, 48). This field can be

removed by a recovery mechanism entailing the emission of lattice
dislocations into the twin or matrix, Since the net tilt vector is
then nil for a completely recovered boundary, there is a change in
orientation. A simple example is the type II twin in a fee crystal.
‘The unconstrained type II boundary has an orientation of {111},
while the recovered orientation is {112}, a rotation of 19.5°. A
fully recovered blocky twin in a fce crystal would be bounded by
{111}, {112}, and {110} interfaces (29). Such blocky twins do not
form in plagioclase, but they do form in metals and compounds
and potentially could form in some minerals. If they do form,
they would be designated as type IIR or type IVR twins to distin-
guish them from type II/IV twins.

Also, for type I/III twins such as Albite, large steps can form
that are equivalent to Pericline twin planes. There is a short-range
attraction between like-sign TDs, and if there is an obstacle, large
steps occur (29, 30). The unrelaxed step heights are limited to the
order of ten interplanar spacings. The fields of the steps are equiv-
alent to those of wedge-type disclination dipoles if the step is
perpendicular to the glide plane (8, 47). The defects are mixed
wedge/coherency disclinations (6, 30) if the step is slanted. For a
statically recovered step, the stress fields are removed by emissary
dislocations ejecting into the matrix or twin. The stress-free step
height 4 = jh, is the fixed by the condition jb = bp. Results for

Mg are in excellent agreement with this result (30).

Type V and VI Twins

In plagioclase where § = 0, no normal 7, or equivalently—no line
direction &, is parallel to a low index, rational direction for a TD.
However, the Peierls stress for motion would be lower if the line
direction were [100]. Anisotropic elasticity could favor such an
orientation. Hence, as suggested in ref. 42 for twins in a Ni-Mn—
Ga alloy, another possible faceted structure, for example for pla-
gioclase, is that the precursor TDs that accumulate to form a
boundary are mixed with bg, inclined. to [100] but with 7 and &,
parallel to [100] This differs from types II or IV where the pre-
cursor TDs are pure edge, and we designate it as type VI. In other
words, at the stage in Fig. 4C, the dislocations are mixed. The
process carries through like that in Fig. 4, with the mixed dislo-
cations on (001) now labeled as &,. The difference for type VI is
that the long-range displacement field is not the rotational field
of a twin but that of a twin, including the screw component of
the twin field, with a superposed distortion field of a screw dislo-
cation array with Burgers vector &, and with both rotational and
strain portions. The results resemble those for types Il and IV, but
the boundary is a grain boundary with mixed screw/edge disloca-
tion character, not a twin boundary at this stage. Since the

I ‘t:‘rl‘x (40 <Ll yin

Fig.9. (A) A bright field image of pericline twin in bytownite viewing along [401]. Twin boundary is faceted with < L, >= 550 nm. (B) AHRTEM image of pericline

twin boundary in bytownite containing a disconnection at the center.
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boundary arises from glide on 4, we indicate the difference by
designating the boundary plane as , to indicate that it is distinct
from a type II or IV twin boundary. A twin boundary can be
created if the grain boundary undergoes a specific recovery mech-
anism. The mechanism can be static recovery wherein lattice screw
dislocations &, are emitted periodically along the boundary, leav-
ing an opposite sign screw in the boundary. More likely, the mech-
anism is dynamic recovery by periodic glide of such screw
dislocations along with the TDs (42). The presence of the lattice
screw dislocations removes the long-range screw field and results
in a twin with a dlt wall with the reduced edge content
b,, = b, cosp, and a corresponding reduced value of the twin
angle 2a.. One would need either a measurement of @ or an obser-
vation of the — b, screw to verify the model.

The latter type of mechanism (42) resembles the case where two
different TDs are present for the same glide plane, which can be
a type V twin. Examples are (10 1 1) and (10 1 3) hep twins in
Mg (49-51). Individual TDs with alternating screw character sum
to give an average y; with a large a. if one dominates, the over-
all y, can deviate markedly from [1012] for (1011), or from[3032]
for (1013). A difference in the shear stress acting on the screw
components suffices to give the deviating result. For (10 11) twins
such a deviation has been observed (24, 34) and is predicted in
ref. 51, but is not always observed (24). This would be consistent
with the screw/shear stress effect. These two hep twins also repre-
sent one of the few examples of synchroshear. Most cited examples
correspond to synchroshuffle (52). In either case, the resultant
twin parameters differ from those for a type Il or IV twin although
the 4, glide plane is the same.

In view of these differences, we define twins of the above form
as type V and VI twins, and the type II (or IV) and VI twins
become degenerate if and only if the vector [010] lies in the POD
(8). This condition is not met in plagioclase, but its analog is often
satisfied in high-symmetry crystals. The discussion of faceting on
twins in Ni-Mn-Ga (42) suggests that the result might be a type
VI twin, although the authors analyze it as type II. Double or
multiple twinning are other related possibilities.

Phase Transformations

Some of the above development for shear-shuffle twinning (53) is
pertinent to shear-shuffle type phase transformations, described in
refs. 1-3 and 54. The TM adequately explains the common analog
of type /111 transformations (2). Several modifications simplify the
analysis for certain complex transformations. The use of the shifted,
shifted dichromatic pattern (SDP) (6) makes the determination of
shuffles easier. Another is the Crocker (55) treatment of phase trans-
formations (and twinning) in a complex fec-monoclinic Pu—Ga alloy.
An affine monoclinic-hcp phase transformation is imposed, the
defects and mechanism are determined, and the reverse affine
hep-monoclinic transformation is imposed to achieve the final struc-
ture. This method was useful in analyzing the orthorhombic-mon-
oclinic transformation in zirconia (56). A different procedure is
helpful for describing type I/III twin analogs of the phase transfor-
mations, as well as being very useful for describing the type II/IV
analogs. Aside from the extension normal to the glide plane associ-
ated with a change in interplanar spacing, the transformation is
exactly like that discussed here for type II/IV twins. Hence, one can
use a variant of the Crocker procedure. First, impose an affine trans-
formation to the product phase to eliminate the difference in inter-
planar spacing. Then, analyze the transformation as a type II/IV
twin. Finally, impose the reverse affine transformation to restore the
interplanar spacing. The treatment of the normal extension is the
basis for the disparity between the TM and the older models. The
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use of this shear-shuffle-extension model could be used to amend
the phenomenological mode (57-60) or that associated with the
near-coincidence lattice (33). The S-S-E model could be useful for
other mineral transformations, e.g., ref. 61.

Discussion

In this effort, we have concentrated on the structure of twins. Many
parameters are needed in the analysis, so the description is a severe
test of the TM. As such, the agreement between the TM and the
TEM observations is excellent for twins in plagioclase. Hence, the
amendments to the classical model are significant. We expect that
the model discussed here will apply to other minerals, which tend
to have both low-symmetry crystal structures and in which twinning
is prevalent to satisfy the von Mises condition for plastic flow. Also,
the model can apply for twinning in metals and simple compounds,
which tend to have higher crystal symmetry. We mentioned type
IV twins in NiTi and Ni-Ga—Mn and type V twins in hcp metals.
‘The twins in monoclinic martensite in Pu~Ga alloys (54, 62) were
analyzed by the Crocker procedure, but in ref. 63 the more accurate
determination of twinning modes was done in the simplified pseu-
dostructure. The TEM results and classical theory indicated type
twinning with X, = (205)and 7, = [302]. In 1 the present context,
the 7, direction is irrational and rotated from [302] by . The results
resemble those for labradorite, but with a larger f = 101.8°. Unlike
the plagioclase twins, the twinning direction is not close to the [100]
direction. Monoclinic martensite in U-ND alloys also exhibits sev-
eral types of twins (13, 64) with y, = 92.4°. The indices in these
papers differ and we follow (63). The exact twins have K} = (130)
and 5, = [310]. These were described as type I twins, which would
be the case for orthorhombic U, but they are type I1I in martensite.
‘The other prominent twin was described as type 11, but here is type
IV with K; = (112) and K, irrational and approximately (172).
These results are consistent with the type III, IV classification. Other
twins were observed less frequently and could entail interactions
with the growing martensite laths. Converted to the standard min-
eralogical notation followed here, these indices would be
o= 92.4°, (301), [103} (121) and (721), respectively.

The recovery associated with facet formation implies an
absence of back-stresses and hence a minimal Bauschinger effect
in unloading or reverse plastic deformation. Similarly, in reverse
loading, there should initially be a small reduction in yield stress.
'This has implications for both shape memory alloys related to
NiTi (65, 66) and to minerals where type II/IV twins form. For
low-strain rates, the same concepts should apply. At high strain
rates, there may not be sufficient time for recovery, and both a
larger Bauschinger effect and a larger reverse loading yield stress
should be observed.

More generally, the same TM concepts should apply to shear—
shuffle phase transformations such as the athermal or thermally
activated cases for martensite, or thermally activated diffusional
transformations. The TM amendments should be significant when
the rotation angle & exceeds 2 or 3°.

The partitioning and symmetry apply to the plastic distortion.
Any resultant elastic distortions depend on specific distortion
incompatibilities. For a contained twin, all of the elastic distor-
tion is in the twin, analogous to the Eshelby inclusion (67). For
a twin between two free surfaces, the only distortion is the equi-
partitioned plastic rotation and there is no long-range elastic
distortion. For a long, thin twin between two barriers, grain
boundaries, for example, the elastic strain is localized at the ends
and the plastic rotation is equipartitioned to the twin and matrix.
An extended version of this case is a polysynthetic twin with
thin, equal thickness twins and matrices alternating.
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Emissary dislocations were mentioned above several times. If
they are injected under load as a form of dynamic recovery, the
Peach—Koehler force is provided by the stress field of the disclina-
tion associated with the facet, and favors injection into the twin,
since as the emissary dislocation reaches the opposite side of the
twin, it can compensate a disclination there. Injection into the
twin has been observed in an atomistic simulation (14). The result-
ant dislocation loops observed in the traces of former martensite
plates by HRTEM in refs. 39 and 40 may correspond to traces of
the compensating disconnections.

TD motion depends upon both the parameters & and 4, and
the shuffles of lattice sites as well as the atoms comprising a
structural group (6) at a site (such shuffles were not addressed
here). The detailed mechanism for motion can involve either
kink pir nucleation over the Peierls barrier, followed by lateral
kink motion; or TD bowout and breaking of pinning points.
In either case, a small & is favored. The smallest & can be for a
unit TD or one with multiple step heights as in the results for
fee metals (68, 69). Countering the trend to larger step heights,
the shuffles accompanying TD motion entail diffusion-like
shifts. The activation energy for motion should be lower when
the number of shuffles is smaller, that is for smaller step heights.
Optimization is required. A kink-pair, nucleation and growth
model has been presented for several metals and alloys in the
approximation that the twin is type II, and that shuffles have a
minor or negligible contribution to the activation energies (70).
Both assumptions are plausible for metals where a can be small
and shuffles are absent or minimal. However, it would not apply
to systems like plagioclase where shuffles are numerous and large
(7). In ref. 70, they noted that type II twins exhibited faster
growth rates for metal alloys, which was puzzling. We offer
several possible explanations for such diffusion-controlled
shear—shuffle mechanisms. First for the type I (or ITI) case, the
nucleating TDs are repelled by previously emitted TDs over a
relatively large distance, so there is a waiting time. In contrast,
for type II (or IV), after a short growth distance emitted TDs
are strongly attracted by the tilt dislocation components in the
incomplete twin. Secondly, the growth distance for a unit of
advance of the tilt wall is shorter. This is a very large effect if
the nucleation mechanism entails a spiral source. For twins
forming at near sonic speeds, such as those in zinc (71), the
second effect is quite important. Also, as summarized in ref. 32,
the release of elastic energy at a growing tip can augment the
nucleation rate.

An important consequence of the TM model is that the direc-
tion of the Burgers vector and hence y, differs from the classical
model for types II and IV. This would have an effect in consti-
tutive modeling. While we have described explicit differences
from the classical model, the classical model provided the basis
for the TM. The basic theory (14, 15) allows for the type III to
VI twins. It is the usage of concepts related to the phenomeno-
logical model (57-60) that introduced the issues pinpointed in
the TM. In particular, the elegant mathematical determination
of invariant planes is in many cases inapplicable to twinning or
phase transformations because partitioning is required to satisfy
symmetry conditions. With a single set of TDs, only the type
I and ITI twin planes are invariant. With dual or multiple defor-
mation systems, invariant planes can be achieved. Examples are
double twinning and Fe—C martensite containing microtwins
(60). Four independent deformation systems suffice to create
any possible grain boundary.

PNAS 2023 Vol.120 No.8 e2215085120

The relaxation of the twin boundaries to form facets suggests a
potential way to constrain the conditions of plagioclase twinning
in the crust. The samples examined here experienced relatively
high-temperature conditions and cooled slowly enough to allow
the facets to form. In other cases, in which transient high stresses
arise associated with the propagation of earthquake ruptures near
the brittle-plastic transition, in the distal regions of impact craters,
or thrust sheet flexure during faulting, the temperature may be
too low to allow the formation of facets. Future research could
explore these possibilities.

The differences between the TM and the classical model are
significant, although the models agree for type I twins unless the
twinning angle @ is large. For types II and IV the differences
between a and the classical angle @, are significant because the
classical theory does not include partitioning. In addition, the TM
definitions of types Il to IV, listed in 7he Partitioning Mechanism,
differ from the classical definitions. Although, the TM definitions
are consistent with the classical, general, nonmechanistic, math-
ematical conditions for possible twins.

Summary

Type II and IV twins are characterized by high index, irrational
twin planes. We show for two plagioclase crystals and NiTi that
these planes relax by forming low index, rational facets separated
by disconnections. For very large twin angles, such interfaces prob-
ably remain irrational. When the twin angle 2 is less than 10 or
15°, faceting seems likely, as observed here. For both types Il and
IV, the TM (1, 2) predicts that the formation mechanism entails
TDs moving on a low-index plane. That suffices to enable predic-
tions of the twin characteristics. In low-symmetry crystals such as
triclinic plagioclase, there are two limiting cases. In one, the TD
line direction is low index and rational, reflected here by f = 0.
In the other, a low-index rational direction lies in the POD, and
6 =0. Both of these and intermediate cases disagree with and
extend the classical models. The present analysis indicates that the
mechanism is close to the f = 0 limit but not equal to it for cases
considered. Physically, this would be expected if the TDs were
situated in Peierls valleys. The observed spacings of the disconnec-
tions are of the order of but exceeds the predicted average value
for both labradorite and bytownite.

The type II and IV examples apply when the faceting mecha-
nism is dynamic, occurring as the twin is formed. Added static
recovery can occur by the emission of lattice dislocations.

A different mechanism, suggested in ref. 42 is shown to be anal-
ogous to that for type II/IV twins, but producing a grain-bound-
ary. The grain boundary can relax to form a twin by static recovery,
entailing the emission of lattice screw dislocations.
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A. The formation of types I-IV twins.

The key feature of the model, which involves the formation of an incipient type I twin, is shown
in Figure Al(a). TDs nucleate and propagate laterally creating a type I twin. We do not consider
kinetics here, although heterogeneous nucleation of a twin is almost certainly the mechanism.
Heterogeneous nucleation at a grain boundary or other interface would produce half the twins.
The nucleation source for the twin in Figure A1 could be some localized defect such as an inclusion

or a vacancy cluster.

The initial stage of the type II twin mechanism is shown in Figure A1(b). The same TDs that
produce a type I twin nucleate as pairs at the twin tip and undergo precursor glide laterally. For
type II, the ratio of the nucleation rate N to the growth rate G is large and the twin grows faster
normal to the k; plane than parallel to it. The interface subsequently undergoes displacement
partitioning entailing rotation of the twin interface to produce the type II twin. Unlike the classical
model for type II twins [ 10-12], the direction of twin shear is never rational in plagioclase (or other
triclinic crystals), and thus a new twin, a type IV twin, is defined. The TM for such twinning is
extended in [8] for the case of low-symmetry crystals, where the precursor glide is the same as the

TD glide for type III twinning, as described in the previous paragraph.
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Figure. Al. Schematic illustration of the topological model for the formation of (a) type I twin
and (b) type II twin in a view of the plane of distortion. Sources for the nucleation of a
disconnection pair on the glide plane, k1, in both cases, as indicated by the inset sketches, produce

the simple shear displacements. After relaxation, the k] planes within the type II twin are rotated
by an angle a from their original orientation. The notation N indicates a repeated nucleation site.

For type I, the mobility/nucleation rate ratio G/N is large so the spacing L of a pair is large when
a new pair nucleates at the source. For type II, the ratio is small when a new pair nucleates and
interactions of the dislocation components tends to form a tilt wall, which rotates the wall by a to
the final k2 position.

The TM mechanism for a type I twin (and similarly, a type III twin) is presented in Figure A2.
More relevant here, the TM mechanism for type I/IIl also describes the precursor glide for the
creation of a type II twin (and similarly, a type IV twin). A characteristic lenticular-shaped twin is
shown in Figure A2(a). Mechanistically, TD pairs nucleate and glide on the k; plane, as indicated
at B, and propagate the type I twin or type II precursor. A TD is shown in Figure A2(b). The TDs
are characterized by a Burgers vector b, parallel to the twinning direction ¥4, and a step height
h. For a unit TD, the step height is hy and for multiple heights, h = jh,, with j an integer. The
Burgers vector 2b, is given by the difference between lattice translation vectors £y and t7in a

dichromatic pattern (DP), the superposition of the lattices of the matrix and twin with a coincident



origin on a low index dividing surface that corresponds to the twin plane. The details of the vectors

are presented in a 2D projection of the DP in Figure A2(c) for a double height disconnection.

A2
(a) T 1] (b) © ‘
2
B
—
B M be (010) ,
@ (e) ®
4y 0,0't;
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"o
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Figure A2. (a). Type I/Ill twin with TD pairs nucleating at A and B and propagating laterally. (b).
A typical TD. For type I the # vectors are in the POD, for type 11, they are projections onto the
POD. (c). Portion of a three-dimensional dichromatic pattern for a generic, triclinic, plagioclase
crystal, showing the (010) glide plane k;, by, n, ty, = [010]y and t; = [010]; for a type III
twin. P is the normal to (010), n is normal to the plane of distortion, and b, is the Burgers vector
of the TD. The # vectors and a are partitioned symmetrically to the twin 7 and matrix M. (d). View
along the glide plane normal P of the POD showing b partitioned to the components by, and b
in the k, glide plane for type I. (¢) Analogous view for a type III twin showing the projections of
the b, and ¢ vectors and the angle 8. (f). Projection along y; for type III. Dashed vectors
throughout the paper indicate that the vectors are projected.

The unit vector n is normal to the plane of distortion (POD) that contains all displacements,
plane strains, and plane rotations. The unit vector P is normal to the glide plane with an origin o.
The unit vector Q = n X P, forming an orthogonal set, is parallel to ;. The sign convention for
these vectors is shown in Figure A2(b). The angle [ represents the difference in orientation
between n and the nearest low index direction. As shown in Figure A2(c), the final twin structure

is partitioned in the sense that equipartitioning of the glide vectors in the matrix and twin define



the angle 2a, a rotation that corresponds to the crystallographic two-fold axis 2 parallel to P and
relates to the macroscopic twinning elements. For emphasis, Figure A2(c) is a view along n,
perpendicular to both P and the POD and parallel to the (010) plane, which contains the vector
2bg. For type I, the translation vectors lie in the POD. In contrast, for type III, the translation
vectors do not lie in the POD. Thus, as illustrated, the TD vector 2b, is the closure vector defined
by the translation vector components projected onto the POD, shown as dashed lines in Figure

A2(c); the vector 2by, is also given by (E7 — ty) .

An important feature of the TM is indicated in Figure A2(c). For the origin o to coincide with
a lattice point, the analysis always entails a double height defect as depicted here. Physically, these
double-height disconnections dissociate to unit disconnections as described subsequently, giving
the TD Burgers vector by, = 1/ 2 (bg u Tt bgT). The twin angle is given by sin o= by /ty,. Recall
that for type I, the ¢ vectors lie in the POD, as shown in Figure A2(d) for the view along P. For
type 111, which is the case for plagioclase, Figure A2(e) illustrates that only the components of the
t vectors, rotated by +6 from 2bg, are in the POD. Now P (which is normal to 2b, ) intersects the
glide plane at 0’, displaced from the unit cell point 0. The angle § represents the deviation from
type I: If § = 0, the twin is type I: if § # 0, the twin is type III. Figure A2(f) is a projection along
X1 for type III showing that there are components of the # vectors out of the plane of distortion,
defining the angle y, although they cancel and do not contribute to the description of types I to IV

twins. As shown subsequently, these out-of-plane components are important in faceting.

B. Characteristic parameters for twins in labradorite and bytownite and the TM procedure
The lattice parameters are listed in Table 1. The characteristic angles for the twins are defined

as follows [8]:

a = cos™ (typ*P)/| tup | (B1)
B = cos™1(ne[100]) (B2)
v = cos™ (tup*@r)/| tup| (B3)
§=8-P (B4)



For Eq. (B1), the vector ty, is resolved onto the plane normal to n. For (B3), the vector ty,

is resolved onto the plane normal to Q,

Ye = COS_I(tMp.QF)/| tMp|

(BS)

Here g, Bo, ny = [100],and by, are reference values for the type Il case where § = 0. The angles

and ty, are shown in Figures Al and 2. In [8], ty, and therefore @ must be determined by the

rotations described in the Supplementary Material, complex for triclinic crystals. The other angles

are determined analytically. As in Figure A2(a)
Qo = tan_l(bgo/[bf;]

For plagioclase, [bg], parallel to P, is the reciprocal lattice vector. As in Figure 3(c),

a = tan"'(by/[bs],)
Since by = by sec §,

a = tan~1(tan a, sec §)
The angles a and y are not independent. From Figures 1 and 3,

tany = tana tand

(BS)

(B6)

(B7)

(B8)

The angles and other characteristic parameters are listed for labradorite and bytownite in Tables 2

and 3 for two special cases that likely are upper and lower bounds for f: case A with f = 0 and

case B with § = 0.

Table 1. Lattice parameters of plagioclase.

Lattice parameters

Component/Name

ao(nm) bo(nm) co(nm) ao(°) Bo(°) Yo(*)
An52 Labradorite 0.818 1.286 0.711 93.530 116.210 89.920
An85 Bytownite 0.819 1.288 0.710 93.370 116.040 90.870
Table 2. Properties of type I and II twins in plagioclase.
Component K X1 K> X2 n 2a.(°) BC*) a(°) ho(nm) 2[bg|(nm)
An52 (010) | [0.05000.137] | (-1038333) | [010] | [100.026] | 780 | 1.18 | 0 | 0.642 0.087
An85 (010) | [0.08000.147] | (103356) | [010] | [10-0.298] | 854 | 1177 | 0 | 0.642 0.096
Table 3. Properties of type III/IV twins in plagioclase (special case with § = 0).
Component K X1 K> X2 n 20(°) | BC) | 8(°) | ho(nm) | 2[bgl(nm)
An52 (010) [0.053,0,0.137] (001) | [-0.002,1,0] | [100] | 779 | 0 | 1.8 | 0.642 | 0.087
An85 (010) [0.056,0,0.147] (001) | [0.024,10] | [100] | 836 | 0 | 11.77 | 0.642 | 0.094

The relevant TM procedure used in the present calculations [8, 16] is as follows. One needs

some experimental input, either the twinning angle a or the Burgers vector by, and the glide plane



k,. This is sufficient to create a dichromatic pattern like that in Fig. 1(a). For a type I plane, Eq.
(2) applies, the ¢ vectors are known and the solution is complete. The same is true for type III but
one must also deduce either the screw component of b, or the angle y. For type II, b; must be
parallel to [001], § = 0, and « is then specified. As in Figure 3, this is a limiting case of type IV.
For both labradorite and bytownite, a adiffers from the type II value and the twin is type IV. For
type IV, the procedure followed here is more complicated. Values of a are tabulated in [8] for a
range of § values. The procedure is then to determine which value of § provides a match to the
experimental value of a. All of the other quantities above are known. As reported, for both
minerals the value of § in intermediate between the two limiting values. As an added check for
bytownite, the experimental value for y matches the calculated value.

C. Selection of step height and complementary Burgers vectors.

In the text, we mention the selection of b and 4. An example with many choices is the 211 (001)
twin in fcc crystals [70]. The favored choice theoretically was h = 4h, because of its small
Burgers vector and this agreed with experimental observation [71]. Another aspect is that there
are symmetry related limitations on a [1,74,75] For the £11 twin, the upper limit is 45°. For
larger angles, a different [100] variant with an angle reduced by 45° is selected. For a given DP
there is a dichotomy in the choice of b, when there is 2D coincidence of a boundary as for
coherent twin planes [2, 10] and some grain boundaries. If the repeat distance parallel to by is a,
then the same twin can be created by an opposite sign complementary dislocation —b¢, , where,

for the same 4

b, + by, =a (C1)

Thus, there is another limit. For the X11 case b, is the appropriate choice when a <
22.5° but for larger angles b, is appropriate. Hence the limit for a is + 22.5°.

For type I twins or type Il precursors with the same 4, both vectors have the same rational
origin for the related ¢ vectors, and both have an associated but different twin angle a or a., in
accord with the 2°, m’ symmetry, so the choice between them is obvious. An issue arises when
there are different step heights. An example is Figure C1. For h = 2h, the # vectors are symmetric,
the origin is rational b is small, and b, is large. The choice of b is obvious. For h = hg, b,

is large and by is the appropriate TD vector. However, the symmetric origin for b, is irrational



and would greatly complicate the TM analysis. Hence, while the unit TDs have Burgers vectors

bcy = (1/2) 2bg, h = 2h, is selected for analysis.
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Figure C1. The DP for a type I hep (10-12) twin with b, = 1/, [1011].

D. Determination of crystallographic quantities of twinning elements.

For a triclinic lattice, the unit cell is described by three base vectors ao, bo and ¢o, and the angles
ao, Po, and yo between bo and ¢o, ¢o and ao, ap and bo, respectively. Since the three base vectors are
non-orthogonal, all vector operations must be transformed to Cartesian coordinates, and then back
to crystal coordinates.

D.1 Conversion between crystal direction and vectors in Cartesian coordinates
In the Cartesian coordinate system, ao is the magnitude of ao in the positive x-axis direction, bo
is a positive y-axis component of the by, and ¢ is the positive z-axis component of the ¢o. With
these conditions, the basis vectors a; of the Cartesian coordinate system are expressed by the
following equations.
a; = (a,,0,0)
az = (bocos(y,), besin(y,), 0) (D1)
az = (Cx Cy, C;)

where,

cx = cocos(By)



cos(ag)—cos(yo) cos(Bo)
sin(yg) (b2

Cy:CO

_ Q
a agbg sin(yy)

Q = aghgcoy/1 — cos? () — cos? (Bg) — cos? (Yo) + 2cos (ag)cos (Bo)cos (Yo)

C

Q is the volume of a unit cell. The indices in the crystal coordinate system [uvw] are converted to
a vector in Cartesian coordinates by the following expression. A is the transformation matrix

between crystal coordinate and Cartesian coordinates.

a
[xyz] = [uvw] [32] = [uvw]A (D3)
asz
ag 0 0
A= b, cos(yo) by sin(y,) 0 (D4)
Co (cos(ag)—cos(Bo) cos(vo)) Q
€o 05 (Bo) sin(vo) a0bosin (vo)

D.2 Conversion between Miller indices and plane normal in Cartesian coordinates
Similarly, the indices of crystal planes (Miller indices) and normal vector of a plane are related
by reciprocal lattice vectors b. The reciprocal lattice vectors are determined from the basis vectors

in Cartesian coordinates in real space.

ap Xas
C1 ==
a;-(azxaz)
azXa
C;=——— (DS5)
ay-(azxa;)
aq Xap
C3 == L
az-(ajxay)

The normal vector [xyz] of a plane can be related to the index of this plane (hkl) by the following

equation. Therefore, B is the transformation matrix between the Miller index of a plane and its

normal.
C1
[xyz] = [hKI] [Czl = [hkl]B (D6)
C3
1 cos(yo) _ boco(cos(Bg)—cos(ag) cos(yo))
ag ag sin(yo) sin(yo) Q
B = 1 __a9Co(cos(ag)—cos(Bo) cos(¥o)) (D7)
bg sin(yo) sin(yo) Q
0 0 agbgsin(yo)
Q



D.3 Rotation matrix associated with twinning
The orientation relationship between twin and matrix is related by the rotation around a specific
axis. The rotation matrix R for a rotation around axis u = (ux, uy, U,) by an angle 0 is:

R(u,0) =

cos 0 + u2(1 — cos0) Uyuy (1 —cos8) —u,sin® uyu,(1 —cosB) +uysin6
uyuy (1 — cos 0) + u, sin 6 cos 0 +uz(1 — cos 6) uyu,(1 — cos8) — u, sin 8 [(D8)
U Uy (1 — cosB) —uysin® u,u,(1—cosB) + uysin O cos 0 + u2(1 — cos0)

By applying the matrix on the vector [xyz], one can obtain the rotated vector [Xry:z:].

[xryrz:] = [xyz]R(u, 6) (D9)
This rotation matrix can be applied to the basis vectors, so that a crystal direction in the twin can
be transformed into one in the matrix. For example, a crystal direction [uvw]r in the twin can be
converted to a crystal direction in the matrix, [uvw]wm.

[uvw]y = [uvw]r(ART)(ARy) ™! (D10)
Rt and Rwm are the rotation matrices imposed on the twin and the matrix, respectively. In this
equation, the crystal direction [uvw]r was converted to a vector in Cartesian coordinates by (ARrT)
and transformed to crystal direction in matrix by (ARm)™!. In a similar way, the cross product can

be calculated in Cartesian coordinates and converted to fractional coordinates.
D.4 Calculation of angles
i) The angle 6 between two vectors [uiviwi] and [uavaws] is

8 = arccos ((u1 Uy ag2 4+ vy vy bp? 4 wy Wy co2 4 cos(y,) (uy vy 4 u, vy) ag by +

cos(Bo) (ug wy +uy wy) ag ¢ + cos(ag) (v4 wy + v, wy) by C0)/Iu1v1w11u2v2w2) (DI1)

where [,yw =

\/aoz u2 + by v2 + co2 w2 + 2 cos(yy) ag b uv + 2 cos(Bg) ag ¢o uwW + 2 cos(ag) by co vW

i1) The angle 0 between two crystal planes (hikili) and (h2koly) is

S12 (hyky +hy ky) + S35 (hy 1, +hy 15)

_ 2
0 = arccos (4, d; <+523 (kL + Ko 1) + S1p hy By + Sy Ky ko + Sss 1y 12) /%) @12)

= (Sllhz +SZZ kz +S33 12 +2$12 hk+2$13 hl+2$23 kl)/QZ.

1
where 7

Sll = bOZ COZ SiIl(O(O)Z



S,z = ag? co? sin(By)?
Ss3 = a2 by sin(y,)?
S12 = agbgcy?(cos(ag) cos(By) — cos(yo))
S,3 = ag2bycy(cos(ag) cos(Bg) — cos(vy))
S,3 = agbg’co(cos(a) cos(By) — cos(y,))

The angle 0 between two crystal directions [u;v,;w;] and [u,v,w,] can be expressed by

6 = arccos ( (([uv,wy]A) - ([uzv,w218))/(U[uyv,wy Al - [[uzv,w,]AD)

(D13)

ii1) For the angle between two planes or between a direction and a plane, the matrix B is substituted

for matrix A.
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