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Abstract

We present the implementation of tandem mass-selective cryogenic ion traps, designed to
enhance the range of ion processing capabilities that can be performed prior to spectroscopic
interrogation. We show that both the formation of ion clusters and mass filtering steps can be
combined in a single cryogenic linear quadrupole ion trap driven by RF square waves. Mass
filtering and mass isolation can be achieved by manipulation of the RF frequency and duty cycle.
Very importantly, this scheme circumvents the need for high-amplitude RF voltages that can be
incompatible with typical cryogenic ion processing conditions. In addition, proper adjustment of
the stability boundaries during the clustering process allows for the preferential formation of a
specific cluster size rather than a broad distribution of sizes. Lastly, we show that a specific cluster
size can be formed, mass-selected, and then transferred to another ion trap for a second, completely
separate ion processing step. The instrumentation and modular design developed here expands the

scope of ionic species and clusters that can be accessed by processing electrosprayed ions.



1. Introduction

Cryogenic ion vibrational spectroscopy (CIVS) combines mass spectrometry with laser
infrared spectroscopy to reveal structural information on mass-selected ions of interest. Its
operation relies on using cryogenic ion traps to cool ions via collisions with buffer gas and
condense onto the ions a small, minimally-perturbative “tag” atom/molecule whose laser-induced
loss is the crux of vibrational action spectroscopy.' Condensation of the tag onto the mass-
selected ions requires a trap temperature of 8-30 K (typically 10 K for H2/D; tags), which imposes
a significant limit on the composition of the buffer gas and the possibility of processing the ions
in any other way. A few years ago, we introduced a dual cryogenic ion trap instrument* aimed at
overcoming this limitation while maintaining the ability to efficiently form tagged adducts. The
instrument involves using a separate variable temperature (80-300 K) ion trap to process the ions
produced by electrospray ionization (ESI). These ions are then transferred to the tagging (10 K)
ion trap for tag adduct formation and subsequent spectroscopic interrogation. Within each of these
two tandem ion traps, buffer gas composition, pressure, and temperature can be varied
independently to optimize the conditions for each step. Examples of ion processing that can be
carried out in the first trap include transformation via temperature-controlled ion—molecule
reactions and condensation of solvent molecules to form ionic clusters.” This approach has been

used to study catalytic reaction intermediates®’ and microsolvated ions.® !

However, having only one ion processing step before tagging limits the complexity of the
accessible species. Some example applications of multiple ion processing steps include forming
a species from ion-molecule reaction and then condensing solvent molecules onto it or exposing it
to another reagent to probe reactivity; forming clusters comprising two different solvent molecules
or depositing a different species on the surface of a microsolvated cluster; and adding a pre-

thermalizing step for the reactant prior to temperature-dependent ion-molecule kinetics studies.

The obvious approach here is to increase the number of ion processing traps. However,
the lack of mass-selectivity prior to each trapping stage can lead to interferences from unwanted
species produced by either the ESI or the prior ion processing step. And this issue is compounded
with each additional ion trap. Moreover, any solvent condensation processing would typically

yield a large distribution of cluster sizes such that any specific desired size is found with much



lower intensity than the initial parent ion. This is particularly detrimental when trying to access

larger clusters that can only be produced in very broad size distributions.*

The removal of unwanted species can be accomplished by incorporating mass filtering
steps in the ion manipulation sequence. For example, quadrupole mass filters are commonly used
prior to injection into a cryogenic trap.'*!82> However, such filters suffer from poor transmission
efficiency, particularly at higher m/z.>*2® Here, we present a novel approach that uses mass-
selective cryogenic linear quadrupole ion traps that combine ion processing and filtering
capabilities. This approach provides additional flexibility by allowing specific mass-selective
conditions to be applied at any time during the trapping cycle. In particular, we show that by using
proper mass-selective conditions during the clustering process, we can selectively enhance the

formation of a specific cluster size.

There are limited examples of mass-selective cryogenic ion traps in the literature.?*° The
main challenges in implementing such technology for ion processing traps lies in the need for
relatively high buffer gas pressure and the inevitable condensation of solvent or reactant molecules
onto the cold trap assembly, both of which are incompatible with the application of high amplitude
RF voltages necessary in conventional approaches to quadrupole mass filtering. To circumvent
this issue, our cryogenic quadrupole ion processing traps are driven with square waves (sometimes
referred to as digital waves) instead of the more common sine waves. Square wave driven mass
selective devices typically utilize variable RF frequency and duty cycle at fixed low-amplitude RF
voltages for mass analysis.’'*® While the use of square waves to drive mass selective devices was
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described more than 50 years ago,’! it recently gained more traction in the mass spectrometry

community mostly as a way to access larger mass ranges,3>343337-41

For the purposes outlined
here, the use of square waves additionally has the advantages of lower costs and ease of fabrication,
needing only relatively simple frequency generators and MOSFET based high-voltage switches.
This, in conjunction with the modular design presented here, offers the possibility of implementing
several ion processing mass-selective traps in tandem to prepare ever more complex and interesting

chemical species for spectroscopic interrogation.

11. Methods

a) Prototype modular instrument



The results presented in this paper are acquired using a prototype instrument, shown
schematically in Figure 1. It consists of a simple ESI source, two linear quadrupole cryogenic ion
traps and a short linear time-of-flight (TOF) detector. Ions are formed by electrospraying a
millimolar solution of peptides in methanol through a 30 um tip silica emitter, and they entered
the mechanically-pumped stage (~4 Torr) via a 10 cm long 0.76 mm ID stainless-steel capillary
tube. The ions then crossed into the subsequent differentially-pumped stage (~400 mTorr) via a
0.9 mm aperture skimmer. From here, the ions are transferred via two RF-only hexapole ion guides

42,43

driven by an RF oscillator based on the design of O’Connor™* into the first ion trap. The region

housing the first ion trap is held at ~1x10™* Torr by a ~300 L/s turbomolecular pump.

The design of the cryogenic linear ion trap is nearly identical to our initial report,* except
the linear octupole geometry is replaced with a quadrupole arrangement to allow for mass
filtering.***> The ion trap, whose details are shown in Figure 2C, is composed of two copper
blocks, each holding two round stainless-steel rods. The rods are 19.8 mm in diameter and 9.5 mm
long and are placed within the copper housing such that the inscribed radius, ro, is 4.2 mm. The
copper blocks are spaced by a PEEK insulator to create a trap volume, which is enclosed on both

ends by a 3.8 mm copper aperture. The entrance aperture is typically held <1V above the
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Figure 1. Schematic of the tandem mass-selective cryogenic digital ion trap prototype instrument

quadrupole rod bias. The exit aperture is held ~10V above the rod bias when loading and
processing the ions. It is switched to ~5-15V below the rod bias to extract the ions from the trap

and transfer them to the next stage. A miniature solenoid valve (Parker Series 25), connected to

5



the internal trap volume via a ~3 cm long Teflon tube is used to pulse in helium buffer gas seeded

with the desired solvent vapor to initiate cooling and formation of clusters.

The ion trap is attached to a home-built variable temperature (80-300 K) liquid-nitrogen
cryostat whose temperature is monitored by a Pt RTD sensor and adjusted using a 50 W heating
cartridge. All the electrical feedthroughs for the ion trap are located on an aluminum collar with
the cryostat flange such that the entire assembly can easily be taken out of the vacuum chamber
for cleaning and maintenance. The ion trap assembly is housed in a cubic aluminum chamber with
an ISO100 port on each face, a modular and versatile design in which an additional ion trap can
easily be inserted or removed from the instrument. The cubic chambers are connected to one
another via spacer blocks that hold the ion guides and apertures. These spacer blocks also have

ports for an aperture, ion guide electrical feedthroughs and a cold cathode vacuum gauge.

In our prototype instrument, after the first ion trap, the ions are transferred into another
differentially pumped region (~1x10° Torr) with a second identical ion trap via two hexapole ion
guides and an aperture. The second ion trap is followed by a short co-linear TOF detector region
(~2x1077 Torr) for acquiring mass spectra. We note that the co-linear ion-trap/TOF geometry
resulted in a rather modest mass resolution due to the wide spread of ion velocities from the linear
ion trap extraction. However, it is sufficient for demonstrating the capabilities of the prototype

instrument.
b) Square wave RF generator and driver

Each quadrupole ion trap is driven by fixed amplitude 150V,., RF square waves with
variable frequency and duty cycle. The square waves are generated using a low voltage waveform
generator and a pair of high-voltage bipolar MOSFET switches, as shown schematically in Figure
2A. The waveform generator is based on the design of Hoffmann, et. al.***’ and is composed of
an Arduino DUE microcontroller that controls one direct digital synthesis (DDS) module and two
digital-to-analog converters (DACs). The DDS module generates a 5V sine wave with the desired
frequency that is then fed into two linear comparators. The DACs set a reference DC voltage that
each comparator uses to create two opposite-phase 5V square waves with the desired duty cycles.
Here, duty cycle (d) is defined as the amount of time that the square wave spends at the high
voltage (7) relative to one full period (7) of the waveform, as shown in Figure 2B. The duty cycle

for the X and Y rods are adjusted separately for controlling the oscillations of the trapped ions and
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the resulting stability zones.>>***52 Therefore, we will refer to the duty cycle in the format of
dx:dy. For example, a duty cycle of 55:55 represents square waves that are high for 55% of the
period for both X and Y rods. Each opposite-phase low voltage waveform is used to control an

individual half-bridge MOSFET bipolar switch. The outputs are switched between the positive
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Figure 2. A) Schematic of the square wave RF generator; B) Typical output with f = 650 kHz and d
= 50 from the generator. The definition of the duty cycle is shown here in relation to the output trace;
C) Schematic of the linear quadrupole ion trap.

and negative floating outputs of a 3W, 150VDC power supply and create the X and Y rods’ driving
square waves. Both X and Y rods are floated with the same DC voltage to create an overall ion
trap bias. Overall, this driver allows for square waves with frequency up to 650 kHz, a limit

imposed by the power requirement and heat dissipation of the current bipolar switches design.



JIIR Results and Discussion

a) Clustering in square wave quadrupole ion trap

We begin by demonstrating that the square driving wave and steeper effective potential of

the quadrupole ion trap geometry®® do not interfere with the ability to perform clustering

operations. Figure 3 shows the mass spectra obtained when protonated trialanine peptide (AlazH",

m/z = 232) is produced by ESI and processed only in the second ion trap. In these experiments,

the second ion trap is held at 80 K and the helium buffer gas pulsed into the trap is seeded with

water vapor. The RF frequencies are maintained at 650 kHz with 50:50 duty cycle for the entire

trapping cycle. The presence of a peak progression separated by 18 m/z in the mass spectra shows

that AlasH"(H2O)n clusters are readily formed under these conditions. Increasing the gas pulse

amplitude resulted in the formation of larger clusters, similar to our previous report* that used an

octupole ion trap driven with ~800 kHz sine waves.
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Figure 3. Formation of AlazH"-(H,O), clusters
by condensation of water molecules onto the
AlasH" ion in the 80 K cryogenic ion trap as a
function of the buffer gas pressure. Note the
different vertical scale of the last two panels.

Figure 3 also illustrates the issue of low
signal intensity encountered when producing
larger clusters with » > 10. As the buffer gas
pressure is increased to access the larger
clusters, the wider distribution yields very little
signal for each individual cluster size.
Moreover, the total ion signal tends to decrease
at higher buffer gas pressures due to ion losses

under these conditions.

Finally, we varied the length of the
trapping cycle and found that most of the
clusters are formed within the first 1 ms
following the initiation of the gas pulse. This
result likely reflects the kinetics of water
condensing onto trap walls and poles at 80 K,
and points to possible future modifications that

can improve the clustering process. For

example, if we can introduce solvent vapor and buffer gas separately, we may be able to lengthen



the cluster formation time window without increasing the overall pressure inside the ion trap

thereby promoting formation and preservation of the larger clusters.
b) Mass filtering with frequency and duty cycle manipulation

One of the reasons for using square waves is that we would be able to perform the clustering
process and mass-filtering step within a single trapping cycle. Mass filtering with square waves
can be accomplished by changing the frequency and duty cycle of the driving RF. The stability

diagram for square wave quadrupoles’!-37484

can be derived using matrix solutions of the Mathieu
equations and can be defined in terms of the commonly used a and ¢ dimensionless Mathieu

parameters:
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effectively creating a high-pass filter. This is illustrated in Figure 4. The top panel shows the mass
spectrum without filtering, obtained by keeping the square wave at f = 650 kHz and 50:50 duty
cycle for the entire 22 ms trapping cycle. The trap conditions are set such that a AlasH"-(H20)x
cluster distribution peaking around n = 3 is maintained. Keeping all else the same, a high-pass
filtering step can be inserted towards the end of the trapping cycle by lowering the RF frequency
for the last 200 ps. For example, when the frequency is lowered to /= 475 kHz, the AlasH" parent
at m/z=232 is removed and when lowered to f'= 450 kHz or /= 441 kHz, clusters smaller than
AlazsH™(H,0)3 or AlasH" (H20)4 are filtered out, respectively.

The effect of changing the duty cycle is less trivial to understand. In general, increasing
the duty cycle has a somewhat similar effect as increasing the DC offset, and thus yields a smaller
range of stable g values. Therefore, increasing dx:dy while keeping ® constant can be used to

effectively create a low-pass filter. This is illustrated in Figure 5. Again, the top panel shows the

mass spectrum without filtering, obtained with
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Figure 5. Formation of a AlasH"-(H>O), cluster
distribution and subsequent low-pass m/z

filtering by increasing the square wave duty combination of frequency and duty cycle to

cycle for 200 us after the clustering process.

cycle manipulations can isolate a specific

simultaneously by choosing the right

bring the desired mass near the apex of the

stability region. However, the effect of the duty cycle is frequency dependent, which complicates
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determining the exact combination necessary for mass isolation. A simpler approach is to apply

the high-pass and low-pass filtering conditions
Loading & Clustering
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Ala;H*.(H,0),
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(determined from Figures 4 and 5) sequentially, 1.0 Ala?’r+

and there is ample time within each trapping
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cycle to perform both operations.  Figure 6

illustrates this process by selectively isolating 1.0 Loading & Clustering
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ms of the cycle, the frequency is lowered to | Figure 6. Formation of a AlasH"-(H.O)n cluster
distribution and subsequent mass isolation by

sequential low-pass and high-pass filtering steps
size. Note that the high-pass filter must be | after the clustering process.

eliminate all clusters smaller than the desired

placed at the very end of the trapping cycle to remove the parent ions, which are continuously

injected into the trap during the cycle.

Figure 6 shows that clusters separated by 18 m/z can be isolated with minimal loss. For
mass isolation using the apex of the stability diagram, isolation of smaller m/z ranges always comes
at the expense of some loss of the desired mass. In our experiment, the mass-resolution in the
isolation step may be additionally limited by the short length of the ion trap, which results in
quadrupolar field distortions from the end caps. A more efficient mass isolation scheme would

54,55

involve the use of auxiliary dipolar excitation, as commonly found in mass-selective ion trap

setups.
¢) Clustering step manipulation and enhancement

Instead of manipulating the duty cycle after the cluster formation time window, we can do

so during clustering to enhance the formation of a particular cluster size. Specifically, dx:dy can
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be set such that the parent ion is well within the stability region, but as water molecules are added,

the cluster eventually reaches the boundary of
. . . . . _ 1.01 Loading & Clustering
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The result of this process is illustrated in Mass-to-charge ratio (m/z)
Figure 7. The top panel shows the cluster | Figure 7. Enhanced formation and isolation of
e . . . specific AlasH"-(H.O), cluster sizes by increasing
distribution obtained without any filtering. . .
the duty cycle during the clustering process and
The second panel shows the result of applying | subsequent application of a high-pass m/z filter.

a duty cycle of 54:55, corresponding to

AlasH"-(H20), being the largest cluster accumulated, for 1 ms at the start of the trapping cycle
(i.e., the entire time of cluster formation). At the end of the cycle, the frequency is decreased to
eliminate any remaining parent or smaller clusters. This resulted in AlasH"-(H20); intensity which
is significantly (~25 times) larger than in the original distribution. A similar process is shown in
the two bottom panels in Figure 7 for the enhanced formation of the AlasH"-(H20)4 species. Note
that the best enhancements are obtained under the conditions where most of the original
distribution is larger than the desired cluster size. The intensity of the enhanced cluster size is
~75% of the total intensities of the larger clusters in the original distribution, indicating that some
ion losses are occurring during the process. Finally, we note that fragmentation was not observed
when dx:dy is raised after the initial 1 ms. This is likely due to the lower pressure inside the trap
after the buffer gas pulse is mostly evacuated, and hence the excitation of ion motions mainly result

in ion loss and not fragmentation.
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d) Transfer and second clustering step

Having demonstrated the capabilities of a single digital ion trap, we now show how

multiple ion traps can be combined to perform sequential ion processing. The top panel of Figure

8 shows the initial AlasH™-(H2O), cluster distribution created in the first ion trap. The

AlasH"-(H20), cluster is then selectively enhanced using the duty cycle and frequency

manipulations described in the previous section, and the resulting ions are transferred into the

second ion trap. The mass distribution obtained after trapping and holding the Ala;H"-(H,0),

cluster ions in the second ion trap for 30 ms is shown in the second panel of Figure 8. Successful

ion transfer requires careful adjustment of the buffer gas pulse timing in the second trap to match

the ion packet’s arrival time, similar to the operation of our previously reported dual trap
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Figure 8. Tandem operation in which the
AlasH" (H,O) cluster is selectively formed in
the first ion trap and transferred into the second
ion trap where methanol clustering is
performed.

spectrometer.* Moreover, the second trap’s bias
voltage needs to be kept within ~1 V of that of
the first trap to minimize ion kinetic energy and
facilitate trapping. Higher ion kinetic energy
can result in fragmentation and loss of water

molecules from the clusters.

A second clustering processing step 1is
demonstrated by seeding the buffer gas of the
second ion trap with methanol vapor. The
resulting cluster distribution, shown in the
bottom panel of Figure 8, consisted mostly of
AlasH"-(H20):-(CH30H)x and
AlasH"-(H20),(CH3OH)x ~ clusters.  The
AlasH"-(CH30H)x species are also present to a
smaller extent. This result indicates that a
significant fraction of the initial AlasH™(H20)
clusters undergo fragmentation during the

second clustering step. This is likely due to the

increased buffer gas pressure required to carry out clustering. Better results may be achievable by

separating the gas pulses required for the initial ion trapping/translational cooling from the



introduction of the solvent vapor necessary for clustering. Nevertheless, this result demonstrates
how combination of both ion traps and the use of selective enhancement in the first trap can yield

an overall small distribution of clusters containing two different solvent molecules.
IV. Conclusions

We present here the implementation of a modular tandem mass-selective cryogenic ion
trap setup designed to expand ion processing capabilities in experiments such as CIVS. We
showed that both clustering and mass filtering steps can be combined into a single mass-selective
ion trap that is driven by variable frequency and duty cycle RF square waves. Mass filtering and
mass isolation are achieved by proper manipulation of the RF frequency and duty cycle, which
avoid the need for high-amplitude RF voltages. Moreover, adjustment of the stability boundary
during the clustering process allows for preferential formation of a specific cluster size rather than
a broad distribution of sizes. Lastly, we show that a specific cluster size can be formed, mass-
selected, and then transferred to a second ion trap for a separate ion processing step. The
instrumentation developed here, together with future improvements, hold the promise of
significantly expanding the scope of ionic species and clusters that can be accessed by processing

electrosprayed ions.
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