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Abstract—A fault-tolerant quantum computer must decode

and correct errors faster than they appear. The faster errors

can be corrected, the more time the computer can do useful

work. The Union-Find (UF) decoder is promising with an

average time complexity slightly higher than O(d3). We report

a distributed version of the UF decoder that exploits parallel

computing resources for further speedup. Using an FPGA-based

implementation, we empirically show that this distributed UF

decoder has a sublinear average time complexity with regard

to d, given O(d3) parallel computing resources. The decoding

time per measurement round decreases as d increases, a first

time for a quantum error decoder. The implementation employs

a scalable architecture called Helios that organizes parallel

computing resources into a hybrid tree-grid structure. We are

able to implement d up to 21 with a Xilinx VCU129 FPGA,

for which an average decoding time is 11.5 ns per measurement

round under phenomenological noise of 0.1%, significantly faster

than any existing decoder implementation. Since the decoding

time per measurement round of Helios decreases with d, Helios

can decode a surface code of arbitrarily large d without a growing

backlog.

I. INTRODUCTION

The high error rates of quantum devices pose a significant
obstacle to the realization of a practical quantum computer.
As a result, the development of effective quantum error
correction (QEC) mechanisms is crucial for the successful
implementation of a fault-tolerant quantum computer.

One promising approach for QEC is surface codes [1–3] in
which information of a single qubit (called a logical qubit) is
redundantly encoded across many physical data qubits, with
a set of ancillary qubits interacting with the data qubits. By
periodically measuring the ancillary qubits, one can detect and
potentially correct errors in physical qubits.

Once the presence of errors has been detected through
the measurement of ancillary qubits, a classical algorithm,
or decoder, guesses the underlying error pattern and corrects
it accordingly. The faster errors can be corrected, the more
time a quantum computer can spend on useful work. Due to
the error rate of the state-of-the-art qubits, very large surface
codes (d > 25) are necessary to achieve fault-tolerant quantum
computing [2, 4, 5]. See §II for more background.

As surveyed in §VII, previously reported decoders capable
of decoding errors as fast as measured, or backlog-free, either
exploit limited parallelism [6–8], or sacrifice accuracy [9, 10].
Sparse Blossom [8] and Fusion Blossom [11] feature an
important algorithmic breakthrough in realizing MWPM-based
decoders. Fusion Blossom can additionally leverage measure-

ment round-level parallelism to meet the throughput require-
ment of very large d. However, due to their software-based
realizations, both Sparse Blossom and Fusion Blossom suffer
from decoding time per round longer than that of Helios by
orders of magnitude at large d and higher noise level. When
used in a quantum computer, the computer would spend most
of execution time waiting for error correction.

In this paper we report a distributed Union-Find (UF) de-
coder (§III) and its FPGA implementation called Helios (§IV).
Given O(d3) parallel resources, our decoder achieves sublinear
average time complexity according to empirical results for d

up to 21, the first to the best of our knowledge. Notably, adding
more parallel resources will not reduce the time complexity
of the decoder, due to the inherent nature of error patterns.
Our decoder is a distributed design of and logically equivalent
to the UF decoder first proposed in [12]. We implement the
distributed UF decoder with Helios, a scalable architecture for
organizing the parallel computation units. Helios is the first
architecture of its kind that can scale to arbitrarily large surface
codes by exploiting parallelism at the vertex level of the model
graph. In §VI, we present experimental validations of the
distributed UF decoder and Helios using a VCU129 FPGA
board [13] for up to d = 21. The decoder’s average decoding
time per measurement round under a phenomenological noise
of 0.1% is 11.5 ns for d = 21, which is significantly
faster than any existing decoder implementation. Our results
successfully demonstrate, for the first time, a decoder design
with decreasing average time per measurement round when d

increases. This shows evidence that the decoder can scale to
arbitrarily large surface codes without a growing backlog.

In summary, we report the following contributions in this
work.

• A distributed algorithm that implements the Union-Find
decoder that can exploit parallel computing units to stop
decoding time per measurement round from growing with
the code distance d.

• The Helios architecture and its FPGA-based implemen-
tation that realize the distributed Union-Find decoder.

• A set of empirical data based on the FPGA implementa-
tion that demonstrate decreasing decoding time per round
as d grows and 11.5 ns decoding time per measurement
round for d = 21 under a phenomenological noise of
0.1%.

Helios is open-source and available from [14].
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II. BACKGROUND

A. Error Correction and Surface Code

Quantum Error Correction (QEC) is more challenging than
classical error correction due to the nature of Quantum bits.
First, qubits cannot be copied to achieve redundancy due to the
no-cloning theorem. Second, the value of the qubits cannot be
directly measured as measurements perturb the state of qubits.
Therefore QEC is achieved by encoding the logical state of
a qubit, as a highly entangled state of many physical qubits.
Such an encoded qubit is called a logical qubit.

The surface code is the widely used error correction code for
quantum computing due to its high error correction capability
and ease of implementation due to only requiring connectivity
between adjacent qubits. A distance d rotated surface code is a
topological code made out of 2d2�1 physical qubits arranged
as shown in Figure 1. A key feature of surface codes is that
a larger d can exponentially reduce the rate of logical errors
making them advantageous. For example, even if the physical
error rate is 10 times below the threshold, d should be greater
than 17 to achieve a logical error rate below 10�10 [2].

A surface code contains two types of qubits, namely data
qubits and ancilla qubits. The data qubits collectively encode
the logical state of the qubit. The ancilla qubits (called X-type
and Z-type) entangle with the data qubits and by periodically
measuring the ancilla qubits, physical errors in all qubits can
be discovered and corrected. An X error occurring in a data
qubit will flip the measurement outcome of Z ancilla qubits
connected with the data qubit and a Z error will flip the
X ancilla qubits likewise. Such a measurement outcome is
called defect measurement. Because ancilla qubits themselves
could also suffer from physical qubit errors, multiple rounds
of measurements are necessary. The outcomes from these
multiple rounds of measurements of ancilla qubits constitute a
syndrome. Figure 2a shows a syndrome with sample physical
qubit errors and shows how they are detected by ancilla qubits.
We only show X errors and measurement errors on Z-type
ancillas because Z errors and measurement errors on X-type
ancillas can be independently dealt with in the same way.

A syndrome can be conveniently represented by a graph
called decoding graph in which a vertex represents a measure-
ment outcome of an ancilla and an edge a data qubit. Vertices
corresponding to defect measurements are specially marked.
The weight of an edge is determined by the probability of error
in the corresponding data qubit or measurement. For distance
d surface code, there are (d + 1) ⇥ (d � 1)/2 vertices. This
decoding graph can be extended to three-dimensional in which
multiple identical planar layers are stacked on each other.
Each layer represents a round of measurement. The minimum
number of measurement rounds required to complete a fault-
tolerant logical operation is d, which is also the number
of rounds we consider in this paper. Corresponding vertices
in adjacent layers are connected by edges representing the
corresponding ancilla’s measurement error probability. That
is, there are (d+ 1) ⇥ ((d� 1)/2) ⇥ d vertices in this three-
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Fig. 1: (a) : Rotated CSS surface code (d = 5), a commonly used type of
surface code. The white circles are data qubits and the black are the Z-type
and X-type ancillas. (b) and (c): Measurement circuit of Z-type and X-type
ancillas. Excluding the ancillas in the border, each Z-type and X-type ancilla
interacts with 4 adjacent data qubits.

(a)
(b)

Fig. 2: (a) : An example syndrome of Z stabilizers for d = 5 surface code
with 5 rounds of measurements. The syndrome contains an isolated X-error
(round 1), an isolated measurement error (rounds 1 and 2), a chain of two
X errors (round 3), and a chain containing X errors and measurement errors
spanning multiple measurement rounds (rounds 3 and 4). (b) Decoding graph
with defect vertices marked red for the syndrome in (a).

dimensional graph. Figure 2b shows the decoding graph for a
syndrome from d = 5 surface code.

B. Error Decoders

Given a syndrome, an error decoder identifies the underlying
error pattern, which will be used to generate a correction
pattern. As multiple error patterns can generate the same
syndrome, the decoder has to make a probabilistic guess of
the underlying physical error. The objective is that when the
correction pattern is applied, the chance of the surface code
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entering a different logical state (i.e a logical error) will be
minimized.

a) Metrics: The two important aspects of decoders are
accuracy and speed. A decoder must correct errors faster than
syndromes are produced to avoid a backlog. A faster decoder
also allows more time for the quantum hardware to do actual
useful work. The average decoding time per measurement
round is a widely used criterion for speed.

A decoder must make a careful tradeoff between speed and
accuracy. A faster decoder with lower accuracy requires a
larger d to achieve any given logical error rate, which may
require more computation overall.

b) Union-Find (UF) Decoder: The UF decoder is a fast
surface code decoder design first described by Delfosse and
Nickerson [12]. According to [15], it can be viewed as an
approximation to the blossom algorithm that solves minimum-
weight perfect matching (MWPM) problems. It has a worst-
case time complexity of O(d3↵(d)), where ↵ is the inverse of
Ackermann’s function, a slow-growing function that is less
than three for any practical code distances. Based on our
analysis, it has an average case time complexity slightly higher
than O(d3).

Algorithm 1 describes the UF decoder. It takes a decoding
graph G(V,E) as input. Each edge e 2 E has a weight and a
growth, denoted by e.w and e.g, respectively. e.g is initialized
with 0 and the decoder may grow e.g until it reaches e.w.
When that happens, we say the edge is fully grown.

The decoder maintains a set of odd clusters, denoted by
L. L is initialized to include all {v} that v 2 V are defect
measurements (L5). Each cluster C keeps track of whether its
cardinality is odd or even as well as its root element.

The UF decoder iterates over growing and merging the odd
cluster list until there are no more odd clusters (inside the
while loop of Algorithm 1). Each iteration has two stages:
Growing and Merging. In the Growing stage, each odd cluster
“grows” by increasing the growth of the edges incidental to its
boundary. This process creates a set of fully grown edges F
(L10 to L19). The Growing stage is the more time-consuming
step as it requires traversing all the edges in the boundary of
all the odd clusters and updating the global edge table. Since
the number of edges is O(d3), the UF decoder is not scalable
for surface codes with large d.

In the Merging stage, the decoder goes through each fully-
grown edge to merge the two clusters connected by the edge
using UNION(u, v) operation. The UNION(u, v) merges the
two clusters containing u and v by assigning a common root
element to the two clusters. When two clusters merge, the new
cluster may become even.

When there is no more odd cluster, the decoder finds a
correction within each cluster and combines them to produce
the correction pattern (L25).

III. DISTRIBUTED UF DECODER DESIGN

Our goal to build a QEC decoder is scalability to the number
of qubits. As surface codes can exponentially reduce logical
error rate with respect to d, larger surface codes with hundreds

Algorithm 1: Union Find Decoder
input : A decoding graph G(V,E) with X (or Z) syndrome
output: A correction pattern

1 % Initialization
2 for each v 2 V do

3 if v is defect measurement then

4 Create a cluster {v}
5 end

6 end

7 while there is an odd cluster do

8 % Growing
9 F  ;

10 for each odd cluster C do

11 for each e =< u, v >, u 2 C, v 62 C do

12 if e.growth < e.w then

13 e.growth e.growth+ 1
14 if e.growth = e.w then

15 F  F [ {e}
16 end

17 end

18 end

19 end

20 % Merging
21 for each e =< u, v >2 F do

22 UNION(u, v)
23 end

24 end

25 Build correction within each cluster by constructing a spanning tree

or even thousands of qubits are necessary for fault-tolerant
quantum computing. Therefore, the average decoding time
per measurement round should not grow with d, to avoid
exponential backlog for any larger d.

We choose the UF decoder for two reasons. First, it has
a much lower time complexity than the MWPM algorithm.
Although in general, the UF decoder achieves lower decoding
accuracy than MWPM decoders, it is as accurate in many
interesting surface codes and noise models [15, 16]. Second,
the UF decoder maintains fewer intermediate states, which
makes it easier to implement in a distributed manner. We ob-
serve that the Growing stage from L10 to L19 in Algorithm 1
operates on each vertex independently without dependencies
from other vertices. A vertex requires only the parity of the
cluster it is a part of for the growing stage. Second, during
the merging stage, a vertex only needs to interact with its
immediate neighbors (L22).

A. Overview

Like the original UF decoder, our distributed UF decoder is
also based on the decoding graph. Logically, the distributed de-
coder associates a processing element (PE) with each vertex in
the graph. Therefore, when describing the distributed decoder,
we often use PE and vertex in an inter-exchangeable manner.
All PEs run the same algorithm, specified by Algorithm 2.
Like the UF decoder, a PE iterates over the Growing and
Merging stages with the Merging split into two: Merging and
Checking. Within each stage, PEs operate independently. A
central controller coordinates their transition from one stage
to the next as specified by Algorithm 6.

A key challenge to the PE algorithm is to (i) merge
clusters and (ii) compute the cluster parity, without central
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coordination. To achieve (i), each PE is assigned a unique
identifier (a natural number) and maintains the identifier of the
cluster it belongs to, cid. The cid is the lowest identifier of all
its PEs. And the PE of the lowest identifier is called the root
of the cluster. When two PEs connected by a fully grown edge
have different cids, the PE with the higher cid adopts the lower
value, resulting in the merging of their clusters. To achieve (ii),
each PE maintains a parent. When a PE adopts the cid from
an adjacent PE, it sets the latter as its parent. The parenthood
relation between PEs creates a spanning tree for each cluster
that is maintained by PEs locally and in which every PE in
the cluster has a directional path to the root of the cluster. The
cluster parity can be computed using a convergecast algorithm
on the spanning tree. We describe the PE algorithm in detail
in III-D.

To implement our distributed UF algorithm, we require sev-
eral PE states, some of which are located in shared memories.
We limit all communication between PEs and between PEs
and the controller to coherent shared memories to ensure fast
communication and prevent stalling that could result from
message-based communication.

B. PE States

A PE has direct read access to its local states and some
states of incident PEs. A PE can only modify its local states.

Thanks to the decoding graph, a PE has immediate access
to the following objects.
• v, the vertex it is associated with.
• v.E, the set of edges incident to v.
• v.U , the set of vertices that are incident to any e 2 v.E

other than v itself. We say these vertices are adjacent to v.
The algorithm augments the data structures of each vertex

and edge of the decoding graph, according to the UF decoder
design [12]. For each vertex v 2 V , the following information
is added
• id : a unique identity number which ranges from 1 to n

where n = |V |. id is statically assigned and never changes.
• m is a binary state indicating whether the measurement

outcome is a defect measurement (true) or not (false).
m is initialized according to the syndrome.

• cid: a unique integer identifier for the cluster to which v

belongs, and is equal to the lowest id of all the vertices
inside the cluster. The vertex with this lowest id is called the
cluster root. cid is initialized to be id. That is, each vertex
starts with its own single-vertex cluster. When cid = id, the
vertex is a root of a cluster.

• odd is a binary state indicating whether the cluster is odd.
odd is initialized to be m.

• codd is a copy of odd.
• parent is a reference to the parent. As noted before, this

parenthood relationship creates a spanning tree that connects
all vertices (PEs) with directional edges.

• st odd: a binary state representing the parity of m of v and
all its descendants.

• stage indicates the stage the PE currently operates in

Algorithm 2: Algorithm for vertex v in the distributed
UF decoder.

26 v.cid v.id; v.odd v.m; v.parent v.id; v.st odd v.m

27 while true do

28 if global_stage =terminate then

29 return

30 end

31 Wait until global_stage =growing
32 growing(v)
33 Wait until global_stage =merging
34 do

35 merging(v)
36 Wait until global_stage =checking
37 checking(v)
38 Wait until global_stage! =checking
39 while global_stage =merging
40 end

Algorithm 3: Vertex growing algorithm
41 function growing(vertex v)
42 v.busy true; v.stage growing
43 if v.odd then

44 for each e = hu, vi 2 v.E atomic do

45 if e.growth< e.w and u.cid 6= v.cid then

46 e.growth e.growth+1
47 end

48 end

49 end

50 v.busy false;
51 end

Algorithm 4: Vertex merging algorithm
52 function merging(vertex v)
53 v.busy true; v.stage merging
54

55 for each u 2 v.nb do

56 if u.cid < v.cid then

57 v.cid u.cid

58 v.parent u.id

59 end

60 end

61

62 v.st odd XOR(u.st odd|u 2 v.child,m)
63

64 if v.parent = v.id then v.odd v.st odd

65 else v.odd u.odd where v.parent = u.id

66

67 v.busy false
68 end

Algorithm 5: Vertex checking algorithm
69 function checking(vertex v)
70 v.busy true
71

72 if 8u 2 v.nb, (u.cid = v.cid & v.odd = u.odd) and
v.st odd = XOR(w.st odd|w 2 v.child,m) and
(v.parent 6= v.id or v.odd = v.st odd) then

73 v.busy false
74 end

75 v.stage checking
76 end

• busy is a binary state indicating whether the PE has any
pending operations.
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Algorithm 6: The controller coordinates all PEs along
stages and detects the presence of odd clusters.

77 while true do

78 global_stage growing
79 Wait until 8v 2 V, v.stage = growing
80 Wait until 8v 2 V, v.busy = false
81

82 do

83 global_stage merging
84 Wait until 8v 2 V, v.stage = merging
85 Wait until 8v 2 V, v.busy = false
86

87 global_stage checking
88 Wait until 8v 2 V, v.stage = checking
89 while 9v 2 V, v.busy = true
90

91 if 8v 2 V, v.codd = false then

92 global_stage terminate
93 return

94 end

95 end

For each edge e 2 E, the decoder maintains e.growth, which
indicates the growth of the edge, in addition to e.w, the weight.
e.growth is initialized as 0. The decoder grows e.growth
until it reaches e.w and e becomes fully grown.

For clarity of exposition, we introduce a mathematical short-
hand v.nb, the set of vertices connected with v by full-grown
edges, i.e., v.nb={u|e = hv, ui 2 v.E ^ e.growth= e.w}.
We call these vertices the neighbors of v. Note neighbors are
always adjacent but not all adjacent vertices are neighbors. We
also use v.child, to indicate all child vertices of a vertex in
the tree representation, i.e., v.child={u|u.parent = v.id}.
Since trees are built within a cluster, all child vertices are
neighbors but not all neighbors are child vertices.

C. Shared memory based communication
We use coherent shared memory for a shared state that has

a single writer. For all shared memories, given the coherence,
a read always returns the most recently written value. Like
ordinary memory, we also assume both read and write are
atomic. Figure 4 illustrates these memory blocks.
• memory read/write for PE (v) and read-only for adjacent

PEs, i.e., 8u 2 v.U . v.id, v.cid, v.odd, v.parent and
v.st odd reside in this memory (S1).

• memory read/write for PE (v) and read-only for the con-
troller. The PE local states, v.codd, v.stage and v.busy
reside in this memory (S2).

• memory for e.growth, which can be written by its two
incident PEs (S3).

• memory read/write for the controller and read-only for all
PEs. The controller state global_stage is stored in this
memory (S4).

D. PE Algorithm
All PEs iterate over three stages of operation. Within each

stage, they operate independently but transit from one stage to
the next when the controller updates global_stage. When
a PE enters a stage, it sets v.stage accordingly and keeps

v.busy as true until it finishes all work in the stage. The
controller uses these two pieces of information from all PEs
to determine if a stage has started and completed, respectively
(See §III-E).

We next describe the three stages of the PE algorithm. In
the Growing stage, vertices at the boundary of an odd cluster
increase e.growth for boundary edges (L46). As PEs perform
Growing simultaneously, two adjacent PEs may compare e.w

and e.growth and update e.growth for the same e. Such
compare-and-update operations must be atomic to avoid data
race.

In the Merging stage, two clusters connected through a
fully-grown edge merge by adopting the lower cluster id (cid)
of theirs. To achieve this, each PE compares its cid with its
neighbors (L56). If the other incident vertex of a fully grown
edge has a lower cid, the PE adopts the lower cid as its own
(L57). The merging process continues until every PE in the
cluster has the same cid, which is the lowest vertex identifier
of the cluster.

In order to compute the cluster parity, when a PE adopts
the cid of the adjacent PE, it sets the latter as its parent
(L58). This parenthood relation creates a spanning tree for
each cluster that includes all PEs (vertices) with directional
edges. Each PE then calculates the parity of itself and all its
children as st odd (L65). Note that odd of the root PE is the
same as its st odd (L64). All other PEs copy the odd of their
respective parents (L65).

Astute readers may point out that v.st odd should be the
parity of v and all its descendants, not just children. This is
achieved by two modifications, compared to the UF decoder.
First, a new stage Checking is added after Merging to see
if the PE (vertex) needs to go back to Merging again (L72).
Second, all PEs iterates through Merging and Checking until
all PEs have nothing to do for Merging. (L34-L39). These
allow parity computation to propagate from leaves to the roots
of the spanning trees while cid and odd to propagate from the
roots to the leaves.

a) Building corrections within clusters: While the origi-
nal UF decoder builds a spanning tree within each even cluster
in the end to generate a correction (L25), our distributed UF
decoder already has a spanning tree based on the parenthood
relation and therefore is more efficient in generating correc-
tions.

b) Alternative Message-based Design: Early on we con-
sidered the use of message-based communication to update the
parity of a cluster [17]. This design requires directional links
between PEs, with each PE serving as a router for forwarding
messages, thus increasing the complexity of PEs. Moreover,
the finite capacity of directional links could lead to congested
links, causing PE stalling, which in turn slowed down the
decoding process and increased tail latency.

E. Controller Algorithm
The controller moves all PEs and itself along the three

stages. In the Growing and Merging stages, it checks for
v.busy signals from each PE. The controller determines the
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completion of a stage when all PEs have v.busy as false.
In the Checking stage controller determines the completion
of the stage when all PEs have moved to the Checking stage.
Upon completion, the controller updates the global_stage
variable to move to the next stage and the PEs acknowledge
this update by updating their own v.stage variable.

The controller also calculates the presence of odd clusters.
At the end of the Merging and Checking stages, it reads
the v.odd value of each vertex (L91). If any vertex has
v.odd = true, the controller updates the global stage variable
to Growing to continue the algorithm. Otherwise, it updates it
to Terminate to end the algorithm.

F. Time Complexity Analysis
We first show the PE coordination complexity and then

calculate the overall time complexity based on that.
a) PE Coordination Complexity: The controller’s time

complexity is contingent upon the implementation of the
shared memory for v.busy and v.codd. Since both checks
involve logical OR operations on individual PE information,
the most efficient implementation consists of a logical tree of
OR operations, yielding a time complexity of O(log(d)).

b) Worst-case Time Complexity: The worst-case time
complexity of our distributed UF decoder is O(d3log(d)).
We explain this as follows. Each stage of our distributed-
UF algorithm is O(1) time. Thus the worst case depends
on the total number of stages. In the merging stage, both
propagating the cid and calculating the parity uses shared
memory-based flooding and convergecast algorithms, each of
which requires O(D) merging and checking stages, where D is
the cluster diameter. The maximum possible diameter, O(d3),
occurs when a series of single-vertex clusters merge, creating
a chain of clusters with a total diameter of O(d3).

As coordinating between stages has a complexity of
O(log(d)), the overall time complexity is O(d3log(d)).

Nevertheless, the worst-case scenario is extremely rare since
larger clusters are exponentially less likely to occur. As shown
in the empirical results reported in §VI, the average time grows
sublinearly with d.

IV. HELIOS ARCHITECTURE

We next describe Helios, the architecture for the distributed
UF decoder.

A. Overview
Helios organizes PEs and the controller in a custom topol-

ogy that combines a 3-D grid and a tree as illustrated by
Figure 3 and explained below.
• PEs are organized according to the position of vertices in

the model graph they represent. We assign v.id sequentially,
starting with 1 from the bottom left corner and continuing
in row-major order for each measurement round. Shared
memory S1 (v.cid, v.odd, v.parent and v.st odd) and S2
(v.codd, v.stage, and v.busy) are per PE.

• Shared memory S3 (e.growth) is added to the incident PE
with the lower id.

• A link between every two adjacent PEs to read from each
other’s S1 and for the one with the higher id to read the
other’s S4. This results in a network of links in a 3-D grid
topology. As a PE represents a vertex in the model graph,
a link represents an edge. Broad pink lines in Figure 3
represent these links.

• The controller is realized as a tree of control nodes (§IV-B).
The leaf nodes of the tree contain shared memory S4.

• A link between each PE and the controller for the controller
to read from S2 and for the PEs to read from S4. Dashed
orange lines in Figure 3 represent these links.

B. Controller
Helios implements the controller as a tree of control nodes

to avoid the scalability bottleneck. The controller requires
three pieces of information from each PE: v.codd, v.stage
and v.busy. Each leaf control node of the tree is directly
connected with a subset of PEs. We can consider these PEs
as the children of the leaf node. Each node in the tree gathers
vertex information from its children and reports it to the parent.
With information from all vertices, the root control node runs
Algorithm 6 and decides whether to advance the stage.

We leave height, branching factor, and the subset of PEs
connected to each leaf node as implementation choices. The
necessary requirement is that the controller should not slow
down the overall design.

V. FPGA IMPLEMENTATION

We next describe an implementation of Helios targeting a
single FPGA. We choose FPGA for two reasons. It supports
massively parallel logic, which is essential as the number of
PEs grows proportional to d

3 in our distributed UF design.
Moreover, it allows deterministic latency for each operation,
which facilitates synchronizing all the PEs. Our implementa-
tion contains approximately 3000 lines of Verilog code, which
is publicly available at [14].

A. Leveraging global synchronization in FPGA
We leverage global synchronization inside the FPGA to

speed up our distributed UF algorithm. Running the FPGA
design in a single-clock domain allows us to have all the
PEs and the control nodes tightly synchronized. Notably, we
simplify our algorithm as follows. Firstly, we run the Merging
(L121) and Checking stages (L137) in parallel within each
PE. The tight synchronization of all PEs guarantees that false
negative busy signals do not occur.

Secondly, we reduce the overhead of synchronization by
having the controller only coordinate moving to the Growing
stage at the beginning of each iteration (L101). As each PE
can perform the Growing stage deterministically in a single
cycle, PEs can move to the Merging stage without central
coordination (L102).

Additionally, as the controller deterministically knows the
exact stage each PE is in, stage is stored locally and not
shared with the controller. Thus the information from the PEs
to the controller is limited to two bits, v.busy and v.odd.
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PE array. PE n indicates PE with v.id = n. Not all links from the controller
to PEs and all v.ids shown in the figure

 PE 1 

S3

growth

grow

edge_busy

S2

stage

codd

busy

To/from controller

 PE 13 

codd
busy

global_stage

odd

cid

parent

st_odd

S1

odd, cid,
parent, st_odd 

growth,
odd, cid,

parent, st_odd 

S3

growth

grow

edge_busy

 PE 4 

S3

growth

grow

edge_busy

 PE 3 

odd, cid,
parent, st_odd 

growth,
odd, cid,

parent, st_odd 

odd, cid,
parent, st_odd 

growth,
odd, cid,

parent, st_odd 

Fig. 4: The bottom left corner of the PE array shown in Figure 3. Only part
of the logic and memory inside PE 1 is shown: growth (S3) is per edge
and is stored in the PE with lower id. grow logic (in brown) calculates
the updated growth value. edge_busy (in green) is per adjacent PE and is
used to calculate v.busy.

Algorithm 7 and Algorithm 8 lists the FPGA-oriented
algorithm of PE and the controller. The logic at every positive
edge is executed in parallel. Figure 4 shows a minimal diagram
of a PE in the FPGA implementation.

a) Time Complexity: The worst-case time complexity of
the FPGA design is O(d3) in contrast to O(d3log(d)) of the
generic distributed UF algorithm. The log(d) factor in the
latter originates from the coordination overhead associated
with transitioning between Merging and Checking stages.
However, in the case of FPGA implementation, these two
stages—Merging and Checking—are performed concurrently,
obviating stage transitions. This concurrent operation effec-
tively removes the log(d) component.

B. Implementation details

We next list the other implementation choices of our design.
Controller: Since we only use a single FPGA and evaluate

with d up to 21, a single node controller suffices. The node
controller reads busy of each PE, every clock cycle to identify
the completion of a stage.

Shared memory: We implement all shared memories as
FPGA registers, i.e., reg in Verilog. FPGA registers by design
guarantee that a read returns the last written value. In order
to ensure that the S4 memory has a single writer, we adjust
the PE logic to update growth by implementing a modified
compare-and-update operation (L109) as shown in Figure 5.
The PE that houses the S3 memory performs this operation,
increasing e.growth by two when both endpoints of the edge
have v.odd set to true.

Adderodd[0]

odd[1] Min

w

2x1 
Mux

==stage
growing

 grow 

D Q

Q

growth
clk

reg growth;
always@(posedge clk)
if(stage == growing)

growth <= ‘MIN(growth
+ odd[0] + odd[1], w);

Fig. 5: Circuit diagram of grow sub-module and Verilog implementation.
This implements the atomic compare and update operation in L45 as part of
the PE module. odd[0] and odd[1] represents the odd state of the two incident
PEs of the edge.

C. Resource Usage

On the VCU129 FPGA development board [18], we are able
to support the distributed UF decoder with d up to 21, due to
resource limits. Table I shows the resource usage for various
d. While the numbers of vertices and edges grow by O(d3),
resource usage grows faster for the following reasons. First,
resource usage by a PE grows due to the increase of bit-width
required for v.id, and v.cid. A PE for d = 21 with six adjacent
PEs requires 200 LUTs and a similar PE for d = 5 requires
only 155 LUTs. Second, PEs on the surface of the three-
dimensional array as shown in Figure 3 use fewer resources
than those inside because the latter have more incident edges.
When d increases a higher portion of PEs are inside the array.

We find that LUTs are the most critical resource in the
FPGA for our design. It may be possible to run a design with
d = 29 on a Xilinx VU19 FPGA [19], which currently has
the highest number of LUTs among commercially available
FPGAs at the time of this writing. Potentially larger d values
can be supported by using a network of FPGAs.

Existing commercial FPGAs like VCU129 often dedicate
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Algorithm 7: FPGA-oriented algorithm for vertex v

in the distributed UF decoder.
96 v.cid v.id; v.odd v.m; v.parent v.id;

v.st odd v.m

97

98 % Stage transition logic
99 At every positive clock edge do

100 if global_stage =terminate then return

101 else if global_stage =growing then

v.stage growing
102 else if v.stage =growing then v.stage merging
103 end

104

105 % Growing logic
106 At every positive clock edge do

107 if v.stage =growing then

108 for each e = hu, vi 2 v.E and v.id < u.id do

109 if e.growth< e.w and u.cid 6= v.cid then

110 if v.odd and u.odd then

111 e.growth MIN(e.growth+2, w)
112 end

113 else if v.odd or u.odd then

114 e.growth MIN(e.growth+1, w)
115 end

116 end

117 end

118 end

119 end

120

121 % Merging logic
122 At every positive clock edge do

123 Let u be argminu2(v.nb [ {v})(u.cid)
124 if u.cid < v.cid then

125 v.cid u.cid

126 v.parent u.id

127 end

128 end

129 At every positive clock edge do

130 v.st odd subtree parity(v)
131 end

132 At every positive clock edge do

133 if v.parent = v.id then v.odd v.st odd

134 else v.odd u.odd where u.id = v.parent

135 end

136

137 % Checking logic
138 At every positive clock edge do

139 if 9u 2 v.nb, (u.cid 6= v.cid k v.odd 6= u.odd) then

140 v.busy true
141 end

142 else if v.st odd 6= subtree parity(v) then

143 v.busy true
144 end

145 else if (v.parent = v.id & v.odd 6= v.st odd) then

146 v.busy true
147 end

148 else

149 v.busy false
150 end

151 end

152

153 function subtree parity(v)
154 parity  v.m

155 for each u 2 v.child do

156 parity  XOR(parity, u.st odd)
157 end

158 return parity
159 end

a lot of silicon to digital signal processing (DSP) units and

Algorithm 8: FPGA-oriented controller logic
161 global_stage growing
162 At every positive clock edge do

163 if global_stage = growing then

164 global_stage merging
165 %Wait until all PEs are in Merging Stage
166 Wait 2 clock cycles
167 end

168 else if 8v 2 V, v.busy = false then

169 if 8v 2 V, v.codd = false then

170 global_stage terminate
171 end

172 else

173 global_stage growing
174 end

175 end

176 end

TABLE I: Resource usage of Helios on VCU129 FPGA board for selected d

d # of LUTs # of registers
3 970 528
5 6425 2425
9 52111 13754

13 165718 47211
17 448314 122028
21 898715 238939

block RAMs (BRAMs). However, our design does not use
any DSPs because it only requires comparison operators and
fixed point additions. Our design does not use any BRAMs
because all communication between PEs is shared memory
based, which is implemented using registers. Therefore, an
ideal FPGA designed to run our distributed UF decoder would
be simpler than current large FPGAs, as it would only need
a large number of LUTs, no DSP units, and a limited amount
of BRAM.

VI. EVALUATION

The main objective of our evaluation is to assess the
scalability of our distributed UF implementation. To that end,
we first describe our methodology and then show that the
latency of our implementation grows sub-linearly with respect
to the surface code size d.

In addition, we also evaluate the impact of noise and non-
identically distributed errors on latency.

A. Methodology
For speed, we measure the number of cycles required to

decode a syndrome. To evaluate correctness, we compare the
results of our distributed UF decoder with the results from the
original UF decoder. We compare clusters because the original
UF decoder and ours only differ in the clustering process. In
the rest of our evaluation, we will focus only on the speed
of the distributed UF decoder and not on the accuracy of its
results.

a) Experimental Setup: As our evaluation setup, we use
Xilinx VCU129 FPGA development board [13], which is
capable of decoding surface codes with d up to 21.
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We use a MicroBlaze soft processor core [20] instantiated
inside the FPGA to generate the syndromes and transmit them
to Helios, which runs on the same FPGA. We ran 106 trials
for each error rate and distance.

b) Noise Model: We use the phenomenological noise
model [1] that accounts for errors in both data and ancilla
qubits. As decoding for X-errors and Z-errors are independent
and identical, we only focus on decoding X-errors in the
evaluation.

To emulate noise, we independently flip the two adjacent
stabilizer measurements for each data qubit with a probability
of p (the physical error rate) in each measurement round, and
we also independently flip each stabilizer measurement with
a probability of p except for the first and last measurement
rounds. This is a widely used approach by prior QEC decoders
[7, 9, 21]. We then generate the syndrome from the physical
errors and provide it as input to our decoder.

For most of our experiments, we use as default p = 0.001,
like other works [7]. This value is reasonable for surface
codes, as p should be sufficiently below the threshold (at least
ten times lower) to exponentially reduce errors. We note that
the UF decoder has a threshold of p = 0.024, calculated by
Delfosse and Nickerson [12].

B. Decoding Time
We experimentally show how the average time for decoding

grows with the size of the surface code. Additionally, we show
the effect of noise on the average time.

a) Average time: To demonstrate the scalability of our
algorithm with respect to the size of the surface code, we plot
the average time for decoding against the size of the surface
code. In Figure 6 (left) the y-axis shows the average decoding
time in nanoseconds and the x-axis shows the distance (d) of
the surface code. We see that for all 3 physical error rates we
tested, average decoding time grows sub-linearly with respect
to the surface code size, which satisfies the scalability criteria
to avoid an exponential backlog. This implies that the average
time to decode a measurement round reduces with increasing
d as shown in Figure 6 (right).

b) Distribution of decoding time: To understand the
growth of decoding time with respect to the code distance,
in Figure 7a we plot the distribution of decoding time for
different code distances. The y-axis shows the decoding time
and the x-axis shows the distance (d) of the surface code. The
average cycle count is indicated with ⇥.

The key factor determining the decoding time is the number
of iterations of growing and merging the distributed UF
decoder requires. The peaks in the probability distribution
for each distance in Figure 7a correspond to the number of
iterations. The variation around each peak is caused by the
time required to sync c id and calculate odd. The number of
iterations is related to the size of the largest cluster, which
in turn correlates with the size of the longest error chain in
the syndrome. As the size of the surface code increases, the
probability of a longer error chain also increases, resulting in
the probability distribution shifting to the right.

Furthermore, as seen in Figure 7a, the distribution for each
surface code size is right-skewed. For example, for d = 13,
90% of trials required two iterations or fewer, which were
completed within 250 ns. In the same test, 99.99% of trials
were completed within 370 ns. Only a very small number of
error patterns require long decoding times, corresponding to
syndromes with long error chains. Since such syndromes occur
rarely and have poor decoding accuracy even if the decoding
time is bounded, the impact on accuracy will be minimal.

c) Effect of physical error rate: To understand the effect
of the physical error rate on decoding time, in Figure 7b we
plot the distribution of latency for three different noise levels
for d = 13. The y-axis shows the latency and the x-axis shows
the physical error rate.

As the noise level increases, the probability distribution of
latency shifts to the right. This is caused by the increased
probability of a longer error chain when the physical error rate
increases, which in turn requires more iterations to decode. As
a result, the average decoding time increases with the physical
error rate.

C. Non-identically distributed errors
We next analyze the decoding process of a surface code with

varying error probabilities for data and measurement qubits.
While identically distributed errors are useful for evaluating
the decoder’s performance, practical implementation of surface
codes may have different error probabilities for each qubit.
To address this issue, each edge i in the decoding graph is
assigned a weight wi that ranges from 2 to wmax and is
proportional to �log(pi), where pi is the error probability
corresponding to edge i. wmax is a user-specified parameter
indicating the resolution of error probabilities.

Noise model : We assign random error probabilities from
a standard normal distribution with a mean of 0.001 and a
standard deviation of 0.0005.

Figure 7c shows that the average latency increases as
wmax increases. When the errors have a higher resolution,
more iterations are required for each cluster, leading to an
increase in latency. For the unweighted graph with d = 13,
the average decoding time per round of 15 ns increases to 38
ns when wmax increases to 16. Notably, all of these values are
significantly faster than the rate of measurement. As a result,
decoding non-identically distributed errors can be performed
in real-time using distributed UF on Helios.

D. Comparison with related work
Our empirical results as shown in Figure 7a suggest that

Helios has a lower asymptotic complexity than any existing
MWPM or UF implementation for which asymptotic complex-
ities are available, e.g., [12, 22]. Indeed, the empirical results
suggest that our decoder has a sub-linear time complexity:
the decoding time per round decreases with the number of
measurement rounds, which has never been achieved before.
This implies that Helios can support arbitrarily large d as
the rate of decoding will always be faster than the rate of
measurement.
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Fig. 6: Average decoding time scales sub-linearly with d. We measure the average decoding time for 3 different noise levels. (Left) The average decoding
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Fig. 7: Distribution of decoding time (T ) with the mean marked with ⇥. Each distribution includes 106 data points. By default d = 13, p = 0.001 and is
unweighted

Das et al [7] calculate an average latency for their AFS
decoder based on memory access cycles and assuming a design
running at 4 GHz. As the number of memory access cycles
grows quadratically with d, the average decoding time per
measurement round of AFS grows O(d2). Similarly, Ueno et
al [10] estimate the decoding time of QECOOL from d = 5
to d = 13 based on SPICE-level simulations with a clock
frequency of 5 GHz. For the given range of d, the decoding
time per measurement round increases quadratically with d.
In comparison, the decoding time of Helios decreases per
measurement round.

We should like to point out that AFS and QECOOL
assume very high clock frequencies, which is key to their
estimated low latency. For example, for d = 11, AFS and
QECOOL respectively report latencies of 42 ns and 8.32 ns
per measurement round. Helios, in contrast, requires 16.2 ns
per measurement round with a 100 MHz clock.

To the best of our knowledge, LILLIPUT [6] is
the only hardware decoder in the literature that provides
implementation-based results, for d = 5. The decoder has
an average time of 21 ns per measurement round, which is
slightly lower than that of Helios for d = 5, i.e., 24.5 ns.
However, as analyzed in §VII, LILLIPUT is not scalable for
d > 5. Our work, in contrast, has successfully demonstrated
the implementation of a d = 21 surface code on a VCU129
FPGA with 11.5 ns per measurement round. The architecture
of Helios can potentially support larger d using a larger FPGA,
for example, d = 29 for Xilinx VU19P [19], and even larger

d using a network of FPGAs.
Our decoder outperforms the two fastest software MWPM

decoder, Sparse Blossom [8] and Fusion Blossom [11], by
an order of magnitude. According to our evaluation, Sparse
Blossom and Fusion Blossom take 160 ns and 295 ns per
measurement round, respectively, for d = 13 and p = 0.1%,
using a single core of an M1 Max processor. In contrast, Helios
achieves an average decoding time of 15 ns per measurement
round under the same conditions, which is more than 60 times
faster than the current state-of-the-art measurement rate [4].

VII. RELATED WORK

There is a large body of literature on fast QEC decoding,
e.g., [23–26]. The most related are solutions that leverage
parallel compute resources.

Fowler [22] describes a method for decoding at the rate of
measurement (O(d)). The proposed design divides the decod-
ing graph among specialized hardware units arranged in a grid.
Each unit contains a subset of vertices and can independently
decode error chains contained within it. The design is based
on the observation that large error patterns spanning multiple
units are exponentially rare, so inter-unit communication is
not frequently required. It, however, paradoxically assumes
that the number of vertices per unit is “sufficiently large”
and a unit can find an MWPM for its vertices within half
the measurement time on average. Not surprisingly, to date,
no implementation or empirical data have been reported for
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this work. Our approach uses vertex-level parallelism and
leverages the same observation that communication between
distant vertices is infrequent.

NISQ+[9] and QECOOL[10] parallelize computation at
the ancilla level, where all vertices in the decoding graph
representing measurements of one ancilla are handled by a
single compute unit. This results in an increase in decoding
time per measurement round as d increases. In contrast, we
allocate a processing element per each vertex, which results
in decreasing decoding time per measurement round with
d at the expense of the number of parallel units growing
O(d3). Furthermore, they both implement the same greedy
decoding algorithm that has much lower accuracy than the
UF decoder used in this work. QECOOL has an accuracy that
is approximately four orders of magnitude lower than that of a
UF decoder [7] and NISQ+ ignores measurement errors further
lowering its accuracy than QECOOL.

Skoric et al. [21], Tan et al. [27] and Wu [11] propose
similar methods of using measurement round-level parallelism,
in which a decoder waits for a large number of measurement
rounds to be completed and then decodes multiple blocks of
measurement rounds in parallel. By using sufficient parallel
resources these methods can achieve a rate of decoding faster
than the rate of measurement. However, the latency of such
approaches grows with the number of measurement rounds
the decoder needs to batch to achieve a throughput equal to
the rate of measurement. In contrast, our approach exploits
vertex-level parallelism and completes the decoding of every
d round of measurements with an average latency that grows
sublinearly with d.

Pipelining can be considered a special form of using com-
pute resources in parallel, i.e., in different pipeline stages. AFS
[7] is a UF decoder architected in three pipeline stages. The
authors estimate the decoder will have a 42 ns latency for
d = 11 surface code, which is 2.4 times higher than what we
report based on implementation and measurement. The authors
assume specialized hardware that is capable of running at
4 GHz and as a result, the decoding latency will be dominated
by memory access. However, no implementation or cycle-
accurate simulation is known for this decoder. Importantly,
pipelining is limited in how much parallelism it can leverage:

the number of pipeline stages. In contrast, the parallelism of
our decoder grows along d

3, which enables us to achieve a
sublinear average case latency.

LILLIPUT [6] is a three-stage look-up-table based decoder
similar to AFS. Look-up-table based decoders can achieve fast
decoding but are not scalable beyond d = 5 as the size of the
look-up table grows O(2d

3

). For d = 7 surface code with
7 measurement rounds, it would require a memory of 2168

Bytes, which is infeasible in any foreseeable future.
Sparse Blossom [8], a C++ MWPM implementation, de-

codes faster than the rate of measurement for d = 17 on
a single CPU core. However, its decoding time per round
grows linearly with d and increases to a few micro-seconds
when the noise level increases, making it impractical for
real-time decoding for higher noise levels and large surface
codes. Fusion Blossom [11] takes a similar approach to Sparse
Blossom and additionally parallelizes the computation at the
measurement round level. By allocating 100 measurement
rounds to each core on a 64-core processor, Fusion Blossom
can decode up to d = 33 faster than the measurement rate.
However, both Fusion blossom and Sparse Blossom has a
decoding time per round higher than that of Helios by orders
of magnitude, which limits their immediate use in quantum
computing.

VIII. CONCLUSION

We describe a distributed design for the Union Find decoder
for quantum error-correcting surface codes, along with Helios,
a system architecture for its realization. Our FPGA-based
implementation of Helios demonstrates empirically that the
average decoding time grows sub-linearly with the d. Using
a VCU129 FPGA, Helios decodes distance 21 surface codes
at an average speed of 11.5 ns per measurement round, the
fastest to the best of our knowledge. Helios is faster and more
scalable than any previously reported surface code decoder
implementations. Our results suggest that by leveraging par-
allel hardware resources, Helios can avoid a growing backlog
of measurements for arbitrarily large surface codes.
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