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Repeated extreme droughts decrease root production, but not
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Oikos Global climate change is expected to cause more frequent extreme droughts in many
2023: ¢08899 parts of the world. Despite the crucial role of roots in water acquisition and plant sur-
doi: 10.1111/0ik.08899 vival, our understanding of ecosystem vulnerability to drought is primarily based on
o : aboveground impacts. As return intervals between droughts decrease, root responses

Subject Editor: Deliang Kong to one drought might alter responses to subsequent droughts, but this remains unre-
Editor-in-Chief: solved. We conducted a seven-year experiment that imposed extreme drought (grow-
Gerlinde B. De Deyn ing season precipitation reduced 66%) in a mesic grassland. Plots were droughted
Accepted 31 March 2022 during years 1-2 (‘Drought 1’), or years 5-6 (‘Drought 2°) or both. We quantified root

production during year 6 (final year of Drought 2) and year 7 (first year after Drought
2), when all plots received ambient precipitation. We found that repeated drought
decreased root mass production more than twice as much as a single drought (—-63%
versus —27%, respectively, relative to ambient precipitation). Root mass production
of the dominant C, grass Andropogon gerardii did not decrease significantly with either
one or two droughts. A. gerardii root traits differed from subdominant species on aver-
age across all treatments, but drought did not alter root traits of either A. gerardii or
the subdominant species (collectively). In year 6, root production in plots droughted
4 years ago had not recovered (—21% versus control), but root production recovered
in all formerly droughted plots in year 7, when precipitation was above average. Our
results highlight the complexity of root responses to drought. Drought-induced reduc-
tions in root production can persist for years after drought and repeated drought can
reduce production even further, but this does not preclude rapid recovery of root pro-
duction in a wet year.

Keywords: Andropogon gerardii, belowground net primary production, climate
extremes, precipitation, traits

Introduction

Globally, more frequent and extreme droughts are expected as climate change alters
precipitation and evapotranspiration patterns, with evidence for this already emerging
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(Dai 2013, IPCC 2013, USGCRP 2017). Drought, defined
as a period of marked precipitation deficiency relative to the
local long-term average, has been studied extensively and
shown to impact myriad ecosystem functions (Wu et al. 2011,
Dai 2013, Lei et al. 2016, Eziz et al. 2017, Gao et al. 2019,
Slette et al. 2019). But much of what we know is based on
aboveground-focused studies of single droughts. As the time
between droughts decreases, it will be important to under-
stand how ecosystems respond to not only single, but also
recurrent drought. Legacies from past climate anomalies can
precondition ecosystems and alter responses to subsequent
events, so it is likely that responses to recurrent drought, or
compound events more generally, are not predictable from
studies of individual events (de Vries et al. 2012, Sala et al.
2012, Seneviratne et al. 2012, Zscheischler et al. 2018, 2020,
Hughes et al. 2019, AghaKouchak et al. 2020).

Previous studies of recurrent drought are relatively few and
their results vary, depending on the ecosystem and species
(Backhaus et al. 2014, Dreesen et al. 2014, Anderegg et al.
2020, Hoover et al. 2021, Sdnchez-Pinillos et al. 2021). Thus,
the potential consequences of repeated drought, ranging
from increased acclimation to increased sensitivity, remain
unresolved. For example, some studies have found increased
plant drought tolerance following adaptation of soil micro-
bial communities to previous drought (Marulanda et al.
2009, Lau and Lennon 2012, Meisner et al. 2013), but this is
not always the case (Kaisermann et al. 2017).

Community responses might impact the effects of
repeated drought. For example, because dominant species
make up the largest proportion of biomass, overall drought
sensitivity might be lower if the dominant species is relatively
resistant to drought (i.e. mass-ratio hypothesis; Grime 1998,
Hillebrand et al. 2008). Variation in responses to repeated
drought among different sites and studies might thus be
partially attributable to differences in dominant species
responses. However, the effects of plant community com-
position on ecosystem functioning during and after drought
have mostly been studied aboveground (Hoover et al. 2014a,
b) and understanding of belowground community dynamics
during drought remains limited.

A primary function of roots is to acquire water and
nutrients. Differences in root characteristics such as root-
ing depth, root length density and specific root length can
affect how plants acquire soil resources and drive differences
in ecosystem processes including carbon and nutrient cycling
(Bardgett et al. 2014, Bristiel et al. 2019, Lynch et al. 2021).
For example, root depth can determine whether plants
acquire water from shallow or deep soil depths and differ-
ences in root length production can indicate differences in
the volume of soil that plants can access, with consequences
for their ability to acquire water and nutrients (Jackson et al.
1996, Casper and Jackson 1997, Wilson 2014, Zwicke et al.
2015, Fort et al. 2017, Freschet et al. 2021). Roots also
sense and signal water deficits (Davies and Zhang 1991,
Tardieu and Simonneau 1998) and play key roles in carbon
and nutrient cycling and soil formation (Russell et al. 2004,
Clemmensen et al. 2013, Freschet et al. 2013, Bardgett et al.

2014). Root dynamics are thus key determinants of the
size of the soil carbon reservoir, which is at least twice the
size of the atmospheric carbon reservoir and important
for global carbon sequestration and climate regulation
(Scharlemann et al. 2014, Kéchy et al. 2015). Despite grow-
ing recognition of the importance of root dynamics to ecosys-
tem functioning, root responses remain less well-studied than
aboveground responses. Several previous studies have found
negative impacts of drought on root production and biomass,
but other have found no effect of drought or even positive
responses (Pilon et al. 2013, Xu et al. 2013, Wilcox et al.
2015, 2017, Balachowski et al. 2016, de Vries et al. 2016,
Balachowski and Volaire 2018, Garbowski et al. 2020).
More research is thus needed to develop a broad understand-
ing of root dynamics in a changing climate. An improved
understanding of root traits (e.g. specific root length, root-
ing depth, etc.) could help produce a framework for predict-
ing root responses to change and linking those responses to
broader ecosystem processes such as NPP and carbon cycling.
Studies of root traits will therefore be particularly useful in
advancing root ecology (Bardgett et al. 2014, Iversen et al.
2017, Freschet et al. 2021).

Grass-dominated ecosystems allocate a substantial por-
tion of total primary production to roots, store most of
their carbon belowground (Risser et al. 1981, Jones and
Donnelly 2004, Soussana et al. 2004, Hui and Jackson
2006, Smith et al. 2008, Silver et al. 2010), and are globally
extensive (White et al. 2000, Dixon et al. 2014). They thus
play a key role in the global carbon cycle (Scurlock and Hall
1998, Pendall et al. 2018). Most grassland are water-limited,
climatically variable and sensitive to precipitation, particu-
larly drought (Sala et al. 1988, Knapp and Smith 2001,
Morgan et al. 2008, Knapp et al. 2015, 2020, Mowll et al.
2015, Lietal. 2019, Felton et al. 2020). Understanding grass-
land root responses to drought, especially extreme drought,
thus has important implications for predicting both ecosys-
tem- and global-scale changes to carbon dynamics under an
increasingly variable climate.

Here we report the results of a study focused on assess-
ing fine root responses to single versus recurrent extreme
droughts, and recovery after drought, in a mesic grass-
land. Our research builds on the climate extremes experi-
ment (CEE; Hoover et al. 2014a) which imposed an
extreme two-year drought (‘Drought 1°) and focused on
quantifying primarily aboveground responses during and
after drought. Taking advantage of the CEE platform,
we imposed another extreme drought (‘Drought 2’) in
plots both with and without previous drought exposure
and assessed root production and traits during and after
drought. Drought 1 altered plant community composition
and increased the relative abundance of dominant C, grass
species with high water-use-efficiency (Hoover et al. 2014a,
Turner and Knapp 1996). We predicted that this shift to
a more drought-resistant plant community would cause
plots that were droughted during Drought 1 to be gener-
ally more resistant to Drought 2 than plots that were not
droughted during Drought 1.
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Methods

Study site

The Konza Prairie Biological Station (KPBS) is a 3487-
ha unplowed tallgrass prairie in northeast Kansas, USA
(39°05'N, 96°35'W) and is a USA Long-Term Ecological
Research (LTER) site. The plant community is composed pri-
marily of native C, grasses, dominated by Andropogon gerar-
dii, which drives many community and ecosystem dynamics
aboveground (Knapp et al. 1998, Smith and Knapp 2003,
Silletti et al. 2004). The climate is temperate mid-continental
with warm, wet summers and cold, dry winters. The mean
annual temperature is 13°C (Knapp et al. 1998) and the
mean annual precipitation is 851 mm, almost 70% of which
(559 mm) falls during the growing season (April-August).
Frequent fires are a historical feature of this grassland and are
key for maintaining grass dominance and reducing woody
plant encroachment (Knapp et al. 1998, Briggs et al. 2005).

The CEE design and treatments

The CEE was located in a lowland area with deep, silty clay
loam soils in the Tully series (Ransom et al. 1998, Collins and
Calabrese 2012) and was burned annually in mid-March.
Andropogon gerardii made up about 40% of total ANPP in
the CEE. The CEE consisted of four shelters (6 X 24 m) con-
structed from greenhouse frames with 10 plots (2 X 2 m) in
each shelter (see Hoover et al. 2014a for details). Each shelter
was hydrologically isolated to a depth of 1 m below the soil
surface via a plastic barrier, and via metal flashing installed
aboveground. During Drought 1, each rainfall event dur-
ing the growing seasons (April-August 2010 and 2011) was
reduced in size by ~66% in two shelters by covering the frame
with evenly spaced strips of clear polycarbonate plastic, based
on Yahdjian and Sala (2002). The other two shelters received
ambient precipitation and were covered with deer netting that
reduced photosynthetically active radiation by ~10% (equiva-
lent to the reduction in the drought shelters) while allowing
all rain to pass through. All plots received ambient precipi-
tation in the next two years (2012 and 2013; plastic strips
were not installed over the plots to reduce rainfall in these
years). Ambient precipitation plots were watered weekly by
hand if total rainfall during that week was less than the long-
term average (in which case the deficit was added). During
Drought 2 (2014 and 2015), each rainfall event during the
growing seasons was reduced in size by ~66% in half of each
shelter by covering half of the frame with evenly spaced strips
of clear polycarbonate plastic (covering 5 of 10 contigu-
ous plots), and the other half was covered with deer netting
(Fig. 1). As such, half of the plots that had been droughted and
half of the plots that hadn’t been droughted during Drought 1
were droughted during Drought 2. This resulted in four treat-
ments: never droughted (Ambient—Ambient), droughted
only during Drought 1 (Drought—Ambient), droughted only
during Drought 2 (Ambient—Drought) and droughted dut-
ing both Drought 1 and Drought 2 (Drought— Drought). All
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Figure 1. Photo and treatment schematic of the climate extremes
experiment. Two 2-year droughts were imposed in half of all plots
in 2010-2011 (‘Drought 1) and 2014-2015 (‘Drought 2’), sepa-
rated by 2 years of ambient precipitation. A= Ambient, D = Drought
(during Drought 1 and Drought 2). The shaded area indicates the
time period when root responses were measured.

plots received ambient precipitation in the year after Drought
2 (2016; Fig. 1).

Root measurements

We estimated BNPP in 2015 (the final year of Drought 2)
and in 2016 (the first year after Drought 2) by using root
ingrowth cores to estimate fine root production. At the start
of each growing season (early April), we took a soil core (5
cm diameter, 30 cm deep) from every plot. This depth cap-
tures most root production at our site and in other grasslands
(Weaver and Darland 1949, Jackson et al. 1996, Sun et al.
1997, Schenk and Jackson 2002, Nippert et al. 2012), and
research has linked differences in root distribution within this
depth to differences in production even when maximum root-
ing depth is deeper (Nippert and Holdo 2015). We placed a
cylindrical mesh basket filled with sieved, root-free soil (col-
lected adjacent to the CEE) packed to approximate field
density into each core hole and filled the space between the
ingrowth core and intact soil with sieved, root-free soil. We
removed the ingrowth cores at the end of the growing season
(early September) and stored them at 4°C. We cut each core
into 10-cm depth increments that we processed separately.
We washed all roots free of soil by wet sieving (0.5 mm sieve)
under low water pressure, then submerging remaining sample
in a shallow bowl of water, picking out roots with forceps and
removing attached soil by hand. Roots of the dominant plant
species, A. gerardii, are visibly distinguishable from roots of
other species in this plant community (Supporting informa-
tion), and we separated these from the roots of all other spe-
cies. We scanned all roots using a photo scanner and analyzed
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scans for root diameter and length using WinRhizo (Regent
Instruments Inc., Québec, Canada). We dried roots at 60°C

for 48 h and weighed them. We calculated BNPP as root
mass production per m? ground area.

Statistical analyses

We used annual plot-level data for all analyses, which we
performed in R (www.r-project.org). We used the psych
package (Revelle 2020) for summary statistics (Supporting
information). We used linear mixed effects models with plot
(nested within shelter) as a random variable (Ime4 pack-
age, Bates et al. 2015) and type 3 sum of squares analy-
ses of variance (ANOVAS) to assess the main effects of
treatment (Ambient—Ambient, Drought—Ambient,
Ambient—Drought, Drought—Drought) and year (2015,
2016), as well as the year X treatment interaction. We ana-
lyzed total, A. gerardii, and subdominant species BNPP and
root length production in this way (Supporting information).
We used additional models which included the main effect of
depth increment and the interactions of depth increment with
treatment and with year to assess differences in BNPP depth
distribution. We used pairwise contrast comparisons with
Holm adjustment to determine in which years there were dif-
ferences among treatments and in which treatments there were
differences between years (emmeans package, Lenth 2021). We
considered p-values < 0.05 indicative of significant effects.

Results

Growing season precipitation during the experiment

The Drought 2 treatment (66% reduction in the size of each
precipitation event during the 2014 and 2015 growing sea-
sons), resulted in growing season total precipitation amounts
below the 5th percentle of the long-term (112-yr) KPBS
rainfall record (Hoover et al. 2014a) in each year. Thus, based
on site-specific historical precipitation amounts, Drought 2
was statistically extreme (Smith 2011, Slette et al. 2019), sim-
ilar to Drought 1 (Hoover et al. 2014a). The first year after
Drought 2 (2016) was unusually wet, with ambient growing
season precipitation almost 30% above the long-term average
(710 mm versus 559 mm, respectively; Fig. 2).

Root production and traits at the end of Drought 2

BNPP followed the pattern Ambient—Ambient > Ambie
nt—Drought=Drought—Ambient > Drought—Drought
(Fig. 3). There was a significant effect of treatment on BNPP
(F,4=19.3, p < 0.001). Relative to ambient precipitation, a
single drought reduced BNPP by 27% (p=0.021), and a sec-
ond drought reduced BNPP by 63% (p < 0.001). BNPP in
plots droughted four years earlier (Drought—Ambient) was
21% lower than in Ambient—Ambient plots (p=0.044).
The impacts of repeated droughts were additive (p > 0.05
for interaction term of two-way ANOVA of Drought 1
treatment and Drought 2 treatment). Reductions in BNPP
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Figure 2. Growing season precipitation in Ambient (A) and Drought
(D) treatments throughout the climate extremes experiment, and
the long-term site average (horizontal dashed line).

were largest in shallow soil increments (Fig. 3, Supporting
information). There was an effect of treatment at 0—10 cm
(p=0.002), but not at 10-20 cm (p=0.11) or 20-30 cm
(p=0.28) below the surface. BNPP in Drought—Drought
plots was reduced by approximately 70, 60 and 50% in the
0-10, 10-20 and 20-30 cm depth increments, respectively,
compared to Ambient—Ambient plots. Andropogon gerardii
BNPP followed the same pattern as total BNPE, but there
was not a significant effect of treatment on A. gerardii BNPP
(F,4;,=0.943, p=0.82). Compared to Ambient—Ambient
plots, A. gerardii BNPP in Drought—Drought plots was
reduced by approximately 50% while subdominant species
BNPP was reduced by approximately 70%.

There was a significant effect of treatment on root length
production (F,;,=20.8, p < 0.001). A single drought
reduced root length production by 52% (p=0.0011) and
a second drought reduced root length production by 63%
(p=0.0002), relative to ambient precipitation (Fig. 3). In con-
trast to BNPDP, root length production did not differ between
Ambient— Drought and Drought—Drought plots (p=0.33;
Fig. 3). Root length production in plots droughted only dur-
ing Drought 1 was 30% lower than in Ambient—Ambient
plots, but this difference was only marginally significant
(p=0.056). The magnitude of reduction was thus the same
for root mass and length production in Drought—Drought
plots (63%), but root length production was reduced more
than root mass production in Ambient—Drought plots (52%
versus 27%, respectively).

Root diameter, root tissue density (RTD) and specific
root length (SRL) all differed between A. gerardii versus sub-
dominant species, averaged across all treatments (p < 0.001
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Figure 3. Average BNPP (+ one standard error) in the top 30 cm of the soil in the final year of Drought 2 for all treatments (top left).
Average BNPP (+ one standard error) by depth in 10-cm increments for Ambient—Ambient and Drought— Drought treatments ( top
right). And average root length production (+ one standard error) by treatment in the final year of Drought 2 (bottom left). The dashed
portion of each bar indicates A. gerardii BNPP or root length production. Different letters indicate significant differences in total BNPP or
root length production among treatments. There was no effect of treatment on A. gerardii BNPP or root length production.

for each trait, Fig. 5). Andropogon gerardii roots had larger
diameter, higher RTD and lower SRL than the collective sub-
dominant species. There was no effect of treatment on root
diameter, RTD or SRL of A. gerardii or of subdominant spe-
cies (p > 0.05 for each trait).

Root production and traits after Drought 2

Therewasasignificant main effect of year on BNPP (F, ,,=4.00,
p=0.045). BNPP in the year after Drought 2 was higher in
all formerly droughted plots compared to the previous year,
regardless of drought history (p=0.0057 A—D, p < 0.001
D—D, p=0.020 D—A; Fig. 3 versus Fig. 4). BNPD was also
higher in Ambient—Ambient plots during this year compared
to the previous year, but statistical significance was marginal
(p=0.059). There were no differences among the four treat-
ments in total BNPP (p > 0.05) or in A. gerardii BNPP (p >
0.05; Fig. 4) in this year. There were also no differences among
the four treatments in total root length production (p > 0.05)
or in A. gerardii root length production (p > 0.05; Fig. 4).

As during the previous year, root diameter, RTD and SRL
all differed between A. gerardii versus subdominant species in
this year, averaged across all treatments (p < 0.001 for each
trait, Fig. 5). Andropogon gerardii roots again had larger diam-
eter, higher RTD and lower SRL than the collective subdom-
inant species. There was no effect of treatment on diameter,
RTD or SRL of A. gerardii or of other species in this year
(p > 0.001 for each trair).

Discussion

Our study revealed that previous drought exposure decreased
resistance of root production to a subsequent drought.
Two 2-year extreme droughts, separated by two years with
average precipitation, decreased total BNPP by more than
twice as much as a single 2-year extreme drought. This is
contrary to our hypothesis that plots droughted previously
would be more resistant to a second drought and suggests
that less adaptation to low-water conditions occurred dur-
ing Drought 1 than we expected. Drought impacts in this
ecosystem may thus be underestimated if climatic history
is not considered. Our results expand upon studies show-
ing that drought can decrease root production and show
that two droughts can decrease root production even more.
Increasingly larger declines in BNPP with repeated droughts
could decrease ecosystem carbon cycling and storage. This
could have substantial global implications, given the impor-
tance of root dynamics to soil organic matter formation and
the key role of grassland soils in global carbon sequestration
(Risser et al. 1981, Soussana et al. 2004, Hui and Jackson
2006, Smith et al. 2008, Silver et al. 2010, Scharlemann et al.
2014, Kochy et al. 2015).

Root length production and root mass production
responded to drought in slightly different ways. Compared to
ambient precipitation plots, root length production declined
more than root mass production in plots only droughted dur-
ing Drought 2 (52% versus 27%, respectively), while root
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Figure 4. Average BNPP (+ one standard error) in the year after Drought 2 (left). Average root length production (+ one standard error) in
the year after Drought 2 (right). There were no differences among treatments in total or A. gerardii (dashed portion of bars) BNPP or root

length production.

length and mass production declined equally in plots drough-
ted during both Drought 1 and Drought 2 (63%). Though
less commonly quantified than mass production, root length
production is likely a better indicator of the capacity of plants
to acquire soil resources, as length reflects the volume of soil
that plants can access (Jackson etal. 1996, Casper and Jackson
1997, Wilson 2014, Freschet et al. 2021). A single drought
might thus have a larger negative impact on plant water and
nutrient acquisition than on ecosystem carbon cycling, while
a second drought substantially impacts both.

Though total root production declined with drought,
root production of the dominant species, A. gerardii, did not
(Fig. 3). Andropogon gerardii has relatively high water use effi-
ciency (Turner and Knapp 1996), and photosynthesis and
ANPP of A. gerardii declined less than that of other species
in the CEE during Drought 1 (Hoover et al. 2014b). We
build upon that finding and show that root production of A.
gerardii also declined less than that of the other species in the
community (collectively) during Drought 2. This suggests
that A. gerardii could play an important role in maintaining
ecosystem functioning in a changing climate.

A major goal of trait-based ecology has been to link
plant traits with key ecosystem functions but establishing
such links has been challenging, particularly for root traits

(Freschet et al. 2021). Andropogon gerardii roots in our study
were thicker and denser and more deeply distributed than
those of the collective subdominant community (Fig. 3
and 5). This trait combination might be advantageous dur-
ing drought. Given that shallow BNPP was most negatively
affected by drought (Fig. 3, Supporting information), a deeper
BNPP distribution likely increases water uptake and drought
resistance in this grassland. This is consistent with previous
research linking differences in root depth distribution with
differences in plant production (Nippert and Holdo 2015)
and with research demonstrating that deeper roots increase
plant water uptake during dry periods (Fort et al. 2017).
Thicker, low-SRL roots generally indicate more ‘outsourc-
ing’ of resource acquisition to mycorrhizae (Bergmann et al.
2020). Previous research has shown that A. gerardii is indeed
strongly mycorrhizal dependent (Wilson and Hartnett 1997,
1998, Smith et al. 1999), so greater mycorrhizal association
of A. gerardii versus other species might have also contrib-
uted to its greater drought resistance (Begum et al. 2019).
We did not find any evidence of either A. gerardii or the col-
lective subdominant community altering root traits to adapt
to drought (Supporting information). Thus, though certain
traits appear to be beneficial in maintaining root production
during drought, the species in this community might have
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Figure 5. Average (+ one standard error) root diameter, specific root length and root tissue density of A. gerardii and of subdominant species
(collectively). Trait values are averaged across treatments and years because there was no significant effect of treatments or of year or any trait.
Different letters indicate significant differences between A. gerardii versus the rest of the species in the community.
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little capacity to adjust the root traits assessed in this study
in response to drought. Previous studies have found a vari-
ety of root trait responses to drought and more research is
needed to fully understand the role of species identity and
environmental context in modifying root trait responses to
drought and the consequences for important plant and eco-
system functions (de Vries et al. 2016, Garbowski et al. 2020,
Freschet et al. 2021, Funk et al. 2021).

After Drought 1 (2010-2011), ANPP in the CEE recov-
ered in just one year (2012; Hoover et al. 2014a) and remained
recovered in every following year (i.e. ANPP in formerly
droughted plots was not different from ANPP in ambient pre-
cipitation plots in every year from 2012 to 2016; Smith et al.
unpubl.). In contrast, our results show that BNPP was lower
in Drought—Ambient plots than in Ambient—Ambient plots
four years after Drought 1 (2015; Fig. 3). This slow recovery
of BNPP was a less apparent (i.e. belowground) but much
more persistent effect of Drought 1. Therefore, drought-
driven decreases in production might be underestimated if
forecasts consider only aboveground effects and not the large
and persistent impact of drought belowground. However,
BNPP did recover in the year after Drought 2 (Fig. 4), likely
due to above-average precipitation in this year, compared to
near-average precipitation in the previous four years (Fig. 2).
Thus, reductions in BNPP following two sequential droughts
did not preclude rapid post-drought recovery when resource
availability was high. Along with BNPD, ANPP also decreased
in Ambient—Drought and Drought—Drought plots during
Drought 2 but recovered in just one year (2016; Smith et al.
unpubl.). The different recovery patterns of ANPP versus
BNPP over time suggest that while average precipitation
amounts appear to be sufficient for ANPP recovery after
extreme drought, BNPP recovery might be more resource
demanding. This adds to the growing evidence that precipi-
tation change has different impacts on grassland primary
production aboveground versus belowground (Chou et al.
2008, Byrne et al. 2013, Wilcox et al. 2015, 2017, Post and
Knapp 2020, Carroll et al. 2021, Slette et al. 2022a). It will
be important to consider dissimilarity of aboveground versus
belowground production responses when forecasting impacts
of increasing climatic variability.

Our results suggest several topics for future studies of
root responses to repeated drought. For example, we found
no change in several root morphological traits in response to
drought, but this does not preclude change in other traits or in
root physiology or mycorrhizal association (Feng et al. 2022).
Future studies could investigate changes in a variety of addi-
tional root traits in response to drought and how these relate
to plant and ecosystem processes. Also, our results indicate
that recovery of root production after drought depends on
precipitation amount after drought, and this could be quan-
tified more rigorously in future research. Studies that track
recovery of root production for multiple years after drought
will be particularly useful, as our results indicate that recov-
ery can sometimes take years. We only measured root pro-
duction for one year after Drought 2 and, though we found
complete recovery in that year, this might not have been the

case if precipitation had been closer to average in this year, and
root production might differ among former treatment in later
years (another legacy effect of drought). Finally, we speculate
that grasslands with different climates (e.g. mean annual pre-
cipitation) would respond differently to repeated experimental
droughts, because grasslands with different climates respond
differently to drought aboveground (Knapp et al. 2015, 2020,
Wilcox et al. 2015, Carroll et al. 2021).

In summary, we found that previous exposure to an extreme
drought decreased drought resistance of mesic grassland
root production. After drought, root production recovered
to ambient levels only when precipitation was above aver-
age. As climatic variability increases, causing greater drought
frequency and severity as well as more extreme wet years,
predicting and modeling changes in key aspects of global ter-
restrial carbon and water cycling will require understanding
the unique dynamics of roots (in addition to more commonly
measured aboveground dynamics) and responses during and
after not only single but also multiple climate extremes.
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