Enabling Health Data Sharing with Fine-Grained Privacy

Luca Bonomi* Sepand Gousheh Liyue Fan
Vanderbilt University Medical Center University of North Carolina at University of North Carolina at
Nashville, TN, USA Charlotte Charlotte

luca.bonomi@vumec.org

ABSTRACT

Sharing health data is vital in advancing medical research and trans-
forming knowledge into clinical practice. Meanwhile, protecting
the privacy of data contributors is of paramount importance. To
that end, several privacy approaches have been proposed to pro-
tect individual data contributors in data sharing, including data
anonymization and data synthesis techniques. These approaches
have shown promising results in providing privacy protection at
the dataset level. In this work, we study the privacy challenges in
enabling fine-grained privacy in health data sharing. Our work is
motivated by recent research findings, in which patients and health-
care providers may have different privacy preferences and policies
that need to be addressed. Specifically, we propose a novel and
effective privacy solution that enables data curators (e.g., health-
care providers) to protect sensitive data elements while preserving
data usefulness. Our solution builds on randomized techniques
to provide rigorous privacy protection for sensitive elements and
leverages graphical models to mitigate privacy leakage due to de-
pendent elements. To enhance the usefulness of the shared data,
our randomized mechanism incorporates domain knowledge to
preserve semantic similarity and adopts a block-structured design
to minimize utility loss. Evaluations with real-world health data
demonstrate the effectiveness of our approach and the usefulness
of the shared data for health applications.
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1 INTRODUCTION

The sharing of health data is vital in advancing medical research,
enabling personalized medicine, and facilitating effective secondary
data analysis [41]. However, the sensitive nature of health informa-
tion poses significant privacy and ethical concerns in data sharing.
Privacy regulations and policies (e.g., HIPAA) are put in place to
protect the identity of data participants. As an example, the original
data records may be stripped of the protected health information
(PHI) via de-identification. Recently, there has been an increased
need for regulations and technology to strengthen the privacy
protection required by HIPAA [49]. For instance, without the con-
stitutional protection for abortion access in the U.S., states may
prosecute individuals (e.g., patients, healthcare providers) who seek
or facilitate abortions. From a technological perspective, it is im-
perative to develop new privacy techniques that protect sensitive
parts of the medical record.

Furthermore, providing fine-grained privacy protection empow-
ers individuals with better privacy control, which could encourage
data sharing [35]. For example, a recent study by Kim et al. [32]
investigated patient privacy concerns and preferences toward data
sharing. They found that more than 76% of the participants se-
lected at least 1 condition to be protected (i.e., did not want to
share), demonstrating the need of fine-grained privacy control.
In general, honoring individual privacy preferences helps build
trust and encourages data sharing behaviors in a broad range of
domains [2, 45, 47].

In this work, we study the problem of fine-grained privacy con-
trol for health data sharing, while protecting elements (i.e., parts
of a record) considered sensitive by the data curator and partici-
pants. Note that our privacy model is different from standard dif-
ferential privacy [16], which aims to protect the presence of the
entire record in the data. The new problem poses several privacy
challenges. Firstly, the sole removal of sensitive elements in the
data may not provide adequate privacy, as dependent elements
that remain in the data may disclose information about the sen-
sitive elements. Recent studies have shown that data dependence
may lead to privacy breaches even with strong privacy models
(e.g., differential privacy) [31, 37]. Addressing data dependence for
health data sharing is an important issue, as health data often ex-
hibit strong correlation (e.g., between medications, diagnoses, and
procedures). Secondly, existing privacy techniques may result in
overly-perturbed data, which can significantly reduce the usability
of the shared data. Recent studies have shown that differential pri-
vacy may not only reduce data accuracy but also have undesired
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Figure 1: Illustration of the proposed solution. Our approach con-
siders both dependent elements and the clinical information loss to
design the randomized mechanism for privacy protection.

consequences on downstream applications (e.g., inflicting changes
in the outcome [21, 55]).

We propose a new privacy-protecting approach for health data
sharing, which provides rigorous protection for sensitive elements
while retaining data usefulness. Specifically, our contributions are:

o We propose an effective approach to mitigate privacy breaches
due to dependent elements. Specifically, we adopt probabilis-
tic graphical models to capture data dependence and formu-
late an informed adversary, which infers sensitive elements
from the observed data. Our method identifies non-sensitive
elements that contribute most to the inference attack, and
protects them together with the sensitive elements.

e We design a novel randomized mechanism to protect sen-
sitive elements under the local differential privacy model.
Our mechanism adopts a block structure and maps sensi-
tive input and non-sensitive input differently. To retain the
usefulness of health data, our approach incorporates the
hierarchical representation of clinical concepts to report se-
mantically similar data. We also propose an optimization
problem formulation to find the best block structure.

e The empirical evaluation is conducted on real clinical data
and practical sensitive conditions, which demonstrates the
effectiveness of our proposed solution in comparison to state-
of-the-art privacy practices. Furthermore, we conduct a case
study for readmission risk prediction with the shared data,
to illustrate the data usefulness for health applications.

The rest of the paper is organized as follows. Section 2 intro-
duces local differential privacy and existing randomized response
mechanisms; Section 3 describes our proposed approach to address
privacy leakage due to dependent elements; Section 4 presents the
proposed randomized response mechanism; Section 5 discusses
evaluation results; Section 6 briefly reviews related work; Section 7
provides additional discussion around health data privacy and data
sharing; Section 8 concludes the paper and discusses future work.
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2 PRELIMINARIES

In this paper, we consider a patient’s EHR record as a sequence of
multiple clinical events (e.g., diagnosis, medications), ordered by the
time in which they are recorded by the healthcare provider. Further-
more, we assume that the input domain of clinical events X can be
divided into sensitive and non-sensitive elements: X = Xg |J Xns.
The set Xg contains commonly known sensitive clinical conditions
such as mental health, alcohol abuse, and sexually transmitted dis-
eases, which may be specified by patients and clinicians or defined
by policies and regulations. The goal of fine-grained privacy pro-
tection is to share sanitized patient EHR records while protecting
sensitive elements in Xs.

2.1 Randomized Response for LDP

The problem studied in this work is closely related to the notion
of local differential privacy (LDP) [15]. An obfuscation mechanism
M : X — Y satisfies e-LDP (e > 0) if for any x,x” € X and any
y € M, if and only if the following inequality holds:

Pr(M(x) =y] < e - Pr[M(x") = y]. (1)

With Y = X, the |X|-ary randomized response (RR) mecha-
nism [30] has been shown to achieve e-LDP with Pr[RR(x) =
ylx] = ‘leﬁ if y = x, and I)(Hﬁ otherwise. In a recent
work, Murakami and Kawamoto [40] have proposed a utility max-
imizing randomized response mechanism (denoted as UMAXRR)
to improve upon RR by providing e-LDP only for sensitive data.
Specifically, the input domain X is divided into sensitive elements
Xs and non-sensitive elements Xns = X \ Xs. Similarly, the output
range is divided into Yp, the protected set, and Yy, the invertible set.
When Yp = Xs and Y; = X, the UMAXRR mechanism provides
€-LDP for input elements in Xs. The mechanism is defined as:

e€

ifx e Xsandy = x,

[XsT+ec—1

m ifx e Xsandy € Yp \ {x},
Prly|x] = m if x € Xns and y € Wp, (2)

I/\’;\:ﬁ ifx € Xys and y = x,

0 otherwise.

It is important to point out that performing RR on Xs may only
provide e-indistinguishability among sensitive elements, but it does
not prevent an adversary from learning the occurrence of sensitive
elements in the data. In contrast, UMAXRR ensures that both sen-
sitive input and non-sensitive input can map to sensitive output
in Yp. By observing an output in Yp, the adversary’s inference of
whether the input is sensitive vs. non-sensitive is also bounded
(a similar principle has been discussed in one-sided differential
privacy [33]) We will show similar guarantees for our proposed
mechanism in Theorem 1. Murakami and Kawamoto [40] have
shown that UMAXRR outperforms RR in frequency estimation
tasks, due to relaxed privacy protection. It can be seen in Equa-
tion 2 that whenever an adversary observes an output in Y (recall
that Y = Xns), the input can be inferred with certainty, i.e., x = y.

2.2 Challenges and Solution Overview

Although UMAXRR may provide utility improvement over RR,
there exist significant challenges in its application in practice. Firstly,
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any non-sensitive data reported by the UMAXRR mechanism is
truthful. While this benefits the data usability, it may also lead to
privacy breaches for sensitive elements due to dependence in lon-
gitudinal data. In fact, there may be temporal correlations between
non-sensitive data and sensitive data in real applications (e.g., mo-
bile applications [24]). As a result, an adversary may infer a user’s
sensitive data by leveraging the observed non-sensitive data and
their correlation. Secondly, UMAXRR may inflict high utility loss
on sensitive data. In fact, when the sensitive domain |Xs| is large,
the probability of preserving the original data is low, as can be
seen in Equation 2. Furthermore, the mechanism has equal chance
of reporting any y € Yp \ {x}, without considering the semantic
similarity among data elements.

Our proposed approach, depicted in Figure 1, presents two main
contributions in addressing aforementioned challenges. To bridge
the gap on protecting sensitive elements in longitudinal data, our
approach leverages graphical models for data dependence and effi-
ciently extends LDP protection to selected non-sensitive elements.
To improve data utility for health applications, we design a novel
randomized response approach that leverages the semantic sim-
ilarity in clinical data domain and minimizes utility loss. In the
following, we present how our solution addresses dependent data
and describe the proposed randomized response mechanism.

3 MITIGATING PRIVACY INFERENCE DUE TO
DEPENDENT ELEMENTS

As an adversary may leverage data dependence to infer or recon-
struct sensitive elements, obfuscating sensitive elements alone may
not provide sufficient privacy protection. As an example, the pres-
ence of a non-sensitive medication in the shared data (e.g., insulin)
may enable the adversary to infer a sensitive condition that has
been obfuscated (e.g., diabetes). In this section, we describe how to
quantify the privacy risk due to dependent elements and present
an effective solution.

Modeling Data Dependence. To model the dependence between
elements in health data, we consider a graphical model G = (V, E)
(e.g., Bayesian network), where each node e € V represents a dis-
tinct element (e.g., diagnosis code, medication), and a directed edge
(ei, ej) € E from e; to ej represents that e; is observed after ej in a
patient record within AT time units. Furthermore, each edge (e;, ej)
has a weight (e;, ej), which captures the conditional probability
Pr[ejle;] between elements e; and e;. In practice, the graphical
model can be constructed with auxiliary information, such as using
previous studies or publicly available datasets. In our study, we
reserve a portion of the overall data to learn the graphical model,
which is disjoint from the data used for evaluations.

Adversarial Model. We consider an informed adversary who has
knowledge of the universe of sensitive elements (i.e., Xs), the pri-
vacy mechanism for data obfuscation (e.g., randomized response),
and the dependence in the graphical model G. Given an obfuscated
element é and the set of non-sensitive elements in the user’s output
data Ons (where Ons € Y = Xns ), the goal of the adversary
is to infer the original value of the sensitive element e. Formally,
the adversary can compute the posterior probability of e = e;, as
follows:
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Pr[é,G,Onsle = ej|Pr(e = e;]
Pr[é,G,OnNs]

_ Pr[é|G,Ons, e = €]

B Pr[é|G, Ons]

Prle = e;|é,Ons,G] =

Prle = €;|G,OnNs].

Hence, the adversary can maximize the posterior belief with:

¢ = arg max (TS =S e~ o). ons]).
In the equation above, the term Pr[é|G, Ons, e = €;] captures the
information revealed by the obfuscation mechanism (i.e., the proba-
bility of reporting é given G and input e;). Similarly, Pr[é|G, Ons]
represents the probability of reporting é given G and any input.
The term Pr[e = ¢;|G, Ons] captures the data dependence mod-
eled by the graphical model G. In the next section, we will show

that our privacy mechanism provides LDP guarantees for sensitive

Pr[é|G,Ons,e=e;]
Pr[é|G,Ons]

Therefore, we must take into consideration of Pr|e = ¢;|G, Ons]

to mitigate the adversarial inference in Equation 3.

elements, which ensures that the ratio is bounded.

Mitigating Privacy Leakage. To reduce the privacy leakage due
to data dependence, one simple solution is to extend the LDP protec-
tion to any element in X such that there is a path (either forward or
backward) in G connecting it to a sensitive element in Xs. In other
words, we will expand the sensitive domain Xg, to include both the
initial sensitive elements and additional elements that have a path
to them. While this simple solution effectively limits the privacy
inference, it may lead to overly-perturbed data if a large number of
elements are added to the sensitive domain.

To mitigate the privacy inference risk while preserving non-
sensitive elements, we propose to adopt a threshold y; for each sen-
sitive element e; € Xg and determine whether some non-sensitive
elements should be also protected. Our goal is to upper-bound the
term Pr[e = ¢;|G, Ons] in Equation 3. As Ons C Xns, we argue
that it is sufficient to bound Pr[e = €;|G, Xns] < yi. When sensi-
tive elements have strong correlation with certain non-sensitive
elements, as modeled by G, this bound may not hold. Therefore, we
propose to select non-sensitive data elements to remove from Xns
(i.e., adding to Xg), such that the observations of those elements in
the output data may no longer be truthful, and therefore cannot be
used by the adversary to reliably launch inference attacks.

Previous works have shown that finding a minimum set of non-
sensitive data to hide in order to protect sensitive data is a chal-
lenging problem [1, 8, 51]. A simple brute-force approach would
examine all possible subsets of non-sensitive data, which may be ex-
ponential with |X|. In this work, we estimate Pr[e = ¢;|G, Xns] =
YereXns Prieile’|Prle’], where Pr(e;|e’] is the conditional proba-
bility which accounts for all paths from e’ to e;, and Pr[e’] is esti-
mated with the empirical frequency. We adopt a greedy approach to
iteratively select non-sensitive elements that contribute most to the
privacy leakage, i.e., highest 3., ¢ v, Pr[eile’]Pr[e’], and remove
them from Xns, until the privacy leakage Prle = ¢;|G, Xns] is
bounded by y;, Ve; € Xs.
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4 RANDOMIZED OBFUSCATION TO
ENHANCE DATA USEFULNESS

In this section, we describe the proposed randomized obfuscation
mechanism M that reports sensitive elements X5 and non-sensitive
Xns differently. We adopt the same partition of the output range
as in [40] with Yp = Xg and Y; = Xns. Note that Xg (hence
Yp) may contain additional elements, which have been added as a
result of bounding privacy leakage in Section 3 or adaptive blocking
described later in this section.

The key innovation of our approach is that it takes advantages
of the hierarchical representation of clinical data to quantify the
semantic similarity and calibrates the randomization process to
improve utility. As a result, our approach generates obfuscated data
that are semantically similar to real data. We will show that our
approach ensures LDP protection for elements in Xg, similar to the
guarantees in [40].

4.1 Measuring Clinical Information Loss

In EHR data, clinical concepts (e.g., diagnosis codes) are structured
into taxonomy trees, in which nodes within the same subtree are
similar to each other. For example, the International Classification
of Diseases (ICD) introduces a tree-based model to group diagnosis
codes into groups representing related diagnoses (e.g., diseases
of the circulatory system, diseases of the respiratory system, etc.).
With a tree-based representation, researchers have proposed several
concept-level similarity measures [13, 27], such as using the lowest
common ancestor for a pair of nodes in the taxonomy tree to capture
their dissimilarity. Building on those techniques, we propose the
following dissimilarity measure between data elements. Given e;
and e; (e.g., ICD diagnosis codes), their dissimilarity is defined by

1 ife; or e is root,

d i,€j) = _ idx.(e;)—idx.(e;
(ei,ej) {alir(lc—)II 1+(1_Q)W otherwise.

4
where ¢ = LCA(ej, ej) denotes the lowest common ancestor for
e; and ej, L(c) denotes the set of leaves of the subtree rooted by
¢, idx.(e) represents the relative order of e in a sorted £(c), and
n denotes the total number of leaves in the tree. The proposed
dissimilarity measure in Equation 4 is bounded between 0 and 1,
where elements with lower dissimilarity values represent similar
concepts. As an example, Figure 2 depicts the pair-wise dissimilarity
for ICD9 codes obtained with the proposed measure.

We adopt this dissimilarity measure to quantify the utility loss
when obfuscating e with €, which distinguishes our setting to that
of RR and UMAXRR where utility is lost completely if é # e. To
that end, we define the expected clinical information loss (CIL) for
any e € Xs inflicted by an obfuscation method M as follows:

E[CIL(e)] = Z d(e,é)Pr[M(e) = €] (5)
éeYp
which will be used in the next subsection to improve the utility of
the privacy mechanism.

4.2 Randomized Obfuscation Mechanism

In the following, we first present the proposed block-structured
mechanisms for elements in the sensitive set and the non-sensitive
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Figure 2: Visualization of the semantic similarity measure for ICD9
codes. The presented dissimilarity matrix has a block structure,
which represents codes under various categories. Smaller values
indicate stronger clinical semantic similarity.

e e ey es eg € eqg

By ={e1, €2} By ={ey, s} Bg = {eg, €9}

Figure 3: An illustrate example of blocking with size 2 and Xs =
{e1, ez, €4, €5, €3, €9 }. For each sensitive element, a block containing
most similar elements is created by traversing the taxonomy tree to
compute the dissimilarity measure in Eq. 4. For example, for e, its
block B; contains e; and ey, while for eg, its block Bg contains eg and
e9. Intuitively, the randomized mechanism aims at sampling within
the same block to retain semantic similarity.

set. Then, we provide the privacy guarantees of the proposed mech-
anisms. Lastly, we describe an optimization problem formulation,
which identifies the block structure that minimizes the utility loss
as in Equation 5.

Mechanism for Sensitive Elements. Our idea is to define blocks
in the output domain with semantically similar elements and then
map a sensitive element according to its block. An illustrative ex-
ample for blocking is reported in Figure 3.

Given block size b > 1, we can construct a block B; for every e; €
Xjs such that B; C Yp and B; contains e; as well as b — 1 elements
in Yp most similar to e;. We proposed the following randomized
mechanism M when the input is e;:

& if é € B,
A 1- oA
PriM(ei) = €] = { 7y ifé€Yp\ By, (6)
0 otherwise.

Note that pr € [0,1] is dependent on the privacy parameter e,
which we will discuss in Theorem 1. The block-structured mecha-
nism can be considered as a generalization of the plain randomized
response, in which the input sensitive element is mapped within
their block or to any other elements outside the block. Figure 3
provides an example for blocking. In the example, the sensitive
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element e; can be mapped to similar elements in B; with proba-
bility pr, while it can be mapped to other sensitive elements with
probability 1 — pr. Intuitively, the block-structured mechanism
can reduce the expected clinical information loss on the original
sensitive element, as the obfuscated element is more likely to be
sampled among semantically similar ones (with a calibrated pr).

Mechanism for Non-Sensitive Elements. For a non-sensitive
element e; € Xs, we propose the following randomized response,
which reports a sensitive element at random or reports the input
element. Note that ps € [0, 1] will be discussed in Theorem 1.

% if é € Yp,
Pr(M(e)) =€l =y(1-ps) ifé=e¢; (7)
0 otherwise.

Our approach satisfies e-LDP for sensitive elements in Xs. Specif-
ically, the following Theorem provides the privacy analysis for our
proposed mechanisms. Algorithm 1 reports the procedure of the
combined mechanism.

THEOREM 1. The proposed mechanisms in Equation 6 and 7 provide
the following e-LDP guarantee:
Pr(M(e;) = €]

< e Vejeie X, éc€
PriM(ej) =¢] = ¢ S Re I

&b | Yp| pr _1-pr
when pr < pySpioey and ps = < max{ AL

Proor. We consider the following cases.

e Case l:ej,ej € Xg, & € By and é ¢ Bj.
PriM(e=é] _  pr/b
Pr[M(ej)=¢é] (1-pr)/(1Yp|-b)

Case 2:ej,ej € Xg,é ¢ B and é ¢ B;.
PriM(e) =¢] _1-pr |Ypl-b _
Pr[M(ej)=¢€] 1-pr|Ypl-b
e Case 3:ej,ej € Xg withej,ej # é,é € B;and é € B;
PriM(en=¢] _prb _
Pr[M(e;) =¢]l prb
e Case4:e; € Xgande; € Xns, € € B;.
PriM(e) =é] _ pr/b
Pr[M(ej) =¢él  ps/|Ypl
e Case5:ej € Xsand ej € Xy, € ¢ B;.
Pr(M(ei) =eé] _ (1-pr)/(1Yp| - b)
Pr{M(ej) = €] ps/1Ypl
To ensure e-LDP, we need to ensure that the ratio in every case
above is upper bounded by e€. Specifically, from case 1 we have:
< eb
PT = 10 b+ e b
From case 4 and case 5, we have:
|Yp| pr 1-pr
> LR L
s = e M (Y — b
Thus, by setting p and ps as above, the e-LDP protection as defined
holds for all values of € > 0. O

CIKM °23, October 21-25, 2023, Birmingham, United Kingdom

Adaptive Blocking to Minimize Utility Loss. Here we discuss
how to determine the best block structure, i.e., size b and B = {B;},
in order to minimize the utility loss of the randomized mechanism
M. Given the privacy parameter €, we are interested in finding the
blocking B for M that minimizes the clinical information loss while
satisfying e-LDP for sensitive elements. This is formulated as the
following optimization problem:

min Z E[CIL(e)] as in Eq. 5 (8)
EEXS
st. Pr[Mg(e;) = é] < ePr[Mg(ej) = €] Vejej e X,é€Yp

where we use Mg explicitly to denote the instantiation of the ran-
domized mechanism with the block set 8. Intuitively, as the block
size b increases, the likelihood of reporting the input sensitive
element truthfully tends to decrease. However, if each block B; con-
tains elements that are sufficiently similar to the sensitive element
e, the expected clinical usability loss may be reduced. Moreover, it
is likely that the elements in Xs may not be similar to each other,
e.g., ICD9 codes under distinct categories. Therefore, we hypoth-
esize that it may be beneficial to further expand Xs by including
selected non-sensitive elements to minimize the utility loss.

We propose an heuristic approach for the optimization problem
in Equation 8. Given €, our approach starts with Xg and b = 1, i.e.,
B; = {e;},Ve; € X, and progressively increases the block size b and
extends the set of sensitive elements, with the goal of finding the
configuration that minimizes the objective in Equation 8. Specif-
ically, we iteratively increase b with the current Xs and update
the block set 8, until increasing b alone will no longer reduce the
expected CIL. At that point, we select one non-sensitive element
with the smallest average dissimilarity to elements in Xs, add it
to Xs, and update the block set 8. The search process terminates
when all the blocking configurations up to a maximum block size
bmax (< |Yp|) are evaluated, returning the configuration with min-
imum expected CIL. Note that the best blocking 8 highly depends
on the privacy parameter €, e.g., B; = {e;} may be optimal for larger
€ values, as shown in the evaluations in the next section.

To summarize, we first extend the sensitive set Xs to mitigate
privacy leakage due to dependent element (described in Section 3);
next, we identify the blocking structure 8 and possibly further ex-
tend Xs to minimize the expected clinical information loss. Neither
requires access to private data. In fact, the graphical model G and
priors can be estimated with auxiliary information disjoint from
private data, inflicting no additional privacy cost.

5 RESULTS

Our evaluation centers around the practical needs for protecting
sensitive clinical data. Specifically, we note that Title 38 US.C. §
7332 requires the United States Department of Veterans Affairs
(VA) to obtain a signed authorization from Veterans whose health
record contains sensitive conditions, including drug abuse, alco-
holism and alcohol abuse, human immunodeficiency virus (HIV)
infection, and sickle cell anemia, prior sharing their data [9, 14].
Hence, we initialize Xs with 45 ICD9 codes representing the sensi-
tive conditions. We assess the effectiveness of several obfuscation
methods in protecting these sensitive conditions.
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Algorithm 1 RandomizedObfuscation(Xs, €, e, B)

Require: Xs - set of sensitive elements, € - privacy parameter, e - input
element, B = { By, By, ... } - blocks defined for all sensitive elements.
H yp «— XS

2: b « blocksize

—_

€
3: pT — Lyp\iﬁ
4 ps — “ZE‘ max {% 7&2"3}}
5: if e € Xg then > Sensitive element
6: identify the block B defined for e
7: sample output é according to Eq. 6
8: else > Non-sensitive element
9: sample output é according to Eq. 7
10: end if

1: return é > Obfuscated element

—

Data. We report the evaluation on a de-identified real-word clinical
dataset MIMIC-III [28], which comprises over 58,000 ICU hospital
admissions for 38,645 adults and 7,875 neonates. As the domain of
clinical data is large, we adopt the common practice of considering
only the first three digits of the ICD9 codes. For each patient, we
construct a sequence of temporal events obtained by selecting the
primary and secondary diagnosis codes reported at each admission.
Among all the patients, we focus on those with at least two admis-
sions. Data are further partitioned with 80% for learning G and 20%
for evaluating the privacy mechanisms. AT is set to 300 days to
capture long-term correlation.

Obfuscation Approaches. We consider three different obfusca-
tion approaches. As a baseline, we consider suppression, in which
all sensitive elements are replaced by a special symbol (i.e., the
root of the ICD hierarchical representation) while all non-sensitive
elements are disclosed. Second, we consider the utility maximiz-
ing randomized response (UMAXRR) proposed in [40], where both
sensitive and non-sensitive elements are randomized. Similar to
our solution, this approach provides e-LDP guarantee only for sen-
sitive elements. Finally, we assess our proposed approach, named
ClinSimRR, in which the obfuscation mechanism leverages both
the dependence between data elements and their clinical similarity.

Parameters. The parameter € controls the privacy protection pro-
vided by the randomized-based algorithms, where smaller values
indicate stronger privacy. In our settings, we consider € € [0.1,5.0].
The parameter y impacts the number of non-sensitive elements that
need to protected to mitigate privacy leakages due to dependent ele-
ments. Lower values of y lead to more elements to be obfuscated by
our algorithm. In our evaluations, we consider y € {0.01,0.05,0.1}.

5.1 Metrics

We consider a variety of metrics to assess the usefulness and privacy
protection of the shared data. Each experiment is conducted over
25 runs, and the results are reported with a 95% confidence interval.

Clinical Information Loss (CIL). To quantify the clinical useful-
ness of the shared admission data, we measure the average clinical
information loss with respect to the original admissions. Specifically,
we use the definition of dissimilarity d(e;, ej) from Section 4.1 to
quantify the clinical information loss. Let Rj = (ey, e, ..., ep) and
R i = (é1,8s,...,é,) denote the original and sanitized records for
the j-th patient, respectively. Then, we compute the patient-level
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clinical information loss as % 1, d(ei, é;). Lower values indicate

that the clinical usefulness is well retained in the shared data. We
report the measure for patients who exhibit at least one sensitive
element in the original data.

Kullback-Leibler (KL) Divergence. To measure the usefulness at
dataset level, we use the Kullback-Leibler (KL) divergence, which
quantifies the dissimilarity between the probability distributions
for the elements in the original and obfuscated data. Lower KL di-
vergence values indicate a higher similarity in element distributions
between the original and sanitized data.

Maximum Attacker’s Precision (MAP). We conduct an empiri-
cal privacy evaluation to quantify the privacy risk under dependent
elements. Specifically, we consider an adversary who infers the un-
known sensitive values using the inference attack model described
in Eq.(3). We report the maximum precision (MAP) over the sen-
sitive elements, where higher values indicate greater success in
correctly reconstructing the obfuscated sensitive elements.

5.2 Comparing Obfuscation Approaches

Impact of the Privacy Parameters. Figure 4 reports a compara-
tive evaluation by considering different values of the privacy param-
eter €. Our results in Figure 4a show that suppression incurs higher
privacy risks compared to randomized methods, where in the worst
case the attacker can successfully infer a suppressed sensitive el-
ement from the shared data with precision above 0.8. Both utility
maximizing randomized response and our approach significantly
reduce the maximum attacker’s precision, as the privacy protec-
tion increases (i.e., lower values of € parameter). From Figure 4b,
we observe that our approach provides better utility, i.e., lower
clinical information loss, compared to UMAXRR. When privacy
is relaxed (i.e., higher values of ¢€), both randomized approaches
incur lower clinical information loss compared to suppression, as
the original sensitive values are more likely to be retained. Finally,
we observe that the randomized approaches better preserve the
data distribution compared to suppression, leading to lower values
of KL divergence in Figure 4c.

Figure 5a reports the privacy risk in terms of maximum attacker’s
precision by varying the parameter y. With smaller values of y, our
approach extends the privacy protection to more dependent ele-
ments in the shared data. As a result, our mechanism may operate
on a larger domain of protected elements compared to suppression
and UMAXRR. While the extended set of protected elements can
help mitigate privacy breaches, the usability of the shared data may
decrease (i.e., higher CIL), as illustrated in Figure 5b. Overall, the
parameter y can be tuned to reduce privacy leakage due to depen-
dent elements. We notice that y has a larger impact in reducing the
privacy risks in high privacy regimes (i.e., small values of €). This
is because for larger values of ¢, sensitive input elements are more
likely to be retained by the mechanism, thus the inference attack
may rely less on the dependent elements.

Impact of the Number of Sensitive Elements. We study whether
the number of sensitive elements impacts the usefulness and privacy
of the shared data. Specifically, we vary the number of sensitive
codes to be protected from the original set of 45 codes. Figure 6a
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reports the overall number of protected elements adopted by the pri-
vacy approaches, with an increasing number of sensitive elements
chosen from the original list of sensitive codes in input. Suppression
and UMAXRR do not modify the input sensitive set. However, our
approach may extend the privacy protection to a greater number of
elements to mitigate privacy breach due to dependent elements and
to minimize utility loss. The extended number of protected elements
in our approach may vary as illustrated in Figure 6a, due to data
dependence, the initial sensitive set, and the privacy parameters.
Despite protecting a larger number of elements, our mechanism
reports highly useful data especially when the sensitive set is large,
illustrated by lower clinical information loss in Figure 6b.

Adaptive Blocking Strategy. We evaluate the effectiveness of
our adaptive blocking strategy with different values of €. Figure 7
shows an histogram representing the average clinical information

05 23

Clinical Information Loss
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Figure 7: Clinical information loss (CIL) by our approach with
different e values for extended protected elements (histogram) and
45 sensitive conditions (solid line). Text label indicates the block size
calibrated by our adaptive blocking strategy for each e.

loss for all the protected elements (extended Xs) and a line graph
representing the loss only for the 45 sensitive conditions. As the pri-
vacy protection is relaxed, we observe that the clinical information
loss decreases for both sets. Additionally, the line graph reports the
block size (blue label) adaptively selected by our approach, as the
privacy parameter € varies. Specifically, we observe that for low
privacy regimes (i.e., large values of €) our algorithm relies on small
blocks, while in high privacy regimes (i.e., small values of €) larger
blocks are constructed. By using an adaptive blocking strategy, the
set of protected elements may be extended to include additional
elements to create better blocking. Overall, thanks to the adaptive
blocking strategy, our method finds the best blocking structure to
improve the usability of the shared data.

5.3 Case Study: Readmission Risk Analysis

Obfuscation methods considered in this work protect patient pri-
vacy by obscuring sensitive elements in EHR data. However, those
sensitive elements may carry critical information for downstream
clinical decision support applications. As an example, analysis of
the shared data may enable a timely and effective identification of
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patients at risk of readmission, and can benefit patient care, im-
prove health outcomes, and reduce costs. It is important to study
the usability of obfuscation methods in predicting patients at risk
of readmission. In this case study, we adopt the same 45 sensitive
conditions as described at the beginning of this section, and inves-
tigate the potential utility loss in readmission risk analysis, when
those conditions are protected.

5.3.1 The LACE Index. As a proof of concept, we evaluate the
LACE index, which is a widely used method to predict 30-day
readmission risk from EHR data [48]. LACE is a data driven method,
which takes into account several clinical factors, including length
of stay (L); acuity of the admission (A); comorbidity of the patient
(C); and emergency visits in the six months prior admission (E),
to compute risk score for each admission. Similarly to previous
studies [25, 46, 52], we aim at classifying admission in three risk
groups: low (score=0-4), moderate (score=5-9), and high (score >10)
risk. Specifically, we compare the classification results obtained on
the sanitization data with the ground truth labels obtained in the
original data. The classification results are reported in Table 1.
The suppression method achieves privacy by redacting sensitive
elements from the shared data, which may result in lower LACE
index scores, as sensitive comorbidity may be removed. In our eval-
uations, we observe that the suppression method may misclassify
high risk patients into a lower risk group, as we can see from false
positive and false negative. As an example, 34 admissions at high
risk are being classified as moderate risk. Together with the classi-
fication results, we also report the maximum attacker’s precision
(MAP). We observe that suppression does not provide adequate
privacy protection, as the attacker’s maximum precision is 1.0.
Our sanitization method achieves privacy via randomization,
where the privacy parameter € controls the level of privacy protec-
tion. With our approach, we observe that the classification results
improve (i.e., higher true positive/negative and lower false posi-
tive/negative) as the values of privacy parameter increase (weaker
privacy). With € > 2.5, we observe that for moderate and high risk
groups, our approach achieves higher true positive and lower false
negative compared to suppression, with limited false positive. As
an example, for the high risk admissions our approach achieves:
33 TP, 11 EN, 5 FP, and 11697 TN, compared to 10 TP, 34 FN, 0
FP, and 11702 TN achieved by suppression. Moreover, we observe
that our solution provides stronger privacy protection compared to
suppression, with the attacker’s maximum precision at most 0.63
for the weakest privacy setting.
Table 1: LACE index classification results with three class labels:
low, moderate, and high risk, compared to the original data. MAP
denotes the maximum precision for the inference attack observed
on the sanitized data.

[ Privacy Method [ Label [ TP [ FN [ FP [ TN |

Tow | 8844 | 0 | 292 | 2610
Mod | 2566 | 292 | 34 | 8854
High 10 34 0 | 11702
S R A A R
, 0

MAP = 0.428 High 7 37 6 | 1169
ClinSimRR (¢ = 2.5) Low | 8672 | 172 | 333 | 2569

Mod | 2522 | 336 | 205 | 8683
High 11 33 3 | 11699
Low | 8769 | 75 | 194 | 2708
Mod | 2659 | 199 | 86 | 8802
High 33 11 5 | 11697

Suppression
MAP =1

MAP = 0.429

ClinSimRR (¢ = 5.0)
MAP = 0.625
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Table 2: Accuracy and recall for the readmission prediction task
using neural networks. We apply the obfuscation approaches (Sup-
pression and ClinSimRR) on the training set. For the non private
approach, we trained the model on the original data with a per-
centage of patients with sensitive conditions opting-out from the
training set. A balanced test set was used to generate the results.

[ Method [ [ Accuracy [ Recall ]
Suppression 0.77 (0.77,0.78) 0.41 (0.39,0.42)
ClinSimRR (€ = 2.5) 0.78 (0.77,0.78) 0.40 (0.38,0.42)
ClinSimRR (€ = 5.0) 0.77 (0.76,0.78) 0.41 (0.39,0.42)
NonPriv (opt%=0%) 0.77 (0.77,0.78) 0.42 (0.41,0.42)
NonPriv (opt%=50%) 0.78 (0.77,0.79) 0.40 (0.39,0.41)
NonPriv (opt%=100%) 0.79 (0.79,0.79) 0.37 (0.36,0.38)

5.3.2  Machine Learning Prediction. In addition to the LACE index,
recent studies have proposed neural network models to predict
readmission risks. Research networks and data consortium may
leverage their large datasets to train highly accurate risk prediction
models and then share these models with external sites. However,
recent studies [42] have shown that models may leak information
about data samples in the training set, posing significant privacy
concerns. In the absence of adequate privacy protections, patients
may be reluctant to participate in machine learning applications,
potentially reducing the usability of the shared model.

We adapt the neural network model proposed recently by Lin
et al. [36] for readmission risk prediction. Here we train the model
using only diagnosis and procedure information, as our main goal
is to assess the impact of the privacy mechanism on the predictive
results provided by the model. Furthermore, we study the impact
of individuals opting-out from the training set, when no privacy
mechanisms are provided. Recall that patient authorization may be
required for data sharing, as illustrated by Title 38 U.S.C. § 7332. To
this end, we remove a varying percentage of patients with sensitive
conditions from the training set (e.g., simulating patient opting-
out). The results in terms of accuracy and recall are reported in
Table 2. High values of recall indicate that the model is effective in
determining patients at risk of readmission within 30 days.

We use 80% of the data (37064 patients) for training and construct
a balance test set to assess the predictive results of the model.
Among the patients in the training set, roughly 2300 individuals
have sensitive conditions to be protected. While the fraction of
patients with sensitive conditions is small compared to the overall
data (6%), we observe that their contribution in the training set can
benefit the performance of the model. As an example, we observe
that the recall reduces from 0.42 to 0.37 as the fraction of patients
with sensitive conditions opt-out from the training set, for the
non-private solution. We argue that privacy mechanisms can be
used to protect the entire training set, facilitating the retention of
patients (especially those with sensitive conditions) in the training
data. In this evaluation, the model trained on the privacy-enhanced
data achieves recall and accuracy similar to those obtained with
non-private and 0% opt-out.

6 RELATED WORKS

The problem of sharing protected health data has received much
attention from the research community [19, 23]. A common privacy
practice relies on de-identification, in which original data is ma-
nipulated to hide the identity of individual data contributors (e.g.,
suppression of PHI). Classic techniques for data de-identification
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are build on the notion of k-anonymity [44], which have been
conducted for clinical (e.g., EHR) and genomic data [17, 18, 38].
Recent approaches rely on data synthesis methods to generate fake
records that highly resemble the original data [4, 6, 12, 50, 53].
Among them, Choi et al. [12] have proposed a data synthesis ap-
proach based on generative adversarial networks for EHR data.
While these approaches may overcome some privacy issues by
sharing synthetically generated data, they do not provide provable
privacy protection, potentially leading to privacy vulnerability in
the presence of an informed adversary. To provide rigorous privacy
guarantees, recent studies have adopted the differential privacy
model [16]. As an example, recent solutions leverage advanced
machine learning techniques (e.g., deep learning models) and dif-
ferential privacy for combined benefit, learning useful patterns
from the original data in a privacy-protecting manner which are
used to generate high quality individual-level data for secondary
analysis [7, 34]. Despite promising results, these solutions provide
protection at record-level (i.e., protecting the presence/absence of
individual data contributors), thus they cannot support fine-grained
privacy control (i.e., protecting specific elements in the record). In
addition to data manipulation and synthesis, approaches based on
security techniques have been proposed to support access-control
and regulating information access [3, 26, 39, 43]. While these solu-
tions provide an enhanced privacy control on data access, they are
difficult to deploy in supporting broad data sharing,.

In this work, we are interested in enabling fine-grained privacy
control to support broad data sharing. Our setting differs from tra-
ditional privacy solutions in health applications, as we focus on
protecting sensitive elements that represent a small subset of the
overall data domain. Techniques based on suppression, generaliza-
tion, and permutation have been proposed to hide sensitive data in
data sharing applications [1, 8, 22, 51]. One challenge for these solu-
tions is the data correlation, which may lead to privacy breaches. In
our proposed approach, we aim at addressing the data correlation
challenge by protecting dependent elements. Additionally, we lever-
age health domain knowledge to design an obfuscation mechanism
that hides sensitive elements while retaining the clinical usefulness
of the original data.

7 DISCUSSION

Sharing high quality sanitized health data is central in facilitat-
ing secondary analysis and supporting reproducible research. Yet,
privacy solutions may diminish the usability of the shared data.
Compared to traditional privacy approaches (e.g., standard differ-
ential privacy), our solution takes into account the domain-specific
knowledge (i.e., ICD hierarchical representation) in the mechanism
design to better retain data utility at individual level (i.e., codes).
While our approach shows promising results, finding the right bal-
ance between privacy and utility is still an open problem. Some
studies have proposed extensions of the differential privacy notion
to defend against realistic adversarial models and to improve data
usefulness in spatial and time-series analysis [5, 10, 20]. Studying
the applicability of these relaxed privacy models in health applica-
tions can provide important insights to better understand realistic
privacy risks.
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The effectiveness of our approach in mitigating privacy breaches
from dependent elements relies on how well data dependence can
be modeled. In this work, we use a Bayesian network to model
dependent elements in health data. Alternative approaches could
be considered to better suit different application domains (e.g., mo-
bile or location data). Overall, it may be helpful to consider two
possible cases when data dependence is estimated from historic
or public datasets. First, if the learned dependence overestimates
what the adversary may know, our approach suffices to provide
privacy protection. Second, if the learned dependence is weaker
than what is known by the adversary, the adversary may lever-
age the dependent elements in the shared data to infer sensitive
information, potentially breaching privacy. Nonetheless, our ap-
proach would provide an additional layer of privacy protection
compared to traditional solutions (i.e., suppression, standard dif-
ferential privacy). Studying the implications of dependent data on
privacy protection is an important research topic that requires
further investigations [11, 37, 54].

Enabling fine-grained privacy protection can help address spe-
cific privacy concerns of data contributors and ultimately facilitate
research data participation [29, 32]. In this study, we investigate
the possibility of enabling fine-grained privacy protection via al-
gorithmic methods. However, solving such a problem goes beyond
the development of privacy technology and the solution should
be inclusive of human perception of privacy, legal factors, and
ethical considerations. Overall, fulfilling individual privacy prefer-
ences (e.g., protecting sensitive elements), and providing rigorous,
fine-grained privacy control has the potential for encouraging data
participation and data sharing.

8 CONCLUSION

In this work, we studied the problem of sharing health data while
providing fine-grained privacy protection. Our proposed approach
leverages data dependence and domain knowledge to provide rig-
orous privacy protection while improving data utility. Empirical
evaluation on real-world health data demonstrates the benefits of
our approach compared to current privacy practices such as sup-
pression and UMAXRR. Guided by the Discussions, future work
may pursue several important directions: 1) future research could
investigate the trade-off between privacy and utility with practical
adversarial models (as opposed to the powerful adversary assumed
by standard differential privacy); 2) future research could advance
the modeling of data dependence in healthcare domain, potentially
considering multi-modal data; 3) it is important to understand how
fine-grained privacy control interacts with human perception of
privacy, legal requirements, and ethical considerations.
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