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ABSTRACT
Sharing health data is vital in advancing medical research and trans-

forming knowledge into clinical practice. Meanwhile, protecting

the privacy of data contributors is of paramount importance. To

that end, several privacy approaches have been proposed to pro-

tect individual data contributors in data sharing, including data

anonymization and data synthesis techniques. These approaches

have shown promising results in providing privacy protection at

the dataset level. In this work, we study the privacy challenges in

enabling fine-grained privacy in health data sharing. Our work is

motivated by recent research findings, in which patients and health-

care providers may have different privacy preferences and policies

that need to be addressed. Specifically, we propose a novel and

effective privacy solution that enables data curators (e.g., health-

care providers) to protect sensitive data elements while preserving

data usefulness. Our solution builds on randomized techniques

to provide rigorous privacy protection for sensitive elements and

leverages graphical models to mitigate privacy leakage due to de-

pendent elements. To enhance the usefulness of the shared data,

our randomized mechanism incorporates domain knowledge to

preserve semantic similarity and adopts a block-structured design

to minimize utility loss. Evaluations with real-world health data

demonstrate the effectiveness of our approach and the usefulness

of the shared data for health applications.

CCS CONCEPTS
• Security and privacy→ Data anonymization and sanitiza-
tion; • Applied computing→ Health informatics; • Informa-
tion systems→ Data mining.

KEYWORDS
Data Sharing, Data Privacy, Health Data

ACM Reference Format:
Luca Bonomi, Sepand Gousheh, and Liyue Fan. 2023. Enabling Health Data

Sharing with Fine-Grained Privacy. In Proceedings of the 32nd ACM Interna-
tional Conference on Information and Knowledge Management (CIKM ’23),

∗
Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0124-5/23/10. . . $15.00

https://doi.org/10.1145/3583780.3614864

October 21–25, 2023, Birmingham, United Kingdom. ACM, New York, NY,

USA, 11 pages. https://doi.org/10.1145/3583780.3614864

1 INTRODUCTION
The sharing of health data is vital in advancing medical research,

enabling personalized medicine, and facilitating effective secondary

data analysis [41]. However, the sensitive nature of health informa-

tion poses significant privacy and ethical concerns in data sharing.

Privacy regulations and policies (e.g., HIPAA) are put in place to

protect the identity of data participants. As an example, the original

data records may be stripped of the protected health information

(PHI) via de-identification. Recently, there has been an increased

need for regulations and technology to strengthen the privacy

protection required by HIPAA [49]. For instance, without the con-

stitutional protection for abortion access in the U.S., states may

prosecute individuals (e.g., patients, healthcare providers) who seek

or facilitate abortions. From a technological perspective, it is im-

perative to develop new privacy techniques that protect sensitive

parts of the medical record.

Furthermore, providing fine-grained privacy protection empow-

ers individuals with better privacy control, which could encourage

data sharing [35]. For example, a recent study by Kim et al. [32]

investigated patient privacy concerns and preferences toward data

sharing. They found that more than 76% of the participants se-

lected at least 1 condition to be protected (i.e., did not want to

share), demonstrating the need of fine-grained privacy control.

In general, honoring individual privacy preferences helps build

trust and encourages data sharing behaviors in a broad range of

domains [2, 45, 47].

In this work, we study the problem of fine-grained privacy con-

trol for health data sharing, while protecting elements (i.e., parts

of a record) considered sensitive by the data curator and partici-

pants. Note that our privacy model is different from standard dif-

ferential privacy [16], which aims to protect the presence of the

entire record in the data. The new problem poses several privacy

challenges. Firstly, the sole removal of sensitive elements in the

data may not provide adequate privacy, as dependent elements

that remain in the data may disclose information about the sen-

sitive elements. Recent studies have shown that data dependence

may lead to privacy breaches even with strong privacy models

(e.g., differential privacy) [31, 37]. Addressing data dependence for

health data sharing is an important issue, as health data often ex-

hibit strong correlation (e.g., between medications, diagnoses, and

procedures). Secondly, existing privacy techniques may result in

overly-perturbed data, which can significantly reduce the usability

of the shared data. Recent studies have shown that differential pri-

vacy may not only reduce data accuracy but also have undesired
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Figure 1: Illustration of the proposed solution. Our approach con-
siders both dependent elements and the clinical information loss to
design the randomized mechanism for privacy protection.

consequences on downstream applications (e.g., inflicting changes

in the outcome [21, 55]).

We propose a new privacy-protecting approach for health data

sharing, which provides rigorous protection for sensitive elements

while retaining data usefulness. Specifically, our contributions are:

• Wepropose an effective approach tomitigate privacy breaches

due to dependent elements. Specifically, we adopt probabilis-

tic graphical models to capture data dependence and formu-

late an informed adversary, which infers sensitive elements

from the observed data. Our method identifies non-sensitive

elements that contribute most to the inference attack, and

protects them together with the sensitive elements.

• We design a novel randomized mechanism to protect sen-

sitive elements under the local differential privacy model.

Our mechanism adopts a block structure and maps sensi-

tive input and non-sensitive input differently. To retain the

usefulness of health data, our approach incorporates the

hierarchical representation of clinical concepts to report se-

mantically similar data. We also propose an optimization

problem formulation to find the best block structure.

• The empirical evaluation is conducted on real clinical data

and practical sensitive conditions, which demonstrates the

effectiveness of our proposed solution in comparison to state-

of-the-art privacy practices. Furthermore, we conduct a case

study for readmission risk prediction with the shared data,

to illustrate the data usefulness for health applications.

The rest of the paper is organized as follows. Section 2 intro-

duces local differential privacy and existing randomized response

mechanisms; Section 3 describes our proposed approach to address

privacy leakage due to dependent elements; Section 4 presents the

proposed randomized response mechanism; Section 5 discusses

evaluation results; Section 6 briefly reviews related work; Section 7

provides additional discussion around health data privacy and data

sharing; Section 8 concludes the paper and discusses future work.

2 PRELIMINARIES
In this paper, we consider a patient’s EHR record as a sequence of

multiple clinical events (e.g., diagnosis, medications), ordered by the

time in which they are recorded by the healthcare provider. Further-

more, we assume that the input domain of clinical events X can be

divided into sensitive and non-sensitive elements: X = X𝑆
⋃X𝑁𝑆 .

The set X𝑆 contains commonly known sensitive clinical conditions

such as mental health, alcohol abuse, and sexually transmitted dis-

eases, which may be specified by patients and clinicians or defined

by policies and regulations. The goal of fine-grained privacy pro-

tection is to share sanitized patient EHR records while protecting

sensitive elements in X𝑆 .

2.1 Randomized Response for LDP
The problem studied in this work is closely related to the notion

of local differential privacy (LDP) [15]. An obfuscation mechanism

𝑀 : X → Y satisfies 𝜖-LDP (𝜖 ≥ 0) if for any 𝑥, 𝑥 ′ ∈ X and any

𝑦 ∈ Y, if and only if the following inequality holds:

𝑃𝑟 [𝑀 (𝑥) = 𝑦] ≤ 𝑒𝜖 · 𝑃𝑟 [𝑀 (𝑥 ′) = 𝑦] . (1)

With Y = X, the |X|-ary randomized response (RR) mecha-

nism [30] has been shown to achieve 𝜖-LDP with 𝑃𝑟 [𝑅𝑅(𝑥) =

𝑦 |𝑥] = 𝑒𝜖

|X |+𝑒𝜖−1 if 𝑦 = 𝑥 , and 1

|X |+𝑒𝜖−1 otherwise. In a recent

work, Murakami and Kawamoto [40] have proposed a utility max-

imizing randomized response mechanism (denoted as UMAXRR)

to improve upon RR by providing 𝜖-LDP only for sensitive data.

Specifically, the input domain X is divided into sensitive elements

X𝑆 and non-sensitive elementsX𝑁𝑆 = X \X𝑆 . Similarly, the output

range is divided intoY𝑃 , the protected set, andY𝐼 , the invertible set.
When Y𝑃 = X𝑆 and Y𝐼 = X𝑁𝑆 , the UMAXRR mechanism provides

𝜖-LDP for input elements in X𝑆 . The mechanism is defined as:

𝑃𝑟 [𝑦 |𝑥] =



𝑒𝜖

|X𝑆 |+𝑒𝜖−1 if 𝑥 ∈ X𝑆 and 𝑦 = 𝑥 ,

1

|X𝑆 |+𝑒𝜖−1 if 𝑥 ∈ X𝑆 and 𝑦 ∈ Y𝑃 \ {𝑥},
1

|X𝑆 |+𝑒𝜖−1 if 𝑥 ∈ X𝑁𝑆 and 𝑦 ∈ Y𝑃 ,
𝑒𝜖−1

|X𝑆 |+𝑒𝜖−1 if 𝑥 ∈ X𝑁𝑆 and 𝑦 = 𝑥 ,

0 otherwise.

(2)

It is important to point out that performing RR on X𝑆 may only

provide 𝜖-indistinguishability among sensitive elements, but it does

not prevent an adversary from learning the occurrence of sensitive

elements in the data. In contrast, UMAXRR ensures that both sen-

sitive input and non-sensitive input can map to sensitive output

in Y𝑃 . By observing an output in Y𝑃 , the adversary’s inference of
whether the input is sensitive vs. non-sensitive is also bounded

(a similar principle has been discussed in one-sided differential

privacy [33]) We will show similar guarantees for our proposed

mechanism in Theorem 1. Murakami and Kawamoto [40] have

shown that UMAXRR outperforms RR in frequency estimation

tasks, due to relaxed privacy protection. It can be seen in Equa-

tion 2 that whenever an adversary observes an output in Y𝐼 (recall
that Y𝐼 = X𝑁𝑆 ), the input can be inferred with certainty, i.e., 𝑥 = 𝑦.

2.2 Challenges and Solution Overview
Although UMAXRR may provide utility improvement over RR,

there exist significant challenges in its application in practice. Firstly,
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any non-sensitive data reported by the UMAXRR mechanism is

truthful. While this benefits the data usability, it may also lead to

privacy breaches for sensitive elements due to dependence in lon-

gitudinal data. In fact, there may be temporal correlations between

non-sensitive data and sensitive data in real applications (e.g., mo-

bile applications [24]). As a result, an adversary may infer a user’s

sensitive data by leveraging the observed non-sensitive data and

their correlation. Secondly, UMAXRR may inflict high utility loss

on sensitive data. In fact, when the sensitive domain |X𝑆 | is large,
the probability of preserving the original data is low, as can be

seen in Equation 2. Furthermore, the mechanism has equal chance

of reporting any 𝑦 ∈ Y𝑃 \ {𝑥}, without considering the semantic

similarity among data elements.

Our proposed approach, depicted in Figure 1, presents two main

contributions in addressing aforementioned challenges. To bridge

the gap on protecting sensitive elements in longitudinal data, our

approach leverages graphical models for data dependence and effi-

ciently extends LDP protection to selected non-sensitive elements.

To improve data utility for health applications, we design a novel

randomized response approach that leverages the semantic sim-

ilarity in clinical data domain and minimizes utility loss. In the

following, we present how our solution addresses dependent data

and describe the proposed randomized response mechanism.

3 MITIGATING PRIVACY INFERENCE DUE TO
DEPENDENT ELEMENTS

As an adversary may leverage data dependence to infer or recon-

struct sensitive elements, obfuscating sensitive elements alone may

not provide sufficient privacy protection. As an example, the pres-

ence of a non-sensitive medication in the shared data (e.g., insulin)

may enable the adversary to infer a sensitive condition that has

been obfuscated (e.g., diabetes). In this section, we describe how to

quantify the privacy risk due to dependent elements and present

an effective solution.

Modeling Data Dependence. To model the dependence between

elements in health data, we consider a graphical model 𝐺 = (𝑉 , 𝐸)
(e.g., Bayesian network), where each node 𝑒 ∈ 𝑉 represents a dis-

tinct element (e.g., diagnosis code, medication), and a directed edge

(𝑒𝑖 , 𝑒 𝑗 ) ∈ 𝐸 from 𝑒𝑖 to 𝑒 𝑗 represents that 𝑒 𝑗 is observed after 𝑒 𝑗 in a

patient record within Δ𝑇 time units. Furthermore, each edge (𝑒𝑖 , 𝑒 𝑗 )
has a weight 𝛿 (𝑒𝑖 , 𝑒 𝑗 ), which captures the conditional probability

𝑃𝑟 [𝑒 𝑗 |𝑒𝑖 ] between elements 𝑒𝑖 and 𝑒 𝑗 . In practice, the graphical

model can be constructed with auxiliary information, such as using

previous studies or publicly available datasets. In our study, we

reserve a portion of the overall data to learn the graphical model,

which is disjoint from the data used for evaluations.

Adversarial Model. We consider an informed adversary who has

knowledge of the universe of sensitive elements (i.e., X𝑆 ), the pri-
vacy mechanism for data obfuscation (e.g., randomized response),

and the dependence in the graphical model𝐺 . Given an obfuscated

element 𝑒 and the set of non-sensitive elements in the user’s output

data 𝑂𝑁𝑆 (where 𝑂𝑁𝑆 ⊆ Y𝐼 = X𝑁𝑆 ), the goal of the adversary

is to infer the original value of the sensitive element 𝑒 . Formally,

the adversary can compute the posterior probability of 𝑒 = 𝑒𝑖 , as

follows:

𝑃𝑟 [𝑒 = 𝑒𝑖 |𝑒,𝑂𝑁𝑆 ,𝐺] =
𝑃𝑟 [𝑒,𝐺,𝑂𝑁𝑆 |𝑒 = 𝑒𝑖 ]𝑃𝑟 [𝑒 = 𝑒𝑖 ]

𝑃𝑟 [𝑒,𝐺,𝑂𝑁𝑆 ]

=
𝑃𝑟 [𝑒 |𝐺,𝑂𝑁𝑆 , 𝑒 = 𝑒𝑖 ]

𝑃𝑟 [𝑒 |𝐺,𝑂𝑁𝑆 ]
𝑃𝑟 [𝑒 = 𝑒𝑖 |𝐺,𝑂𝑁𝑆 ] .

Hence, the adversary can maximize the posterior belief with:

𝑒∗ = 𝑎𝑟𝑔 max

𝑒𝑖 ∈X𝑆
{𝑃𝑟 [𝑒 |𝐺,𝑂𝑁𝑆 , 𝑒 = 𝑒𝑖 ]

𝑃𝑟 [𝑒 |𝐺,𝑂𝑁𝑆 ]
𝑃𝑟 [𝑒 = 𝑒𝑖 |𝐺,𝑂𝑁𝑆 ]}. (3)

In the equation above, the term 𝑃𝑟 [𝑒 |𝐺,𝑂𝑁𝑆 , 𝑒 = 𝑒𝑖 ] captures the
information revealed by the obfuscation mechanism (i.e., the proba-

bility of reporting 𝑒 given 𝐺 and input 𝑒𝑖 ). Similarly, 𝑃𝑟 [𝑒 |𝐺,𝑂𝑁𝑆 ]
represents the probability of reporting 𝑒 given 𝐺 and any input.

The term 𝑃𝑟 [𝑒 = 𝑒𝑖 |𝐺,𝑂𝑁𝑆 ] captures the data dependence mod-

eled by the graphical model 𝐺 . In the next section, we will show

that our privacy mechanism provides LDP guarantees for sensitive

elements, which ensures that the ratio
𝑃𝑟 [𝑒 |𝐺,𝑂𝑁𝑆 ,𝑒=𝑒𝑖 ]

𝑃𝑟 [𝑒 |𝐺,𝑂𝑁𝑆 ] is bounded.

Therefore, we must take into consideration of 𝑃𝑟 [𝑒 = 𝑒𝑖 |𝐺,𝑂𝑁𝑆 ]
to mitigate the adversarial inference in Equation 3.

Mitigating Privacy Leakage. To reduce the privacy leakage due

to data dependence, one simple solution is to extend the LDP protec-

tion to any element inX such that there is a path (either forward or

backward) in 𝐺 connecting it to a sensitive element in X𝑆 . In other

words, we will expand the sensitive domain X𝑆 , to include both the

initial sensitive elements and additional elements that have a path

to them. While this simple solution effectively limits the privacy

inference, it may lead to overly-perturbed data if a large number of

elements are added to the sensitive domain.

To mitigate the privacy inference risk while preserving non-

sensitive elements, we propose to adopt a threshold 𝛾𝑖 for each sen-

sitive element 𝑒𝑖 ∈ X𝑆 and determine whether some non-sensitive

elements should be also protected. Our goal is to upper-bound the

term 𝑃𝑟 [𝑒 = 𝑒𝑖 |𝐺,𝑂𝑁𝑆 ] in Equation 3. As 𝑂𝑁𝑆 ⊆ X𝑁𝑆 , we argue

that it is sufficient to bound 𝑃𝑟 [𝑒 = 𝑒𝑖 |𝐺,X𝑁𝑆 ] ≤ 𝛾𝑖 . When sensi-

tive elements have strong correlation with certain non-sensitive

elements, as modeled by𝐺 , this bound may not hold. Therefore, we

propose to select non-sensitive data elements to remove from X𝑁𝑆

(i.e., adding to X𝑆 ), such that the observations of those elements in

the output data may no longer be truthful, and therefore cannot be

used by the adversary to reliably launch inference attacks.

Previous works have shown that finding a minimum set of non-

sensitive data to hide in order to protect sensitive data is a chal-

lenging problem [1, 8, 51]. A simple brute-force approach would

examine all possible subsets of non-sensitive data, which may be ex-

ponential with |X|. In this work, we estimate 𝑃𝑟 [𝑒 = 𝑒𝑖 |𝐺,X𝑁𝑆 ] ≈∑
𝑒′∈X𝑁𝑆

𝑃𝑟 [𝑒𝑖 |𝑒′]𝑃𝑟 [𝑒′], where 𝑃𝑟 [𝑒𝑖 |𝑒′] is the conditional proba-
bility which accounts for all paths from 𝑒′ to 𝑒𝑖 , and 𝑃𝑟 [𝑒′] is esti-
mated with the empirical frequency. We adopt a greedy approach to

iteratively select non-sensitive elements that contribute most to the

privacy leakage, i.e., highest

∑
𝑒𝑖 ∈X𝑆 𝑃𝑟 [𝑒𝑖 |𝑒

′]𝑃𝑟 [𝑒′], and remove

them from X𝑁𝑆 , until the privacy leakage 𝑃𝑟 [𝑒 = 𝑒𝑖 |𝐺,X𝑁𝑆 ] is
bounded by 𝛾𝑖 , ∀𝑒𝑖 ∈ X𝑆 .
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4 RANDOMIZED OBFUSCATION TO
ENHANCE DATA USEFULNESS

In this section, we describe the proposed randomized obfuscation

mechanism𝑀 that reports sensitive elements X𝑆 and non-sensitive

X𝑁𝑆 differently. We adopt the same partition of the output range

as in [40] with Y𝑃 = X𝑆 and Y𝐼 = X𝑁𝑆 . Note that X𝑆 (hence

Y𝑃 ) may contain additional elements, which have been added as a

result of bounding privacy leakage in Section 3 or adaptive blocking

described later in this section.

The key innovation of our approach is that it takes advantages

of the hierarchical representation of clinical data to quantify the

semantic similarity and calibrates the randomization process to

improve utility. As a result, our approach generates obfuscated data

that are semantically similar to real data. We will show that our

approach ensures LDP protection for elements in X𝑆 , similar to the

guarantees in [40].

4.1 Measuring Clinical Information Loss
In EHR data, clinical concepts (e.g., diagnosis codes) are structured

into taxonomy trees, in which nodes within the same subtree are

similar to each other. For example, the International Classification

of Diseases (ICD) introduces a tree-based model to group diagnosis

codes into groups representing related diagnoses (e.g., diseases

of the circulatory system, diseases of the respiratory system, etc.).

With a tree-based representation, researchers have proposed several

concept-level similarity measures [13, 27], such as using the lowest

common ancestor for a pair of nodes in the taxonomy tree to capture

their dissimilarity. Building on those techniques, we propose the

following dissimilarity measure between data elements. Given 𝑒𝑖
and 𝑒 𝑗 (e.g., ICD diagnosis codes), their dissimilarity is defined by

𝑑 (𝑒𝑖 , 𝑒 𝑗 ) =
{
1 if 𝑒𝑖 or 𝑒 𝑗 is root,

𝛼
| L (𝑐 ) |−1

𝑛−1 + (1 − 𝛼) |𝑖𝑑𝑥𝑐 (𝑒𝑖 )−𝑖𝑑𝑥𝑐 (𝑒 𝑗 ) || L (𝑐 ) | otherwise.

(4)

where 𝑐 = 𝐿𝐶𝐴(𝑒𝑖 , 𝑒 𝑗 ) denotes the lowest common ancestor for

𝑒𝑖 and 𝑒 𝑗 , L(𝑐) denotes the set of leaves of the subtree rooted by

𝑐 , 𝑖𝑑𝑥𝑐 (𝑒) represents the relative order of 𝑒 in a sorted L(𝑐), and
𝑛 denotes the total number of leaves in the tree. The proposed

dissimilarity measure in Equation 4 is bounded between 0 and 1,

where elements with lower dissimilarity values represent similar

concepts. As an example, Figure 2 depicts the pair-wise dissimilarity

for ICD9 codes obtained with the proposed measure.

We adopt this dissimilarity measure to quantify the utility loss

when obfuscating 𝑒 with 𝑒 , which distinguishes our setting to that

of RR and UMAXRR where utility is lost completely if 𝑒 ≠ 𝑒 . To

that end, we define the expected clinical information loss (CIL) for

any 𝑒 ∈ X𝑆 inflicted by an obfuscation method𝑀 as follows:

E[𝐶𝐼𝐿(𝑒)] =
∑︁
𝑒∈Y𝑃

𝑑 (𝑒, 𝑒)𝑃𝑟 [𝑀 (𝑒) = 𝑒] (5)

which will be used in the next subsection to improve the utility of

the privacy mechanism.

4.2 Randomized Obfuscation Mechanism
In the following, we first present the proposed block-structured

mechanisms for elements in the sensitive set and the non-sensitive

Figure 2: Visualization of the semantic similarity measure for ICD9
codes. The presented dissimilarity matrix has a block structure,
which represents codes under various categories. Smaller values
indicate stronger clinical semantic similarity.

Figure 3: An illustrate example of blocking with size 2 and X𝑆 =

{𝑒1, 𝑒2, 𝑒4, 𝑒5, 𝑒8, 𝑒9}. For each sensitive element, a block containing
most similar elements is created by traversing the taxonomy tree to
compute the dissimilarity measure in Eq. 4. For example, for 𝑒1, its
block 𝐵1 contains 𝑒1 and 𝑒2, while for 𝑒8, its block 𝐵8 contains 𝑒8 and
𝑒9. Intuitively, the randomized mechanism aims at sampling within
the same block to retain semantic similarity.

set. Then, we provide the privacy guarantees of the proposed mech-

anisms. Lastly, we describe an optimization problem formulation,

which identifies the block structure that minimizes the utility loss

as in Equation 5.

Mechanism for Sensitive Elements. Our idea is to define blocks

in the output domain with semantically similar elements and then

map a sensitive element according to its block. An illustrative ex-

ample for blocking is reported in Figure 3.

Given block size 𝑏 > 1, we can construct a block 𝐵𝑖 for every 𝑒𝑖 ∈
X𝑆 such that 𝐵𝑖 ⊂ Y𝑃 and 𝐵𝑖 contains 𝑒𝑖 as well as 𝑏 − 1 elements

in Y𝑃 most similar to 𝑒𝑖 . We proposed the following randomized

mechanism𝑀 when the input is 𝑒𝑖 :

𝑃𝑟 [𝑀 (𝑒𝑖 ) = 𝑒] =


𝑝𝑇
𝑏

if 𝑒 ∈ 𝐵𝑖 ,
1−𝑝𝑇
|Y𝑃 |−𝑏 if 𝑒 ∈ Y𝑃 \ 𝐵𝑖 ,
0 otherwise.

(6)

Note that 𝑝𝑇 ∈ [0, 1] is dependent on the privacy parameter 𝜖 ,

which we will discuss in Theorem 1. The block-structured mecha-

nism can be considered as a generalization of the plain randomized

response, in which the input sensitive element is mapped within

their block or to any other elements outside the block. Figure 3

provides an example for blocking. In the example, the sensitive
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element 𝑒1 can be mapped to similar elements in 𝐵1 with proba-

bility 𝑝𝑇 , while it can be mapped to other sensitive elements with

probability 1 − 𝑝𝑇 . Intuitively, the block-structured mechanism

can reduce the expected clinical information loss on the original

sensitive element, as the obfuscated element is more likely to be

sampled among semantically similar ones (with a calibrated 𝑝𝑇 ).

Mechanism for Non-Sensitive Elements. For a non-sensitive
element 𝑒𝑖 ∈ X𝑁𝑆 , we propose the following randomized response,

which reports a sensitive element at random or reports the input

element. Note that 𝑝𝑆 ∈ [0, 1] will be discussed in Theorem 1.

𝑃𝑟 [𝑀 (𝑒𝑖 ) = 𝑒] =


𝑝𝑆
|Y𝑃 | if 𝑒 ∈ Y𝑃 ,
(1 − 𝑝𝑆 ) if 𝑒 = 𝑒𝑖 ,

0 otherwise.

(7)

Our approach satisfies 𝜖-LDP for sensitive elements inX𝑆 . Specif-
ically, the following Theorem provides the privacy analysis for our

proposed mechanisms. Algorithm 1 reports the procedure of the

combined mechanism.

Theorem 1. The proposedmechanisms in Equation 6 and 7 provide
the following 𝜖-LDP guarantee:

𝑃𝑟 [𝑀 (𝑒𝑖 ) = 𝑒]
𝑃𝑟 [𝑀 (𝑒 𝑗 ) = 𝑒]

≤ 𝑒𝜖 ,∀𝑒𝑖 , 𝑒 𝑗 ∈ X, 𝑒 ∈ Y𝑃

when 𝑝𝑇 ≤ 𝑒𝜖𝑏
|Y𝑃 |−𝑏+𝑒𝜖𝑏 and 𝑝𝑆 ≥ |Y𝑃 |𝑒𝜖 max

{
𝑝𝑇
𝑏
,

1−𝑝𝑇
|Y𝑃 |−𝑏

}
.

Proof. We consider the following cases.

• Case 1: 𝑒𝑖 , 𝑒 𝑗 ∈ X𝑆 , 𝑒 ∈ 𝐵𝑖 and 𝑒 ∉ 𝐵 𝑗 .
𝑃𝑟 [𝑀 (𝑒𝑖 ) = 𝑒]
𝑃𝑟 [𝑀 (𝑒 𝑗 ) = 𝑒]

=
𝑝𝑇 /𝑏

(1 − 𝑝𝑇 )/(|Y𝑃 | − 𝑏)
• Case 2: 𝑒𝑖 , 𝑒 𝑗 ∈ X𝑆 , 𝑒 ∉ 𝐵𝑖 and 𝑒 ∉ 𝐵 𝑗 .

𝑃𝑟 [𝑀 (𝑒𝑖 ) = 𝑒]
𝑃𝑟 [𝑀 (𝑒 𝑗 ) = 𝑒]

=
1 − 𝑝𝑇
1 − 𝑝𝑇

|Y𝑃 | − 𝑏
|Y𝑃 | − 𝑏

= 1

• Case 3: 𝑒𝑖 , 𝑒 𝑗 ∈ X𝑆 with 𝑒𝑖 , 𝑒 𝑗 ≠ 𝑒 , 𝑒 ∈ 𝐵𝑖 and 𝑒 ∈ 𝐵 𝑗
𝑃𝑟 [𝑀 (𝑒𝑖 ) = 𝑒]
𝑃𝑟 [𝑀 (𝑒 𝑗 ) = 𝑒]

=
𝑝𝑇

𝑝𝑇

𝑏

𝑏
= 1

• Case 4: 𝑒𝑖 ∈ X𝑆 and 𝑒 𝑗 ∈ X𝑁𝑆 , 𝑒 ∈ 𝐵𝑖 .
𝑃𝑟 [𝑀 (𝑒𝑖 ) = 𝑒]
𝑃𝑟 [𝑀 (𝑒 𝑗 ) = 𝑒]

=
𝑝𝑇 /𝑏
𝑝𝑆/|Y𝑃 |

• Case 5: 𝑒𝑖 ∈ X𝑆 and 𝑒 𝑗 ∈ X𝑁𝑆 , 𝑒 ∉ 𝐵𝑖 .

𝑃𝑟 [𝑀 (𝑒𝑖 ) = 𝑒]
𝑃𝑟 [𝑀 (𝑒 𝑗 ) = 𝑒]

=
(1 − 𝑝𝑇 )/(|Y𝑃 | − 𝑏)

𝑝𝑆/|Y𝑃 |
To ensure 𝜖-LDP, we need to ensure that the ratio in every case

above is upper bounded by 𝑒𝜖 . Specifically, from case 1 we have:

𝑝𝑇 ≤
𝑒𝜖𝑏

|Y𝑃 | − 𝑏 + 𝑒𝜖𝑏
From case 4 and case 5, we have:

𝑝𝑆 ≥
|Y𝑃 |
𝑒𝜖

max

{
𝑝𝑇

𝑏
,
1 − 𝑝𝑇
|Y𝑃 | − 𝑏

}
Thus, by setting 𝑝𝑇 and 𝑝𝑆 as above, the 𝜖-LDP protection as defined

holds for all values of 𝜖 ≥ 0. □

Adaptive Blocking to Minimize Utility Loss. Here we discuss
how to determine the best block structure, i.e., size 𝑏 and B = {𝐵𝑖 },
in order to minimize the utility loss of the randomized mechanism

𝑀 . Given the privacy parameter 𝜖 , we are interested in finding the

blocking B for𝑀 that minimizes the clinical information loss while

satisfying 𝜖-LDP for sensitive elements. This is formulated as the

following optimization problem:

min

∑︁
𝑒∈X𝑆

E[𝐶𝐼𝐿(𝑒)] as in Eq. 5 (8)

s.t. 𝑃𝑟 [𝑀B (𝑒𝑖 ) = 𝑒] ≤ 𝑒𝜖𝑃𝑟 [𝑀B (𝑒 𝑗 ) = 𝑒] ∀𝑒𝑖 , 𝑒 𝑗 ∈ X, 𝑒 ∈ Y𝑃

where we use𝑀B explicitly to denote the instantiation of the ran-

domized mechanism with the block set B. Intuitively, as the block
size 𝑏 increases, the likelihood of reporting the input sensitive

element truthfully tends to decrease. However, if each block 𝐵𝑖 con-

tains elements that are sufficiently similar to the sensitive element

𝑒𝑖 , the expected clinical usability loss may be reduced. Moreover, it

is likely that the elements in X𝑆 may not be similar to each other,

e.g., ICD9 codes under distinct categories. Therefore, we hypoth-

esize that it may be beneficial to further expand X𝑆 by including

selected non-sensitive elements to minimize the utility loss.

We propose an heuristic approach for the optimization problem

in Equation 8. Given 𝜖 , our approach starts with X𝑆 and 𝑏 = 1, i.e.,

𝐵𝑖 = {𝑒𝑖 },∀𝑒𝑖 ∈ X𝑆 , and progressively increases the block size𝑏 and
extends the set of sensitive elements, with the goal of finding the

configuration that minimizes the objective in Equation 8. Specif-

ically, we iteratively increase 𝑏 with the current X𝑆 and update

the block set B, until increasing 𝑏 alone will no longer reduce the

expected CIL. At that point, we select one non-sensitive element

with the smallest average dissimilarity to elements in X𝑆 , add it

to X𝑆 , and update the block set B. The search process terminates

when all the blocking configurations up to a maximum block size

𝑏𝑚𝑎𝑥 (≤ |Y𝑃 |) are evaluated, returning the configuration with min-

imum expected CIL. Note that the best blocking B highly depends

on the privacy parameter 𝜖 , e.g., 𝐵𝑖 = {𝑒𝑖 }may be optimal for larger

𝜖 values, as shown in the evaluations in the next section.

To summarize, we first extend the sensitive set X𝑆 to mitigate

privacy leakage due to dependent element (described in Section 3);

next, we identify the blocking structure B and possibly further ex-

tend X𝑆 to minimize the expected clinical information loss. Neither

requires access to private data. In fact, the graphical model 𝐺 and

priors can be estimated with auxiliary information disjoint from

private data, inflicting no additional privacy cost.

5 RESULTS
Our evaluation centers around the practical needs for protecting

sensitive clinical data. Specifically, we note that Title 38 U.S.C. §

7332 requires the United States Department of Veterans Affairs

(VA) to obtain a signed authorization from Veterans whose health

record contains sensitive conditions, including drug abuse, alco-

holism and alcohol abuse, human immunodeficiency virus (HIV)

infection, and sickle cell anemia, prior sharing their data [9, 14].

Hence, we initialize X𝑆 with 45 ICD9 codes representing the sensi-

tive conditions. We assess the effectiveness of several obfuscation

methods in protecting these sensitive conditions.
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Algorithm 1 RandomizedObfuscation(X𝑆 , 𝜖, 𝑒,B)
Require: X𝑆 - set of sensitive elements, 𝜖 - privacy parameter, 𝑒 - input

element, B = {𝐵1, 𝐵2, . . . } - blocks defined for all sensitive elements.

1: Y𝑃 ← X𝑆
2: 𝑏 ← blocksize

3: 𝑝𝑇 ← 𝑒𝜖𝑏
|Y𝑃 |−𝑏+𝑒𝜖𝑏

4: 𝑝𝑆 ← |Y𝑃 |
𝑒𝜖

max

{
𝑝𝑇
𝑏
,

1−𝑝𝑇
|Y𝑃 |−𝑏

}
5: if 𝑒 ∈ X𝑆 then ⊲ Sensitive element

6: identify the block 𝐵 defined for 𝑒

7: sample output 𝑒 according to Eq. 6

8: else ⊲ Non-sensitive element

9: sample output 𝑒 according to Eq. 7

10: end if
11: return 𝑒 ⊲ Obfuscated element

Data. We report the evaluation on a de-identified real-word clinical

dataset MIMIC-III [28], which comprises over 58,000 ICU hospital

admissions for 38,645 adults and 7,875 neonates. As the domain of

clinical data is large, we adopt the common practice of considering

only the first three digits of the ICD9 codes. For each patient, we

construct a sequence of temporal events obtained by selecting the

primary and secondary diagnosis codes reported at each admission.

Among all the patients, we focus on those with at least two admis-

sions. Data are further partitioned with 80% for learning𝐺 and 20%

for evaluating the privacy mechanisms. Δ𝑇 is set to 300 days to

capture long-term correlation.

Obfuscation Approaches. We consider three different obfusca-

tion approaches. As a baseline, we consider suppression, in which

all sensitive elements are replaced by a special symbol (i.e., the

root of the ICD hierarchical representation) while all non-sensitive

elements are disclosed. Second, we consider the utility maximiz-

ing randomized response (UMAXRR) proposed in [40], where both

sensitive and non-sensitive elements are randomized. Similar to

our solution, this approach provides 𝜖-LDP guarantee only for sen-

sitive elements. Finally, we assess our proposed approach, named

ClinSimRR, in which the obfuscation mechanism leverages both

the dependence between data elements and their clinical similarity.

Parameters. The parameter 𝜖 controls the privacy protection pro-

vided by the randomized-based algorithms, where smaller values

indicate stronger privacy. In our settings, we consider 𝜖 ∈ [0.1, 5.0].
The parameter 𝛾 impacts the number of non-sensitive elements that

need to protected to mitigate privacy leakages due to dependent ele-

ments. Lower values of 𝛾 lead to more elements to be obfuscated by

our algorithm. In our evaluations, we consider 𝛾 ∈ {0.01, 0.05, 0.1}.

5.1 Metrics
We consider a variety of metrics to assess the usefulness and privacy

protection of the shared data. Each experiment is conducted over

25 runs, and the results are reported with a 95% confidence interval.

Clinical Information Loss (CIL). To quantify the clinical useful-

ness of the shared admission data, we measure the average clinical

information loss with respect to the original admissions. Specifically,

we use the definition of dissimilarity 𝑑 (𝑒𝑖 , 𝑒 𝑗 ) from Section 4.1 to

quantify the clinical information loss. Let 𝑅 𝑗 = (𝑒1, 𝑒2, . . . , 𝑒𝑛) and
𝑅 𝑗 = (𝑒1, 𝑒2, . . . , 𝑒𝑛) denote the original and sanitized records for

the 𝑗-th patient, respectively. Then, we compute the patient-level

clinical information loss as
1

𝑛

∑𝑛
𝑖=1 𝑑 (𝑒𝑖 , 𝑒𝑖 ). Lower values indicate

that the clinical usefulness is well retained in the shared data. We

report the measure for patients who exhibit at least one sensitive

element in the original data.

Kullback–Leibler (KL) Divergence. To measure the usefulness at

dataset level, we use the Kullback–Leibler (𝐾𝐿) divergence, which

quantifies the dissimilarity between the probability distributions

for the elements in the original and obfuscated data. Lower 𝐾𝐿 di-

vergence values indicate a higher similarity in element distributions

between the original and sanitized data.

Maximum Attacker’s Precision (MAP). We conduct an empiri-

cal privacy evaluation to quantify the privacy risk under dependent

elements. Specifically, we consider an adversary who infers the un-

known sensitive values using the inference attack model described

in Eq.(3). We report the maximum precision (MAP) over the sen-

sitive elements, where higher values indicate greater success in

correctly reconstructing the obfuscated sensitive elements.

5.2 Comparing Obfuscation Approaches

Impact of the Privacy Parameters. Figure 4 reports a compara-

tive evaluation by considering different values of the privacy param-

eter 𝜖 . Our results in Figure 4a show that suppression incurs higher

privacy risks compared to randomized methods, where in the worst

case the attacker can successfully infer a suppressed sensitive el-

ement from the shared data with precision above 0.8. Both utility

maximizing randomized response and our approach significantly

reduce the maximum attacker’s precision, as the privacy protec-

tion increases (i.e., lower values of 𝜖 parameter). From Figure 4b,

we observe that our approach provides better utility, i.e., lower

clinical information loss, compared to UMAXRR. When privacy

is relaxed (i.e., higher values of 𝜖), both randomized approaches

incur lower clinical information loss compared to suppression, as

the original sensitive values are more likely to be retained. Finally,

we observe that the randomized approaches better preserve the

data distribution compared to suppression, leading to lower values

of KL divergence in Figure 4c.

Figure 5a reports the privacy risk in terms of maximum attacker’s

precision by varying the parameter 𝛾 . With smaller values of 𝛾 , our

approach extends the privacy protection to more dependent ele-

ments in the shared data. As a result, our mechanism may operate

on a larger domain of protected elements compared to suppression

and UMAXRR. While the extended set of protected elements can

help mitigate privacy breaches, the usability of the shared data may

decrease (i.e., higher CIL), as illustrated in Figure 5b. Overall, the

parameter 𝛾 can be tuned to reduce privacy leakage due to depen-

dent elements. We notice that 𝛾 has a larger impact in reducing the

privacy risks in high privacy regimes (i.e., small values of 𝜖). This

is because for larger values of 𝜖 , sensitive input elements are more

likely to be retained by the mechanism, thus the inference attack

may rely less on the dependent elements.

Impact of theNumber of Sensitive Elements. We studywhether

the number of sensitive elements impacts the usefulness and privacy

of the shared data. Specifically, we vary the number of sensitive

codes to be protected from the original set of 45 codes. Figure 6a
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(a) Privacy risk of the shared data measured
in terms of maximum attacker’s precision.

(b) Usability of the shared data measured in
terms of clinical information loss.

(c) Usability of the shared data measured in
terms of KL-divergence.

Figure 4: Impact of the privacy parameter (𝜖) on the utility and privacy of the shared data generated by suppression, utility maximizing
randomized response, and our solution.

(a) Attacker’s precision. (b) Clinical information loss.

Figure 5: Impact of 𝛾 on the privacy risk and usability of the shared
data.

(a) Number of protected elements
adopted by obfuscation methods. (b) Utility of shared data.

Figure 6: Impact of the number of sensitive elements. 𝜖 = 1.0 for
UMAXRR and our solution.

reports the overall number of protected elements adopted by the pri-

vacy approaches, with an increasing number of sensitive elements

chosen from the original list of sensitive codes in input. Suppression

and UMAXRR do not modify the input sensitive set. However, our

approach may extend the privacy protection to a greater number of

elements to mitigate privacy breach due to dependent elements and

tominimize utility loss. The extended number of protected elements

in our approach may vary as illustrated in Figure 6a, due to data

dependence, the initial sensitive set, and the privacy parameters.

Despite protecting a larger number of elements, our mechanism

reports highly useful data especially when the sensitive set is large,

illustrated by lower clinical information loss in Figure 6b.

Adaptive Blocking Strategy. We evaluate the effectiveness of

our adaptive blocking strategy with different values of 𝜖 . Figure 7

shows an histogram representing the average clinical information

Figure 7: Clinical information loss (CIL) by our approach with
different 𝜖 values for extended protected elements (histogram) and
45 sensitive conditions (solid line). Text label indicates the block size
calibrated by our adaptive blocking strategy for each 𝜖 .

loss for all the protected elements (extended X𝑆 ) and a line graph

representing the loss only for the 45 sensitive conditions. As the pri-

vacy protection is relaxed, we observe that the clinical information

loss decreases for both sets. Additionally, the line graph reports the

block size (blue label) adaptively selected by our approach, as the

privacy parameter 𝜖 varies. Specifically, we observe that for low

privacy regimes (i.e., large values of 𝜖) our algorithm relies on small

blocks, while in high privacy regimes (i.e., small values of 𝜖) larger

blocks are constructed. By using an adaptive blocking strategy, the

set of protected elements may be extended to include additional

elements to create better blocking. Overall, thanks to the adaptive

blocking strategy, our method finds the best blocking structure to

improve the usability of the shared data.

5.3 Case Study: Readmission Risk Analysis
Obfuscation methods considered in this work protect patient pri-

vacy by obscuring sensitive elements in EHR data. However, those

sensitive elements may carry critical information for downstream

clinical decision support applications. As an example, analysis of

the shared data may enable a timely and effective identification of
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patients at risk of readmission, and can benefit patient care, im-

prove health outcomes, and reduce costs. It is important to study

the usability of obfuscation methods in predicting patients at risk

of readmission. In this case study, we adopt the same 45 sensitive

conditions as described at the beginning of this section, and inves-

tigate the potential utility loss in readmission risk analysis, when

those conditions are protected.

5.3.1 The LACE Index. As a proof of concept, we evaluate the

LACE index, which is a widely used method to predict 30-day

readmission risk from EHR data [48]. LACE is a data driven method,

which takes into account several clinical factors, including length

of stay (L); acuity of the admission (A); comorbidity of the patient

(C); and emergency visits in the six months prior admission (E),

to compute risk score for each admission. Similarly to previous

studies [25, 46, 52], we aim at classifying admission in three risk

groups: low (score=0-4), moderate (score=5-9), and high (score ≥10)
risk. Specifically, we compare the classification results obtained on

the sanitization data with the ground truth labels obtained in the

original data. The classification results are reported in Table 1.

The suppression method achieves privacy by redacting sensitive

elements from the shared data, which may result in lower LACE

index scores, as sensitive comorbidity may be removed. In our eval-

uations, we observe that the suppression method may misclassify

high risk patients into a lower risk group, as we can see from false

positive and false negative. As an example, 34 admissions at high

risk are being classified as moderate risk. Together with the classi-

fication results, we also report the maximum attacker’s precision

(MAP). We observe that suppression does not provide adequate

privacy protection, as the attacker’s maximum precision is 1.0.

Our sanitization method achieves privacy via randomization,

where the privacy parameter 𝜖 controls the level of privacy protec-

tion. With our approach, we observe that the classification results

improve (i.e., higher true positive/negative and lower false posi-

tive/negative) as the values of privacy parameter increase (weaker

privacy). With 𝜖 ≥ 2.5, we observe that for moderate and high risk

groups, our approach achieves higher true positive and lower false

negative compared to suppression, with limited false positive. As

an example, for the high risk admissions our approach achieves:

33 TP, 11 FN, 5 FP, and 11697 TN, compared to 10 TP, 34 FN, 0

FP, and 11702 TN achieved by suppression. Moreover, we observe

that our solution provides stronger privacy protection compared to

suppression, with the attacker’s maximum precision at most 0.63

for the weakest privacy setting.

Table 1: LACE index classification results with three class labels:
low, moderate, and high risk, compared to the original data. MAP
denotes the maximum precision for the inference attack observed
on the sanitized data.

Privacy Method Label TP FN FP TN

Suppression

MAP = 1

Low 8844 0 292 2610

Mod 2566 292 34 8854

High 10 34 0 11702

ClinSimRR (𝜖 = 1.0)

MAP = 0.428

Low 8619 225 389 2513

Mod 2463 395 262 8626

High 7 37 6 11696

ClinSimRR (𝜖 = 2.5)

MAP = 0.429

Low 8672 172 333 2569

Mod 2522 336 205 8683

High 11 33 3 11699

ClinSimRR (𝜖 = 5.0)

MAP = 0.625

Low 8769 75 194 2708

Mod 2659 199 86 8802

High 33 11 5 11697

Table 2: Accuracy and recall for the readmission prediction task
using neural networks. We apply the obfuscation approaches (Sup-
pression and ClinSimRR) on the training set. For the non private
approach, we trained the model on the original data with a per-
centage of patients with sensitive conditions opting-out from the
training set. A balanced test set was used to generate the results.

Method Accuracy Recall

Suppression 0.77 (0.77,0.78) 0.41 (0.39,0.42)

ClinSimRR (𝜖 = 2.5) 0.78 (0.77,0.78) 0.40 (0.38,0.42)

ClinSimRR (𝜖 = 5.0) 0.77 (0.76,0.78) 0.41 (0.39,0.42)

NonPriv (opt%=0%) 0.77 (0.77,0.78) 0.42 (0.41,0.42)

NonPriv (opt%=50%) 0.78 (0.77,0.79) 0.40 (0.39,0.41)

NonPriv (opt%=100%) 0.79 (0.79,0.79) 0.37 (0.36,0.38)

5.3.2 Machine Learning Prediction. In addition to the LACE index,

recent studies have proposed neural network models to predict

readmission risks. Research networks and data consortium may

leverage their large datasets to train highly accurate risk prediction

models and then share these models with external sites. However,

recent studies [42] have shown that models may leak information

about data samples in the training set, posing significant privacy

concerns. In the absence of adequate privacy protections, patients

may be reluctant to participate in machine learning applications,

potentially reducing the usability of the shared model.

We adapt the neural network model proposed recently by Lin

et al. [36] for readmission risk prediction. Here we train the model

using only diagnosis and procedure information, as our main goal

is to assess the impact of the privacy mechanism on the predictive

results provided by the model. Furthermore, we study the impact

of individuals opting-out from the training set, when no privacy

mechanisms are provided. Recall that patient authorization may be

required for data sharing, as illustrated by Title 38 U.S.C. § 7332. To

this end, we remove a varying percentage of patients with sensitive

conditions from the training set (e.g., simulating patient opting-

out). The results in terms of accuracy and recall are reported in

Table 2. High values of recall indicate that the model is effective in

determining patients at risk of readmission within 30 days.

We use 80% of the data (37064 patients) for training and construct

a balance test set to assess the predictive results of the model.

Among the patients in the training set, roughly 2300 individuals

have sensitive conditions to be protected. While the fraction of

patients with sensitive conditions is small compared to the overall

data (6%), we observe that their contribution in the training set can

benefit the performance of the model. As an example, we observe

that the recall reduces from 0.42 to 0.37 as the fraction of patients

with sensitive conditions opt-out from the training set, for the

non-private solution. We argue that privacy mechanisms can be

used to protect the entire training set, facilitating the retention of

patients (especially those with sensitive conditions) in the training

data. In this evaluation, the model trained on the privacy-enhanced

data achieves recall and accuracy similar to those obtained with

non-private and 0% opt-out.

6 RELATEDWORKS
The problem of sharing protected health data has received much

attention from the research community [19, 23]. A common privacy

practice relies on de-identification, in which original data is ma-

nipulated to hide the identity of individual data contributors (e.g.,

suppression of PHI). Classic techniques for data de-identification
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are build on the notion of 𝑘-anonymity [44], which have been

conducted for clinical (e.g., EHR) and genomic data [17, 18, 38].

Recent approaches rely on data synthesis methods to generate fake

records that highly resemble the original data [4, 6, 12, 50, 53].

Among them, Choi et al. [12] have proposed a data synthesis ap-

proach based on generative adversarial networks for EHR data.

While these approaches may overcome some privacy issues by

sharing synthetically generated data, they do not provide provable

privacy protection, potentially leading to privacy vulnerability in

the presence of an informed adversary. To provide rigorous privacy

guarantees, recent studies have adopted the differential privacy

model [16]. As an example, recent solutions leverage advanced

machine learning techniques (e.g., deep learning models) and dif-

ferential privacy for combined benefit, learning useful patterns

from the original data in a privacy-protecting manner which are

used to generate high quality individual-level data for secondary

analysis [7, 34]. Despite promising results, these solutions provide

protection at record-level (i.e., protecting the presence/absence of

individual data contributors), thus they cannot support fine-grained

privacy control (i.e., protecting specific elements in the record). In

addition to data manipulation and synthesis, approaches based on

security techniques have been proposed to support access-control

and regulating information access [3, 26, 39, 43]. While these solu-

tions provide an enhanced privacy control on data access, they are

difficult to deploy in supporting broad data sharing.

In this work, we are interested in enabling fine-grained privacy

control to support broad data sharing. Our setting differs from tra-

ditional privacy solutions in health applications, as we focus on

protecting sensitive elements that represent a small subset of the

overall data domain. Techniques based on suppression, generaliza-

tion, and permutation have been proposed to hide sensitive data in

data sharing applications [1, 8, 22, 51]. One challenge for these solu-

tions is the data correlation, which may lead to privacy breaches. In

our proposed approach, we aim at addressing the data correlation

challenge by protecting dependent elements. Additionally, we lever-

age health domain knowledge to design an obfuscation mechanism

that hides sensitive elements while retaining the clinical usefulness

of the original data.

7 DISCUSSION
Sharing high quality sanitized health data is central in facilitat-

ing secondary analysis and supporting reproducible research. Yet,

privacy solutions may diminish the usability of the shared data.

Compared to traditional privacy approaches (e.g., standard differ-

ential privacy), our solution takes into account the domain-specific

knowledge (i.e., ICD hierarchical representation) in the mechanism

design to better retain data utility at individual level (i.e., codes).

While our approach shows promising results, finding the right bal-

ance between privacy and utility is still an open problem. Some

studies have proposed extensions of the differential privacy notion

to defend against realistic adversarial models and to improve data

usefulness in spatial and time-series analysis [5, 10, 20]. Studying

the applicability of these relaxed privacy models in health applica-

tions can provide important insights to better understand realistic

privacy risks.

The effectiveness of our approach in mitigating privacy breaches

from dependent elements relies on how well data dependence can

be modeled. In this work, we use a Bayesian network to model

dependent elements in health data. Alternative approaches could

be considered to better suit different application domains (e.g., mo-

bile or location data). Overall, it may be helpful to consider two

possible cases when data dependence is estimated from historic

or public datasets. First, if the learned dependence overestimates

what the adversary may know, our approach suffices to provide

privacy protection. Second, if the learned dependence is weaker

than what is known by the adversary, the adversary may lever-

age the dependent elements in the shared data to infer sensitive

information, potentially breaching privacy. Nonetheless, our ap-

proach would provide an additional layer of privacy protection

compared to traditional solutions (i.e., suppression, standard dif-

ferential privacy). Studying the implications of dependent data on

privacy protection is an important research topic that requires

further investigations [11, 37, 54].

Enabling fine-grained privacy protection can help address spe-

cific privacy concerns of data contributors and ultimately facilitate

research data participation [29, 32]. In this study, we investigate

the possibility of enabling fine-grained privacy protection via al-

gorithmic methods. However, solving such a problem goes beyond

the development of privacy technology and the solution should

be inclusive of human perception of privacy, legal factors, and

ethical considerations. Overall, fulfilling individual privacy prefer-

ences (e.g., protecting sensitive elements), and providing rigorous,

fine-grained privacy control has the potential for encouraging data

participation and data sharing.

8 CONCLUSION
In this work, we studied the problem of sharing health data while

providing fine-grained privacy protection. Our proposed approach

leverages data dependence and domain knowledge to provide rig-

orous privacy protection while improving data utility. Empirical

evaluation on real-world health data demonstrates the benefits of

our approach compared to current privacy practices such as sup-

pression and UMAXRR. Guided by the Discussions, future work

may pursue several important directions: 1) future research could

investigate the trade-off between privacy and utility with practical

adversarial models (as opposed to the powerful adversary assumed

by standard differential privacy); 2) future research could advance

the modeling of data dependence in healthcare domain, potentially

considering multi-modal data; 3) it is important to understand how

fine-grained privacy control interacts with human perception of

privacy, legal requirements, and ethical considerations.
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