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Significance

Twins are an important 
deformation mechanism in 
low-symmetry crystals. The TM 
model presented here for 
different types of twins 
supersedes the classical model 
and introduces specific types of 
twins. The twinning parameters 
used in constitutive modeling 
and in structural descriptions of 
twins are modified. The concepts 
presented here can be extended 
to cyclic loading, important in 
shape–memory alloys.
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Type II and IV twins with irrational twin boundaries are studied by high-resolution 
transmission electron microscopy in two plagioclase crystals. The twin boundaries in 
these and in NiTi are found to relax to form rational facets separated by disconnections. 
The topological model (TM), amending the classical model, is required for a precise 
theoretical prediction of the orientation of the Type II/IV twin plane. Theoretical pre-
dictions also are presented for types I, III, V, and VI twins. The relaxation process that 
forms a faceted structure entails a separate prediction from the TM. Hence, faceting 
provides a difficult test for the TM. Analysis of the faceting by the TM is in excellent 
agreement with the observations.

dislocations | disconnections | twins | phase transformations

The topological model (TM) for type I twinning has been developed and shown to agree 
with many observations, as summarized in refs. 1–3. The TM merges the crystallographic 
topological theory (4) with the physical description of a disconnection—a defect with 
dislocation and step character (5). The key feature is that the twinning disconnections 
(TDs) glide on a low-index plane and propagate the twin. The TM for the complex 
structures found in many minerals was presented in ref. 6 and applied for twins in 
plagioclase (7, 8). For low-symmetry minerals with unit cells comprising many atoms, 
the analysis is simplified if one considers a lattice of structural groups (6), which suffices 
to predict the TD properties. One must understand the shuffling of the atoms within 
the structural groups (6, 7) to determine the kinetics of twinning, but the detailed 
description of shuffling is not needed to describe the twin structure as considered here. 
The theoretical mechanism for type I twinning in low-symmetry crystals such as triclinic 
plagioclase is presented in ref. 8. For most triclinic crystals, the twin parameters deviate 
from those that characterize a type I twin, which motivated the definition of another 
twin type (type III) (9).

The types of twins are defined by the twinning elements, the planes and directions 
associated with the twinning shear. Instead of the historical representation of the 
twinning elements, K1 andK2 for planes, �1 and �2 for directions, as in refs.   
10–12, we use a modified Frank notation (13) for the twinning elements;  
for type1/III: k1 = K1, k2 = K2, �1 = �1, and �2 = �2, and for type II/IV: 
k1 = K2, k2 = K1, �1 = �2, and �2 = �1  (8–14). These are useful for character-
izing defects mechanistically, since k1 is always the glide plane, but one must recall that k1 
corresponds to different planes in the classical terminology, K1 for type I and K2 for type 
II. A slight modification from refs. 14 and 15 is that we use � instead of � because there 
are already several other uses for � in the theory. The TM for type II twinning also has 
been described (14–16). The focus here is on faceting of a type II or IV twin boundary. 
Hence, we refer much of the theoretical details of the formation of the twins to the 
earlier work (9).

In many cases, the irrational type II or IV twin interfaces are close to low-index, rational 
planes in the matrix and twin. Faceting to such planes often occurs, driven by the reduction 
in surface energy but at the cost of increased local strain energy from the defects with large 
Burgers vectors that bound the facets. The irrational k2 plane relaxes to a faceted structure, 
with rational, low-index, terrace planes separated by disconnections. Faceting is a recovery 
process and can be either dynamic or static. The TM is needed to precisely describe the twin 
interfaces that are the origins of faceted structures (7–9). In what follows, we describe: a) the 
mechanism of formation of type I and III twins and then of type II and IV twins; b) the mech-
anism of partitioning of displacements; c) definitions of twin types; d) the faceting mechanism; 
e) faceting in plagioclase and other crystals; and f) structures formed by static or dynamic 
recovery. We also propose and analyze another type of twin, type VI, analogous to types II 
and IV, that can form by a recovery mechanism that entails periodic lattice dislocation emission. 
The start of the faceting analysis is the end of the description of types I–IV twinning in ref. 9, 
briefly summarized here.D
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We present transmission electron microscope (TEM) results 
for two plagioclase specimens, one from an olivine gabbro with 
~An60 labradorite, and one from an anorthosite with An83 bytown-
ite. The oceanic gabbro was collected in Ocean Drilling Program 
Hole 735B. These samples of crustal gabbro formed at the 
Southwest Indian Ridge, experience stresses of 20 to 100 MPa 
during deformation at temperatures of 700 to 850 °C, and then 
cooled rapidly preserving the high-temperature deformation 
microstructures (17). The bytownite is from the lower banded 
series of the Stillwater intrusion (18). Some results for NiTi are 
also summarized. Values of characteristic parameters for these 
crystals are given in Supplementary Material. Lattice parameters 
are represented as [ 100], [010], [001], [�0], [�0], and [�0] . The 
subscripts for the angle designations are used to avoid confusion 
with characteristic angles in the TM.

Type I/III Precursor

As explained in ref. 9, the TDs are defined in a dichromatic pattern 
(DP), the superposition of the twin and matrix lattices (9). To 
represent the partitioning of displacements, the TDs have double 
Burgers vector components 2bg and a step height h. The twin dis-
placements are defined in the plane of distortion (POD), with 
normal n, that contains all displacements, plane strains, and plane 
rotation. Orthogonal coordinates are defined by n, the normal to 
the twin plane, P, and a unit vector Q = n × P, parallel to �1 . A 
portion of the 3D projection of the DP for a type III twin is shown 
in Fig. 1A. A key feature is that the normal to the glide plane, P, is 
nonparallel to the unit cell direction [010]; so the origins o and o’, 
of P and the t vectors, differ. The projection of the DP along the 

POD normal n, is presented in Fig. 1B, showing the twin angle �. 
Fig. 1C is a projection along the glide plane normal for a type I 
twin, revealing that the t vectors lie in the POD for type I. For type 
III, in Fig. 1D, the t vectors do not lie in the POD, with a variation 
characterized by angle �. Thus, the Burgers vector can be charac-
terized by either (tT − tM ) or the projected t vectors in Fig. 1C,

	 [1]tTp − tMp = tT − tM

Completing the characteristic parameters, the angle between n 
and [100]M  is �.

There is a small difference between the TM and the classical 
twinning model regarding � . In Fig. 1, the displacements are par-
titioned equally as required to satisfy the twin symmetry as 
described in ref. 5. Twinning breaks the crystal symmetry, but the 
symmetry elements, designated with a prime, are partly restored 
in the DP. P is a twofold axis of symmetry 2’, or 2 ‘in some 
low-symmetry crystals,

	 [2]2b = 2h tan �.

In contrast, the classical (subscripts cl) theory (10–12) envisions 
a simple shear relation 2bcl = h tan 2�cl . Since the simple (engi-
neering) shear is e = 2bcl ∕h, TD motion does not produce a sim-
ple shear e. Instead, TD motion corresponds to symmetrical 
simple shears b∕h as in Fig. 2 (8, 13, 15). The classical model 
must be amended except for small values of �. It can be amended 
by adding a spacing defect to bcl (19). The classical model is correct 

Fig. 1. (A) A DP for a type III twin in a generic plagioclase crystal showing bgn�, tM = [010]M and tT = [010]T. The step height is h = 2h
0
 (B) Projection of the DP 

along n showing the (010) glide plane k
1
P,b

g
,n, t

M
= [010]

M
 and t

T
= [010]

T
 for a type III twin. (C) Projection of the DP along P showing that the t vectors lie in the 

POD for type I. (D) Projection of the DP along n showing that the t vectors lie out of the POD for type III, with the characteristic angle �. (E) Projection along �1 
showing angle �. Dashed vectors throughout the paper indicate that the vectors are projected.D
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for high-symmetry cases where bg is known, e.g., 1
6

< 112 > in 
fcc crystals. This preknowledge is not possible in low-symmetry 
crystals and Eq. (2) must be used.

Type II/IV Twin Interface

Twinning Mechanism. The mechanism for type II twinning 
entailing TD glide on a plane k1 was suggested in ref.  14  and 
developed in detail in terms of the TM in refs.  15, 16, 20. A 
flow chart, summarizing the TM procedure (8, 16) is included 
in SI  Appendix. The actual mechanism entails the motion of 
unit TDs. However, to reveal the role of symmetry we consider 
the hypothetical motion of double TDs followed by rotational 
accommodation and dissociation. The TM type II interface k2 
is rotated from the interface k0

2
 by angle � , as defined in Eq. (2). 

Physically, as shown in Fig. 2A, TDs glide on the k1 plane and 
accumulate on the classical k0

2
 plane in an array with long-range 

coherency stresses. The classical, low-index twinning direction, �0
2
 

lies on the k0
2
 plane. The strains and rotations then partition equally 

to the matrix and twin, and the interface rotates by �. The actual 
twin plane, k2 , is then rotated relative to both the twin and the 
matrix k0

2
 planes by � , as shown in Fig. 2B. A major consequence 

of partitioning is that the twinning direction �2 also is rotated by 
� from the classical value, [0 1 0] for plagioclase. The partitioned 
result is equivalent to having half the dislocations belonging to 
the twin and half to the matrix. The vector sum of these is twice 

the tilt Burgers vector, 2b = bM + bT = bgM + bgT  as shown 
in Fig. 2C. The horizontal coherency components of   bgM  and 
bgT  in Fig. 2D are equal and opposite and cancel, with no net 
contribution to b. The screw components of bgM and bgT  inclined 
to one another by � as in Fig. 1E also are equal and opposite and 
cancel, with no net contribution to b.

The difference between the type I/III mechanism, where the 
classical model and the TM model agree except for the nonlinearity 
in Eq. (2) (8, 20), and the type II/IV mechanism in Fig. 2, where 
they do not agree, essentially arises because the former entails a 
single distortion mechanism, simple shear, while the latter entails 
two distortions, a simple shear and a rotation. After partitioning, 
the t vectors and � for type II/IV are the same as for type I/III. The 
consequence is that the partitioned k2 plane is orthogonal to the 
k1 plane. Obviously, the irrational plane cannot contain a low-index 
direction in triclinic crystals and other crystals, mostly low sym-
metry, where Q is irrational. In contrast, for example, for fcc crystals 
with k1 = (111) , Q and �2 are parallel to < 110 > . In summary, 
the distinction between twin types II and IV is analogous to that 
between twin types I and III. If � = 0 , the twin is type II. If � ≠ 0 , 
the twin is type IV (8). One additional difference is that the [100] 
vectors rotate out of the POD so that angle � is less than �0.

One limiting reference case is that for type II twins, where the 
t vectors lie in the POD, with angles �2, �2, �2 , and �2 = 0. The 
components are the same as those in Eqs. (4–6) with the new 
angles inserted. Also, for a given �, b0 is longer than b since 
cos�2 = 1. The other limiting reference case, discussed above, is 
that where n lies in a low-index direction, favored when the 
Peierls barrier is significant or in some anisotropic elastic cases. 
This limit has angles �0, �2 = 0, �0 , and �0.

Partitioning Mechanism. The equipartitioning of displacements 
normal to a twin plane or an interphase interface is a key feature 
of the TM (1, 2). Such partitioning in types II/IV was introduced 
in refs. 9, 15, and 16. The partitioning in Fig. 1B occurs naturally, 
although it is easier to envision when � is small. It is analogous 
to partitioning at tilt walls or in phase transformations (1–3, 
19). As a TD joins the tip of a growing tilt wall, the glide plane 
is locally bent, Fig. 3A, and the Burgers vector assumes the tilt 
orientation. In other words, the distortional strains naturally 
partition. However, the shear associated with the TD motion 
causes a small step with disconnection character bd  and step 
height hd  to form, Fig.  3B, as required by the conservation 
of Burgers vector law (21). These disconnections are removed 
by “glide”, the actual mechanism for small � being a small 
normal shift of the tilt wall, as simulated in ref. 22. For higher 
tilt angles, partitioning also occurs by interface rotation, and 
atomistic simulation would be required to elucidate the detailed 
mechanism. The consequence of partitioning is a rotation of the 
interface by � as shown in Fig. 1. As seen in Fig. 2, the final k2 
twin plane is always inclined to k0

2
 and to both t vectors. Thus, 

expanding on the discussion in refs.  23  and 24, the classical 
description of a k2 plane containing a low-index direction �2 
(10–12) never applies for twins in triclinic and most other low-
symmetry crystals, and the actual �2 almost always is irrational. 
The rare exception occurs only for large � cases like fcc 111} 
twins. There, � is so large, 35.16 ◦ , that while the original {111} 
planes rotate away, new {111} planes rotate and become a k2 
twin plane with a rational �2 direction parallel to [112] . The 
classical result can be regarded as defining the reference plane 
k0
2
 in Fig. 1, but it always differs from the equilibrium k2 plane. 

However, it always provides an approximate starting point. 
Hence, we defined the types of twins by the following set of 
conditions (9).

Fig. 2. (A) TDs glide on the k
1
 plane and accumulate in an array on plane 

k
0
 with elastic coherency strains. The rotation 2 � is confined to the twin. (B) 

The plastic distortions partition equally to the matrix and twin, removing the 
elastic strains. The matrix, twin, and b

g
vectors  are symmetrically rotated by � 

relative to the k
2
 plane, which is in turn rotated by � relative to the k

0
 planes. (C) 

Pairs of tilt dislocations in the k
2
 plane have Burgers vectors equal to the vector 

sum of the b
g
vectors. (D) View along Q showing that the components of the  

t vectors are equal and opposite, so there are no screw dislocation components 
contributing to B. (E) The type II/IV mechanism entails pairs of TDs nucleating 
and propagating laterally at the tip of a lenticular twin.
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Principle 1. The twin where rational tM  and tT  vectors lie in the 
POD in a DP is defined as a type I twin.
Principle 2. The case where no rational t vectors lie in the POD is 
defined as a type III twin.
Principle 3. A type II twin is defined by the rational TD glide plane 
k1 = K2 and rational translation vectors tM  and tT  vectors in 
the POD.
Principle 4. A type IV twin is defined by the rational TD glide 
plane k1 = K2 and translation vector projections tMp and tTp 
that are irrational in the POD.

The caveat is that h must be relatively small to limit the 
number of shuffles (24, 26), so the rational indices must be 
low index. Equations for the various angles and vectors are 
derived in ref. 8 and are summarized in SI Appendix along with 
an expression for angle �.

Facet Plane

Faceting Mechanism. In all cases of interest, the irrational type 
II/IV twin plane is close to a low-index plane, for example, (001) 
for plagioclase. Faceting entails the formation of low-index facets 
separated by disconnections. Faceting occurs if the decrease in 
surface energy is greater than the increase in strain energy associated 
with the disconnections. The determination of the multiple sets of 
dislocations for a general boundary can be complex, as discussed 
in ref. 21. Here, we know the line direction � = n and the facet 
plane (001) that is near the twin boundary, and there is only 
one set of dislocations in the final interface, so the procedure is 
simpler. The analysis in Type II/IV Twin Interface involves double 
height and double Burgers vector disconnections to satisfy the 
partitioning symmetry. Double disconnections and dislocations 
are physically unstable, and the 2b dislocations would dissociate 
to the equilibrium arrangement of unit b dislocations with half 

the spacing as shown for the array in Fig. 4A. Initially, in the actual 
physical mechanism, TDs are deposited from the matrix, analogous 
to Fig. 2A, followed by rotational partitioning, as in Fig. 3, yielding 
Fig. 4B. A hypothetical equivalent would be the deposition of half 
the TDs from the matrix and half from the twin, automatically 
satisfying the partitioning, but this is physically unrealistic because 
the TDs must glide only in the twin to prevent profuse fault 
formation. The opposite sign coherency components annihilate, 
eliminating the local coherency strains, leaving the array in Fig. 4C 
with spacings L. The (001) facet plane in Fig. 4D is inclined to the 
type II/IV boundary by angle � as shown in Fig. 2B. Rotated relative 
to the (001) plane, the dislocations have mixed character, with tilt 
and coherency components. The dipole in Fig. 4E is composed of 
an array of dislocations, − b , opposite in sign to those in Fig. 4D, 
and a disconnection with large Burgers vector, bD , step height hD 
and separation, LD , Here, LD is equal and opposite to the integral 
Burgers vector of the boundary dislocations in the interval LD 
and also has mixed character. Very near the bD disconnection, 
there are likely local pileup relaxations (27, 28), but as core-type 
nonlinearities, these are not considered here. Under the constraint 
imposed by the long-range field, the removal of the dislocations on 

Fig. 3. (A) An example where � is small. The elastic fields of the boundary 
dislocations are partitioned and cause the glide plane to be curved near the 
boundary (25). The matrix vector bg splits into the tilt vector b and a small 
coherency disconnection with a Burgers vector b

d
 and a step height h = b. 

(B) The disconnection glides away, contributing to the interface rotation by �.

Fig.  4. (A) Double dislocations dissociate into unit dislocations. (B) Glide 
dislocations b

gM
 and b

gM
 resolved onto the (001) plane. (C) Equivalent 

representation as dislocations b after cancellation of opposite sign coherency 
components. (D) The dislocations are deposited onto the (001) facet plane, 
rotated from C, and assume mixed character in coordinates fixed on that 
plane. (E) Dipole of opposite sign dislocations, − b , bounded by large, like-sign 
disconnections, b

D
. (F) Superposition of D and E creates a (010) facet bounded 

by large disconnections. The facet can be represented as a continuous array 
of infinitesimal Bilby dislocations as shown.D
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the facet produces local coherency strains within a normal distance 
~LD from the interface according to St. Venant’s principle. The equal 
and opposite dislocations on the facet plane annihilate when (d) and 
(e) are superposed. The result is shown in Fig. 4F, coherent (001) 
facets of spacing 2 LD are separated by disconnections with height 
hD . The steps appear because the facets are inclined to the initial twin 
plane. The removal of the unit defects from the facet results in local 
coherency strains that can be viewed as arising from a continuous 
array of infinitesimal Bilby dislocations (1), as indicated. The net 
Burgers vector is the same before and after faceting, so the long-
range, strain-free rotation, 2 � , is unchanged. Physically, the arrays 
in Fig. 4 A and B—i.e., the type II/V twins—have severe atomic 
overlap and, if a low-index plane is nearby, the collapse into the facet 
configuration should be spontaneous. For such a mechanism, there 
is likely a distribution of lengths with an average spacing < LD > . 
The absolute minimum spacing <LD >min , is that where hD is equal 
to d, the lattice spacing of (001) facet planes: otherwise, there would 
be a high-energy fault with misfit normal to the twin plane. In other 
words, <LD >min = d cot𝜙.

For type I twins, TDs attract at short range and then to form 
disconnections with large step heights (29, 30). These steps are 
equivalent in structure to type II/IV twins. If large enough, they 
can relax by emitting lattice dislocations, converting the discon-
nections to pure steps. These have been observed in several metals 
(31) and in labradorite (7). Müllner (31), for unit disconnections, 
suggested that the disconnections bounding facets could be mobile 
on the facet plane. This would not be the case for a type II twin, 
but could apply if the interface was faceted because of the duality 
in the Burgers vector description (9). While computer simulations 
would be needed to specify the faceting mechanism, we postulate 
that the local shifting of interface sites to form a facet, once initi-
ated, would spread spontaneously. Once the spreading is termi-
nated, the disconnection should be sessile, with a large Burgers 
vector normal to the facet plane. Analogous to the type I case (29, 
30), the local strain energy at a disconnection would be greatly 
reduced if the accumulated disconnections have a Burgers vector 
bD is greater than or equal to that of a lattice dislocation, the 
disconnection can relax to a pure step or a disconnection with a 
reduced dislocation content. The strain energy is minimized when 
the result is a pure step, and this occurs when the step height mh0 
is that of a coincident lattice (32), or a near-coincident lattice (33), 
normal to the facet interface. Then, the step height and the defect 
spacing are increased. The linear elastic strain energy is zero when 
the added dislocation is the negative of the net Bilby dislocation 
content. Then, the pure step, equilibrium, average spacing is

	 [3]<LD >eq = m<LD >min = md cot𝜑.

Here m is an integer, and d is the lattice spacing normal to the 
facet plane. Factor m can be large, even for hcp crystals (30). In 
an alternate view, the Bilby content in length L is equivalent to 
an extended wedge disclination with strain energy associated with 
the singularities at the ends. The fields of these singularities are 
cancelled by the discrete dislocations.

Facet Characteristics. Facet formation is essentially the reverse of 
the partitioning from Fig. 2 A and B by a different path, so the basic 
DP is also the same, and n is unchanged, but angles � and � are 
opposite in sign, as are the Burgers vectors. The (010) glide plane 
intersects the (001) plane along [100] so the as-formed facet defects 
have lines parallel to n0 . The difference from the twinning case is 
that the twin rotates to the matrix plane (001) as shown in Fig. 5A, 
so that both the matrix and twin vectors rotate by the same shear. 
Unlike the twinning case, components that canceled for the twin 

now add; so screw and coherency components appear as indicated 
in Fig. 5 B and C, analogous to Fig. 1E. The screw component 
rotation axis is PF  , with a rotation angle � , and the line direction is 
QF  . The relevant final POD is (001); so the coordinates relative to 
this facet plane are PF  , normal to (001), n0, and QF = n0 × PF  . 
Physically as in Fig. 4, dislocations do not move away from the 
interface as parts of TDs. Instead, they are removed by locally 
bunching up, and the t vectors rotate into the interface and create 
a facet. Because of the stiffness of the long-range portions of the 
crystals, the added length in the interface is suppressed, the facets 
remain, but coherency strains are present. The removed dislocations 
of Fig. 4D are then those in the twin and the matrix that remove 
angles � and � and cause the closure that creates the coherent facet. 
The basic angle � must be determined by the standard interrelations 
of the lattice parameters. We use a simpler scheme to find the 
other characteristics that is analytical once n and � are known. 
The rotation of the twin follows by symmetry. The rotations are 
consistent with the grain boundary theory in Chapter 19 of (21).

The diagrams relate to the double disconnections, but we present 
the equations for the unit dislocation component as in Fig. 4D. We 
first consider the limiting type IV reference case in Fig. 3F, where 
the normal to the POD is n0 = [100] and b = b0. As in Fig. 4A, 
the vector b0 is rotated by � about n0, and by �0 about QF ; so there 
is an edge component normal to (010) with �∕∕n0 and length,

�
[4]ben = b0 cos � cos �0.

There is also an edge coherency component parallel 
to QF  with � | |n0 and length,

	
[5]bcn = b0 sin � cos �0.

After the closure by � , the [010] t vectors still lie in the (100) 
plane inclined by �0 to (001). when viewed along QF as in Fig. 5B. 
Full closure is obtained by a set of screw coherency dislocations 
as shown in the view along with � | |n0 and lengths,

	 [6]bs = b0 sin �.

More generally, the normal n to the POD is inclined by angle 
� to n0 in the glide plane. The line of such a defect can be rotated 
to be parallel to n0, and the dislocation components are then 
determined for this mixed dislocation with components b cos � 
and b sin � . The portions of b cos � are given by Eqs. (4–6), with 
b replaced by b cos � and the subscript dropped. Thus, when 
� ≠ 0 , the normal component with � | |n0 has length,

	 [7]
ben = b cos � cos � cos � .

The edge coherency component with � | |n0 has length,

	 [8]
bcn = b cos � sin � cos � .

The screw component with � | |n0 has length,

	 [9]
bsn = b cos � sin �.

The normal component with � | |n0 has length,

	 [10]
beQ = b sin � cos � cos � .

As shown in Fig. 5C, there are two parts of b sin �. There is a 
screw component b sin � with � | |QF . There is also an edge coher-
ency portion − b cos �.D
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The edge coherency components with � | |QF  has length

	
[11]bcQ = − b cos � sin � .

The screw coherency components with � | |QF  has length

	
[12]bsQ = b sin � sin � .

One limiting reference case is the type II case in Fig. 1C with 
angles �2, �2, �2 , and �2 = 0. The components are the same as 
those in Eqs. (4–6) with the new angles inserted. Also, for a given 
�, b0 is longer than b since cos�2 = 1. The other limiting reference 
case, discussed above, with angles �0, �2 = 0, �0 , and �0 . In crystals 
where [010] is normal to (010), �, � , and δ  are all zero, and the 
equations simplify to a reduced form of Eqs. (2) and (3). This 
simplification is not possible for triclinic crystals, or some mon-
oclinic and rhombohedral crystals, but is likely for higher sym-
metry crystals. As an example, Eqs. (5–7) apply for near monoclinic 
labradorite or for monoclinic NiTi, and the twins are type IV.

The structure of the interface when � = 0 is presented in 
Fig. 6A, parallel arrays of disconnections with tilt, coherency, and 
screw components and orthogonal screw and edge coherency com-
ponents, as described by the equations. When � ≠ 0, the structure 
is that of Fig. 6B. These figures are general in the sense that no 
coherent twin facet can have an extensive length for a twin termi-
nating within a crystal, whether the twin is a type I to IV twin, a 
growth twin, a recovered deformation twin, or a blocky twin. 
Extensive twin facets/terraces only exist for twin boundaries pass-
ing completely through a crystal or terminating at a grain bound-
ary or a defect junction. The Bilby dislocations on a facet constitute 
a disclination with strain sources at the terminal singularities. 
These must be compensated by dislocations or dislocation com-
ponents of disconnections. At the jogs where the dislocation lines 
are displaced from one plane to the next, the dislocation character 
changes on the jog plane.

Disconnection Loops

As seen in Fig. 1A, for a given bg , � and � are not independent (7). 
With the value �0 when � = 0 as a reference, the interrelation is

	 [13]� = � − �0.

This has significance for the mesoscopic lenticular twins. TDs 
have a circular or elliptical shape in the glide plane. For a type I 
twin in plagioclase with � = 0 , the Burgers vector is pure edge, 
bg = bge , and both it and the line direction � , parallel to n, are 
irrational. If the Peierls barrier were important, the line would 
tend to relax to segments with � = [100] , rotated by � and sepa-
rated by kinks. The screw orientation also has an irrational � , and 
would tend to form segments with � = [001] separated by kinks 
but with a different rotation � s . For the type III, � = 0 case the 
edge line direction would be aligned with [100] with no kinks, 
but because of the triclinicity, the screw line would still be inclined 
by � s and would tend to form [001] segments separated by kinks. 
These considerations carry over to the tilt disconnection loops for 
either type II or IV twins. Thus, in TEM views along [100] or 
[001], one or the other would entail a kinked defect line.

Faceted Pericline Twins in Labradorite

Pericline twins in An (34) labradorite were studied in high-reso-
lutiontransmission electron microscopy (HRTEM) in ref. 7. 
Fig. 7A shows a low-magnification view of the twin plane, and 
Fig. 7B shows the disconnections that separate the facets. The 
disconnections bD have an average spacing < LD > of 200 nm. 
The step height is 5.1 nm (7). The lattice parameters and the TD 
and twin characteristics are presented in SI Appendix. The value 
of the parameter �0 is so close to 90° that it is effectively mono-
clinic. There are two bounds for facets formed from type II/IV 
pericline twins in labradorite. Case A is type II with 

Fig. 5. (A) For the type IV case, the (001) facet plane with normal P
F
 is rotated by � relative to the k

2
 plane. The type IV Burgers vector 2b has edge components 

2 b
en

 normal to (001) and 2 b
ec

 parallel to (001).  (B) The {010} t vectors lie in the (100) plane inclined to (001) by �
0
 , so there is also a screw component 2 b

s
 . A 

view along Q
F
 for the type IV case indicating angle � and the screw component 2 b

s
 . (C). View along Q

F
 of the components of 2 b sin � . (D). Perspective view of 

the facet plane.
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� = 3.90◦, � = 1.117◦, � = 0, � ≅ 0, and derived quantities 
b = be = 0.0433 nm, hd = 0.711 nm, the spacing between 
(001) planes. We postulate that the minimum uniformly spaced 
value or minimum average value if the spacings vary, <LD >min , 
is that where bD the sum of the Burgers vector components normal 
to (001) in the interval <LD >min equals the spacing between 
(001) planes. For other spacings, the added dislocation content 
would be needed in the disconnection. Thus, there should be a 
tendency for uniformity in the spacings, and this appears to be 
the case in Fig. 4. This postulate gives <LD >min = 16.4 nm. Case 
B is type IV with � = 0, � ≅ 0, and derived quantities � = 3.90◦, 

b = be = 0.0435 nm, be = 0.0435◦ , There is a tiny screw com-
ponent, but it is numerically insignificant. This gives 
<LD >min = 16.3 nm . The sharp HRTEM images for labradorite 
(7), not the result for bytownite, imply that case B applies.

For labradorite m in Eq. (3) is 8. The m factor carries through 
to type IV and to the facet; so the predicted <LD >eq is 130 nm. 
This is smaller than the observed < LD > of 200 nm. In the model, 
a facet is terminated when an emissary dislocation is injected, 
leaving a dislocation at the interface to compensate the disclination 
field of the facet. There is a small activation barrier for the nucle-
ation of such a pair, associated with the core energies. Thus, one 
expects the length to exceed that ideal length <LD >eq to provide 
the driving force for nucleation. This process also would account 
for the variation in the individual LD values. The crystallographic 
rotation would be retained, and the angles would be unchanged 
if emissary lattice dislocations with Burgers vectors [001] were 
injected into the twin or matrix.

Observations of Type II/IV Twin Boundaries in 
Bytownite

Twins in deformed An80 bytownite were also characterized. A 
cross-polarized light micrograph is presented in Fig. 8A, in which 
Albite and Pericline twins can be seen. As expected, since the 
structure is triclinic, the twin planes are not orthogonal. An area 
containing a Pericline twin was extracted by focused ion beam 
(FIB), pasted on a copper grid, and polished to make a TEM 
specimen. A bright field image of the specimen is shown in 
Fig. 8B, where a twin lamella is seen. To identify the faceting of 
a Pericline twin boundary, one must accurately measure the ori-
entation relationship between the twin and the matrix. Kikuchi 
patterns, sensitive to orientation change, can be collected with 
cameras with high dynamic range and high resolution. With the 
help of Kikuchi pattern simulations, the Euler angles were meas-
ured, and the angle of 2α was computed (35). For the matrix and 
the twin, the Kikuchi poles near the center of patterns correspond 
to [301 ] and [ 301], respectively. Thus, we obtained the orienta-
tion information for the twin and the matrix and demonstrated 
it using Euler angles with the Bunge convention. From the view 
of TEM images, the sample coordinate system is defined as the 
figure in the middle. The sample coordinate system is defined in 
the view of TEM images. The plane normal direction is the X-axis, 
the leftward direction is the Y-axis, and the upward direction is 
the Z-axis. Before the rotation defined by Euler angles is applied, 
the X-axis of the sample coordinate system is parallel to the A-axis 
of crystal, and the Z-axis of the sample coordinate system is 

Fig. 6. (A) Perspective view of a faceted interface when n = n
0
 . (B) General 

case where n ≠ n
0
.

Fig. 7. TEM bright field images showing twin boundary in labradorite sample. (A) overview of the sample. (B) magnified images taken from red square in A, 
which shows that the average spacing of disconnections is 200 nm.D
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parallel to the normal direction of the c plane. The Euler angles 
of the matrix are 306.73°, 164.16°, and 306.86°. The Euler angles 
of the twin are 126.24°, 15.81°, and 52.046°. Based on this infor-
mation, the misorientation angle 2� between the standard type-I 
twin and the observed type-II or IV twin is calculated to be 8.38° 
using MTEX (36). As determined by the instrument goniometer, 
the tilt of the respective diffraction patterns when viewed along 
g = [100] was � = 0. 74

◦

 between the twin and matrix. The angle 
between the Albite and Pericline twins in Fig. 8A is 85.3°. The 
model in Fig. 1 predicts a value 90◦ − � = 85.8◦ , a little larger. 
The difference arises because the surface normal must be slightly 
inclined relative to n so that the apparent angle is reduced from 
the true value.

Faceted Pericline Twins in Bytownite

The lower magnification TEM view of the twin plane, presented 
in Fig. 9A, reveals that the twin plane has also relaxed by faceting. 
The facets are separated by disconnections with an average spac-
ing < LD > of 550 nm. The HRTEM view in Fig. 9B is not well 
resolved since, as shown below, � ≠ 0 . So, there are screw disloca-
tion components to the disconnection and two separate relative 
rotations of the twin and matrix. Thus, a clear two-dimensional 
atomic resolution image could not be obtained. However, the step 
height of the poorly resolved disconnection, determined by count-
ing terminating (001) planes in a view like Fig. 9B, is about 6 nm, 
consistent with Fig. 9A.

There are two reference bounds for facets formed from type II/
IV pericline twins in bytownite. Case A is type II with � = 0, 
𝛿=0 , 𝛽2=11.77◦, <LD >min=13.5 nm, and the derived angle 
�2 = 4.27◦ . This limit is obviously inconsistent with the presence 
of � . Case B has the properties <LD >min = 13.8 nm 
�0 = 4.19◦ , n = n0, �0 = 11.77°, and derived angles �0 = 4.10◦ 
and �0 = 0.854◦ . The measured results are case C, close to � = 0, 
but the best fit is case C, with � = 4.16◦ , � = 1.62◦ , � = 0.74◦

,� = 10.1◦ , ben = 0.047 nm, bcn = 0.018 nm, bsn = 0.033 nm, 
beQ = 0.022 nm, bcQ ≅ 0 nm, bsQ = 0.016 nm, <LD >min = 13.7 
nm, and <LF >min = 29.3 nm. With these minimum lengths, the 
screw components would still have misfit along the defect lines. 
If we add the postulate that the screw components must equal the 
respective unit cell lengths, the results would be <LD >min = 24.8 
nm, and <LF >min = 52.8 nm. The factor m for bytownite is 10 
so Eq. (3) gives <LF >eq = 528 nm . As with labradorite, this 
length is smaller than the experimental value of 550 nm. The 
scatter in LD values is a little larger for the bytownite case. The 

explanation of both differences is the same as for labradorite. 
Thus, the results are in excellent agreement with the predictions 
in ref. 8 and show consistency between theory and measure-
ments. The solution is close to the � = 0 limit expected for many 
minerals where large Peierls barriers are likely. Anisotropic elas-
ticity could also favor the � = 0 limit. The theory and results are 
matched by making angle � consistent. The agreement of the 
theoretical and experimental values of � provides an independent 
result. Thus, the TM fits all the experimental findings well.

General Facet Structure
Relation to Grain Boundary Theory. For the most general twin 
boundary, the displacements always have pure tilt symmetry. 
When the irrational k2 boundary facets, the dislocation arrays 
producing the associated rotations are not restricted to single 
types of Burgers vectors as in the TD formation mechanisms 
for types I to IV twins. Because the added dislocations form 
an irrational array, there can be up to four sets of dislocations, 
two edge arrays associated with orthogonal tilts and one screw 
array associated with a twist, all relative to the low-index terrace. 
This is analogous to the reduced von Mises criterion at a grain 
boundary (21). If the screw arrays are orthogonal screws, they 
are not independent, since, operating together they produce a 
pure rotation without strain. However, both sets, which could be 
either edge or mixed in character (37) must be present to prevent 
coherency stresses from appearing. There are three independent 
systems that satisfy the compatibility condition that the ∈xx , ∈yy , 
and ∈xy strains in forming the boundary are the same in the two 
crystals when the axes x and y lie in the boundary, Thus, to remove 
any one of these sets in producing the facet, the mechanism is 
as follows. The atomically spaced TDs entail atom-atom overlap 
and should spontaneously relax, as described above, into discrete 
disconnections bD bounding the low-index terraces: the facets. The 
net Burgers vector of the original discrete defects now resides in 
the disconnection as bD, and the removal of the discrete defects 
leaves an array of infinitesimal Bilby coherency dislocations on the 
facets with a net bi equal and opposite to bD , Fig. 4F, explicitly 
demonstrated and simulated in ref. 1. These same considerations 
apply to tilt grain boundaries, to kink bands and the interfaces 
for shear type phase transformations when there is a large tilt 
component to the TDs.

Other Type IV Observations. We have focused on twins in 
plagioclase here, but faceted type II/IV twins are also observed 
in other crystals. NiTi (38–41) for example, is an example of 

Fig. 8. (A) Cross-polarized light micrograph of deformed bytownite, showing albite and pericline twins. (B) Bright-field TEM image of deformed bytownite 
showing a pericline twin lamella.D
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a type IV twin where the measured � is intermediate between 
the upper and lower bounds described here. Twinning in NiTi, 
generally has been analyzed as type II, e.g., refs. 14, 20, 38–41. 
However, the analysis in ref.  7  clearly shows that the nearest  
t vectors, of the <110> type, do not lie in the POD: the twin is 
type IV, not type II. The more detailed analysis here reveals that 
the characteristics are as follows, including the data in refs. 37–39: 
ben=0.085 nm, bcn=0.002 nm, beQ =0.011 nm, �=7, 86◦, �=

7.34◦. � =0.40◦, and �=2.73◦, Le =0.786 nm, LQ =6.07 nm. 
The angles are small, but are consistent with the HRTEM results 
in refs. 39 and 40, when viewed in the conventional [011] direction 
parallel to n. The major consequence of the small angle [011] 
direction is that the structure is that of Fig. 6B. The other boundary 
studied in ref. 39 can be understood only if it is a double twin 
boundary, possibly a result of a type IV twin nucleating during 
unloading at a preexisting twin boundary, formed during loading. 
The early HRTEM work (39, 40) clearly revealed faceting, and 
anticipated the type IV analysis in several ways. Thick specimens, 
viewed in the [011] direction close to QF  had poor resolution 
because the (001) planes of twin and matrix diverged, indicating 
that the angle between QF  and the [011] direction was nonzero. 
They also observed a structure like that in Fig. 6B, implying that 
the twin is type IV, and noted that spacing LQ was much greater 
than Ln , consistent with our calculations for bytownite. A similar 
twin, type IV on one side, double twinning on the other, was 
observed for Ni–Mn–Ga (42). The results here may be relevant 
to that case also.

We anticipate that facets will occur for many type II/IV twins 
when they are examined in HRTEM. In addition to the review 
of twinning elements for minerals, the partial dislocations that 
become components of TDs are reviewed in ref. 43. Preliminary 
consideration indicates that the twins in triclinic devitrite (44) are 
type IV twins, while those in trigonal Hg (45) are type II. Possibly, 
other observation of twinning modes cited as type I or II may be 
type III or IV when analyzed in the TM.

Recovered Twins and Large Steps

The type II/IV twins have distortion fields corresponding to those 
of a tilt wall, because the relative displacements of twin and matrix 
have mirror symmetry. This structure applies to unconstrained 
twins that extend to free surfaces at each end or except near the 
twin tips for lenticular twins with high aspect ratios. If the twins 
are limited in length in the direction parallel to �2, there are large 
incompatibilities. The fields of the discrete tilt walls are equivalent 
to those of paired partial disclinations (46), wedge type if the step 
is perpendicular to the glide plane (47, 48). This field can be 

removed by a recovery mechanism entailing the emission of lattice 
dislocations into the twin or matrix, Since the net tilt vector is 
then nil for a completely recovered boundary, there is a change in 
orientation. A simple example is the type II twin in a fcc crystal. 
The unconstrained type II boundary has an orientation of {111}, 
while the recovered orientation is {112}, a rotation of 19.5°.  A 
fully recovered blocky twin in a fcc crystal would be bounded by 
{111}, {112}, and {110} interfaces (29). Such blocky twins do not 
form in plagioclase, but they do form in metals and compounds 
and potentially could form in some minerals. If they do form, 
they would be designated as type IIR or type IVR twins to distin-
guish them from type II/IV twins.

Also, for type I/III twins such as Albite, large steps can form 
that are equivalent to Pericline twin planes. There is a short-range 
attraction between like-sign TDs, and if there is an obstacle, large 
steps occur (29, 30). The unrelaxed step heights are limited to the 
order of ten interplanar spacings. The fields of the steps are equiv-
alent to those of wedge-type disclination dipoles if the step is 
perpendicular to the glide plane (8, 47). The defects are mixed 
wedge/coherency disclinations (6, 30) if the step is slanted. For a 
statically recovered step, the stress fields are removed by emissary 
dislocations ejecting into the matrix or twin. The stress-free step 
height h = jh0 is the fixed by the condition jb = bD . Results for 
Mg are in excellent agreement with this result (30).

Type V and VI Twins

In plagioclase where � ≠ 0, no normal n, or equivalently–no line 
direction �, is parallel to a low index, rational direction for a TD. 
However, the Peierls stress for motion would be lower if the line 
direction were [100]. Anisotropic elasticity could favor such an 
orientation. Hence, as suggested in ref. 42 for twins in a Ni–Mn–
Ga alloy, another possible faceted structure, for example for pla-
gioclase, is that the precursor TDs that accumulate to form a 
boundary are mixed with bgr inclined. to [100] but with n and � , 
parallel to [100] This differs from types II or IV where the pre-
cursor TDs are pure edge, and we designate it as type VI. In other 
words, at the stage in Fig. 4C, the dislocations are mixed. The 
process carries through like that in Fig. 4, with the mixed dislo-
cations on (001) now labeled as br . The difference for type VI is 
that the long-range displacement field is not the rotational field 
of a twin but that of a twin, including the screw component of 
the twin field, with a superposed distortion field of a screw dislo-
cation array with Burgers vector bxs and with both rotational and 
strain portions. The results resemble those for types II and IV, but 
the boundary is a grain boundary with mixed screw/edge disloca-
tion character, not a twin boundary at this stage. Since the 

Fig. 9. (A) A bright field image of pericline twin in bytownite viewing along [401]. Twin boundary is faceted with < L
D
> = 550 nm. (B) A HRTEM image of pericline 

twin boundary in bytownite containing a disconnection at the center.D
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boundary arises from glide on k1 , we indicate the difference by 
designating the boundary plane as r2 to indicate that it is distinct 
from a type II or IV twin boundary. A twin boundary can be 
created if the grain boundary undergoes a specific recovery mech-
anism. The mechanism can be static recovery wherein lattice screw 
dislocations bLs are emitted periodically along the boundary, leav-
ing an opposite sign screw in the boundary. More likely, the mech-
anism is dynamic recovery by periodic glide of such screw 
dislocations along with the TDs (42). The presence of the lattice 
screw dislocations removes the long-range screw field and results 
in a twin with a tilt wall with the reduced edge content 
bre = br cos� , and a corresponding reduced value of the twin 
angle 2α. One would need either a measurement of � or an obser-
vation of the − bLs screw to verify the model.

The latter type of mechanism (42) resembles the case where two 
different TDs are present for the same glide plane, which can be 
a type V twin. Examples are (10 1 1) and (10 1 3) hcp twins in 
Mg (49–51). Individual TDs with alternating screw character sum 
to give an average �1 with a large α. if one dominates, the over-
all �1 can deviate markedly from [1012] for (1011) , or from [3032] 
for (1013) . A difference in the shear stress acting on the screw 
components suffices to give the deviating result. For (10 1 1) twins 
such a deviation has been observed (24, 34) and is predicted in 
ref. 51, but is not always observed (24). This would be consistent 
with the screw/shear stress effect. These two hcp twins also repre-
sent one of the few examples of synchroshear. Most cited examples 
correspond to synchroshuffle (52). In either case, the resultant 
twin parameters differ from those for a type II or IV twin although 
the k1 glide plane is the same.

In view of these differences, we define twins of the above form 
as type V and VI twins, and the type II (or IV) and VI twins 
become degenerate if and only if the vector [010] lies in the POD 
(8). This condition is not met in plagioclase, but its analog is often 
satisfied in high-symmetry crystals. The discussion of faceting on 
twins in Ni–Mn–Ga (42) suggests that the result might be a type 
VI twin, although the authors analyze it as type II. Double or 
multiple twinning are other related possibilities.

Phase Transformations

Some of the above development for shear-shuffle twinning (53) is 
pertinent to shear-shuffle type phase transformations, described in 
refs. 1–3 and 54. The TM adequately explains the common analog 
of type I/III transformations (2). Several modifications simplify the 
analysis for certain complex transformations. The use of the shifted, 
shifted dichromatic pattern (SDP) (6) makes the determination of 
shuffles easier. Another is the Crocker (55) treatment of phase trans-
formations (and twinning) in a complex fcc-monoclinic Pu–Ga alloy. 
An affine monoclinic-hcp phase transformation is imposed, the 
defects and mechanism are determined, and the reverse affine 
hcp-monoclinic transformation is imposed to achieve the final struc-
ture. This method was useful in analyzing the orthorhombic–mon-
oclinic transformation in zirconia (56). A different procedure is 
helpful for describing type I/III twin analogs of the phase transfor-
mations, as well as being very useful for describing the type II/IV 
analogs. Aside from the extension normal to the glide plane associ-
ated with a change in interplanar spacing, the transformation is 
exactly like that discussed here for type II/IV twins. Hence, one can 
use a variant of the Crocker procedure. First, impose an affine trans-
formation to the product phase to eliminate the difference in inter-
planar spacing. Then, analyze the transformation as a type II/IV 
twin. Finally, impose the reverse affine transformation to restore the 
interplanar spacing. The treatment of the normal extension is the 
basis for the disparity between the TM and the older models. The 

use of this shear-shuffle-extension model could be used to amend 
the phenomenological mode (57–60) or that associated with the 
near-coincidence lattice (33). The S-S-E model could be useful for 
other mineral transformations, e.g., ref. 61.

Discussion

In this effort, we have concentrated on the structure of twins. Many 
parameters are needed in the analysis, so the description is a severe 
test of the TM. As such, the agreement between the TM and the 
TEM observations is excellent for twins in plagioclase. Hence, the 
amendments to the classical model are significant. We expect that 
the model discussed here will apply to other minerals, which tend 
to have both low-symmetry crystal structures and in which twinning 
is prevalent to satisfy the von Mises condition for plastic flow. Also, 
the model can apply for twinning in metals and simple compounds, 
which tend to have higher crystal symmetry. We mentioned type 
IV twins in NiTi and Ni–Ga–Mn and type V twins in hcp metals. 
The twins in monoclinic martensite in Pu–Ga alloys (54, 62) were 
analyzed by the Crocker procedure, but in ref. 63 the more accurate 
determination of twinning modes was done in the simplified pseu-
dostructure. The TEM results and classical theory indicated type I 
twinning with K1 = (205) and �2 = [302]. In the present context, 
the �2 direction is irrational and rotated from [302] by �. The results 
resemble those for labradorite, but with a larger � = 101.8◦ . Unlike 
the plagioclase twins, the twinning direction is not close to the [100] 
direction. Monoclinic martensite in U–Nb alloys also exhibits sev-
eral types of twins (13, 64) with �0 = 92.4◦ . The indices in these 
papers differ and we follow (63). The exact twins have K1 = (130) 
and �1 = [310] . These were described as type I twins, which would 
be the case for orthorhombic U, but they are type III in martensite. 
The other prominent twin was described as type II, but here is type 
IV with K1 = (112) and K2 irrational and approximately ( 172 ). 
These results are consistent with the type III, IV classification. Other 
twins were observed less frequently and could entail interactions 
with the growing martensite laths. Converted to the standard min-
eralogical notation followed here, these indices would be 
�0 = 92.4◦ , (301), [103} (121) and (721), respectively.

The recovery associated with facet formation implies an 
absence of back-stresses and hence a minimal Bauschinger effect 
in unloading or reverse plastic deformation. Similarly, in reverse 
loading, there should initially be a small reduction in yield stress. 
This has implications for both shape memory alloys related to 
NiTi (65, 66) and to minerals where type II/IV twins form. For 
low-strain rates, the same concepts should apply. At high strain 
rates, there may not be sufficient time for recovery, and both a 
larger Bauschinger effect and a larger reverse loading yield stress 
should be observed.

More generally, the same TM concepts should apply to shear–
shuffle phase transformations such as the athermal or thermally 
activated cases for martensite, or thermally activated diffusional 
transformations. The TM amendments should be significant when 
the rotation angle � exceeds 2 or 3°.

The partitioning and symmetry apply to the plastic distortion. 
Any resultant elastic distortions depend on specific distortion 
incompatibilities. For a contained twin, all of the elastic distor-
tion is in the twin, analogous to the Eshelby inclusion (67). For 
a twin between two free surfaces, the only distortion is the equi-
partitioned plastic rotation and there is no long-range elastic 
distortion. For a long, thin twin between two barriers, grain 
boundaries, for example, the elastic strain is localized at the ends 
and the plastic rotation is equipartitioned to the twin and matrix. 
An extended version of this case is a polysynthetic twin with 
thin, equal thickness twins and matrices alternating.D
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Emissary dislocations were mentioned above several times. If 
they are injected under load as a form of dynamic recovery, the 
Peach–Koehler force is provided by the stress field of the disclina-
tion associated with the facet, and favors injection into the twin, 
since as the emissary dislocation reaches the opposite side of the 
twin, it can compensate a disclination there. Injection into the 
twin has been observed in an atomistic simulation (14). The result-
ant dislocation loops observed in the traces of former martensite 
plates by HRTEM in refs. 39 and 40 may correspond to traces of 
the compensating disconnections.

TD motion depends upon both the parameters b and h, and 
the shuffles of lattice sites as well as the atoms comprising a 
structural group (6) at a site (such shuffles were not addressed 
here). The detailed mechanism for motion can involve either 
kink pir nucleation over the Peierls barrier, followed by lateral 
kink motion; or TD bowout and breaking of pinning points. 
In either case, a small b is favored. The smallest b can be for a 
unit TD or one with multiple step heights as in the results for 
fcc metals (68, 69). Countering the trend to larger step heights, 
the shuffles accompanying TD motion entail diffusion-like 
shifts. The activation energy for motion should be lower when 
the number of shuffles is smaller, that is for smaller step heights. 
Optimization is required. A kink-pair, nucleation and growth 
model has been presented for several metals and alloys in the 
approximation that the twin is type II, and that shuffles have a 
minor or negligible contribution to the activation energies (70). 
Both assumptions are plausible for metals where � can be small 
and shuffles are absent or minimal. However, it would not apply 
to systems like plagioclase where shuffles are numerous and large 
(7). In ref. 70, they noted that type II twins exhibited faster 
growth rates for metal alloys, which was puzzling. We offer 
several possible explanations for such diffusion-controlled 
shear–shuffle mechanisms. First for the type I (or III) case, the 
nucleating TDs are repelled by previously emitted TDs over a 
relatively large distance, so there is a waiting time. In contrast, 
for type II (or IV), after a short growth distance emitted TDs 
are strongly attracted by the tilt dislocation components in the 
incomplete twin. Secondly, the growth distance for a unit of 
advance of the tilt wall is shorter. This is a very large effect if 
the nucleation mechanism entails a spiral source. For twins 
forming at near sonic speeds, such as those in zinc (71), the 
second effect is quite important. Also, as summarized in ref. 32, 
the release of elastic energy at a growing tip can augment the 
nucleation rate.

An important consequence of the TM model is that the direc-
tion of the Burgers vector and hence �2 differs from the classical 
model for types II and IV. This would have an effect in consti-
tutive modeling. While we have described explicit differences 
from the classical model, the classical model provided the basis 
for the TM. The basic theory (14, 15) allows for the type III to 
VI twins. It is the usage of concepts related to the phenomeno-
logical model (57–60) that introduced the issues pinpointed in 
the TM. In particular, the elegant mathematical determination 
of invariant planes is in many cases inapplicable to twinning or 
phase transformations because partitioning is required to satisfy 
symmetry conditions. With a single set of TDs, only the type 
I and III twin planes are invariant. With dual or multiple defor-
mation systems, invariant planes can be achieved. Examples are 
double twinning and Fe–C martensite containing microtwins 
(60). Four independent deformation systems suffice to create 
any possible grain boundary.

The relaxation of the twin boundaries to form facets suggests a 
potential way to constrain the conditions of plagioclase twinning 
in the crust. The samples examined here experienced relatively 
high-temperature conditions and cooled slowly enough to allow 
the facets to form. In other cases, in which transient high stresses 
arise associated with the propagation of earthquake ruptures near 
the brittle-plastic transition, in the distal regions of impact craters, 
or thrust sheet flexure during faulting, the temperature may be 
too low to allow the formation of facets. Future research could 
explore these possibilities.

The differences between the TM and the classical model are 
significant, although the models agree for type I twins unless the 
twinning angle � is large. For types II and IV the differences 
between � and the classical angle �c are significant because the 
classical theory does not include partitioning. In addition, the TM 
definitions of types II to IV, listed in The Partitioning Mechanism, 
differ from the classical definitions. Although, the TM definitions 
are consistent with the classical, general, nonmechanistic, math-
ematical conditions for possible twins.

Summary

Type II and IV twins are characterized by high index, irrational 
twin planes. We show for two plagioclase crystals and NiTi that 
these planes relax by forming low index, rational facets separated 
by disconnections. For very large twin angles, such interfaces prob-
ably remain irrational. When the twin angle 2α is less than 10 or 
15°, faceting seems likely, as observed here. For both types II and 
IV, the TM (1, 2) predicts that the formation mechanism entails 
TDs moving on a low-index plane. That suffices to enable predic-
tions of the twin characteristics. In low-symmetry crystals such as 
triclinic plagioclase, there are two limiting cases. In one, the TD 
line direction is low index and rational, reflected here by � = 0 . 
In the other, a low-index rational direction lies in the POD, and 
� = 0 . Both of these and intermediate cases disagree with and 
extend the classical models. The present analysis indicates that the 
mechanism is close to the � = 0 limit but not equal to it for cases 
considered. Physically, this would be expected if the TDs were 
situated in Peierls valleys. The observed spacings of the disconnec-
tions are of the order of but exceeds the predicted average value 
for both labradorite and bytownite.

The type II and IV examples apply when the faceting mecha-
nism is dynamic, occurring as the twin is formed. Added static 
recovery can occur by the emission of lattice dislocations.

A different mechanism, suggested in ref. 42 is shown to be anal-
ogous to that for type II/IV twins, but producing a grain-bound-
ary. The grain boundary can relax to form a twin by static recovery, 
entailing the emission of lattice screw dislocations.

Data, Materials, and Software Availability. All study data are included in the 
article and/or SI Appendix.
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A. The formation of types I-IV twins. 

The key feature of the model, which involves the formation of an incipient type I twin, is shown 

in Figure A1(a). TDs nucleate and propagate laterally creating a type I twin. We do not consider 

kinetics here, although heterogeneous nucleation of a twin is almost certainly the mechanism.  

Heterogeneous nucleation at a grain boundary or other interface would produce half the twins.  

The nucleation source for the twin in Figure A1 could be some localized defect such as an inclusion 

or a vacancy cluster.  

The initial stage of the type II twin mechanism is shown in Figure A1(b). The same TDs that 

produce a type I twin nucleate as pairs at the twin tip and undergo precursor glide laterally. For 

type II, the ratio of the nucleation rate 𝑁̇ to the growth rate 𝐺̇ is large and the twin grows faster 

normal to the 𝑘%	plane than parallel to it. The interface subsequently undergoes displacement 

partitioning entailing rotation of the twin interface to produce the type II twin. Unlike the classical 

model for type II twins [10-12], the direction of twin shear is never rational in plagioclase (or other 

triclinic crystals), and thus a new twin, a type IV twin, is defined. The TM for such twinning is 

extended in [8] for the case of low-symmetry crystals, where the precursor glide is the same as the 

TD glide for type III twinning, as described in the previous paragraph. 
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Figure. A1.  Schematic illustration of the topological model for the formation of (a) type I twin 
and (b) type II twin in a view of the plane of distortion.  Sources for the nucleation of a 
disconnection pair on the glide plane, k1, in both cases, as indicated by the inset sketches, produce 
the simple shear displacements. After relaxation, the k1 planes within the type II twin are rotated 
by an angle α from their original orientation. The notation Ń indicates a repeated nucleation site. 
For type I, the mobility/nucleation rate ratio Ġ ⁄Ṅ is large so the spacing L of a pair is large when 
a new pair nucleates at the source. For type II, the ratio is small when a new pair nucleates and 
interactions of the dislocation components tends to form a tilt wall, which rotates the wall by α to 
the final k2 position.  

The TM mechanism for a type I twin (and similarly, a type III twin) is presented in Figure A2. 

More relevant here, the TM mechanism for type I/III also describes the precursor glide for the 

creation of a type II twin (and similarly, a type IV twin). A characteristic lenticular-shaped twin is 

shown in Figure A2(a). Mechanistically, TD pairs nucleate and glide on the 𝑘% plane, as indicated 

at B, and propagate the type I twin or type II precursor. A TD is shown in Figure A2(b). The TDs 

are characterized by a Burgers vector 𝒃(, parallel to the twinning direction 𝝌%, and a step height 

h. For a unit TD, the step height is ℎ+ and for multiple heights, ℎ = 𝑗ℎ+, with j an integer.  The 

Burgers vector 2𝒃( is given by the difference between lattice translation vectors 𝒕/ and 𝒕0	in a 

dichromatic pattern (DP), the superposition of the lattices of the matrix and twin with a coincident 
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origin on a low index dividing surface that corresponds to the twin plane. The details of the vectors 

are presented in a 2D projection of the DP in Figure A2(c) for a double height disconnection. 

 
Figure A2. (a). Type I/III twin with TD pairs nucleating at A and B and propagating laterally. (b). 
A typical TD.  For type I the t vectors are in the POD, for type III, they are projections onto the 
POD. (c). Portion of a three-dimensional dichromatic pattern for a generic, triclinic, plagioclase 
crystal, showing the (010) glide plane 𝑘%,  𝒃(, 𝒏, 𝒕/ = [010]/ and 𝒕0 = [010]0 for a type III 
twin. P is the normal to (010), n is normal to the plane of distortion, and 𝒃𝒈 is the Burgers vector 
of the TD. The t vectors and 𝛼	are partitioned symmetrically to the twin T and matrix M. (d). View 
along the glide plane normal P of the POD showing 𝒃(	partitioned to the components 𝒃/ and 𝒃𝑻 
in the 𝑘% glide plane for type I. (e) Analogous view for a type III twin showing the projections of 
the  𝒃( and t vectors and the angle 𝛿.		(f).	Projection along 𝝌% for type III.  Dashed vectors 
throughout the paper indicate that the vectors are projected.  

The unit vector n is normal to the plane of distortion (POD) that contains all displacements, 

plane strains, and plane rotations. The unit vector P is normal to the glide plane with an origin o. 

The unit vector 𝑸 = 𝒏 × 𝑷, forming an orthogonal set, is parallel to 𝝌%. The sign convention for 

these vectors is shown in Figure A2(b). The angle 𝛽 represents the difference in orientation 

between n and the nearest low index direction. As shown in Figure A2(c), the final twin structure 

is partitioned in the sense that equipartitioning of the glide vectors in the matrix and twin define 
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the angle 2𝛼, a rotation that corresponds to the crystallographic two-fold axis 2 parallel to P and 

relates to the macroscopic twinning elements. For emphasis, Figure A2(c) is a view along n, 

perpendicular to both P and the POD and parallel to the (010) plane, which contains the vector 

2𝒃(. For type I, the translation vectors lie in the POD. In contrast, for type III, the translation 

vectors do not lie in the POD. Thus, as illustrated, the TD vector 2𝒃( is the closure vector defined 

by the translation vector components projected onto the POD, shown as dashed lines in Figure 

A2(c); the vector 2𝒃( is also given by (𝒕0 − 𝒕/) . 

2𝒃( = 𝒕0E − 𝒕/E = 𝒕0 − 𝒕/                                                 (A1) 

An important feature of the TM is indicated in Figure A2(c). For the origin o to coincide with 

a lattice point, the analysis always entails a double height defect as depicted here.  Physically, these 

double-height disconnections dissociate to unit disconnections as described subsequently, giving 

the TD Burgers vector 𝒃𝒈 	= 1 2F G𝒃(/ +	𝒃(0I. The twin angle is given by sin α = 𝑏/ 𝑡/E⁄ . Recall 

that for type I, the t vectors lie in the POD, as shown in Figure A2(d) for the view along P. For 

type III, which is the case for plagioclase, Figure A2(e) illustrates that only the components of the 

t vectors, rotated by ±𝛿	from 2𝒃(, are in the POD. Now P (which is normal to 2𝒃()	intersects the 

glide plane at o’, displaced from the unit cell point o. The angle 𝛿 represents the deviation from 

type I: If 𝛿 = 0, the twin is type I: if 𝛿 ≠ 0, the twin is type III.  Figure A2(f) is a projection along 

𝝌% for type III showing that there are components of the t vectors out of the plane of distortion, 

defining the angle 𝛾, although they cancel and do not contribute to the description of types I to IV 

twins.  As shown subsequently, these out-of-plane components are important in faceting. 

B.  Characteristic parameters for twins in labradorite and bytownite and the TM procedure 
 

The lattice parameters are listed in Table 1. The characteristic angles for the twins are defined 

as follows [8]: 

𝛼 = 𝑐𝑜𝑠S%(𝒕TU•𝑷) ç𝒕TUF ç                        (B1) 

𝛽 = 𝑐𝑜𝑠S%(𝒏•[100])                            (B2) 

𝛾 = 𝑐𝑜𝑠S%(𝒕TU•𝑸V) ç𝒕TUF ç                       (B3) 

𝛿 = 𝛽 − 𝛽+                               (B4) 
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For Eq. (B1), the vector 𝒕TU is resolved onto the plane normal to n. For (B3), the vector 𝒕TU 

is resolved onto the plane normal to 𝑸V, 	 

𝛾W = 𝑐𝑜𝑠S%(𝒕TU•𝑸V) ç𝒕TUF ç                (B5) 
 

Here 𝛼+, 𝛽+, 𝒏+ = [100], and	𝑏([  are reference values for the type II case where 𝛿 = 0. The angles 

and 𝒕TU are shown in Figures A1 and 2. In [8], 𝒕TU and therefore 𝛼 must be determined by the 

rotations described in the Supplementary Material, complex for triclinic crystals.  The other angles 

are determined analytically. As in Figure A2(a)  

𝛼+ = 𝑡𝑎𝑛S%(𝑏(+ [𝑏+∗]⁄                                (B5) 

For plagioclase, [𝑏+∗], parallel to P, is the reciprocal lattice vector. As in Figure 3(c), 

	𝛼 = 𝑡𝑎𝑛S%(𝑏( [𝑏+∗], )⁄                                 (B6) 

Since 𝑏( = 𝑏(+ sec 𝛿,	 

 	𝛼 = 𝑡𝑎𝑛S%(tan𝛼+ sec 𝛿)                          (B7) 

The angles 𝛼 and 𝛾 are not independent.  From Figures 1 and 3,   

	tan 𝛾 = tan 𝛼 tan 𝛿	                                    (B8) 

The angles and other characteristic parameters are listed for labradorite and bytownite in Tables 2 

and 3 for two special cases that likely are upper and lower bounds for 𝛽: case A with 𝛽 = 0 and 

case B with 𝛿 = 0.  

Table 1. Lattice parameters of plagioclase.  

Component/Name 
Lattice parameters 

a0(𝑛𝑚) b0(𝑛𝑚) c0(𝑛𝑚) α0(°) β0(°) γ0(°) 
An52 Labradorite 0.818 1.286 0.711 93.530 116.210 89.920 
An85 Bytownite 0.819 1.288 0.710 93.370 116.040 90.870 

 
Table 2. Properties of type I and II twins in plagioclase. 

Component K1 x1 K2 x2 n 2a (°) β(°) d(°) h0(nm) 2|bg|(nm) 
An52 (010) [0.050 0 0.137] (-1 0 38.333) [010] [1 0 0.026] 7.80 1.18 0 0.642 0.087 
An85 (010) [0.080 0 0.147] (1 0 3.356) [010] [1 0 -0.298] 8.54 11.77 0 0.642 0.096 

 
Table 3. Properties of type III/IV twins in plagioclase (special case with 𝛽 = 0).  

Component K1 x1 K2 x2 n 2a(°) b(°) d(°) h0(nm) 2|bg|(nm) 
An52 (010) [0.053,0,0.137] (001) [-0.002,1,0] [1 0 0] 7.79 0 1.18 0.642 0.087 
An85 (010) [0.056,0,0.147] (001) [0.024,1,0] [1 0 0] 8.36 0 11.77 0.642 0.094 

 

The relevant TM procedure used in the present calculations [8, 16] is as follows.  One needs 

some experimental input, either the twinning angle 𝛼 or the Burgers vector 𝒃(, and the glide plane 
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𝑘%. This is sufficient to create a dichromatic pattern like that in Fig. 1(a). For a type I plane, Eq. 

(2) applies, the t vectors are known and the solution is complete.  The same is true for type III but 

one must also deduce either the screw component of 𝒃( or the angle 𝛾.  For type II, 𝒃( must be 

parallel to [001], 𝛿 = 0, and 𝛼	is then specified.  As in Figure 3, this is a limiting case of type IV.  

For both labradorite and bytownite, 𝛼 adiffers from the type II value and the twin is type IV.  For 

type IV, the procedure followed here is more complicated. Values of 𝛼 are tabulated in [8] for a 

range of 𝛿 values.  The procedure is then to determine which value of 𝛿 provides a match to the 

experimental value of 𝛼. All of the other quantities above are known.  As reported, for both 

minerals the value of 𝛿 in intermediate between the two limiting values.  As an added check for 

bytownite, the experimental value for 𝛾 matches the calculated value.  

C. Selection of step height and complementary Burgers vectors.   

In the text, we mention the selection of b and h. An example with many choices is the Σ11	(001) 

twin in fcc crystals [70].  The favored choice theoretically was ℎ = 4ℎ+ because of its small 

Burgers vector and this agreed with experimental observation [71].  Another aspect is that there 

are symmetry related limitations on 𝛼	[1, 74, 75]		For	the	Σ11 twin, the upper limit is 45°.  For 

larger angles, a different [100] variant with an angle reduced by 45° is selected.  For a given DP 

there is a dichotomy in the choice of  𝒃𝒈 when there is 2D coincidence of a boundary as for 

coherent twin planes [2, 10] and some grain boundaries.  If the repeat distance parallel to 𝒃𝒈 is a, 

then the same twin can be created by an opposite sign complementary dislocation −𝒃𝑪𝒈 ,  where, 

for the same h 

	𝒃( +	𝒃o( = 𝒂                                         (C1) 

Thus, there is another limit. For the Σ11	case	𝒃( is the appropriate choice when 𝛼 <

22.5°, but	for	larger	angles 𝒃o(	is appropriate. Hence the limit for 𝛼	𝑖𝑠	 ± 22.5°.  

For type I twins or type II precursors with the same h, both vectors have the same rational 

origin for the related t vectors, and both have an associated but different twin angle  𝛼 or 𝛼o , in 

accord with the 2’, m’ symmetry, so the choice between them is obvious.  An issue arises when 

there are different step heights. An example is Figure C1. For ℎ = 2ℎ+, the t vectors are symmetric, 

the	origin	is	rational	𝒃( is small, and 𝒃o(	 is large.	 The choice of 𝒃( is obvious.  For ℎ = ℎ+, 𝒃( 

is large and 𝒃o(  is the appropriate TD vector. However, the symmetric origin for 𝒃o(  is irrational 
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and would greatly complicate the TM analysis. Hence, while the unit TDs have Burgers vectors 

𝒃o( = (1 2)	2𝒃(⁄ , ℎ = 2ℎ+ is selected for analysis.  

 
Figure C1.  The DP for a type I hcp (10-12) twin with 𝒃( = 1

2⁄  [101x1]. 

D. Determination of crystallographic quantities of twinning elements. 

For a triclinic lattice, the unit cell is described by three base vectors a0, b0 and c0, and the angles 

α0, β0, and γ0 between b0 and c0, c0 and a0, a0 and b0, respectively. Since the three base vectors are 

non-orthogonal, all vector operations must be transformed to Cartesian coordinates, and then back 

to crystal coordinates. 

D.1 Conversion between crystal direction and vectors in Cartesian coordinates 

In the Cartesian coordinate system, a0 is the magnitude of a0 in the positive x-axis direction, b0 

is a positive y-axis component of the b0, and c0 is the positive z-axis component of the c0. With 

these conditions, the basis vectors ai of the Cartesian coordinate system are expressed by the 

following equations. 

𝐚𝟏 = (a+, 0,0) 

𝐚𝟐 = (b+cos(γ+) , b+sin(γ+) , 0)                                                                  (D1) 

𝐚𝟑 = (c~, c, cÄ) 

where, 

c~ = c+cos(β+) 
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c = c+
ÇÉÑ(ÖÜ)SÇÉÑ(áÜ) ÇÉÑ(àÜ)

Ñâä(áÜ)
                                                                  (D2) 

cÄ =
Ω

a+b+ sin(γ+)
 

Ω = a+b+c+å1 − cosç	(α+) − cosç	(β+) − cosç	(γ+) + 2cos	(α+)cos	(β+)cos	(γ+) 

 

Ω is the volume of a unit cell. The indices in the crystal coordinate system [uvw] are converted to 

a vector in Cartesian coordinates by the following expression. A is the transformation matrix 

between crystal coordinate and Cartesian coordinates. 

[xyz] = [uvw] î
a%
aç
aï
ñ = [uvw]A                                                                 (D3) 

A = ò

a+ 0 0
b+ cos(γ+) b+ sin(γ+) 0
c+ cos(β+)

ÇÜ (ÇÉÑ(ÖÜ)SÇÉÑ(àÜ) ÇÉÑ(áÜ))
Ñâä(áÜ)

ö
õÜúÜÑâä	(áÜ)

ù                                  (D4) 

 

D.2 Conversion between Miller indices and plane normal in Cartesian coordinates 

Similarly, the indices of crystal planes (Miller indices) and normal vector of a plane are related 

by reciprocal lattice vectors b. The reciprocal lattice vectors are determined from the basis vectors 

in Cartesian coordinates in real space. 

𝐜% =
𝐚ü×𝐚†

𝐚°⋅(𝐚ü×𝐚†)
  

𝐜ç =
𝐚†×𝐚°

𝐚ü⋅(𝐚†×𝐚°)
                                                            (D5) 

𝐜ï =
𝐚°×𝐚ü

𝐚†⋅(𝐚°×𝐚ü)
  

The normal vector [xyz] of a plane can be related to the index of this plane (hkl) by the following 

equation. Therefore, B is the transformation matrix between the Miller index of a plane and its 

normal. 

[xyz] = [hkl] î
𝐜%
𝐜ç
𝐜ï
ñ = [hkl]B                                                                   (D6) 

B =

⎣
⎢
⎢
⎢
⎡
%
õÜ

− ÇÉÑ(áÜ)
õÜ Ñâä(áÜ)

− úÜÇÜ(ÇÉÑ(àÜ)SÇÉÑ(ÖÜ) ÇÉÑ(áÜ))
 Ñâä(áÜ) ö

0 %
úÜ Ñâä(áÜ)

− õÜÇÜ(ÇÉÑ(ÖÜ)SÇÉÑ(àÜ) ÇÉÑ(áÜ))
 Ñâä(áÜ) ö

0 0 õÜúÜÑâä(áÜ)
 ö ⎦

⎥
⎥
⎥
⎤

                             (D7) 
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D.3 Rotation matrix associated with twinning 

The orientation relationship between twin and matrix is related by the rotation around a specific 

axis. The rotation matrix R for a rotation around axis u = (ux, uy, uz) by an angle θ is: 

R(u, θ) =

						ò
cos θ + u~ç(1 − cosθ) u~u(1 − cosθ) − uÄ sin θ u~uÄ(1 − cos θ) + u sin θ

uu~(1 − cos θ) + uÄ sin θ cosθ + uç(1 − cos θ) uuÄ(1 − cos θ) − u~ sin θ
uÄu~(1 − cos θ) − u sin θ uÄu(1 − cosθ) + u~ sin θ cos θ + uÄç(1 − cosθ)

ù(D8) 

By applying the matrix on the vector [xyz], one can obtain the rotated vector [xryrzr]. 

[x≠y≠z≠] = [xyz]R(u, θ)	                                                              (D9) 

This rotation matrix can be applied to the basis vectors, so that a crystal direction in the twin can 

be transformed into one in the matrix. For example, a crystal direction [uvw]T in the twin can be 

converted to a crystal direction in the matrix, [uvw]M. 

[uvw]T = [uvw]Æ(ARÆ)(ART)S%                                            (D10) 

RT and RM are the rotation matrices imposed on the twin and the matrix, respectively. In this 

equation, the crystal direction [uvw]T was converted to a vector in Cartesian coordinates by (ART) 

and transformed to crystal direction in matrix by (ARM)-1. In a similar way, the cross product can 

be calculated in Cartesian coordinates and converted to fractional coordinates. 

D.4 Calculation of angles 

i) The angle θ between two vectors [u1v1w1] and [u2v2w2] is 

θ = arccos ØGu% uç a+ç + v% vç b+
ç + w% wç c+ç + cos(γ+) (u% vç + uç v%) a+ b+ +

									cos(β+) (u% wç + uç w%) a+ c+ + cos(α+) (v% wç + vç w%) b+ c+I/I≤°≥°¥°I≤ü≥ü¥üµ     (D11) 

where I≤≥¥ =

∂a+ç uç + b+
ç vç + c+ç wç + 2  cos(γ+) a+ b+ u v + 2 cos(β+) a+ c+ u w + 2 cos(α+) b+ c+ v w 

 

ii) The angle θ between two crystal planes (h1k1l1) and (h2k2l2) is  

θ = arccos ∑d% dç  ∑
S%ç (h% kç + hç k%) + S%ï (h% lç + hç l%)

+Sçï (k% lç + kç l%) + S%% h% hç + Sçç k% kç + Sïï l% lç
π /Ωçπ       (D12) 

where  %
∫ü
= (S%% hç + Sçç kç + Sïï lç + 2 S%ç h k + 2 S%ï h l + 2 Sçï k l)/Ωç. 

S%% = b+
ç c+ç sin(α+)ç 



 10 

Sçç = a+ç c+ç sin(β+)ç 

Sïï = a+ç b+
ç sin(γ+)ç 

S%ç = a+b+c+ç(cos(α+) cos(β+) − cos(γ+)) 

Sçï = a+çb+c+(cos(α+) cos(β+) − cos(γ+)) 

S%ï = a+b+
çc+(cos(α+) cos(β+) − cos(γ+)) 

The angle θ between two crystal directions [u%v%w%] and [uçvçwç] can be expressed by 

θ = arccos ØG([u%v%w%]A) ⋅ ([uçvçwç]A)I/(|[u%v%w%]A| ⋅ |[uçvçwç]A|)µ                   (D13) 

iii) For the angle between two planes or between a direction and a plane, the matrix B is substituted 

for matrix A.  
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