
Commentary

Catching up with the trees:
empirical advancements to
improve herbaceous
representation in models

Ecosystems dominated by herbaceous vegetation (i.e. nonwoody
species) represent c. 40% of the terrestrial land surface on Earth
(White et al., 2000), facilitate large quantities of carbon
sequestration (reviewed by Bai & Cotrufo, 2022), and provide
much of the food production for humans (O’Mara, 2012). Many
of these ecosystems are currently in danger of being lost due to
global change drivers, shrub encroachment, and calls for
afforestation (Bond et al., 2019). Yet, our predictive under-
standing of these systems is limited, which can be seen from high
levels of uncertainty in modeled future carbon (C) storage of
these systems (e.g. fig. 3 in McGuire et al., 2018). This is in part
due to a limited understanding of the first principles driving the
growth and demographic processes of herbaceous species. In this
issue of New Phytologist, Curasi et al. (2023; pp. 562–575)
provide an important understanding for a dominant tussock-
forming sedge, Eriophorum vaginatum, within Arctic tundra
ecosystems. The authors integrated measurements from over
2300 individual tussocks, across a range of environmental
characteristics, and time since disturbance into a population
and mass balance model. This enabled them to provide specific
estimates of how long it takes for these tussock individuals to
reach maximal size, which is on the order of decades (40–50 yr in
their population model), and the specific physical, structural, and
demographic mechanisms driving these patterns. These findings
are not only relevant for Arctic tundra but also for a variety of
ecosystems where tussock-forming species (e.g. bunchgrasses) are
dominant contributors to ecosystem function (Fig. 1a–d). For
example, the long-lived nature of E. vaginatum is found in other
herbaceous ecosystems, such as Nassella spp. tussocks estimated
to live more than 100 yr in Californian (USA) grasslands
(Hamilton et al., 2002), and estimates of tussock longevity of
Sesleria albicans exceeding 110 yr in European grasslands
(Jani�sov�a & G€om€ory, 2007). Historically, predictive scientific
disciplines such as ecological modeling have largely focused on
tree-dominated ecosystems, yet the insights gained by Curasi
et al., highlight the need to recognize the long-lived and dynamic

nature of tussock-forming species to promote our predictive
capacity for these important herbaceous ecosystems.

‘Their study found that the volume of E. vaginatum

tussocks are best described as a cylinder, which provides an

important alternative to the current model representation

of herbaceous growth.’

Process-based models are tools that can be used to translate
mechanistic understanding of physical and biotic processes to
predictions of future states of ecosystems under novel conditions.
This has importance for the future of ecosystem services (e.g.
C sequestration) and even the entire Earth system. There exists a
suite of differentmodels that are designed to represent various types
of vegetation (i.e. plant functional types) and allow for competition
for light, water, and nutrients (e.g. ED2, FATES, LPJ-GUESS, and
TEM-DVM, amongmany others; see reviewbyFisher et al., 2018).
Many of these models are linked to land surface models that
simulate biogeochemical cycles such as C inputs and losses and
ultimately can scale up to simulate the entire Earth system. These
models enable us to make predictions about how vegetation types
will change in the future and what the system-wide impacts of these
changes will be. Yet, the predictive capacity of most process-based
models for herbaceous ecosystems lags substantially behind that of
forested ecosystems. One consequence of this lag is that we do not
currently understand the full ramifications of losing herbaceous
ecosystems, which is critical for evaluating the long-term effects of
replacing these systems with forests (sensu Bastin et al., 2019).

Many current vegetation models represent herbaceous plant
functional types as either a uniform continuous layer at ground
level (the ‘green blanket’ or ‘green slime’ schematic), or as small
trees. In the former representation, competition for light among
herbaceous vegetation does not occur. In the latter representation,
the diameter of individual stems is used along with allometric
parameters to calculate leaf and canopy area, which is subsequently
used to influence photosynthetic C uptake and plant growth.
Although this formulationworks relativelywell to represent growth
and competition among trees, it does not capture the biological
characteristics of many herbaceous species, including tussock-
forming species. For example, as Curasi et al., showed, growth of
tussock-forming individuals is determined by production, main-
tenance, and mortality of new stems or tillers, as well as the
individual performance of tillers throughout the growing season.
These components are in turn driven by a variety of ecological
processes, including competition for water and nutrients below-
ground, and competition for light aboveground. Even models thatThis article is a Commentary on Curasi et al. (2023), 239: 562–575.
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include more sophisticated representation of tussock plant
functional types (e.g. TEM-DVM; Euskirchen et al., 2009;
aDGVM, Scheiter & Higgins, 2009) still do not represent
competition for light among herbaceous groups of species. This
is not due to a lack of desire to better represent herbaceous plant
functional types in these models, nor is it for lack of studies focused
on the biology of these herbaceous species. Rather, it is largely
because the empirical understanding of ecological processes
defining growth, competition, and spread of herbaceous species is
not in a form readily incorporated into these models. For example,
abundant empirical evidence suggests that eutrophication in
herbaceous ecosystems results in biodiversity declines and increased
dominance by weedy, fast-growing species. However, the mechan-
isms behind these responses are unclear; some research suggests

nutrient addition causes fast-growing species to outcompete other
species for light early in the growing season (DeMalach &
Kadmon, 2017), while other research suggests that colimitation by
multiple resources is alleviated under eutrophication, which
releases plants with high-resource-use strategies to dominate the
ecosystem (Harpole et al., 2017). Furthermore, these studies do not
link their findings tomeasured rates of nutrient uptake or to growth
rates, which makes incorporating these findings into process-based
models challenging.

Tussock-forming species are critical components of many
ecosystems, including the Alaskan Arctic tundra, South American
Cerrado, North American tallgrass prairie, and African savannas
(Fig. 1a–d). Investigations like those here (Curasi et al.) should be
conducted in other herbaceous ecosystems to facilitate better

Fig. 1 (a–d) Pictures of dominant tussock-
forming graminoids, (a) Eriophorum
vaginatum in North American Arctic tundra
(photo credit: A. Rocha), (b) Paspalum
quadrifarium in South American Pampas
grassland (photo credit: L. Yahdjian), (c)
Megathyrsus maximus (formerly Panicum
maximum) in a South African savanna
grassland, and (d)Schizachyriumscoparium in
a North American tallgrass prairie. (e) Amodel
of tussock-forming grasses based on basal and
canopy diameters, heights, and volumetric
vegetation density estimated for all tussock-
forming individuals in a 4.5m9 4.5mplot in a
savanna grassland in Kruger National Park,
South Africa. The colored cones represent
tussocks, with green representing
M. maximus, gold representing Urochloa

mosambicensis, and blue representing
Bothriochloa radicans. The transparency of
cones signifies the volumetric vegetation
density estimated for each tussock. For scale,
theyellowcylinder in the top right corner is 1 m
tall. The plot was created using the RGL

package (Murdoch&Adler, 2023) inR (RCore
Team, 2022).
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representation of these systems into process-based models. Their
study found that the volume of E. vaginatum tussocks is best
described as a cylinder, which provides an important alternative to
the current model representation of herbaceous growth. Using this
cylinder or inverted cone allometric approach would allow models
to simulate new tillers being produced and ‘packed’ into a tussock
(see the useful hexagonal packing schematic in Curasi et al.), which
could then be converted to changes in tussock size, canopy extent,
and total leaf area. This is an important alternative to the current
determination of herbaceous canopies within many models, which
take stem diameter and use allometric equations to scale up to
canopy and total leaf area (Lawrence et al., 2018). Due to links with
total leaf area within canopies, understanding these allometric
relationships becomes important for a variety of model functions
such as C assimilation and albedo.

In many herbaceous ecosystems, multiple different tussock-
forming species compete with one another for light, nutrients, and
water. For example, my team and I measured three different
bunchgrasses within a 4.5 m by 4.5 m area within an African
savanna describing basal area, canopy area, proportional coverage,
tiller number, and vegetative height. The overlapping canopies and
variation in height structure revealed by these measurements point
to the potential for strong light competition among these different
species. In Fig. 1(e), I converted thesemeasurements to a 3Dmodel
to show how dynamic vegetation models might represent
competition among these different species. In the savanna
ecosystem where these measurements were taken, the outcome of
competition among different tussock-forming species is nontrivial,
as they provide varying degrees of ecosystem stabilization under
ecological perturbations such as herbivory (Koerner et al., 2014),
drought (Wilcox et al., 2020a), and fire (Bond&Archibald, 2003).

An additional piece of information that would assist the ready
incorporation into vegetationmodels is the allometric relationships
between tussock volume and total leaf area to drivemodeled canopy
photosynthesis. This information could then be combined with
information about photosynthetic parameters (e.g. Vcmax & Jmax;
Schedlbauer et al., 2018) to improve the representation of tussock
plant functional traits in models (Wullschleger et al., 2014), thus
decreasing the uncertainty surrounding responses of herbaceous
ecosystems to climate change scenarios.

Overall, I contend that more studies like Curasi et al., be
conducted in a variety of herbaceous ecosystem types and that
herbaceous demographic data be linked with abiotic mechanisms
such as water availability, nutrient availability, and canopy light
interception. A key to enhance predictive capacity of herbaceous
ecosystems is to ensure the empirical data collected are ready to be
usedwithin predictive tools, such as process-basedmodels. As such,
collaborations between modelers and empiricists are crucial
(Wilcox et al., 2020b; Kyker-Snowman et al., 2022). Additionally,
efforts should not be limited to tussock-forming herbaceous
species; similar studies could expand to address rhizomatous
graminoids and forbs, annual species, mat-forming species, and
even mosses. Until we improve the predictive capacity for these
types of species and ecosystems, we will be severely limited with
respect to how to move forward with solutions to the climate
change crisis.
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