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Abstract QR decomposition-based constitutive relations for hyperelastic materials have attracted great atten-
tion from the community of solid mechanics, as hyperelastic models in terms of the distortion tensor F̃ have
obvious physical meanings. However, there are few works systematically discussing the material parameter
identification for QR decomposition-based hyperelastic models. In this work, we reformulate the virtual fields
method by considering the internal virtual work as the variation of elastic energy caused by virtual displace-
ments. This approach (together with the QR decompositions) is more concise and easier to be implemented
when compared with the conventional approach, which requires specific stresses, such as Cauchy stress, first or
second Piola–Kirchhoff stress, and conjugate virtual strains to calculate the internal virtual work. To validate
the reformulated virtual fields method, we derive the Mooney–Rivlin model under the QR framework, and
then identify its material parameters for incompressible silicone specimens under biaxial tensile tests. The
results indicate that the proposed virtual fields method works very well for QR decomposition-based models.

1 Introduction

The community of solid mechanics widely adopts the concept of the polar decomposition of the deformation
gradient F = RU = VR, where R represents the rotation; the symmetric tensors U and V describe the stretch.
The QR decomposition (also called upper triangular decomposition), an alternative to the polar decomposition,
was first introduced by McLellan [1,2], where he separated the deformation gradient into an orthogonal matrix
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and an upper triangular matrix with positive diagonal elements. Over the last decade, Srinivasa et al. [3–6]
visited this decomposition anew and proposed mechanical theories based on QR decomposition, in which the
deformation gradient is decomposed as F = QF̃, where Q is a rotation matrix and the upper triangular tensor
F̃ is referred to as the distortion tensor. Note that this distortion tensor was also called “Laplace stretch" by
Freed et al. [7,8].

Compared with the polar decomposition, the QR decomposition has the following advantages: (1) it exploits
natural directions either in the structure of anisotropic materials or in the choice of laboratory axes instead of
the fixed Cartesian coordinate system; (2) the six components of F̃ have direct physical meanings in terms
of pure stretch or simple shear deformations; (3) the upper triangular matrices are closed under operations
of addition and multiplication; (4) the components of the Cauchy stress are related in a simpler manner to
the derivatives of strain energy density function with respect to the components of F̃ when compared with
those based on the invariants of the strain tensor. These advantages make it appealing to use as a measure
of strain. Freed and Srinivasa [5] introduced the logarithm of distortion tensor as a new strain measure and
contrasted it with Hencky strain (the logarithm of stretch) for three sets of experiments including shear-free
deformation, simple shear, and pure shear. The result for simple shear showed that the new strain measure
depended linearly on the shear amount, which was distinct from the non-monotonic behavior of the logarithm
of stretch. Gao and Li [9] proved that there existed in total six possibilities of decomposing the distortion tensor
into a product of matrices for one triaxial stretch and two simple shear deformations and total twenty-four cases
for decomposition of F̃ into a product of matrices for one triaxial stretch and three simple shear deformations.

Constitutive modeling of hyperelastic materials based on the QR decomposition of the deformation gra-
dient (we call this QR framework in the rest of this paper for simplicity) attracted researchers’ attention
in recent years. Li and Gao [10] derived constitutive equations for hyperelastic materials including uncon-
strained and incompressible isotropic materials, incompressible transversely isotropic composite materials,
and incompressible orthotropic composite materials using strain energy density functions based on the QR
decomposition. They demonstrated that relating the Cauchy stress directly to derivatives of the strain energy
density functions with respect to the components of distortion tensor led to simpler and more explicit expres-
sions. Salamatova et al. [11] presented a method to model the deformation of hyperelastic materials under finite
strains with the new strain measure based on QR decomposition. Annin and Bagrov [12] introduced this strain
measure into numerical simulations for an arbitrary three-dimensional model. Freed and Zamani [13] derived
components for a metric tensor, its dual, and their rates which describe any state of deformation in a convected
coordinate system and are expressed in terms of physical attributes arising from QR decomposition. Contin-
uing on this work, they derived a model for porcine coronary sinus tissue, a soft biological tubular structure
[14]. Clayton and Freed [15] developed a novel theoretical framework under the context of QR decomposition
which encompasses viscoelasticity and damage. This is the first time that QR kinematics have been applied
to these phenomena. They further constructed a continuum model for lung parenchyma capable of describing
its thermomechanical response over a large range of loading rates and stress states [16].

Inspired by Li and Gao’s work on neo-Hookean model under the QR framework [10], the Mooney–
Rivlin model [17] is derived and expressed in terms of the distortion tensor F̃. While researchers have started
exploring the QR decomposition-based hyperelastic models, to the best of the authors’ knowledge, there
are only a few pieces of work discussing the method to extract parameters of the QR decomposition-based
hyperelastic models. Since uniaxial testing only is not enough to fully investigate the mechanical properties of
hyperelastic materials [18], we focus on extracting the mechanical properties of hyperelastic materials under
biaxial tensile tests with full-field deformation data using the virtual fields method (VFM), which has proved to
be an accurate and efficient inverse method in parameter identification of invariant-based hyperelastic models
[19–22]. However, implementing the procedure of the conventional VFM directly into the QR decomposition-
based hyperelastic models needs first to calculate stresses and conjugate virtual strains, which requires extra
mathematical derivations and calculations. Therefore, we reformulate the VFM based on the variation of elastic
energy to extract parameters of hyperelastic models under the QR framework.

The rest of the paper is organized as follows. Section 2 briefly reviews QR decomposition-based hyperelastic
models, and proposes the reformulation of VFM based on the variation of elastic energy. Section 3 describes
the experimental setup, materials, testing methods, construction of virtual fields, and procedure of parameter
identification. In Sect. 4, the results of parameter identification of QR decomposition-based hyperelastic models
are presented; Cauchy stress is reconstructed under both the frameworks of polar decomposition and QR
decomposition. Section 5 summarizes the study.
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2 Theory

2.1 Hyperelastic models under QR framework

Under the QR framework, the deformation gradient F can be rewritten as F = fi ⊗ ei [3,9], where ei (i = 1,
2, 3) are three base vectors of a Cartesian coordinate system, and can be uniquely decomposed as F = QF̃,
where Q = e′

i ⊗ ei is a rotation matrix,

e1
′ =

f1

|f1|
, e2

′ =
f2 − (f2 · e1

′)e1
′

|f2 − (f2 · e1
′)e1

′|
, e3

′ = e1
′ × e2

′. (1)

and F̃ is an upper triangular matrix that represents distortion where

[F̃i j ] =

⎡
⎣

F̃11 F̃12 F̃13

0 F̃22 F̃23

0 0 F̃33

⎤
⎦ (2)

with

F̃11 =
√

C11

F̃12 =
C12

F̃11
, F̃22 =

√
C22 − F̃2

12

F̃13 =
C13

F̃11
, F̃23 =

C23 − F̃12 F̃13

F̃22
, F̃33 =

√
C33 − F̃2

23 − F̃2
13. (3)

where Ci j are the components of the right Cauchy–Green deformation tensor C (C = FT F = F̃T F̃). Conse-
quently, the first and second invariants of right Cauchy–Green strain tensor C can be obtained as

I1 = tr(C) = F̃2
11 + F̃2

12 + F̃2
22 + F̃2

13 + F̃2
23 + F̃2

33

I2 =
1

2
((tr(C)2 − tr(C2))

= F̃2
11 F̃2

22 + F̃2
11 F̃2

23 + F̃2
11 F̃2

33 + F̃2
12 F̃2

23 + F̃2
12 F̃2

33

+ F̃2
22 F̃2

13 + F̃2
22 F̃2

33 − 2F̃12 F̃13 F̃22 F̃23 (4)

With I1 and I2 expressed in terms of F̃i j , invariant-based constitutive models for incompressible hyperelastic

materials can be formulated under the QR framework, W = W (C) = W̄ (F̃). By substituting the first invariant
part of Eq. (4) into neo-Hookean model, Li and Gao [10] obtained the strain energy density function as

W̄N H (F̃) = C10(F̃2
11 + F̃2

12 + F̃2
22 + F̃2

13 + F̃2
23 + F̃2

33 − 3) (5)

Inspired by their work on neo-Hookean model, we derive the Mooney–Rivlin model under QR framework
which is expressed as

W̄M R(F̃) = C10(F̃2
11 + F̃2

12 + F̃2
22 + F̃2

13 + F̃2
23 + F̃2

33 − 3)

+ C01(F̃2
11 F̃2

22 + F̃2
11 F̃2

23 + F̃2
11 F̃2

33 + F̃2
12 F̃2

23 + F̃2
12 F̃2

33

+ F̃2
22 F̃2

13 + F̃2
22 F̃2

33 − 2F̃12 F̃13 F̃22 F̃23 − 3) (6)

The components of the distortion tensor F̃ in QR decomposition-based neo-Hookean model and Mooney–
Rivlin model have direct physical meaning in terms of simple shear deformations and stretches [3]. Compared
to conventional invariant-based hyperelastic models built directly upon F, the models based on the QR decom-
position have significant advantages in addressing noisy data [23]. Additionally, the QR decomposition-based
hyperelastic models can be easily extended to orthotropic materials [3], eliminating the challenges associated
with the substantial covariance between different modes of deformation, which the conventional invariant-
based approach cannot avoid [24].
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In this paper, biaxial tests were conducted on very thin silicone membranes; thus, we assume that the
out-of-plane shearing is negligible and the material is incompressible. Therefore, the invariants in Eq. (4) can
be simplified as

I1 = tr(C) = F̃2
11 + F̃2

12 + F̃2
22 + F̃2

33

I2 =
1

2
((tr(C)2 − tr(C2)) = F̃2

11 F̃2
22 + F̃2

11 F̃2
33 + F̃2

12 F̃2
33 + F̃2

22 F̃2
33 (7)

with F̃33 = 1
F̃11 F̃22

. The QR decomposition-based hyperelastic models in Eqs. (5) and (6) can be simplified as

W̄N H (F̃) = C10(F̃2
11 + F̃2

12 + F̃2
22 + F̃2

33 − 3) (8)

and

W̄M R(F̃) = C10(F̃2
11 + F̃2

12 + F̃2
22 + F̃2

33 − 3)

+ C01(F̃2
11 F̃2

22 + F̃2
11 F̃2

33 + F̃2
12 F̃2

33 + F̃2
22 F̃2

33 − 3) (9)

2.2 Reformulation of the VFM using the variation of elastic energy

Assuming that loading processes are quasi-static and the body force is negligible, a conventional VFM [20]
can be expressed as

−

∫

�0

P : Grad(U∗)dV +

∫

Ŵ0

T · U∗d S = 0 (10)

where P is the first Piola–Kirchhoff stress, T represents the traction vector prescribed at the boundary Ŵ0 of the
specimen with the surface area S, U∗ is the virtual displacement vector defined in the reference configuration.
The first term of Eq. (10) is the virtual work done by the internal force, and thus can be considered as internal
virtual work (IVW); the second term of this equation is the virtual work done by the external force and can
be taken as external virtual work (EVW). According to the conventional parameter identification procedure
using VFM [21], for incompressible materials, the first Piola–Kirchhoff stress tensor P can be obtained as

P = −pF−T +
∂W

∂F
(11)

where p is an arbitrary hydrostatic pressure that ensures the material incompressibility, F is the deformation
gradient tensor, and W is the strain energy density function. The IVW expressed in Eq. (10) can also be
expressed in terms of Cauchy stress or the second Piola–Kirchhoff stress together with their conjugate virtual
strains [25].

Note that the conventional VFM must select one of the three types of stresses discussed earlier and their
conjugate virtual strains [25]. When dealing with principal stretch-based hyperelastic models, such as the
Ogden model, which can only yield principal stresses directly, it is necessary to perform stress transformation
[21], which can lead to extra mathematical derivations and calculations. Considering that the VFM is originally
derived based on the principle of virtual work, the IVW is essentially the variation of the elastic energy caused
by virtual displacements. Therefore, we reformulate it in the following form

I V W =

∫

V0

δW
(
x(X), U∗

)
dV (12)

where W is the strain energy density function of the hyperelastic material; δW (x(X), U∗) is the variation of
W caused by the virtual displacement U*. The details of calculating IVW for invariant, principal stretch, and
QR decomposition-based hyperelastic models using the reformulated VFM are discussed in the following
subsections.
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2.2.1 Derivation of IVW for invariant-based hyperelastic models

Invariant-based hyperelastic models, such as neo-Hookean and Mooney–Rivlin models, are the most popu-
lar type of hyperelastic constitutive relations. Therefore, in this section, we derive the IVW for conventional
incompressible invariant-based hyperelastic models, such as Mooney–Rivlin model,1 to demonstrate the con-
venience of the reformulated VFM based on the variation of elastic energy. According to Eq. (12), the IVW
for an incompressible Mooney–Rivlin model can be expressed as

I V WM R =

∫

V0

δW (I1, I2) dV =

∫

V0

∂W (I1, I2)

∂F
: δF dV

=

∫

V0

(
C10

∂ I1

∂F
+ C01

∂ I2

∂F

)
: δF dV (13)

where δF = ∂U∗

∂X
, and U∗ is the virtual displacement. Due to the incompressibility and the membrane assumption

for specimens under tensile tests, the first and second invariants of the right Cauchy–Green deformation tensor
can be written in the form of the components of deformation gradient F

I1 = tr(C) = F2
11 + F2

21 + F2
12 + F2

22 +
1

D2

I2 =
1

2
(tr(C)2 − tr(C2)) = D2 +

F2
11 + F2

21 + F2
12 + F2

22

D2
(14)

with D = 1
F33

= F11 F22 − F12 F21. Note that we can also calculate the IVW in Eq. 13 directly based on

δW (I1, I2) =
∂W (I1,I2)

∂ I1
δ I1 +

∂W (I1,I2)
∂ I2

δ I2 = C10δ I1 + C01δ I2, with δ I1 and δ I2 as

δ I1 = 2

(
F11 −

F22

D3

)
δF11 + 2

(
F12 +

F21

D3

)
δF12

+ 2

(
F21 +

F12

D3

)
δF21 + 2

(
F22 −

F11

D3

)
δF22

δ I2 = 2

(
F22 D +

F11

D2
−

F22(F2
11 + F2

21 + F2
12 + F2

22)

D3

)
δF11

+ 2

(
−F21 D +

F12

D2
+

F21(F2
11 + F2

21 + F2
12 + F2

22)

D3

)
δF12

+ 2

(
−F12 D +

F21

D2
+

F12(F2
11 + F2

21 + F2
12 + F2

22)

D3

)
δF21

+ 2

(
F11 D +

F22

D2
−

F11(F2
11 + F2

21 + F2
12 + F2

22)

D3

)
δF11 (15)

The above derivation of IVW can be easily extended to any incompressible hyperelastic models expressed
in terms of the first and/or the second invariant. The formulation of IVW using Eq. 13 is equivalent to Promma
and Grediac’s approach [20] (see “Appendix A” for the derivation procedure). Therefore, for invariant-based
hyperelastic models, the variation of elastic energy-based virtual fields method (VEE-VFM) is equivalent to
the conventional VFM in the aspect of computational complexity to calculate the IVW. However, a conjugate
pair of stresses and virtual strains are required to be selected explicitly for conventional VFM, while this is
automatically guaranteed in VEE-VFM; thus, VEE-VFM for invariant-based hyperelastic models should be
more friendly to novice researchers and engineers. A flowchart about the comparison between the conventional
VFM and VEE-VFM is shown in Fig. 1. Note that there are many approaches to calculating the IVW using
the conventional VFM, the selected one in Fig. 1b is based on the first Piola–Kirchhoff stress, and is one of
the most popular approaches adopted by researchers [20,21,26,27].

1 The derivation for the IVW of neo-Hookean model is similar (let C01 = 0).
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Fig. 1 a Flowchart for the procedure of parameter identification based on the conventional VFM and the VEE-VFM proposed
in this work. The step colored in yellow denotes the calculation of IVW; b the comparison between the conventional approach
proposed by Promma and Grediac [20] and the VEE-VFM in calculating the IVW
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2.2.2 Derivation of IVW for principal stretch-based hyperelastic models

Principal stretch-based hyperelastic models are another popular type of hyperelastic constitutive relations. For
instance, Ogden model is widely adopted in the modeling of hyperelastic materials. Following conventional
procedures to calculate the IVW [21], the principal first Piola–Kirchhoff stress Pa is determined first; the first
Piola–Kirchhoff stress P can then be obtained based on the principal stress Pa through stress transformation;
the conjugate virtual strain δF is calculated in the next step; finally, the IVW is equal to the integration of the
product of the first Piola–Kirchhoff stress and its conjugate virtual strain

∫
P : δF dV0.

As an alternative approach, we can calculate the IVW based on the variation of elastic energy (see Eq.
(12)). For example, the IVW for principal stretch-based hyperelastic models of compressible materials can be
expressed as

I V W =

∫

V0

δW (λ1, λ2, λ3) dV =

∫

V0

∂W

∂λa

δλa dV

=

∫

V0

∂W

∂λa

1

2λa

[Na ⊗ Na]i j (δFki Fk j + FkiδFk j ) dV (16)

where ∂W
∂λa

is essentially the principal first Piola–Kirchhoff stress, which can be represented by Pa = ∂W
∂λa

; λ2
a are

the eigenvalues (squares of principal stretches) and Na is the corresponding eigenvector (principal referential
directions) of C. For incompressible materials under tensile tests with plane-stress assumption, we can simply
let λ3 = 1/λ1λ2 and substitute it into Eq. (16) to calculate the IVW, where λ3 is the principal stretch in the out-
of-plane direction. It is obvious that the VEE-VFM for the principal stretch-based hyperelastic models has the
following advantages: (a) it can automatically ensure that the stress (Pa) and virtual strain (δλa) are conjugate;
(b) there is no need to transform the principal first Piola–Kirchhoff stress Pa to the first Piola–Kirchhoff stress
P used in conventional VFM. These advantages also apply to QR decomposition-based hyperelastic models,
which will be discussed in the next subsection.

2.2.3 Derivation of IVW for QR decomposition-based hyperelastic models

The main objective of this work is to develop the VFM to extract material parameters of QR decomposition-
based hyperelastic models. Following the conventional VFM and the current theory on QR decomposition-
based hyperelastic models, we need to calculate the rotated Cauchy stress, which needs to be transformed
to the first Piola–Kirchhoff stress to calculate the IVW, and this transformation will include complicated
mathematical derivations. However, we can calculate the IVW for QR decomposition-based hyperelastic
models in a much more concise way using VEE-VFM. Taking the QR decomposition-based Mooney–Rivlin
model as an example, the IVW is expressed as

I V W =

∫

V0

δW̄ (F̃)M R dV =

∫

V0

∂W̄

∂ F̃
: δ F̃ dV

=

∫

V0

(
C10

∂ I1(F̃)

∂ F̃
+ C01

∂ I2(F̃)

∂ F̃

)
: δ F̃ dV (17)

where ∂W̄

∂ F̃
= C10

∂ I1(F̃)

∂ F̃
+ C01

∂ I2(F̃)

∂ F̃
can be considered as a rotated first Piola–Kirchhoff stress P̃ , and the

details about δ F̃ is discussed in the following part.
Assuming that the specimen under tensile tests is an incompressible membrane, we can obtain

F̃11 =

√
F2

11 + F2
21

F̃12 =
F11 F12 + F21 F22√

F2
11 + F2

21

F̃22 =

√
F2

12 + F2
22 −

(F11 F12 + F21 F22)2

F2
11 + F2

21
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F̃33 =

√
1

(F11 F22 − F12 F21)2
= F33 (18)

Therefore, we have

δ F̃11 =
∂ F̃11

∂ F11
δF11 +

∂ F̃11

∂ F21
δF21

δ F̃12 =
∂ F̃12

∂ F11
δF11 +

∂ F̃12

∂ F12
δF12 +

∂ F̃12

∂ F21
δF21 +

∂ F̃12

∂ F22
δF22

δ F̃22 =
∂ F̃22

∂ F11
δF11 +

∂ F̃22

∂ F12
δF12 +

∂ F̃22

∂ F21
δF21 +

∂ F̃22

∂ F22
δF22

δ F̃33 =
∂ F̃33

∂ F11
δF11 +

∂ F̃33

∂ F12
δF12 +

∂ F̃33

∂ F21
δF21 +

∂ F̃33

∂ F22
δF22 (19)

The detailed expression of the above four terms can be found in “Appendix B”. With the elastic energy
W̄ (F̃) expressed in terms of F̃, the derivation of IVW can be easily extended to any incompressible QR

decomposition-based hyperelastic models. Note that given I1(F̃) and I2(F̃) in Eq. (7), we can also calculate
the IVW in Eq. 17 based on

δW̄M R(F̃) =
∂W̄

∂ I1
δ I1(F̃) +

∂W̄

∂ I2
δ I2(F̃) = C10δ I1(F̃) + C01δ I2(F̃) (20)

with

δ I1(F̃) = 2(F̃11δ F̃11 + F̃12δ F̃12 + F̃22δ F̃22 + F̃33δ F̃33)

δ I2(F̃) = 2(F̃11 F̃2
22δ F̃11 + F̃22 F̃2

11δ F̃22 + F̃11 F̃2
33δ F̃11 + F̃33 F̃2

11δ F̃33

+ F̃12 F̃2
33δ F̃12 + F̃33 F̃2

12δ F̃33 + F̃22 F̃2
33δ F̃22 + F̃33 F̃2

22δ F̃33) (21)

Up to now, we have derived the IVW for invariant, principal stretch, and QR decomposition-based hyper-
elastic models using the variation of elastic energy. It is worth noting that the method to calculate the IVW in
the VEE-VFM is more fundamental when compared with conventional VFM, as the IVW in the VEE-VFM is
directly considered as the variation of elastic energy caused by virtual displacements. Therefore, calculating
IVW in the VEE-VFM does not require any particular attention to the conjugate relation between stresses and
virtual strains because it is automatically guaranteed. Additionally, calculating the IVW for principal stretch
and QR decomposition-based hyperelastic models using VEE-VFM does not require any stress transformation,
and thus it is more concise and researchers are less likely to make mistakes.

3 Experiments and application of VEE-VFM

3.1 Experimental setup and specimen preparation

Three cruciform specimens were laser cut from a silicone sheet with a thickness of 0.508 mm (Specialty
Manufacturing Incorporation, Saginaw, MI, USA). The arm width of the specimen was 12.7 mm. The specimen
was mounted on a biaxial testing platform with an initial grip distance of 50.8 mm. As shown in Fig. 2, the testing
system is composed of four linear actuators which can drive the specimen from four directions simultaneously.
Forces were measured by load cells with capacities of 10 lbfs, and displacements were measured by linear
variable differential transformers (LVDTs). A digital PID controller was implemented to provide closed-loop
feedback control of the system. Each specimen was first subjected to ten preconditioning cycles with a global
strain of 1.7 along both axes at a strain rate of 0.01 s−1 and was then allowed to recover for 15 min. Note that the
global strain was calculated as the ratio between the grip separation distance and the initial grip distance. Then,
four strain-controlled biaxial tests were conducted with a maximum value of 1.5, with axial strain ratios of
λ11:λ22 = 1:1, 1:0.5, 0.5:1, 1:1. Note that ‘1’ refers to the maximum strain of 1.5, and ‘0.5’ refers to half of the
maximum strain, which is 1.25. The recovery time was set as 15 min between each test. Images were captured
by an area scan camera with a resolution of 2048 × 2048 pixels2 at every two seconds and synchronized with
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Fig. 2 Biaxial testing platform. (1) Silicone elastomer, (2) clamp, (3) load cell, (4) linear actuator, (5) LVDT

Table 1 DIC settings used in image analysis

Parameters Settings

Subset radius 21 pixels
Step size 7 pixels
Strain window radius 8 pixels
Subset shape function Affine
Interpolation Biquintic B-spline
Matching criterion Normalized cross-correlation(NCC)
Image scale 0.0395 mm/pixel

the data acquisition device. Twenty-six images including the initial undeformed stage were acquired for each
biaxial test. Details about the testing system and protocols can be found in this paper [28]. The last 1:1 test run
(equi-biaxial test) was selected for study in this paper. A Matlab-based DIC software, Ncorr [29], was used for
strain calculation with a subset radius of 21 pixels and a step size of 7 pixels chosen for this study. The DIC
settings used for image analysis are listed in Table 1.

3.2 Construction of virtual fields

Virtual fields were constructed for a cruciform specimen under a biaxial tensile test across a selected Region
of Interest (ROI) as follows [26,30].

U∗(a) =

{
U∗

x =
X−Xc

W

U∗
y = 0

(22a)

U∗(b) =

{
U∗

x = 0
U∗

y =
Y−Yc

H

(22b)

U∗(c) =

⎧
⎨
⎩

U∗
x =

Y−Yc

|Y−Yc|
sin

(
X−Xc

W
π

)
sin

(
Y−Yc

H
π

)

U∗
y =

X−Xc

|X−Xc|
sin

(
X−Xc

W
π

)
sin

(
Y−Yc

H
π

) (22c)

where H and W are halves of the height and the width of the selected cruciform ROI where the virtual
fields are defined, respectively. X and Y represent the coordinates in the global frame regarding the initial
configuration, (Xc, Yc) is the coordinate of the center of the ROI. The first two virtual fields allow us to write
the EVW for the applied load along the x- and y-directions, respectively. For example, the first virtual field
creates uniform virtual displacement at both the left and right boundaries of the selected ROI of the cruciform
specimen, which is 1 mm. Therefore, the EVW can be calculated as the summation of the multiplication
between the applied force Fx and virtual displacement at both left and right boundaries in the x-direction,
which is 2 ∗ Fx ∗ 1 mm. Similarly, the EVW for the second virtual field can be calculated as the summation of
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the multiplication between the applied force Fy and virtual displacement at both top and bottom boundaries
in the y-direction, which is 2 ∗ Fy ∗ 1 mm. The third virtual field activates all the components of the stress
tensor in calculation of the IVW, and the corresponding EVW is zero since the virtual displacements at all the
boundaries are zero. Similar virtual fields can be found in Martins et al.’s [26] and Rossi et al.’s [31] work.

3.3 Parameter identification procedure

Full-field displacement measurements were presented as a discrete number of data points across the surface of
the specimen. To apply the VFM, meshes based on the nodal positions in the deformation field were constructed
using the Delaunay triangulation algorithm. Deformation tensors, F, were calculated for each mesh element
as the average deformation of this element.

The virtual strains under the QR framework, δ F̃, were calculated based on Eq. 19.
As discussed in Sect. 2.2.3, the IVW for QR decomposition-based hyperelastic models can be calculated

based on the variation of elastic energy caused by virtual displacements, I V W =
∫

V0
δW̄ (x(X), U∗) dV .

Thus, the discrete form of the IVW can be expressed as

I V W =

ne∑

i=1

δW̄
(
x(X), U∗

)
· Ai ti (23)

where ne represents the total number of mesh elements; U∗ is the virtual displacement, Ai and ti represent the
area and the thickness of a specific element under the reference configuration, W̄ is the strain energy density
function of the hyperelastic material under QR framework, and δW̄ (x(X), U∗) is the variation of W̄ , which is
denoted as δW̄ (U∗) for simplicity in the following derivation. δW̄ for Mooney–Rivlin model can be expressed
as C10δ I1(F̃) + C01δ I2(F̃), with δ I1(F̃) and δ I2(F̃) given in Eq. 21.

In this work, we constructed three virtual fields (U
∗(a)
k , U

∗(b)
k , U

∗(c)
k ) for each deformation step k =

1, 2, 3 . . . N . According to the principle of virtual work, we have

ne∑

i=1

δW̄ (U
∗(a)
k ) · Ai ti = δWext (U

∗(a)
k )

ne∑

i=1

δW̄ (U
∗(b)
k ) · Ai ti = δWext (U

∗(b)
k )

ne∑

i=1

δW̄ (U
∗(c)
k ) · Ai ti = δWext (U

∗(c)
k )

(24)

where
∑ne

i=1 δW̄ (U
∗(a)
k ) · Ai ti ,

∑ne

i=1 δW̄ (U
∗(b)
k ) · Ai ti , and

∑ne

i=1 δW̄ (U
∗(c)
k ) · Ai ti represent the IVW for the

three virtual fields, respectively, for deformation step k; and δWext (U
∗(a)
k ), δWext (U

∗(b)
k ), and δWext (U

∗(c)
k )

represent the EVW for the three virtual fields, respectively. In the case of QR-based Mooney–Rivlin model,
we obtained the IVW generated from these three virtual fields for each deformation step k as

δW̄ (U
∗(a)
k ) = C10 · δ I1(U

∗(a)
k ) + C01 · δ I2(U

∗(a)
k )

δW̄ (U
∗(b)
k ) = C10 · δ I1(U

∗(b)
k ) + C01 · δ I2(U

∗(b)
k )

δW̄ (U
∗(c)
k ) = C10 · δ I1(U

∗(c)
k ) + C01 · δ I2(U

∗(c)
k ) (25)

Let a1(U
∗(a)
k ) =

∑ne

i=1 δ I1(U
∗(a)
k ) · Ai ti , a2(U

∗(a)
k ) =

∑ne

i=1 δ I2(U
∗(a)
k ) · Ai ti , a1(U

∗(b)
k ) =

∑ne

i=1 δ I1(U
∗(b)
k ) ·

Ai ti , a2(U
∗(b)
k ) =

∑ne

i=1 δ I2(U
∗(b)
k ) · Ai ti , a1(U

∗(c)
k ) =

∑ne

i=1 δ I1(U
∗(c)
k ) · Ai ti , a2(U

∗(c)
k ) =

∑ne

i=1 δ I2(U
∗(c)
k ) ·

Ai ti , we could have

a1(U
∗(a)
k ) · C10 + a2(U

∗(a)
k ) · C01 = δWext (U

∗(a)
k )

a1(U
∗(b)
k ) · C10 + a2(U

∗(b)
k ) · C01 = δWext (U

∗(b)
k )
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a1(U
∗(c)
k ) · C10 + a2(U

∗(c)
k ) · C01 = δWext (U

∗(c)
k ) (26)

By selecting an appropriate set of virtual fields, U∗
k , constant virtual displacement, U∗

k0
, can be formed over

the boundaries at which the resultant of the applied load, Fload , is known. The EVW, δWext (U
∗
k), is calculated

as the multiplication between the measured load at the boundary of the specimen and the constant virtual
displacement. Therefore, it can be expressed as follow

EV W = U∗
k0

·

∫

Ŵ0

Td S = U∗
k0

· Fload (27)

Combing the IVW and EVW terms into the matrix form, we obtained
⎡
⎢⎢⎣

a1(U
∗(a)
k ) a2(U

∗(a)
k )

a1(U
∗(b)
k ) a2(U

∗(b)
k )

a1(U
∗(c)
k ) a2(U

∗(c)
k )

⎤
⎥⎥⎦

[
C10
C01

]
=

⎡
⎢⎢⎣

δWext (U
∗(a)
k )

δWext (U
∗(b)
k )

δWext (U
∗(c)
k )

⎤
⎥⎥⎦ (28)

for each deformation step. Assembling the equations of all the deformation steps, we could have the following
matrix ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1(U
∗(a)
1 ) a2(U

∗(a)
1 )

a1(U
∗(b)
1 ) a2(U

∗(b)
1 )

a1(U
∗(c)
1 ) a2(U

∗(c)
1 )

· · ·

a1(U
∗(a)
N ) a2(U

∗(a)
N )

a1(U
∗(b)
N ) a2(U

∗(b)
N )

a1(U
∗(c)
N ) a2(U

∗(c)
N )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
C10
C01

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δWext (U
∗(a)
1 )

δWext (U
∗(b)
1 )

δWext (U
∗(c)
1 )

· · ·

δWext (U
∗(a)
N )

δWext (U
∗(b)
N )

δWext (U
∗(c)
N )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(29)

Let the 3N × 2 matrix on the left-hand side of the above equation be A, β = [C10, C01]
T , and the 3N -

dimensional vector on the right-hand side be y, Eq. 29 can be expressed as

Aβ = y (30)

Note that the number of equations is more than that of the unknowns (only two unknowns, C10 and C01).
Therefore, we can use the least square method to solve the material parameters C10 and C01 as

β = (AT A)−1AT y (31)

The parameter identification procedure for hyperelastic models under polar decomposition is similar, which
can be found in “Appendix D”.

4 Results

4.1 Strain field measurement and parameter identification

A typical view of the E11, E22, and E12 distributions (components from the Green strain tensor) over the
selected ROI is shown in Fig. 3. The applied global strains along both axes were 1.5. The symmetry of these
distributions provides evidence of the good alignment achieved in the testing platform.

Figures 4 and 5 depict the deformation distributions and distortion distributions across the selected ROI,
respectively. Under the equi-biaxial tension states, the F11 distribution is symmetric to the F22 distribution; the
F12 distribution is symmetric to the F21 distribution, which further demonstrates the good alignment achieved
in the experimental setup. However, the F̃11 distribution is unsymmetrical to the F̃22 distribution under the
QR decomposition framework.

F̃11 is always larger than F11 at each data point due to the existence of the term of F21. However, in the
arm area and the center gage zone where F21 is close to zero, F̃11, F̃12, and F̃22 are nearly equal to F11, F12,
and F22, respectively.
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Fig. 3 Green strain distributions over the selected ROI of Specimen C under an equi-biaxial test. a E11 distribution; b E22
distribution; c E12 distribution. The symmetry of the strain distributions denotes that good alignment was achieved in the biaxial
system

Fig. 4 Deformation gradient F distributions (polar decomposition) over the selected ROI of Specimen C under an equi-biaxial
test. a F11 distribution; b F22 distribution; c F12 distribution; d F21 distribution. The symmetry of the deformation distributions
denote that good alignment was achieved in the biaxial system
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Fig. 5 Distortion tensor F̃ distributions (QR decomposition) over the selected ROI of Specimen C under an equi-biaxial test. a

F̃11 distribution; b F̃22 distribution; c F̃12 distribution

Parameters of hyperelastic models were obtained from full-field deformation data observed in biaxial
tensile tests for three specimens. Since each hyperelastic model and its corresponding QR form are math-
ematically equivalent, the extracted material parameters for each pair of models should be equal to each
other. The parameters of the conventional and QR decomposition-based neo-Hookean models are the same
(C10 = 0.2117, 0.2125, 0.2123 MPa for three specimens); the parameters of the conventional and QR
decomposition-based Mooney–Rivlin models are also the same (C10 = 0.1741, 0.1761, 0.1763 MPa and
C01 = 0.0440, 0.0423, 0.0416 MPa for three specimens), which indicate that the proposed VFM works well
for QR decomposition-based hyperelastic models.

4.2 Stress reconstruction

Cauchy stress under both polar decomposition and QR decomposition frameworks were reconstructed across
the selected ROI based on the deformation measurement and extracted parameters. Cauchy stress under the
polar decomposition framework is expressed as

σ =
∂W

∂F
FT − pI (32)

The rotated Cauchy stress under QR decomposition is expressed as

σ̃ =
∂W̄

∂F̃
F̃

T
− p̃I (33)

where p̃ is the hydrostatic pressure.

σ̃11 =
∂W̄

∂ F̃11
F̃11 +

∂W̄

∂ F̃12
F̃12 − p̃

σ̃22 =
∂W̄

∂ F̃22
F̃22 − p̃

σ̃33 =
∂W̄

∂ F̃33
F̃33 − p̃

σ̃12 =
∂W̄

∂ F̃12
F̃22 (34)

Herein, p̃ = 2C10 F̃2
33 + 2C01 F̃2

33(F̃2
11 + F̃2

22 + F̃2
12) with F̃33 = 1

F̃11 F̃22
.

Cauchy stress distributions for the two models under polar decomposition and QR decomposition are
presented in Figs. 6 and 7, respectively. Under the equi-biaxial tension, the σ11 distribution is symmetric to
the σ22 distribution; however, the σ̃11 distribution is unsymmetrical to the σ̃22 distribution.
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Fig. 6 Cauchy stress distributions (under ploar decomposition) over the selected ROI of Specimen C under an equi-biaxial test. a
σ11 distribution; b σ22 distribution; c σ12 distribution. Stress were reconstructed based on full-field deformation data and extracted
material parameters

Fig. 7 Cauchy stress distributions (under QR framework) for Specimen C under an equi-biaxial test. a σ̃11 distribution; b σ̃22
distribution; c σ̃12 distribution
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5 Summary

QR decomposition-based hyperelastic models proposed in recent years have unique advantages over conven-
tional one, as the components of the distortion tensor have clear physical meanings. However, systematic works
on parameter identification of these hyperelastic models are lacking. In this work, we propose the VEE-VFM
which considers the IVW of the VFM as the variation of elastic energy caused by virtual displacements. This
fundamental explanation of the IVW leads to two main advantages of VEE-VFM over the conventional one.
(a) Conventional VFM requires Cauchy stress, the first, or second Piola–Kirchhoff stress, and their conjugate
virtual strains to calculate the IVW, while there are no specific requirements on the types of stresses in VEE-
VFM. For conventional invariant-based hyperelastic models, this advantage may not be obvious, but for the
QR decomposition and principal stretch-based hyperelastic models, which cannot result in Cauchy stress and
Piola–Kirchhoff stress directly, the VEE-VFM can avoid stresses transformations and thus is more concise. (b)
VEE-VFM can automatically guarantee the conjugate relation between the stresses and virtual strains used to
calculate the IVW. Therefore, the VEE-VFM is easier to be implemented than conventional VFM, particularly
for QR decomposition and principal stretch-based hyperelastic models. Finally, we extract the parameters
of the derived Mooney–Rivlin model under the QR framework to validate the proposed VEE-VFM. As this
method can be easily extended to parameter identification of any other QR decomposition-based hyperelastic
models, in the future, we will extend it to anisotropic models.
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Appendix A Derivation of IVW based on Promma and Grediac’s approach

Assuming that the material was incompressible and a plane-stress condition, we can have the deformation
gradient tensor expressed as

F =

⎡
⎣

F11 F12 0
F21 F22 0
0 0 1

D

⎤
⎦ (A.1)

with D = F11 F22 − F12 F21. Therefore, we have

F−T =
1

D

⎡
⎣

F22 −F21 0
−F12 F11 0

0 0 D2

⎤
⎦ (A.2)

and

C = FT F =

⎡
⎣

F2
11 + F2

21 F11 F12 + F21 F22 0
F11 F12 + F21 F22 F2

12 + F2
22 0

0 0 1
D2

⎤
⎦ (A.3)

According to Eq. 32, Cauchy stress components of Mooney–Rivlin model are

σ11 = 2C10

(
F2

11 + F2
12 −

1

D2

)
+ 2C01

(
D2 −

F2
21

D2
−

F2
22

D2

)

σ22 = 2C10

(
F2

21 + F2
22 −

1

D2

)
+ 2C01

(
D2 −

F2
11

D2
−

F2
12

D2

)

σ12 = 2C10(F12 F22 + F11 F21) + 2C01
1

D2 (F12 F22 + F11 F21) (A.4)

The first Piola–Kirchhoff stress P is derived from Cauchy stress tensor σ using the following expression:

P = JσF−T (A.5)
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with J = 1 for incompressible materials. We obtain the first Piola–Kirchhoff stress whose components are
expressed as below

P11 = 2C10

(
−

F22

D3
+ F11

)
+ 2C01

(
−

F22

D3
(F2

11 + F2
21 + F2

12 + F2
22) + F22 D +

F11

D2

)

P12 = 2C10

(
F21

D3
+ F12

)
+ 2C01

(
F21

D3
(F2

11 + F2
21 + F2

12 + F2
22) − F21 D +

F12

D2

)

P21 = 2C10

(
F12

D3
+ F21

)
+ 2C01

(
F12

D3
(F2

11 + F2
21 + F2

12 + F2
22) − F12 D +

F21

D2

)

P22 = 2C10

(
−

F11

D3
+ F22

)
+ 2C01

(
−

F11

D3
(F2

11 + F2
21 + F2

12 + F2
22) + F11 D +

F22

D2

)
(A.6)

The derivative of virtual displacement2 is written as follows:

∂U*

∂X
=

∂δU

∂X
= δ

∂U

∂X
(A.7)

The virtual displacement field δu is independent of the actual displacement field u and can be expressed in
terms of spatial coordinates or material coordinates. Therefore, we have δU = δu

δ
∂U

∂X
= δ

∂u

∂X
= δ(F − I) = δF (A.8)

Therefore, the IVW for a single mesh element within the body of the specimen is written as follows:

P :
∂U*

∂X
= P : δF = P11δF11 + P12δF12 + P21δF21 + P22δF22 (A.9)

After plugging the components of the first Piola–Kirchhoff stress (Eq. A.6) into the above equation, we can
find the formulation of IVW for hyperelastic materials based on the conventional VFM proposed by Promma
and Grediac [20] is equivalent to the formulation of IVW in VEE-VFM (Eq. 13).

Appendix B Detailed expression of δ F̃

δ F̃11 =
∂ F̃11

∂ F11
δF11 +

∂ F̃11

∂ F21
δF21 (B.1)

with

∂ F̃11

∂ F11
=

F11√
F2

11 + F2
21

,
∂ F̃11

∂ F21
=

F21√
F2

11 + F2
21

(B.2)

δ F̃12 =
∂ F̃12

∂ F11
δF11 +

∂ F̃12

∂ F12
δF12 +

∂ F̃12

∂ F21
δF21 +

∂ F̃12

∂ F22
δF22 (B.3)

with

∂ F̃12

∂ F11
=

F21(F12 F21 − F11 F22)

(F2
11 + F2

21)

√
F2

11 + F2
21

∂ F̃12

∂ F21
=

F11(F11 F22 − F12 F21)

(F2
11 + F2

21)

√
F2

11 + F2
21

∂ F̃12

∂ F12
=

F11√
F2

11 + F2
21

2 Promma and Grediac used U∗ to denote the virtual displacement, we used δU in this section.
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∂ F̃12

∂ F22
=

F21√
F2

11 + F2
21

(B.4)

δ F̃22 =
∂ F̃22

∂ F11
δF11 +

∂ F̃22

∂ F12
δF12 +

∂ F̃22

∂ F21
δF21 +

∂ F̃22

∂ F22
δF22 (B.5)

with

∂ F̃22

∂ F11
=

F22(F11 F22 − F12 F21)(F2
11 + F2

21) − F11(F11 F22 − F12 F21)
2

(F2
11 + F2

21)
2
√

(F11 F22 − F12 F21)2

√
F2

11 + F2
21

∂ F̃22

∂ F21
=

F12(F12 F21 − F11 F22)(F2
11 + F2

21) − F21(F11 F22 − F12 F21)
2

(F2
11 + F2

21)
2
√

(F11 F22 − F12 F21)2

√
F2

11 + F2
21

∂ F̃22

∂ F12
=

F21(F12 F21 − F11 F22)√
F2

11 + F2
21

√
(F11 F22 − F12 F21)2

∂ F̃22

∂ F22
=

F11(F11 F22 − F12 F21)√
F2

11 + F2
21

√
(F11 F22 − F12 F21)2

(B.6)

δ F̃33 =
∂ F̃22

∂ F11
δF11 +

∂ F̃33

∂ F12
δF12 +

∂ F̃33

∂ F21
δF21 +

∂ F̃33

∂ F22
δF22 (B.7)

with

∂ F̃33

∂ F11
= −

F33

√
(F11 F22 − F12 F21)2

(F11 F22 − F12 F21)3

∂ F̃33

∂ F21
= −

F12

√
(F11 F22 − F12 F21)2

(F11 F22 − F12 F21)3

∂ F̃33

∂ F12
= −

F21

√
(F11 F22 − F12 F21)2

(F11 F22 − F12 F21)3

∂ F̃33

∂ F22
= −

F11

√
(F11 F22 − F12 F21)2

(F11 F22 − F12 F21)3
(B.8)

Appendix C Incompressibility justification

Uniaxial tensile tests were performed on rectangular silicone elastomer. Three specimens were tested up to
60% strain under a strain rate of 1%/s. Ncorr, a Matlab-based digital image correlation software, was used

Fig. 8 The change of the ratio between the current and initial volume of the specimens with the stretch ratio (averaged from three
specimens) under uniaxial tension
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for strain measurement across the surface of the specimens. A rectangular ROI which was far away from the
clamps was selected for data analysis. The strain within this region was uniformly distributed. Details about the
testing protocol can be found in this paper [28]. The stretch ratio along the stretching direction (λx ) and stretch
ratio across the stretching direction (λy) were extracted and averaged over the selected ROI. Since specimens
were under uniaxial tension, we assumed that λy = λz . Therefore, the ratio of the current volume over the
initial volume was calculated as λx ∗λy

2. Figure 8 shows that the ratio between the current and initial volumes
slightly increases with the stretch ratio. The maximum change of the volume occurred in the last deformation
step, which was about 0.46%. This small difference can be considered negligible. Therefore, the material can
be assumed to be incompressible.

Appendix D Parameter identification with VEE-VFM for Mooney–Rivlin model under polar decompo-
sition

After extracting the full-field displacement data and forming triangular mesh elements based on nodal positions,
the deformation gradient and virtual strain can be calculated respectively. The integral of the IVW for a
hyperelastic model under polar decomposition in Eq. 12 can be approximated by a discrete sum as follows

I V W =

ne∑

i=1

δW (x(X) , U∗) · Ai ti (D.1)

where ne represents the total number of mesh elements; and Ai and ti represent the area and the thickness of a
specific element under the reference configuration, which do not depend on time; W is the strain energy density
function of the hyperelastic material. Note that δW for Mooney–Rivlin model under the polar decomposition
is expressed as C10δ I1 + C01δ I2. δ I1 and δ I2 can be calculated based on Eq. 15.
For each deformation step k, we can construct one virtual field U∗

k . According to the principle of virtual work,
we have

ne∑

i=1

δW (U∗
k) · Ai ti = δWext (U

∗
k) (D.2)

where
∑ne

i=1 δW (U∗
k) · Ai ti represents the sum of the IVW of all the mesh elements, and δWext (U

∗
k) represents

the EVW. In the case of Mooney–Rivlin model, δW (U∗
k) is expressed as

δW (U∗
k) = C10 · δ I1(U

∗
k) + C01 · δ I2(U

∗
k) (D.3)

Therefore, we can have

ne∑

i=1

(C10 · δ I1(U
∗
k) + C01 · δ I2(U

∗
k)) · Ai ti = δWext (U

∗) (D.4)

Note that we constructed three virtual fields in this paper. The rest of the procedure to identify material
parameters is the same as that described in Sect. 3.3.
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