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Abstract This work presents the development of a two-way coupled flexoelectric plate theory starting from
a 3D gradient electromechanical theory. The gradient electromechanical theory considers three mechanical
length scale parameters and two electric length scale parameters to account for both mechanical and electrical
size effects. Variational formulation is used to derive the plate governing equations and boundary conditions
considering Kirchhoff’s assumptions. A computationally efficient C2 continuous non-conforming finite ele-
ment is developed to solve the resulting plate equations. To assess the accuracy of the non-conforming finite
element framework, the results are compared with Navier-type analytical solution for a simply supported
flexoelectric plate. The finite element framework is also validated with experimental results in the existing
literature for a passive micro-plate. The results show excellent agreement with both analytical and experimental
results. Furthermore, computational efficiency of the non-conforming element is compared with the standard
conforming element, which contains greater degrees of freedom and continuity across all elemental edges. It
was observed that the non-conforming element is almost twice as fast as the conforming element without a sig-
nificant loss of accuracy. The 2D finite element formulation is subsequently used to analyze the size-dependent
response of flexoelectric composite plates operating in both sensor and actuator modes. Various parametric
studies are performed to analyze the effect of boundary conditions, length scale parameters, size of the plate,
flexoelectric layer thickness ratio, etc., on the response of flexoelectric plate-type sensors and actuators. It is
found that the effective electromechanical coupling increases in a flexoelectric plate at microscale (due to the
size effects), and it is higher than standard piezoelectric materials for plate thickness h ≤ 8 µm.

Keywords Flexoelectric plates · Finite element method · Non-conforming element · Strain gradient theory ·
Micro-sensors and actuators

1 Introduction

Direct flexoelectric effect is defined as spontaneous polarization observed in thin dielectric structures under
applied strain gradient [1]. Conversely, these materials undergo deformation in the presence of electric field
gradient [2]. This effect is observed in dielectric materials at micro- and nanoscales. Flexoelectric effect is
often compared with the piezoelectric effect, which is found only in non-centrosymmetric dielectric crystals.
Unlike the piezoelectric effect, flexoelectric effect can also occur in centro-symmetric dielectric materials
[3]. Applied strain gradient breaks the charge symmetry of a flexoelectric crystal, resulting in a spontaneous
polarization [2]. Furthermore, piezoelectric materials exhibit large electromechanical coupling at macro-scale,
whereas flexoelectric effect is significant only in thin structures and is comparable to piezoelectric coupling
at micro-/nanoscales [4,5]. Thus, flexoelectric materials are used as micro-transducers in MEMS and NEMS
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applications [6]. Specifically, they have been explored in applications such as micro-actuators [7,8], structural
health monitoring [9], vibration control [10], curvature sensors [11], and energy harvesting [12].

Modeling of flexoelectric material-based structures and devices has been explored extensively in recent
times [13–15]. The flexoelectric response of a dielectric material is dependent on the dimensions of the
structure as the effect becomes significant only at smaller scales, i.e., at micro- and nanoscales [2,16,17].
Various size-dependent 3D continuum strain-gradient theories have been developed in the literature, wherein the
mathematical form of the governing equations and boundary conditions are obtained using variational principle.
Sahin and Dost [18] developed one of the earliest three-dimensional continuum flexoelectric theories, in
which the independent electrical variables were polarization and polarization gradient, along with deformation
gradient and its gradient as the mechanical variables. A linearized theory was also presented for infinitesimal
strains and small polarization charges. Maranganti et al. [19] proposed a linear flexoelectric theory for centro-
symmetric dielectrics considering free energy as a function of double deformation gradient and polarization. In
this theory, two material length scale parameters were considered in the constitutive formulation for dilatational
and rotational gradients. Majdoub et al. [3] presented a linear size-dependent piezo-flexoelectric theory for
nanostructures. The authors used molecular dynamics to analyze a cantilever beam and observed that the
effective electroelastic coefficient increases at nanoscale due to the size dependence of flexoelectric effect. In the
above-mentioned continuum flexoelectric theories, along with some further developments [20–22], the focus
of the study was on the modeling of direct flexoelectric effect and its applications. Converse flexoelectric effect
is typically ignored as it is assumed to be insignificant compared to the direct effect. However, experimental
studies by Abdollahi et al. [23] have shown that the converse flexoelectric effect may give rise to a large localized
electroelastic response in all dielectric materials at micro-/nanoscales. They concluded that neglecting converse
flexoelectricity may result in an incorrect estimation of piezoelectric coefficient using piezoresponse force
microscopy. Moreover, analogous to the mechanical size effects which result in a stiffer material at microscale,
recent studies have demonstrated an increase in the electrical permittivity of the material at smaller scales [17].
In order to observe these trends in the modeling of flexoelectric materials, Joshan and Santapuri [24] developed
a two-way coupled gradient electromechanical theory for flexoelectric materials that incorporates both direct
and converse flexoelectric effects. In this theory, three mechanical length scale parameters and two electrical
length scale parameters were considered to model both mechanical and electric size effects. The theory was
subsequently used to analyze curved flexoelectric beams.

Based on the polarization-strain gradient theories, one-dimensional beam models have been developed
and have been extensively studied in the last decade. Yan and Jiang [5] developed an Euler–Bernoulli beam
model for piezo-flexoelectric nanobeams. They analyzed the bending of flexoelectric nanobeams for different
boundary conditions. Based on the Euler–Bernoulli flexoelectric beam model, Deng et al. [14] developed a
flexoelectric theory for energy harvesting and found that the efficiency of the flexoelectric energy harvesters
increases with a decrease in the sample size. This effect is also observed by Wang and Wang [25], and they found
that the voltage output contributed by flexoelectric effect is five times higher than that by piezoelectric effect
at the nanoscale. Yue et al. [26] developed Timoshenko beam model for bending and free vibration analysis
of simply supported piezo-flexoelectric beams considering surface effects. In recent literature, beam models
incorporating converse flexoelectricity have been developed [27–30]. Joshan and Santapuri [24] developed
an electromechanically coupled C2 continuous beam finite element model for curved flexoelectric beams
considering both direct and converse flexoelectric effects.

Two-dimensional flexoelectric theories have also been an area of interest for researchers since MEMS-
and NEMS-based actuator and sensor devices utilize thin patches of smart materials. As one of the earliest
works in two-dimensional modeling of flexoelectric plates, Zhang et al. [31] presented classical plate theory
(CLPT) to study the effect of flexoelectricity on bending analysis of piezoelectric nano-plates. They solved the
governing equations for a clamped plate using Ritz method and found that flexoelectric effect is prominent in
thinner plates of smaller sizes. Yang et al. [15] analyzed the bending and free vibration response of flexoelectric
plates using CLPT. The Navier-type analytical solution was used to analyze the effect of thickness of plate on
effective flexoelectric response. Li et al. [32] analyzed actuator response of a simply supported axisymmetric
circular plate. The size effects were considered using strain gradient elasticity theory. Ebrahimi and Barati [33]
used Eringen’s non-local elasticity theory for vibration analysis of flexoelectric plates considering surface and
thermal effects. Qi et al. [34] analyzed the size-dependent static and dynamic response of flexoelectric annular
plate using strain gradient elasticity theory. Chen et al. [35] presented a CLPT energy harvester model for
flexoelectric plates. Amir et al. [36] analyzed the effects of shear deformation on free vibration response of the
flexoelectric sandwich plate using first-order shear deformation theory. These two-dimensional plate models
are based on polarization-strain gradient flexoelectricity theory, i.e., free energy is considered to be a function
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of polarization and strain gradient. However, compared to polarization, electric field is easier to control and
measure in practical applications. Thus, electric field-strain gradient-based flexoelectric theories have recently
been developed in the literature [37–39].

In the available literature, most of the existing flexoelectric plate models neglect converse flexoelectric
effect. Only a few articles are available on plate theories considering converse flexoelectricity [40,41]. More-
over, most of these flexoelectric plate theories do not consider the electrical size effects that contribute to an
increase in electric permittivity of the material at lower scales [17]. These effects were recently considered in
Joshan and Santapuri [24] wherein a gradient electromechanical theory was developed for thin flexoelectric
solids considering both direct and converse flexoelectric effects. This two-way coupled electromechanical
theory is developed considering an electric field-based free energy function as they are easier to control and
measure in sensor/actuator applications. This theory also incorporates both mechanical and electrical size
effects.

In this work, a fully coupled flexoelectric plate theory is developed starting from the gradient electromechan-
ical theory presented in Joshan and Santapuri [24]. A computationally efficient C2 continuous non-conforming
element is developed to solve the resulting 2D plate governing equations for different boundary and loading
conditions. The theory is used to analyze flexoelectric composite plates consisting of active flexoelectric and
passive (non-flexoelectric) layers operating in sensor and actuator modes. A combination of linear and quadratic
terms is considered for modeling the variation of electrostatic potential across the thickness of the flexoelectric
layer. Firstly, our finite element results are verified with Akgoz and Civalek [42] for the case of a passive
micro-plate. Further, the flexoelectric plates are analyzed in two different modes: (1) sensor mode, wherein
the electrostatic potential output is analyzed for flexoelectric plates under applied mechanical load, and (2)
actuator mode, wherein the deformation of the flexoelectric plate is studied under applied electric potential.
An analytical solution is also developed for simply supported plates to verify the accuracy of our finite element
results. Our results for the non-conforming element were found to be 99.9% accurate in comparison with the
analytical solution. Furthermore, computational efficiency of the non-conforming element is compared with
the conforming element, and it is noted that the non-conforming element is 1.85 times faster than the conform-
ing element. The conforming element is marginally more accurate as it contains greater degrees of freedom
with C2 continuity imposed on all elemental boundaries. Various parametric studies are performed to analyze
the effect of boundary conditions, thickness of the plate, mechanical and electric length scale parameters on the
sensor and actuator response of flexoelectric composite plates. The contribution of converse flexoelectricity in
the response of a thin sensor for different thickness values of the flexoelectric plate is analyzed and is found
to be around 20% of the total response. Application of our computationally efficient finite element framework
towards the design of flexoelectric plate sensors and actuators is demonstrated through different examples.

2 Mathematical formulation

This section presents the development of a fully coupled flexoelectric plate theory starting from a 3D gradient
electromechanical formulation. In addition to the mechanical size effects, this theory also considers the often
neglected electrical size effects [17]. Recently, Joshan and Santapuri [24] developed a gradient electromechan-
ical theory for thin beam structures considering both direct and converse flexoelectric effects. The two-way
coupled electromechanical theory is developed considering a free energy function dependent on electric field
and its gradient.

2.1 3D governing equations for a flexoelectric solid

In this section, a brief review of 3D governing equations and boundary conditions for a flexoelectric solid based
on gradient electromechanical theory [24] is presented. The equilibrium governing equations and boundary
conditions are derived using the principle of minimum potential energy. The expression for total potential
energy in a flexoelectric solid is given by

� =

∫

V0

�(Si j , Gi jk, Ei , Ki j ) dV − ω, (1)

where V0 represents the total volume occupied by the flexoelectric solid, dV is the infinitesimal volume element,
and ω denotes the work done by the externally applied mechanical and electric loads. The free energy function
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� is expressed in terms of the infinitesimal strain tensor Si j , strain gradient Gi jk , electric field Ei , and the
electric field gradient Ki j . The infinitesimal strain tensor and its gradient are defined as:

Si j =
1

2
(ui, j + u j,i ), Gi jk = Si j,k =

1

2
(ui, jk + u j,ik), (2)

where ui represents the components of the mechanical displacement vector and ui, j = ∂ui/∂x j denote the
components of displacement gradient tensor. Similarly, the electric field vector Ei and electric field gradient
tensor Ki j are given by:

Ei = −φ,i , Ki j = Ei, j = −φ,i j , (3)

where φ represents the scalar electrostatic potential. The governing equations are obtained by setting the first
variation of potential energy (1) to zero, i.e.,

δ� = 0 ⇒

∫

V0

δ�(Si j , Gi jk, Ei , Ki j ) dV − δω = 0, (4)

where δ� denotes the first variation of the free energy function given by [24]

δ� = Ti jδSi j + Hi jkδGi jk − DiδEi − Bi jδKi j , (5)

and

Ti j =
∂�

∂Si j

, Hi jk =
∂�

∂Gi jk

, Di = −
∂�

∂ Ei

, Bi j = −
∂�

∂Ki j

. (6)

Here, Di denotes the components of electric displacement vector and Bi j denotes the higher-order electric
displacement tensor components; Ti j and Hi jk represent the Cartesian components of the Cauchy stress tensor
and the higher-order stress tensor, respectively. The variation of free energy function δ� can be expressed in
terms of strain and electric potential variables using (2)– (3) as

δ� = Ti jδui, j + Ĥi jkδui, jk + Diδφ,i + Bi jδφ,i j , (7)

where Ĥi jk =
1

2
(Hi jk + H j ik). Finally, the first variation of the work done by external electroelastic loads,

δω, is defined as

δω =

∫

V0

[

f b
i δui + ρvδφ

]

dV +

∫

∂V t
0

ta
i δui dA +

∫

∂Ve
0

ρsδφ dA, (8)

where ∂V
t
0 represents a subset of the boundary ∂V0 on which the applied traction ta

i is prescribed and ∂V
e
0

represents the subset on which the surface charge density ρs is prescribed. Also, f b
i represents the components

of the body force and ρv denotes the applied volumetric charge density. The governing equations and boundary
conditions are obtained by setting the first variation of potential energy to zero. The detailed derivation is
discussed in Joshan et al. [24]. The 3D governing equations, applicable at every point within V0, are given by:

δui : Ti j, j − Ĥi jk, jk = − f b
i , (9)

δφ : Di,i − Bi j, j i = −ρv. (10)

The boundary conditions, specified at any point on ∂V0, may be prescribed in terms of applied traction/charges
or displacement/electric potential and their derivatives as follows:

Ti j n j − Ĥi jk, j nk + n j nk Ĥi jk 	p(n p) − 	k(n j Ĥi jk) = ta
i or ui = u∗

i or ua
i , (11)

Ĥi jkn j nk = 0 or u′
i = u′∗

i , (12)

Di ni − Bi j, j ni + n j ni Bi j 	p(n p) − 	i (n j Bi j ) = ρs or φ = φ∗, (13)

Bi j ni n j = 0 or φ′ = φ′∗. (14)

Here, ni denotes the unit normal to the boundary surface ∂V0, 	 j (·) and (·)′ denote the surface gradient
and the normal gradient (derivative along the surface normal) operators, respectively, and the superscript * is
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used to denote the specified fixed value of the quantity at the boundary. Finally, the edge boundary conditions,
prescribed on the sharp edges of the boundary, are given by

[[n j Bi j ni ]] = 0 or φ = 0, (15)

[[n j Ĥi jknk]] = 0 or ui = 0, (16)

where nk is the surface unit vector normal to the edge and [[·]] denotes the jump in the value of the enclosed
quantity across the sharp edge.

2.1.1 Linear constitutive model of an isotropic flexoelectric solid

The electroelastic free energy function � corresponding to a linear flexoelectric material considering both
direct and converse flexoelectric effects is given by [24]

� =
1

2
(ci jkl Si j Skl + gi jklmnGi jk Glmn − ǫi j Ei E j − ki jkl Ki j Kkl) − ei jk Ei S jk

− fi jkl Ei G jkl − hi jkl Ki j Skl , (17)

where ci jkl represents the components of fourth-order stiffness tensor, gi jklmn denotes higher-order stiffness
tensor (relating strain gradient and higher-order stresses), ǫi j is the electric permittivity tensor, ki jkl repre-
sents the higher-order electric permittivity tensor, ei jk is the piezoelectric coupling tensor, fi jkl is the direct
flexoelectric coupling tensor and hi jkl is the converse flexoelectric coupling tensor. The corresponding linear
constitutive equations are obtained as follows [24]:

Ti j =
∂�

∂Si j

= ci jkl Skl − ei jk Ek − hi jkl Kkl , (18)

Hi jk =
∂�

∂Gi jk

= gi jklmnGlmn − fi jkl El , (19)

Di = −
∂�

∂ Ei

= ei jk S jk + fi jkl G jkl + ǫi j E j , (20)

Bi j = −
∂�

∂Ki j

= ki jkl Kkl + hi jkl Skl . (21)

The linear constitutive equations (18)–(21) can be specialized to isotropic materials by reducing the material
constants ci jkl , gi jklmn , ǫi j , ki jkl , fi jkl , and hi jkl to their isotropic forms. The resulting isotropic equations are
[24]:

Ti j =λδi j Skk + 2μSi j − h1δi j Kkk − 2h2 Ki j , (22)

Hi jk = 2a1δi j Gmmk +
1

2
a2(2δi j Gkmm + δik Gmmj + δ jk Gmmi ) + a3(δ jk Gimm

+ δik G jmm) + 2a4Gi jk + a5(G jki + Gki j ) − f1(δ jk Ei + δik E j ) − f2δi j Ek, (23)

Di = ǫEi + 2 f1Gi j j + f2G j j i , (24)

Bi j = k1δi j Kkk + 2k2 Ki j + h1δi j Skk + 2h2Si j , (25)

where λ and μ denote elastic Lame’s constants; ai (i = 1, 2, ...5) are the higher-order stiffness constants;
ǫ denotes the dielectric material constant, k1 and k2 represent higher-order dielectric constants; f1 and f2
are coupling constants corresponding to direct flexoelectric effect; and h1 and h2 correspond to converse
flexoelectric effect. The piezoelectric coupling tensor ei jk vanishes for isotropic materials and in general
for any material with a centrosymmetric crystal structure [43]. In the gradient electromechanical theory, the
material constants ai (i = 1, 2, ..5) describing the relationship between higher-order stress and strain gradient
(Eq. 23) are expressed as functions of characteristic length scale parameters l0, l1 and l2 as follows:

a1 = μ

(

l2
0 −

1

15
l2
1 −

1

2
l2
2

)

, a2 = μ

(

l2
2 −

4

15
l2
1

)

, a3 = μ

(

−
4

15
l2
1 −

1

2
l2
2

)

,

a4 = μ
(1

3
l2
1 + l2

2

)

, a5 = μ
(2

3
l2
1 − l2

2

)

, (26)



Y. S. Joshan, S. Santapuri

Fig. 1 Schematic of a composite flexoelectric plate consisting of a passive substrate and a flexoelectric layer of thickness h f

These relationships were derived in Lam et al. [44] using the reduced form of constitutive equations for a linear
elastic material (no electric field coupling), i.e.,

pi = 2μl2
0γi , τ 1

i jk = 2μl2
1η1

i jk, ms
i j = 2μl2

2χ s
i j , (27)

where pi , τ 1
i jk and ms

i j are the work conjugates of the dilatation gradient vector γi , the deviatoric stretch tensor

η1
i jk , and the symmetric part of curvature tensor χ s

i j , respectively. We note that there are several other possible
formulations available in the literature to describe the length scale effects [19,45–50]. In this work, we consider
two additional electrical length scale parameters le

0 and le
1 to describe the two higher-order dielectric constants

k1 and k2 given by

k1 = (le
0)

2ǫ, k2 = (le
1)

2ǫ, (28)

where ǫ represents the dielectric permittivity of the material.

2.2 Modeling of flexoelectric composite plates

In what follows, a fully coupled classical plate theory is presented for the analysis of flexoelectric composite
plates. A rectangular flexoelectric plate consisting of passive (non-flexoelectric) and flexoelectric layers is
modeled in Cartesian coordinate system (α1, α2, α3) as shown in Fig. 1. The coordinate α3 is along the thickness
of plate and normal to the mid-plane A0 at α3 = 0. Two-dimensional coordinates (α1, α2) are used to define
the position of any point on A0. The dimensions of flexoelectric plate along α1 and α2 directions are taken as
a and b, respectively. Total thickness of the plate and the thickness of the flexoelectric layer are denoted by h

and h f , respectively.

Displacement field variation: The flexoelectric composite plate is modeled using the classical plate theory
(CLPT) [31,51]. CLPT is the simplest two-dimensional plate theory based on Kirchhoff assumptions and is
suitable for analysis of thin plates. This theory does not consider transverse shear and normal stresses, which
are assumed to be negligible compared to in-plane normal and shear stresses in thin structures [52,53]. The
displacement vector ui of any point (α1, α2, α3) on the plate is given by [51]:

u1(α1, α2, α3) = u0(α1, α2) − α3
∂w0(α1, α2)

∂α1
, (29)

u2(α1, α2, α3) = v0(α1, α2) − α3
∂w0(α1, α2)

∂α2
, (30)

u3(α1, α2, α3) = w0(α1, α2), (31)

where u0, v0 and w0 are the displacements at the mid-plane along α1, α2 and α3 directions, respectively. The
infinitesimal strain components Si j are obtained by substituting (29)–(31) in (2)1 as

S11 =
∂u1

∂α1
=

∂u0

∂α1
− α3

∂2w0

∂α2
1

, S22 =
∂u2

∂α2
=

∂v0

∂α2
− α3

∂2w0

∂α2
2

, (32)
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S12 = S21 =
1

2

(

∂u1

∂α2
+

∂u2

∂α1

)

=
1

2

(

∂u0

∂α2
+

∂v0

∂α1
− 2α3

∂2w0

∂α1∂α2

)

, (33)

S33 =
∂u3

∂α3
= 0, S32 = S23 =

1

2

(

∂u3

∂α2
+

∂u2

∂α3

)

= 0, S31 = S13 =
1

2

(

∂u3

∂α1
+

∂u1

∂α3

)

= 0. (34)

The corresponding nonzero strain gradients are obtained using Eq. (2)2, as

G111 =
∂2u0

∂α2
1

− α3
∂3w0

∂α3
1

, G112 =
∂2u0

∂α1∂α2
− α3

∂3w0

∂α2
1∂α2

, G113 = −
∂2w0

∂α2
1

, (35)

G221 =
∂2v0

∂α2∂α1
− α3

∂3w0

∂α2
2∂α1

, G222 =
∂2v0

∂α2
2

− α3
∂3w0

∂α3
2

, G223 = −
∂2w0

∂α2
2

, (36)

G121 = G211 =
1

2

(

∂2u0

∂α2∂α1
+

∂2v0

∂α2
1

− 2α3
∂3w0

∂α2
1∂α2

)

, (37)

G122 = G212 =
1

2

(

∂2u0

∂α2
2

+
∂2v0

∂α1∂α2
− 2α3

∂3w0

∂α1∂α2
2

)

, (38)

G123 = G213 = −
∂2w0

∂α1∂α2
. (39)

Electric potential variation: The electrostatic potential is often assumed to be linearly varying across the
thickness of the flexoelectric structures [2,54,55]. However, higher-order correction terms can be incorporated
for a more accurate model, especially in the sensor mode [56]. These higher-order terms are modeled as
quadratic or other non-polynomial functions in the literature [57,58]. In the present formulation, a quadratic
variation of electrostatic potential φ is assumed across the thickness of flexoelectric layer as follows:

φ(α1, α2, α3) = g0(α3)φ0(α1, α2) + g1(α3)φ1(α1, α2) αl ≤ α3 ≤ αu, (40)

where φ0 is potential on the top surface of the flexoelectric layer (equal to the potential difference applied across
the layer in actuator mode), φ1 is the higher-order correction term, αu and αl are the thickness coordinates of
the top and bottom surface of the flexoelectric layer. The linear function g0(α3) and quadratic function g1(α3)

are defined as:

g0(α3) =
α3 − αl

αu − αl
, g1(α3) = −

4(αl − α3)(α
u − α3)

(h f )2
. (41)

Components of electric field and its gradient can now be obtained using (3) as:

E1 = −
∂φ

∂α1
= −g1

∂φ1

∂α1
− g0

∂φ0

∂α1
, (42)

E2 = −
∂φ

∂α2
= −g1

∂φ1

∂α2
− g0

∂φ0

∂α2
, (43)

E3 = −
∂φ

∂α3
= −g′

1φ1 − g′
0φ0, (44)

and

K11 =
∂ E1

∂α1
= −g1

∂2φ1

∂α2
1

− g0
∂2φ0

∂α2
1

, (45)

K22 =
∂ E2

∂α2
= −g1

∂2φ1

∂α2
2

− g0
∂2φ0

∂α2
2

, (46)

K12 = K21 =
∂ E1

∂α2
= −g1

∂2φ1

∂α1∂α2
− g0

∂2φ0

∂α1∂α2
(47)

K13 = K31 =
∂ E1

∂α3
= −g′

1
∂φ1

∂α1
− g′

0
∂φ0

∂α1
(48)
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K23 = K32 =
∂ E2

∂α3
= −g′

1
∂φ1

∂α2
− g′

0
∂φ0

∂α2
(49)

K33 =
∂ E3

∂α3
= −g′′

1φ1 − g′′
0φ0. (50)

where (·)′ denotes the derivative of the function with respect to α3.

2D constitutive equations: The three-dimensional constitutive equations (22)–(25) are reduced to 2D form for
composite flexoelectric plates as follows:

T{3×1} = Q
c
{3×3}S{3×1} − h{3×6}K{6×1}, (51)

H{9×1} = Q
g
{9×9}G{9×1} − f {9×3}E{3×1}, (52)

D{3×1} = ǫ{3×3}E{3×1} + f
T
{3×9}G{9×1}, (53)

B{6×1} = k{6×6}K{6×1} + h
T
{6×3}S{3×1}, (54)

where the column matrices T =
[

T11 T22 T12
]T

and S =
[

S11 S22 S12
]T

denote the independent components

of 2D stress and strain tensors, respectively. Similarly, H, G, D, E, B and K denote matrices consisting of 2D
components of higher-order stress, strain gradient, electric displacement, electric field, higher-order electric
displacement and electric field gradient, respectively. The components of these matrices are listed in “Appendix
A”. The quantities Q

c
, Q

g
, ǫ, k, h and f denote the 2D material constants, namely the stiffness matrix, higher-

order stiffness matrix, permittivity matrix, higher-order permittivity matrix, converse flexoelectric coefficient
matrix and direct flexoelectric coefficient matrix, respectively. The components of these matrices are also listed
in Appendix A.

2.3 Formulation of flexoelectric plate theory

In what follows, the derivation of 2D governing equations for a flexoelectric plate under transverse electrome-
chanical loading is presented by starting from the potential energy expression (1). The first variation of work
done due to externally applied electromechanical loads can be expressed in the form

δω =

∫ a

0

∫ b

0
ta
3 δu3 dα2dα1 +

∫ a

0

∫ b

0
ρsδφ0 dα2dα1, (55)

where ta
3 represents the resultant traction along the transverse direction on the top and bottom surfaces (α3 =

±h/2), and ρs denotes the surface charge density applied on the top surface (α3 = h/2) of the flexoelectric
layer. The volumetric charge density and mechanical body force terms have not been included in our analysis.
However, Eq. (55) may be easily modified to incorporate these terms. For thin plate structures, the traction
components are expressed in terms of applied transverse load as follows:

∫ a

0

∫ b

0
ta
3 dα2dα1 =

∫ a

0

∫ b

0
[q+

3 (α1, α2) + q−
3 (α1, α2)] dα2dα1 =

∫ a

0

∫ b

0
q3(α1, α2) dα2dα1, (56)

where q+
3 and q−

3 are transverse loads per unit area acting on the top and bottom surfaces of the plate and
q3 = q+

3 + q−
3 is the resultant transverse load per unit area of the plate. The plate governing equations are

now obtained by substituting nonzero strain and strain gradient components (32)–(39) and the electric field
and electric field gradient components (42)–(50) into Eq. (5) and integrating across the plate thickness α3 as
follows:

∫

V0

δ�dV =

∫

A0

∫ α3=
h
2

α3=− h
2

δ� dV

=

∫

A0

[

N11
∂δu0

∂α1
− M11

∂2δw0

∂α2
1

+ N22
∂δv0

∂α2
− M22

∂2δw0

∂α2
2

+ N12

(

∂δu0

∂α2
+

∂δv0

∂α1

)
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− 2M12
∂2δw0

∂α1∂α2
+ N h

111
∂2δu0

∂α2
1

− Mh
111

∂3δw0

∂α3
1

+ N h
112

∂2δu0

∂α1∂α2
− Mh

112
∂3δw0

∂α2
1∂α2

− N h
113

∂2δw0

∂α2
1

+ N h
221

∂2δv0

∂α2∂α1
− Mh

221
∂3δw0

∂α2
2∂α1

+ N h
222

∂2δv0

∂α2
2

− Mh
222

∂3δw0

∂α3
2

− N h
223

∂2δw0

∂α2
2

+ N h
121

(

∂2δu0

∂α2∂α1
+

∂2δv0

∂α2
1

)

− 2Mh
121

∂3δw0

∂α2
1∂α2

+ N h
122

(

∂2δu0

∂α2
2

+
∂2δv0

∂α1∂α2

)

− 2Mh
122

∂3δw0

∂α1∂α2
2

− 2N h
123

∂2δw0

∂α1∂α2

+ D
g
1

∂δφ1

∂α1
+ D

g
2

∂δφ1

∂α2
+ D

g′

3 δφ1 + B
g
11

∂2δφ1

∂α2
1

+ B
g
22

∂2δφ1

∂α2
2

+ B
g′′

33 δφ1

+ 2B
g
12

∂2δφ1

∂α1∂α2
+ 2B

g′

13

∂δφ1

∂α1
+ 2B

g′

23

∂δφ1

∂α2
+ Da

1
∂δφ0

∂α1
+ Da

2
∂δφ0

∂α2
+ Da′

3 δφ0

+ Ba
11

∂2δφ0

∂α2
1

+ Ba
22

∂2δφ0

∂α2
2

+ Ba′′

33 δφ0 + 2Ba
12

∂2δφ0

∂α1∂α2
+ 2Ba′

13
∂δφ0

∂α1

+ 2Ba′

23
∂δφ0

∂α2

]

dα2dα1, (57)

where A0 represents the area of the mid-plane (α3 = 0) of flexoelectric plate. Also, the stress resultants N ,
moment resultants M , higher-order stress resultants N h , higher-order moment resultants Mh , charge displace-
ment resultants Dg , Dg′

, Da , Da′
, and higher-order charge displacement resultants Bg , Bg′

, Bg′′
, Ba , Ba′

,
Ba′′

are defined as follows:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

N11 N22 N12

N h
111 N h

221 N h
121

N h
112 N h

222 N h
122

N h
113 N h

223 N h
123

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

∫ h
2

− h
2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

T11 T22 T12

H111 H221 H121

H112 H222 H122

H113 H223 H123

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

dα3, (58)

⎡

⎢

⎢

⎢

⎢

⎣

M11 M22 M12

Mh
111 Mh

221 Mh
121

Mh
112 Mh

222 Mh
122

⎤

⎥

⎥

⎥

⎥

⎦

=

∫ h
2

− h
2

α3

⎡

⎢

⎢

⎢

⎣

T11 T22 T12

H111 H221 H121

H112 H222 H122

⎤

⎥

⎥

⎥

⎦

dα3, (59)

⎡

⎢

⎢

⎢

⎢

⎣

D
g
1

D
g
2

D
g′

3

⎤

⎥

⎥

⎥

⎥

⎦

=

∫ h
2

− h
2

⎡

⎢

⎢

⎢

⎣

g1(α3)D1

g1(α3)D2

g′
1(α3)D3

⎤

⎥

⎥

⎥

⎦

dα3,

⎡

⎢

⎢

⎢

⎢

⎣

Da
1

Da
2

Da′

3

⎤

⎥

⎥

⎥

⎥

⎦

=

∫ h
2

− h
2

⎡

⎢

⎢

⎢

⎣

g0(α3)D1

g0(α3)D2

g′
0(α3)D3

⎤

⎥

⎥

⎥

⎦

dα3, (60)

⎡

⎢

⎢

⎢

⎢

⎣

B
g
11 B

g
12 Ba

11 Ba
12

B
g
22 B

g′

13 Ba
22 Ba′

13

B
g′′

33 B
g′

23 Ba′′

33 Ba′

23

⎤

⎥

⎥

⎥

⎥

⎦

=

∫ h
2

− h
2

⎡

⎢

⎢

⎢

⎣

g1(α3)B11 g1(α3)B12 g0(α3)B11 g0(α3)B12

g1(α3)B22 g′
1(α3)B13 g0(α3)B22 g′

0(α3)B13

g′′
1 (α3)B33 g′

1(α3)B23 g′′
0 (α3)B33 g′

0(α3)B23

⎤

⎥

⎥

⎥

⎦

dα3. (61)

Equation (57) is further reduced using integration by parts and reduced to strong form. The terms corresponding
to variation of independent variables (δu0, δv0, δw0, δφ1, δφ0) are grouped, and the governing equations are
obtained using the fundamental lemma of variation [59]. As δu0, δv0, δw0, δφ1 and δφ0 are arbitrary, the
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governing equations can be obtained equating their coefficients in the energy expression to zero. The Euler–
Lagrange equations for the classical flexoelectric plate are thus obtained, given as follows:

u0 : −
∂ N11

∂α1
−

∂ N12

∂α2
+

∂2 N h
111

∂α2
1

+
∂2 N h

112

∂α1∂α2
+

∂2 N h
121

∂α2∂α1
+

∂2 N h
122

∂α2
2

= 0, (62)

v0 : −
∂ N22

∂α2
−

∂ N12

∂α1
+

∂2 N h
221

∂α2∂α1
+

∂2 N h
222

∂α2
2

+
∂2 N h

121

∂α2
1

+
∂2 N h

122

∂α1∂α2
= 0, (63)

w0 : −
∂2 M11

∂α2
1

−
∂2 M22

∂α2
2

− 2
∂2 M12

∂α1∂α2
+

∂3 Mh
111

∂α3
1

+
∂3 Mh

112

∂α2
1∂α2

−
∂2 N h

113

∂α2
1

+
∂3 Mh

221

∂α2
2∂α1

+
∂3 Mh

222

∂α3
2

−
∂2 N h

223

∂α2
2

+ 2
∂3 Mh

121

∂α2
1∂α2

+ 2
∂3 Mh

122

∂α1∂α2
2

− 2
∂2 N h

123

∂α1∂α2
= q, (64)

φ1 : −
∂ D

g
1

∂α1
−

∂ D
g
2

∂α2
+ D

g′

3 +
∂2 B

g
11

∂α2
1

+
∂2 B

g
22

∂α2
2

+ B
g′′

33 + 2
∂2 B

g
12

∂α1∂α2
− 2

∂ B
g′

13

∂α1
− 2

∂ B
g′

23

∂α2
= 0, (65)

φ0 : −
∂ Da

1

∂α1
−

∂ Da
2

∂α2
+ Da′

3 +
∂2 Ba

11

∂α2
1

+
∂2 Ba

22

∂α2
2

+ Ba′′

33 + 2
∂2 Ba

12

∂α1∂α2
− 2

∂ Ba′

13

∂α1
− 2

∂ Ba′

23

∂α2
= 0. (66)

The corresponding natural and essential boundary conditions on the four edges of the plate are given by

On edges α1 = 0 and α1 = a

either u0 = u∗
0 or N11 −

∂ N h
111

∂α1
−

∂ N h
112

∂α2
−

∂ N h
121

∂α2
= 0, either

∂u0

∂α1
=

∂u∗
0

∂α1
or N h

111 = 0,

either w0 = w∗
0 or

∂ M11

∂α1
+ 2

∂ M12

∂α2
−

∂2 Mh
111

∂α2
1

−
∂2 Mh

112

∂α2∂α1
+

∂ N h
113

∂α1
− 2

∂2 Mh
121

∂α1∂α2
+ 2

∂ N h
123

∂α2
= 0,

either
∂w0

∂α1
=

∂w∗
0

∂α1
or − M11 +

∂ Mh
111

∂α1
+

∂ Mh
112

∂α2
− N h

113 + 2
∂ Mh

121

∂α2
= 0,

either
∂w0

∂α2
=

∂w∗
0

∂α2
or

∂ Mh
221

∂α2
+ 2

∂ Mh
122

∂α2
= 0, either

∂2w0

∂α2
1

=
∂2w∗

0

∂α2
1

or Mh
111 = 0,

either v0 = v∗
0 or N12 −

∂ N h
221

∂α2
−

∂ N h
121

∂α1
−

∂ N h
122

∂α2
= 0, either

∂v0

∂α1
=

∂v∗
0

∂α1
or N h

121 = 0,

either φ1 = φ∗
1 or D

g
1 −

∂ B
g
11

∂α1
− 2

∂ B
g
12

∂α2
+ 2B

g′

13 = 0, either
∂φ1

∂α1
=

∂φ∗
1

∂α1
or B

g
11 = 0,

either φ0 = φ∗
0 or Da

1 −
∂ Ba

11

∂α1
− 2

∂ Ba
12

∂α2
+ 2Ba′

13 = 0, either
∂φ0

∂α1
=

∂φ∗
0

∂α1
or Ba

11 = 0, (67)

On edges α2 = 0 and α2 = b

either v0 = v∗
0 or N22 −

∂ N h
222

∂α2
−

∂ N h
221

∂α1
−

∂ N h
122

∂α1
= 0, either

∂v0

∂α2
=

∂v∗
0

∂α2
or N h

222 = 0,

either w0 = w∗
0 or

∂ M22

∂α2
+ 2

∂ M12

∂α1
−

∂2 Mh
222

∂α2
2

−
∂2 Mh

221

∂α2∂α1
+

∂ N h
223

∂α2
− 2

∂2 Mh
122

∂α1∂α2
+ 2

∂ N h
123

∂α1
= 0,

either
∂w0

∂α2
=

∂w∗
0

∂α2
or − M22 +

∂ Mh
222

∂α2
+

∂ Mh
221

∂α1
− N h

223 + 2
∂ Mh

122

∂α1
= 0,

either
∂w0

∂α1
=

∂w∗
0

∂α1
or

∂ Mh
112

∂α1
+ 2

∂ Mh
121

∂α1
= 0, either

∂2w0

∂α2
2

=
∂2w∗

0

∂α2
2

or Mh
222 = 0,

either u0 = u∗
0 or N12 −

∂ N h
112

∂α1
−

∂ N h
122

∂α2
−

∂ N h
121

∂α1
= 0, either

∂u0

∂α2
=

∂u∗
0

∂α2
or N h

122 = 0,
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Fig. 2 A two-dimensional four-noded rectangular element. Here αe
1 and αe

2 denote the corresponding local coordinates

either φ1 = φ∗
1 or D

g
2 −

∂ B
g
22

∂α2
− 2

∂ B
g
12

∂α1
+ 2B

g′

23 = 0, either
∂φ1

∂α2
=

∂φ∗
1

∂α2
or B

g
22 = 0,

either φ0 = φ∗
0 or Da

2 −
∂ Ba

22

∂α2
− 2

∂ Ba
12

∂α1
+ 2Ba′

23 = 0, either
∂φ0

∂α2
=

∂φ∗
0

∂α2
or Ba

22 = 0. (68)

The boundary conditions on the corners of the flexoelectric plate are obtained as:

either w0 = w∗
0 or 2M12 + 2N h

123 = 0, either
∂w0

∂α1
=

∂w∗
0

∂α1
or Mh

112 + 2Mh
121 = 0,

either
∂w0

∂α2
=

∂w∗
0

∂α2
or Mh

221 + 2Mh
122 = 0, either u0 = u∗

0 or N h
112 + N h

121 = 0,

either v0 = v∗
0 or N h

221 + N h
122 = 0,

either φ1 = φ∗
1 or B

g
12 = 0,

either φ0 = φ∗
0 or Ba

12 = 0. (69)

3 Finite element formulation

This section presents the development of coupled finite element framework for a flexoelectric plate deforming
under combined electrical and mechanical loads. Electromechanically coupled C2 continuous conforming and
non-conforming finite elements are developed to analyze actuator and sensor response of the flexoelectric
composite plates.

3.1 2D shape functions

A two-dimensional four-noded rectangular element (shown in Fig. 2) is used to discretize the plate. The essential
boundary conditions presented in Eqs. (67)–(69) involve second-order derivatives of w0 with respect to α1
and α2. Thus, the shape functions for w0 need to satisfy C2 continuity. Similarly, the continuity requirement
for shape functions of u0, v0, φ1 and φ0 is C1, as essential boundary conditions consisting of these variables
have first-order derivative terms. The development of C1 and C2 continuous shape functions for a four-noded
rectangular element is discussed below.

C1 Continuous shape functions: The field variables u0, v0, φ1 and φ0 are interpolated using C1 continuous
shape functions within each element. As discussed earlier, these field variables and their first-order derivatives
are considered as the primary variables at each node. For instance, the shape functions are developed for

in-plane displacement u0. As per standard finite element procedure, u0,
∂u0

∂α1
and

∂u0

∂α2
are nodal degrees of

freedom and should be continuous across the element boundaries. For the standard conforming element, along

with u0,
∂u0

∂α1
and

∂u0

∂α2
, an additional nodal degree of freedom

∂2u0

∂α1∂α2
is considered, to enforce the continuity
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of
∂u0

∂α1
and

∂u0

∂α2
across the element boundaries [60]. For a four-noded element with four degrees of freedom

per node, a sixteen-term polynomial function of αe
1 and αe

2 is used for the approximation of u0 as follows:

u0 = cu
1 + cu

2αe
1 + cu

3αe
2 + cu

4(αe
1)

2 + cu
5αe

1α
e
2 + cu

6(αe
2)

2 + cu
7(αe

1)
3 + cu

8(αe
1)

2αe
2

+ cu
9αe

1(α
e
2)

2 + cu
10(α

e
2)

3 + cu
11(α

e
1)

3αe
2 + cu

11(α
e
1)

2(αe
2)

2 + cu
13α

e
1(α

e
2)

3

+ cu
14(α

e
1)

3(αe
2)

2 + cu
15(α

e
1)

2(αe
2)

3 + cu
16(α

e
1)

3(αe
2)

3

= [N c
1 N c

2 N c
3 ...N c

16][ũ
c[1] ũc[2] ũc[3] ũc[4]]T = Ncûc, (70)

where cu
j ( j = 1, 2, 3...16) are interpolation constants for conforming element, αe

1 and αe
2 are two-dimensional

elemental coordinates shown in Fig. 2, [N c
1 N c

2 N c
3 ...N c

16] are C1 continuous shape functions for a four-noded

conforming element and ũc[i] = [u
[i]
0 u

[i]
0,1 u

[i]
0,2 u

[i]
0,12]. Here, superscript [i] represents the node number, and

the subscripts (·),1 and (·),2 denote the differentiation of the quantity with respect to α1 and α2, respectively.
Similarly, (·),12 denotes the second-order differentiation of the quantity with respect to both α1 and α2. The
conforming element allows the continuity of considered degrees of freedom along all four edges of the element,
and it also shows a monotonic convergence of the finite element results.

Alternatively, a non-conforming element with three degrees of freedom at each node can be used, i.e.,
(

u0,
∂u0

∂α1
,
∂u0

∂α2

)

. In this case, a twelve-term polynomial function of α1 and α2 is required for the approximation

of u0 as follows:

u0 = nu
1 + nu

2αe
1 + nu

3αe
2 + nu

4(αe
1)

2 + nu
5αe

1α
e
2 + nu

6(αe
2)

2 + nu
7(αe

1)
3 + nu

8(αe
1)

2αe
2

+ nu
9αe

1(α
e
2)

2 + nu
10(α

e
2)

3 + nu
11(α

e
1)

3αe
2 + nu

12α
e
1(α

e
2)

3

= [N1 N2 N3...N12][ũ
[1] ũ[2] ũ[3] ũ[4]]T = Nû, (71)

where nu
j ( j = 1, 2, 3...12)denote interpolation constants for a non-conforming element and [N1 N2 N3...N12]

are C1 continuous shape functions for the non-conforming element. Here, nodal degree of freedom has three
degrees of freedom, i.e., ũ[i] = [u

[i]
0 u

[i]
0,1 u

[i]
0,2]. The non-conforming element satisfies the continuity of u0 and

∂u0

∂α1
along the edges of the element parallel to αe

1 and u0 and
∂u0

∂α2
along the edges of the element parallel to αe

2.

The field variables v0, φ1 and φ0 are also expressed in terms of C1 continuous shape functions and elemental
degrees of freedom as follows:

v0 = [N1 N2 N3...N12][ṽ
[1] v[2] v[3] ṽ[4]]T = Nv̂, (72)

φ1 = [N1 N2 N3...N12][φ̃
[1]

1 φ̃1
[2]

φ̃
[3]

1 φ̃
[4]

1 ]T = Nφ̂1, (73)

φ0 = [N1 N2 N3...N12][φ̃
[1]

a φ̃a

[2]
φ̃

[3]

a φ̃
[4]

a ]T = Nφ̂a, (74)

where ṽ[i] = [v
[i]
0 v

[i]
0,1 v

[i]
0,2], φ̃

[i]

1 = [φ
[i]
1 φ

[i]
1,1 φ

[i]
1,2] and φ̃

[i]

a = [φ
[i]
0 φ

[i]
a,1 φ

[i]
a,2].

C2 Continuous shape functions: The shape functions of the transverse displacement w0 have C2 continuity

requirement within the element. The essential boundary conditions (67)–(69) have w0,
∂w0

∂α1
,
∂w0

∂α2
,
∂2w0

∂α2
1

and

∂2w0

∂α2
2

as primary variables. The primary variables are considered as nodal degrees of freedom and additional

nodal degrees of freedom
∂2w0

∂α1∂α2
,

∂3w0

∂α2
1∂α2

,
∂3w0

∂α1∂α2
2

and
∂4w0

∂α2
1∂α2

2

are needed to considered at each node to

ensure the continuity across the element boundaries as in case of conforming element developed by Babu and
Patel [61]. A thirty-six-term polynomial function is used to approximate w0, which is given by:

w0 = cw
1 + cw

2 αe
1 + cw

3 αe
2 + cw

4 (αe
1)

2 + cw
5 αe

1α
e
2 + cw

6 (αe
2)

2 + cw
7 (αe

1)
3 + cw

8 (αe
1)

2αe
2

+ cw
9 αe

1(α
e
2)

2 + cw
10(α

e
2)

3 + cw
11(α

e
1)

4 + cw
12(α

e
1)

3αe
2 + cw

13(α
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= [Pc
1 Pc
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3 ...Pc

36][w̃
c[1] w̃c[2] w̃c[3] w̃c[4]]T = Pcŵc, (75)

where cw
j ( j = 1, 2, 3...36) are interpolation constants for the conforming element, [Pc

1 Pc
2 ...Pc

36] are C2

continuous shape functions for w0 and w̃c[i] = [w
[i]
0 w

[i]
0,1 w

[i]
0,2 w

[i]
0,12 w

[i]
0,11 w

[i]
0,22 w

[i]
0,112 w

[i]
0,221 w

[i]
0,1122].

On the other hand, for the non-conforming element, only six degrees of freedom corresponding to transverse

displacement

(

w0,
∂w0

∂α1
,
∂w0

∂α2
,
∂2w0

∂α2
1

,
∂2w0

∂α1∂α2
,
∂2w0

∂α2
2

)

are considered at each node. While continuity of all the

derivatives is not imposed on all edges of an element, the non-conforming element gives fairly accurate results
while providing greater computational efficiency compared to the conforming element. A twenty-four-term
polynomial function is used to approximate w0, given as follows:
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= [P1 P2 P3...P24][w̃
[1] w̃[2] w̃[3] w̃[4]]T = Pŵ, (76)

where nw
j ( j = 1, 2, 3...24) are interpolation constants for a non-conforming element, [P1 P2 P3...P24] are C2

continuous shape functions. In case of non-conforming element, w̃[i] = [w
[i]
0 w

[i]
0,1 w

[i]
0,2 w

[i]
0,12 w

[i]
0,11 w

[i]
0,22].

It allows the continuity of w0,
∂w0

∂α1
,
∂w0

∂α2
,

∂2w0

∂α1∂α2
and

∂2w0

∂α2
1

along the edges of the element parallel to αe
1

and w0,
∂w0

∂α1
,
∂w0

∂α2
,

∂2w0

∂α1∂α2
and

∂2w0

∂α2
2

along the edges of the element parallel to αe
2.

It may be noted that for a classical plate bending element (ignoring strain gradient effects), the conforming
element has only one extra nodal degree of freedom than non-conforming element [60], as the transverse

displacement w0 is C1 continuous. The extra nodal degree of freedom, i.e.,
∂2w0

∂α1∂α2
for conforming element

does not affect the computational efficiency of conforming element significantly in comparison with the non-
conforming element.

However, due to electromechanical gradient effects considered in the present flexoelectric pate theory, the
non-conforming element is computationally more efficient than the conforming element significantly. The
non-conforming element has a total of 18 degrees of freedom per node and total of 72 degrees of freedom
per element, while the conforming element has total of 25 degrees of freedom per node and total of 100
degrees of freedom per element. Due to lesser number of degrees of freedom, the non-conforming element is
computationally more efficient than the conforming element.

3.2 Matrix representation

The components of strain tensor S are represented in a matrix form as:

S{3×1} = HS
{3×6}L

S
{6×5}d{5×1}, (77)
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where the matrices HS, LS and d are given by

HS =

⎡

⎣

1 −α3 0 0 0 0
0 0 1 −α3 0 0
0 0 0 0 1

2 −α3

⎤

⎦ , LS =
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⎢
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0 0
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∂α2

0 0 0
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∂α2
2

0 0
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∂α2

∂
∂α1

0 0 0

0 0 ∂2

∂α1∂α2
0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (78)

d = [u0 v0 w0 φ1 φ0] . (79)

Similarly, the strain gradient components G, electric field components E and electric field gradient components
K are also represented in a matrix form as follows:

G{9×1} = HG
{9×13}L

G
{13×5}d{5×1}, (80)

E{3×1} = HE
{3×6}L

E
{6×5}d{5×1}, (81)

K{6×1} = HK
{6×12}L

K
{12×5}d{5×1}. (82)

The matrices HG, HE and HK; and operator matrices LG, LE and LK can be obtained following the procedure
described in (77)–(79).

In what follows, the elemental expressions for strain components S, strain gradient components G, electric
field components E and electric field gradient components K are obtained for each element by expressing the
field variables (u0, v0, w0, φ1, φ0) in terms of the shape functions and nodal degrees of freedom as follows:

S
(l)

= HSBS(l)
d̂(l), G

(l)
= HGBG(l)

d̂(l),

E
(l)

= HEBE(l)
d̂(l), K

(l)
= HKBK(l)

d̂(l), (83)

where (·)(l) denotes the elemental quantities for the l th element; the matrices BS(l)
, BG(l)

, BE(l)
and BK(l)

are
obtained from the operator matrices LS, LG, LE and LK acting on the respective shape functions at every node
of the element; and d̂ = [d̃[1] d̃[2] d̃[3] d̃[4]]T is a vector consisting of mechanical and electrical degrees of
freedom for l th element where

d̃[i] = [ũ[i] ṽ[i] w̃[i] φ̃1
[i]

φ̃0
[i]

].

3.3 Derivation of finite element formulation

In what follows, the finite element formulation is derived using the potential energy minimization principle
(4). The variation of free energy �(l) for an element is obtained by using the elemental strain, strain gradient,
electric field and electric field gradient components from Eqs. (77)–(82), and integrating across the element
thickness similar to Eq. (57) as follows:

∫

V
(l)
0

δ�(l)dV =

∫

A
(l)
0

∫ α3=
h
2

α3=
−h
2

δ�(l) dα3dαe
2dαe

1

=

∫

A
(l)
0

[(δd̂(l))T(BS(l)
)TDSSBS(l)

d̂(l) − (δd̂(l))T(BS(l)
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d̂(l)

+ (δd̂(l))T(BG(l)
)TDGGBG(l)

d̂(l) − (δd̂(l))T(BG(l)
)TDGEBE(l)

d̂(l)

− (δd̂(l))T(BE(l)
)TDEEBE(l)

d̂(l) − (δd̂(l))T(BE(l)
)TDEGBG(l)

d̂(l)

− (δd̂(l))T(BK(l)
)TDKKBK(l)

d̂(l) − (δd̂(l))T(BK(l)
)TDKSBS(l)

d̂(l)]dαe
1α

e
2. (84)
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Here, A
(l)
0 represents the surface area of the l th element. The matrices DSS, DSK, DGG, DGE, DEE, DEG, DKK

and DKS are defined in Appendix B. The two-dimensional integration in (84) is performed using the Gauss
Quadrature method and expressed in terms of elemental stiffness matrices as follows:
∫

V
(l)
0

δ�(l)dV = (δd̂(l))T[KSS(l)
− KSK(l)

+ KGG(l)
− KGE(l)

− KEE(l)
− KEG(l)

− KKK(l)
− KKS]d̂(l),

(85)

The expression of matrices KSS, KSK, KGG, KGE, KEE, KEG, KKK and KKS are defined in Appendix B.
Finally, the variation in the total free energy δ� for the plate is obtained by assembling the elemental energies
and summing over all the elements to obtain the global stiffness matrix given by:

∫

V0

δ�dV =

ne
∑

l=1

{(δd̂(l))T[KSS(l)
− KSK(l)

+ KGG(l)
− KGE(l)

− KEE(l)
− KEG(l)

− KKK(l)
− KKS]d̂(l)}

= δd
T

Kg d, (86)

where Kg is the global stiffness matrix, d denotes the global field variable vector consisting of the combined
degrees of freedom of all the nodes, and ne is the total number of elements used for discretization of the
flexoelectric plate. The variation of the work done due to external loads on each element is expressed in terms
of the elemental force vector as

δω(l) =

∫

αe
1

∫

αe
2

[q
(l)
3 δw

(l)
0 + ρ(l)

s δφ
(l)
0 ]dαe

2dαe
1 = (δd̂(l))TFge

(l), (87)

where Fge denotes the elemental force vector. Again, performing assembly over all the elements, the variation
in the total external work done is evaluated in terms of the global force vector as

δω =

ne
∑

l=1

(δd(l))TFge
(l) = δd

T
Fg, (88)

where Fg represents the global force vector, which includes both mechanical and electrical load terms. Finally,
using the potential energy minimization principle, the finite element governing equations, in matrix form, are
obtained as

∫

V0

δ�dV − δω = 0 �⇒ Kg d = Fg. (89)

These global finite element equations are solved algebraically to obtain nodal values of mechanical displace-
ments and electrostatic potential. The formulation is used to analyze the flexoelectric plate in both sensor and
actuator modes. The plate equations are also solved analytically for simply supported boundary conditions
using Navier’s method, and the results are utilized to verify the accuracy of our finite element results. The
details of analytical solution are given in Appendix C.

4 Results and discussion

Finite element framework discussed in Sect. 3 is implemented to analyze the sensor and actuator response of
flexoelectric composite plates. A number of examples are considered in the subsequent sections and parametric
studies are performed to analyze the effect of boundary conditions, loading conditions, length scale parameters,
thickness of the flexoelectric layer, etc. A MATLAB program is written to compute the global stiffness matrix
and force vector. The clamped, free or simply supported boundary conditions are applied on all four edges.
The boundary conditions are abbreviated as follows:

1. SSSS: Simply supported on all four edges.
2. SCSS: Clamped on edge α1 = a, and simply supported on the remaining edges.
3. SSSC: Clamped on edge α1 = 0, and simply supported on the remaining edges.
4. SCSC: Clamped on edges α1 = 0 and α1 = a; simply supported on edges α2 = 0 and α2 = b.
5. FCFC: Clamped on edges α1 = 0 and α1 = a; free on edges α2 = 0 and α2 = b.
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6. FFFC: Clamped on edge α1 = 0, and free on the remaining edges.

The equations corresponding to each boundary condition may be listed as follows:

Clamped (C):

On edges α1 = 0 and α1 = a

u0 = N h
111 = w0 =

∂w0

∂α1
=

∂w0

∂α2
= Mh

111 = v0 = N h
121 = 0,

On edges α2 = 0 and α2 = b

v0 = N h
222 = w0 =

∂w0

∂α2
=

∂w0

∂α1
= Mh

222 = u0 = N h
122 = 0,

Simply Supported (S):

On edges α1 = 0 and α1 = a

N11 −
∂ N h
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∂α1
−

∂ N h
112

∂α2
−

∂ N h
121

∂α2
=

∂u0

∂α1
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− M11 +
∂ Mh
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∂α1
+

∂ Mh
112

∂α2
− N h

113 + 2
∂ Mh

121

∂α2
= 0,

∂w0

∂α2
=

∂2w0

∂α2
1

= v0 = N h
121 = 0,

On edges α2 = 0 and α2 = b

N22 −
∂ N h
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∂α2
−

∂ N h
221

∂α1
−

∂ N h
122

∂α1
=

∂v0

∂α2
= w0 = 0,

− M22 +
∂ Mh
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∂α2
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∂α1
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223 + 2
∂ Mh
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∂α1
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∂α2
2
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Free (F):

On edges α1 = 0 and α1 = a
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∂ N h
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∂ N h
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∂α2
= N h
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∂α1
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∂α2
= N h
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(90)

On edges α2 = 0 and α2 = b
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∂ N h
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∂α1
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Mh
222 = N12 −

∂ N h
112

∂α1
−

∂ N h
122

∂α2
−

∂ N h
121

∂α1
= N h

122 = 0. (91)

The electrical boundary conditions are given by

Charge boundary conditions (CBC):

On edges α1 = 0 and α1 = a

D
g
1 −

∂ B
g
11

∂α1
− 2

∂ B
g
12

∂α2
+ 2B

g
13 = B

g
11 = 0,

Da
1 −

∂ Ba
11

∂α1
− 2

∂ Ba
12

∂α2
+ 2Ba

13 = Ba
11 = 0,

On edges α2 = 0 and α2 = b

D
g
2 −

∂ B
g
22

∂α2
− 2

∂ B
g
12

∂α1
+ 2B

g
23 = B

g
22 = 0,

Da
2 −

∂ Ba
22

∂α2
− 2

∂ Ba
12

∂α1
+ 2Ba

23 =, Ba
22 = 0. (92)

Potential boundary conditions (PBC):

On edges α1 = 0 and α1 = a

φ1 = B
g
11 = φ0 = Ba

11 = 0,

On edges α2 = 0 and α2 = b

φ1 = B
g
22 = φ0 = Ba

22 = 0, (93)

Higher-order potential boundary conditions (HPBC):

On edges α1 = 0 and α1 = a

φ1 =
∂φ1

∂α1
= φ0 =

∂φ0

∂α1
= 0,

On edges α2 = 0 and α2 = b

φ1 =
∂φ1

∂α2
= φ0 =

∂φ0

∂α2
= 0. (94)

The finite element results are verified with the analytical solutions for simply supported boundary conditions.
The contribution of converse flexoelectric effect in the overall response of a flexoelectric material-based
sensor is studied and compared with the contribution of direct flexoelectric effect. The effective piezoelectric
coefficient is calculated for the flexoelectric plate and compared with piezoelectric materials at different length
scales. It is observed that both direct and converse flexoelectric effects are prominent at small scales, which
makes flexoelectric materials suitable for applications in MEMS and NEMS.

4.1 Bending analysis of passive micro-plate

Our finite element results are verified for a passive simply supported isotropic micro-plate (of thickness in the
micron range). The micro-plate is analyzed under a uniformly distributed load (q = 1 µN/µm2). The Young’s
modulus (c) and Poisson’s ratio (v) of the plate are taken as: [42]

c = 1.44 GPa, v = 0.38. (95)

Nondimensional maximum transverse deflection w/h is calculated using the modified strain gradient theory,
i.e., l0 = l1 = l2= 11.01 µm [42]. Convergence study is performed for both conforming and non-conforming
finite elements, and the results are presented in Fig. 3 for different mesh sizes. Our finite element results
converge for a mesh size of 12 × 12 and agree well with analytical results presented in Akgoz and Civalek
[42]. For the mesh size of 12 × 12, the computational time taken by non-conforming element is 1.70 s, and
conforming element takes 2.19 s.1

1 All the simulations are performed using MATLAB 2019 on a Windows 10 pro desktop computed with 8 core processor
having base frequency of 3.70 GHz and 48 GB RAM.
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Fig. 3 Convergence study of conforming and non-conforming finite elements to calculate the transverse deflection of a passive
simply supported micro-plate (h = 11.01µm, a = b = 40h, l0 = l1 = l2= 11.01 µm). Our FEM results agree well with analytical
results presented in Akgoz and Civalek [42]

4.2 Analysis of flexoelectric composite plate under applied mechanical load: sensor mode

In what follows, the flexoelectric composite plate shown in Fig. 1 is analyzed under transverse mechanical
load. The following material properties are used in the simulation:

• Flexoelectric material [62]: c f = 139 GPa, v f =0.3, f1 = f2 =1×10−6 C/m, ǫ =1×10−9 F/m;
• Passive material (Aluminum): cp = 70 GPa, vp =0.3.

where cp, c f denote Young’s moduli of passive and flexoelectric layers, vp, v f denote the Poisson’s ratios
of passive and flexoelectric layers, f1, f2 denote the flexoelectric coefficients, and ǫ denotes the electric
permittivity. The converse flexoelectric constants h1, h2 and direct flexoelectric constants f1, f2 are considered
to be equal in the present analysis [63]. The value of mechanical length scale parameters l0 = l1 = l2 is taken as
2 µm [62]. Ren and Sun [17] observed an enhanced electric permittivity of the material at microscale (similar
to mechanical stiffness). The electric length scale parameters le

0, le
1 are thus defined to incorporate lower scale

effects through a higher-order permittivity term. In this work, the values of electric length scale parameters
are considered to be equal to the mechanical length scale parameters, i.e., le

0 = le
1 =2 µm [39].

The sensor response is now analyzed by solving for potential difference generated across the thickness of
the plate for a given mechanical load input. The solution is obtained in terms of the nondimensional potential
� defined as

� = φ

(

103c0ǫ1h2

q0 f2a2

)

, (96)

where c0=1 GPa is the scale for Young’s modulus of the material and q0 represents the magnitude of the applied
mechanical load.

Firstly, the flexoelectric composite plate is analyzed under a uniformly distributed load q0 = −1 N/m2 and
simply supported boundary conditions on all four edges. The potential difference generated across the flexo-
electric layer at the center of the plate, i.e., at �(a/2, b/2, h/2), is calculated. Potential boundary conditions
(93)–(94) are assumed on all the edges of the plate. The total thickness of the composite plate h is taken as
2 µm; span-to-thickness ratio a/h is taken as 100, and thickness of flexoelectric layer h f is taken as 0.5h.
Firstly, a convergence study is performed for both conforming and non-conforming elements, and the results
are compared with analytical results in Fig. 4. The FEM results agree well with analytical results, and an error
of 0.0041 % is noted between them. It may be observed that the conforming element shows a monotonic
convergence, while the non-conforming element does not converge monotonically to the exact value. The
computational time taken by the non-conforming finite element is 12.18 s, while the conforming element takes
22.59 s for a mesh size of 16 × 16. This demonstrates the computational efficiency of the non-conforming
element.

The results in the following examples are presented for a mesh size of 16 × 16 using non-conforming finite
element. Contour plots of the nondimensional potential � for the different boundary conditions (SSSS, SCSS,
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Fig. 4 Convergence study for calculation of nondimensional potential �(a/2, b/2, h/2) with increasing mesh size (square mesh)
for simply supported boundary conditions. The computational time taken by non-conforming finite element is 12.18 s, while the
conforming element takes 22.59 s for 16 × 16 mesh size

SSSC, SCSC, FCFC, FFFC) are presented in Fig. 5. For a simply supported plate operating in sensor mode, �
is maximum at the center of the plate due to symmetric loading and geometry, and the strain gradients are also
maximum at the center of the plate. For other boundary conditions, the maximum potential is observed near
clamped edges as the strain gradients are also maximum at clamped edges. Moreover, the maximum potential
is noted for FFFC boundary conditions.

Furthermore, the electrostatic potential developed across the flexoelectric layer due to an applied mechanical
load has contributions from both direct and converse flexoelectric effects. Flexoelectric response due to the
converse effect is compared with the response due to the direct effect for different thickness values of single
edge clamped (FFFC), i.e., cantilever flexoelectric square plate (a = b = 100 h, h f /h = 0.5) subjected to a
uniformly distributed load. The results are presented in Fig. 6 for two cases: (1) considering both direct and
converse flexoelectric effects (h1 = h2 = f1 = f2) and (2) considering only direct flexoelectric effect and
neglecting converse flexoelectric effect (h1 = h2 = 0). It is observed that not considering the converse effect
results in a error of up to 25%, especially for a plate with thickness larger than 10 µm.

In what follows, the effective piezoelectric coefficient of the flexoelectric material is calculated using the
formula (d31)e f f = −ǫ1 E3/T11 for open-circuit conditions at the clamped edge of the cantilever flexoelectric
plate. The values are compared with the piezoelectric coefficient of Quartz for different thickness values in
Fig. 7.

It is observed that the effective piezoelectric coefficient increases significantly for smaller thickness values.
However, the value of d31 should be independent of its structural thickness in a piezoelectric material [23]. It
has been observed by Abdollahi et al. [23] that at smaller thickness (of the order of a few microns), atomic force
microscopy measurements in piezoelectric materials resulted in much larger piezoelectric coefficient values.
This anomaly can be explained by the results shown in Fig. 7, wherein the enhanced flexoelectric response at
lower scales results in a larger potential output for the same applied force [16,24,25,41].

Now, the effect of electrical length scale parameters (le
0, le

1) on the sensor response of flexoelectric plate
with FFFC boundary conditions is analyzed. It is subjected to UDL, and the nondimensional potential � is
evaluated at the center of clamped end (0, b/2, h/2). The size effects on the permittivity of the material are
analyzed in terms of the l/h ratio, and the individual and combined effects of two length scale parameters
(le

0, le
1) are presented in Fig. 8. It is observed that an increase in the l/h ratio results in a lower �. It is due

to increase in the effective permittivity of the material at smaller scales, which was also observed in recent
studies by Ren et al. [17]. Moreover, the size effects are prominent in case of le

1 as compared to le
0.

Finally, the effect of flexoelectric layer thickness h f on the output potential �(0, b/2, h/2) is analyzed.
Variation of nondimensional potential �(0, b/2, h/2) with h f /h is presented in Fig. 9 for a single edge
clamped flexoelectric plate (FFFC) subjected to UDL. In this study, three different types of passive substrates
are considered. The material properties of substrate 1 (Aluminum) are taken as cp = 70 GPa, vp =0.3 [64];
for substrate 2 (Zirconia), the material properties are taken as cp = 151 GPa, vp =0.3 [65]; and for substrate
3 (Alumina), the material properties are taken as cp = 380 GPa, vp =0.3 [64]. The maximum potential is
observed for h f /h = 1. Hence, a flexoelectric plate with no substrate layer is an optimum choice for sensor
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Fig. 5 Contour plots of potential � at the mid-surface of a flexoelectric unimorph plate deforming under a uniformly distributed
load, for different combination of boundary conditions (h = 2µm, a = b = 100h). For SSSS boundary conditions, � is maximum
at the center and in case of other boundary conditions, the maximum potential is observed near clamped edges. The maximum
potential is noted at the clamped edge for FFFC boundary conditions

applications. In case of piezoelectric materials, in which electric field is coupled with bending stresses, the
maximum potential is obtained for a piezoelectric layer thickness ratio in the range of 0.7−0.8 [66]. In case of
a flexoelectric plate, the strain gradients G113 and G223 are constant across the thickness of the plate. Increase
in thickness of the flexoelectric layer results in larger strain gradients, thus increasing the electrostatic potential
generated across the flexoelectric layer.
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Fig. 6 Contribution of converse flexoelectric effect in the overall response of a cantilever flexoelectric square plate of thickness
ratio a/h = 100 and h f /h = 0.5 operating in the sensor mode. The converse flexoelectric effect gives rise to a larger effective
response

Fig. 7 Effective piezoelectric coefficient d31 for different flexoelectric layer thickness values in a square plate (a = b, a = 100 h,
h f /h = 1). The value of effective piezoelectric coefficient is higher for flexoelectric material than piezoelectric materials for
h ≤ 8 µm. Similar effect has been observed in recent studies [23,24,35]

4.3 Analysis of flexoelectric composite plates under applied electrical load: actuator mode

We now analyze the flexoelectric composite plate in actuator mode, i.e., the deflection of the flexoelectric plate
is evaluated under applied electrostatic potential. The actuator response is analyzed in terms of nondimensional
deflection w defined by

w = w0

(

104 f2h

	φǫ1a2

)

, (97)

where 	φ is the electrostatic potential applied across the flexoelectric layer. The flexoelectric actuator is
analyzed for different boundary conditions (SSSS, SCSS, SCSC), and a uniform electrical potential (	φ = 100
V) is applied across the thickness of the flexoelectric layer. The results are presented in Table 1 for different
mesh sizes. The FEM results for the non-conforming element are compared with the analytical solution for
simply supported boundary conditions, and a good agreement is observed between them.

Contour plots of the nondimensional deflection w for the different boundary conditions (SSSS, SCSS,
SSSC, SCSC, FCFC, FFFC ) are presented in Fig. 10. For SSSS and SCSC boundary conditions, the maximum
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Fig. 8 Effect of electrical length scale parameter ratio l/h on nondimensional potential φ̄ developed in a cantilever flexoelectric
plate. Increase in l/h ratio increases the higher-order permittivity of the material, which results in a decreased potential. Simulation
results are shown for different length scale parameters in a uniformly loaded flexoelectric plate with h = 2 µm, a = b = 100 h,
h f /h = 1

Fig. 9 Effect of flexoelectric layer thickness ratio h f /h on the nondimensional potential � of a cantilever flexoelectric square
plate (h = 2 µm, a = b = 100h). The maximum potential is obtained for h f /h = 1

Table 1 Nondimensional deflection w = w0

(

104 f2h

	φ0ǫ1a2

)

for different boundary conditions. (h = 2 µm, ab == 100 h,

	φ = 100 V)

Mesh size h f /h = 0.5 h f /h = 1
SSSS SCSS SCSC SSSS SCSS SCSC

2 × 2 −1.2595 −0.8140 −0.4909 −0.9419 −0.6089 −0.3674
4 × 4 −1.2254 −0.6741 −0.2955 −0.9165 −0.5042 −0.2211
8 × 8 −1.2217 −0.6531 −0.2667 −0.9137 −0.4885 −0.1995
16 × 16 −1.2213 −0.6504 −0.2630 −0.9134 −0.4864 −0.1967
24 × 24 −1.2213 −0.6501 −0.2626 −0.9134 −0.4863 −0.1964
28 × 28 −1.2212 −0.6501 −0.2626 −0.9134 −0.4862 −0.1964
32 × 32 −1.2212 −0.6501 −0.2626 −0.9134 −0.4862 −0.1964
Analytical −1.2212 – – −0.9134 – –
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Fig. 10 Contour plots of nondimensional deflection w of a flexoelectric unimorph plate for various boundary conditions (h = 2
µm, a = b = 100 h, 	φ = 100 V, h f /h = 0.5). The flexoelectric plate actuator deflects in -α3 direction for SSSS, SCSS, SSSC,
and SCSC boundary conditions, and deflection along +α3 direction is observed on the free edges for FCFC and FFFC boundary
conditions. Maximum deflection is observed for the flexoelectric plate with FFFC boundary conditions

deflection is observed at the center of the plate actuator due to symmetric boundary and loading conditions.
It is noted that the actuator deflects in -α3 direction for SSSS, SCSS, SSSC, and SCSC boundary conditions.
On the other hand, deflection along +α3 direction is observed on the free edges for FCFC and FFFC boundary
conditions. Maximum deflection is observed on the free edge of the cantilever flexoelectric plate (with FFFC
boundary conditions).

The three-dimensional contour plots of the nondimensional deflection w/h for cantilever flexoelectric plate
are presented in Fig. 11. The flexoelectric actuator is subjected to different values of electrostatic potential (	φ),



Y. S. Joshan, S. Santapuri

-3

0 1

0.2 0.8

-2

0.4 0.6

1
/a

2
/b

0.6 0.4

-1

0.8 0.2

1 0

0

-2.5

-2

-1.5

-1

-0.5

0

Fig. 11 Deformation contour plots for a flexoelectric plate clamped at one edge (cantilever) under applied electrostatic potential

and it is observed that actuator deflection increases with increase in potential difference applied across the
flexoelectric layer.

Next, the actuator response of a simply supported flexoelectric plate is analyzed for different thickness
values. The different values of plate thickness h are taken as 2 µm and 80 µm. Variation of nondimensional
deflection w along α1/a (α2 = b/2) is presented for classical theory (l0 = l1 = l2 = 0, le

0 = le
1= 2 µm),

modified couple stress theory (l0 = l1 = 0, l2= 2 µm, le
0 = le

1= 2 µm) and strain gradient theory (l0 = l1 = l2=
2 µm, le

0 = le
1= 2 µm) in Fig. 12. A considerable difference is noted among the results of these theories for

lower thickness value, i.e., h = 2 µm. There is a negligible difference between the results of the three theories
for h = 80 µm, as size effects become negligible with increasing thickness.

We now study the effect of the mechanical length scale parameters on the actuator response of a flexoelectric
plate with FFFC boundary conditions. The flexoelectric plate is subjected to uniform electrostatic potential load
(	�=100 V). The maximum deflection at the free edge (α1 = a) of flexoelectric plate is calculated. The effect
on the actuator response is analyzed in terms of length scale-to-thickness ratio l/h, and the individual effects
of three mechanical length scale parameters (l0, l1 and l2) are presented in Fig. 13. The increase in the l/h ratio
increases the effective stiffness of the flexoelectric actuator, which leads to a decrease in the nondimensional
deflection. The size effects are prominently influenced by length scale parameter l0 as compared to l1 and l2. In
this study, the values of length scale parameters are considered to be equal. However, different values of these
parameters can be chosen to better fit the experimental results. The strain gradient theory gives the choice of
three length scale parameters (l0, l1, l2), which makes it more versatile compared to modified couple stress
theory, which considers only one length scale parameter l2.

As the last example of this section, the effect of flexoelectric layer thickness h f on the actuator response
is analyzed in terms of thickness ratio h f /h. In this study, three passive substrates were considered, namely
aluminum, zirconia, and alumina. A uniform electrostatic potential difference (	�=100 V) is applied across
the flexoelectric layer. Variation of the nondimensional deflection w with h f /h is presented in Fig. 14. It is
noted that the flexoelectric plate with substrate 1 shows a decrease in the nondimensional deflection with the
increase in the layer thickness ratio. However, the nondimensional deflection increases for the flexoelectric
plates having substrate 2 and substrate 3 with the increase in the thickness ratio. This is due to the fact that
the stiffness of substrate 1 made of aluminum is lesser than that of flexoelectric material. With the increase in
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Fig. 12 Effect of plate thickness on nondimensional deflection w of a simply supported flexoelectric composite plate (h f /h =
0.5): a h=2 µm, b h=80 µm. It can be clearly seen that higher-order theories do not give significantly different results for a plate
of thickness h=80 µm (or more). However, a considerable difference among the results of classical theory, modified couple stress
theory, and strain gradient theory is noted at 2µm due to size effects

Fig. 13 Effect of mechanical length scale parameters on nondimensional deflection w(a, b/2) for a cantilever flexoelectric plate.
The length scale parameter l0 incorporates size effects more prominently as compared to l1 and l2 (h = 2 µm, a = b = 100 h,
h f /h = 0.5)

the thickness ratio, the flexural rigidity of the plate increases, which leads to a decrease in the deflection. On
the contrary, the flexural rigidity of the plate with substrate 2 and substrate 3 decreases with an increase in the
thickness ratio, which increases the actuator deflection.

5 Conclusions

This work presents the development of a two-way coupled flexoelectric plate formulation starting from a
3D gradient electromechanical theory. This theory considers both direct and converse flexoelectric effects
along with the mechanical and electrical size effects at microscale. A 2D theory for flexoelectric plates is
derived using the variational formulation by considering Kirchhoff assumptions. A computationally efficient
C2 continuous non-conforming finite element framework is developed to solve the resulting plate equations.
The finite element is implemented to analyze the sensor and actuator response of flexoelectric plates for different
thickness scales. A Navier-type analytical solution is also derived to verify the accuracy of the finite element
results. Our finite element results are also validated with experimental results from literature, for a passive
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Fig. 14 Effect of flexoelectric layer thickness ratio h f /h on the nondimensional tip deflection w of a cantilever flexoelectric
plate (h = 2 µm, a = b = 100h). The nondimensional deflection is dependent on the choice of the substrate

micro-plate. A number of examples are considered to study the effect of different parameters on actuator and
sensor response of flexoelectric plates, and the following observations are made:

• The non-conforming element is nearly two times faster than the conforming element for a mesh size of 16
× 16.

• Flexoelectric response of dielectric materials increases significantly at microscale, and it is larger than the
electromechanical response of piezoelectric materials for a plate of thickness h ≤ 8 µm.

• The influence of mechanical and electrical length scale parameters on the sensor and actuator response of
flexoelectric plates is examined. The mechanical length scale parameters describe the increase in mate-
rial stiffness at lower scales, and electrical length scale parameters account for the increase in dielectric
permittivity at microscale.

• The actuator response of flexoelectric composite plates depends on the stiffness of the passive substrate. A
substrate having lesser stiffness can be used for larger actuation. On the other hand, the maximum voltage
output of flexoelectric plate sensors is obtained for flexoelectric layer thickness ratio h f /h = 1 (i.e., no
substrate layer).

Appendix A

Components of constitutive matrices: The components of H, G, D, E, B and K matrices defined in equations
(51)–(54) are given as follows:

H =
[

H111 H112 H113 H221 H222 H223 H121 H122 H123
]T

, (98)

G =
[

G111 G112 G113 G221 G222 G223 G121 G122 G123
]T

, (99)

D =
[

D1 D2 D3
]T

, E =
[

E1 E2 E3
]T

, (100)

B =
[

B11 B22 B33 B12 B13 B23
]T

, (101)

K =
[

K11 K22 K33 K12 K13 K23
]T

. (102)

The components of material matrices Q
c
, Q

g
, ǫ, k, h and f defined in Eqs. (51)–(54) are given by:

Q
c

=

⎡

⎣

Q
c

11 Q
c

12 0
Q

c

21 Q
c

22 0
0 0 Q

c

33

⎤

⎦ , (103)
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where Q
c

i j , i, j = 1, 2, 3 are the components of stiffness matrix and can be obtained in terms of Young’s
modulus c and Poison’s ratio v using the plane stress assumptions [42].

h =

⎡

⎣

h1 + 2h2 h1 h1 0 0 0
h1 h1 + 2h2 h1 0 0 0
0 0 0 2h2 0 0

⎤

⎦ , (104)

Q
g

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Q
g

11 0 0 Q
g

14 0 0 0 Q
g

18 0
0 Q

g

22 0 0 Q
g

25 0 Q
g

27 0 0
0 0 Q

g

33 0 0 Q
g

36 0 0 0
Q

g

41 0 0 Q
g

44 0 0 0 Q
g

48 0
0 Q

g

52 0 0 Q
g

55 0 Q
g

57 0 0
0 0 Q

g

63 0 0 Q
g

66 0 0 0
0 Q

g

72 0 0 Q
g

75 0 Q
g

77 0 0
Q

g

81 0 0 Q
g

84 0 0 0 Q
g

88 0
0 0 0 0 0 0 0 0 Q

g

99

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (105)

where Q
g

11 = 2(a1 + a2 + a3 + a4 + a5), Q
g

14 = 2a1 + a2, Q
g

18 = a3 + 1
2 a2, Q

g

22 = 2a1 + 2a4, Q
g

25 = Q
g

14,

Q
g

27 = 1
2 a2 + a5, Q

g

33 = Q
g

22, Q
g

36 = 2a1, Q
g

41 = Q
g

14, Q
g

44 = Q
g

22, Q
g

48 = Q
g

27, Q
g

52 = Q
g

25, Q
g

55 = Q
g

11,

Q
g

57 = Q
g

18, Q
g

63 = Q
g

36, Q
g

66 = Q
g

33, Q
g

72 = Q
g

27, Q
g

75 = Q
g

57, Q
g

77 = a3 + 2a4 + a5, Q
g

81 = Q
g

18,

Q
g

84 = Q
g

48, Q
g

88 = Q
g

77 and Q
g

99 = 2a4.

f =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2 f1 + f2 0 0
0 f2 0
0 0 f2
f2 0 0
0 2 f1 + f2 0
0 0 f2
0 f1 0
f1 0 0
0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (106)

ǫ =

⎡

⎣

ǫ1 0 0
0 ǫ1 0
0 0 ǫ1

⎤

⎦ , (107)

and

k =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

k1 + 2k2 k1 k1 0 0 0
k1 k1 + 2k2 k1 0 0 0
k1 k1 k1 + 2k2 0 0 0
0 0 0 2k2 0 0
0 0 0 0 2k2 0
0 0 0 0 0 2k2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (108)

Appendix B

The matrices DSS, DSK, DGG, DGE, DEE, DEG, DKK and DKS defined in Eq. (84) are given by:

DSS =

∫

α3

(HS)
T

Q
c
HSdα3, (109)

DSK =

∫

α3

(HS)
T

hHKdα3, (110)

DGG =

∫

α3

(HG)
T

Q
g
HGdα3, (111)
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DGE =

∫

α3

(HG)
T

fHEdα3, (112)

DEE =

∫

α3

(HE)
T
ǫHEdα3, (113)

DEG =

∫

α3

(HE)
T

f
T

HGdα3, (114)

DKK =

∫

α3

(HK)
T

kHKdα3. (115)

DKS =

∫

α3

(HK)
T

h
T

HSdα3, (116)

The finite element matrices KSS, KSK, KGG, KGE, KEE, KEG, KKK and KKS defined in Eq. (85) are given
by:

KSS =

∫

αe
1

∫

αe
2

(BS)
T

DSSBSdαe
2dαe

1, (117)

KSK =

∫

αe
1

∫

αe
2

(BS)
T

DSKBKdαe
2dαe

1, (118)

KGG =

∫

αe
1

∫

αe
2

(BG)
T

DGGBGdαe
2dαe

1, (119)

KGE =

∫

αe
1

∫

αe
2

(BG)
T

DGEBEdαe
2dαe

1, (120)

KEE =

∫

αe
1

∫

αe
2

(BE)
T

DEEBEdαe
2dαe

1, (121)

KEG =

∫

αe
1

∫

αe
2

(BE)
T

DEGBGdαe
2dαe

1, (122)

KKK =

∫

αe
1

∫

αe
2

(BK)
T

DKKBKdαe
2dαe

1, (123)

KKS =

∫

αe
1

∫

αe
2

(BK)
T

DKSBSdαe
2dαe

1, (124)

Appendix C

Analytical solution for simply supported flexoelectric composite plates: The derived governing equations for the
classical flexoelectric plate are solved analytically for simply supported boundary conditions. The governing
differential equations (62)–(66) are obtained in the explicit form using Eqs. (58)–(61). The Navier solution is
used to express the primary variables in terms of series solution as follows:

u0 =

∞
∑

m=1

∞
∑

n=1

Umncos(pα1)sin(lα2), (125)

v0 =

∞
∑

m=1

∞
∑

n=1

Vmnsin(pα1)cos(lα2), (126)

w0 =

∞
∑

m=1

∞
∑

n=1

Wmnsin(pα1)sin(lα2), (127)

φ1 =

∞
∑

m=1

∞
∑

n=1

�mnsin(pα1)sin(lα2), (128)
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φ0 =

∞
∑

m=1

∞
∑

n=1

γmnsin(pα1)sin(lα2), (129)

where p = πm/a and l = πn/b. The coefficients Umn, Vmn, Wmn, �mn and γmn are unknowns to be solved
using the Navier solution technique.
In addition, transverse load q(α1, α2) is expressed in terms of Fourier series as

q =

∞
∑

m=1

∞
∑

n=1

qmn sin(pα1)sin(lα2), (130)

where

qmn =
4

ab

∫ b

0

∫ a

0
q(α1, α2) sin(pα1) sin(lα2) dα1dα2, (131)

The series solutions (125)–(130) are substituted into the explicit form of governing equations, resulting in
algebraic equations of the form:

RgUg = Fg, (132)

where Ug is the vector of unknowns to be solved, which is given by

Ug =
[

Umn Vmn Wmn �mn γmn

]T
,

Fg is the resultant force matrix, and Rg is the 5×5 resultant stiffness matrix. Equation (132) is solved to obtain
the displacements and electrostatic potential in terms of Navier coefficients. This general formulation is used
to analyze the flexoelectric plate, both in actuator and sensor modes.
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