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AbstractÐ Erasure codes have become an integral part of
distributed storage systems as a tool for providing data reliability
and durability under the constant threat of device failures. In
such systems, an [n, k] code over a finite field Fq encodes
k message symbols from Fq into n codeword symbols from
Fq which are then stored on n different nodes in the system.
Recent work has shown that significant savings in storage space
can be obtained by tuning n and k to variations in device
failure rates. Such a tuning necessitates code conversion: the
process of converting already encoded data under an initial
[nI , kI ] code to its equivalent under a final [nF , kF ] code.
The default approach to conversion is to re-encode the data
under the new code, which places significant burden on system
resources. Convertible codes are a recently proposed class of
codes for enabling resource-efficient conversions. Existing work
on convertible codes has focused on minimizing the access cost,
i.e., the number of code symbols accessed during conversion.
Bandwidth, which corresponds to the amount of data read and
transferred, is another important resource to optimize during
conversions. In this paper, we study the fundamental limits on
bandwidth used during code conversion and present construc-
tions for bandwidth-optimal convertible codes. First, we model
the code conversion problem using network information flow
graphs with variable capacity edges. Second, focusing on MDS
codes and an important parameter regime called the merge
regime, we derive tight lower bounds on conversion bandwidth.
The derived bounds show that conversion bandwidth can be
significantly reduced as compared to the default approach even
in regions where it has been shown that access cost cannot
be reduced. Third, we present a new construction for MDS
convertible codes which matches the proposed lower bound and
is thus bandwidth-optimal during conversion.

Index TermsÐ Convertible codes, distributed storage systems,
erasure codes.

I. INTRODUCTION

E
RASURE codes are an essential tool in distributed stor-

age systems used to add redundancy to data in order
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to avoid data loss when device failures occur [2], [3], [4],

[5]. In particular, Maximum Distance Separable (MDS) codes

are widely used for this purpose in practice because they

require the minimum amount of storage overhead for a given

level of failure tolerance. In this setting, an [n, k] MDS

code over a finite field Fq is used to encode a message

consisting of k symbols of Fq into a codeword consisting

of n symbols of Fq.1 Each of these n codeword symbols

are then stored on n distinct nodes of the distributed storage

system (typically, nodes correspond to storage devices residing

on different servers). Large-scale distributed storage systems

usually comprise hundreds to thousands of nodes, while n is

much smaller in comparison, meaning that these systems store

many such codewords distributed across different subsets of

nodes. The MDS property ensures that any subset of k symbols

out of the n symbols in the codeword is enough to decode the

original data. This provides tolerance for up to (n − k) node

failures.

The parameters n and k are typically set based on the

reliability of storage devices and additional requirements on

system performance and storage overhead. Recent work by

Kadekodi et al. [6] has shown that the failure rate of disks

can vary drastically over time, and that significant savings

in storage space (and hence operating costs) can be achieved

by tuning the code rate to the observed failure rates. Such

tuning typically needs to change both n and k of the code, due

to other practical system constraints on these parameters [6].

Other reasons for tuning parameters include changing k in

response to changes in data popularity, and adapting the code

rate to limit the total amount of storage space used. Such

tuning of parameters requires converting the already encoded

data from one set of parameters to the newly chosen set

of parameters. The default approach to achieving this is to

re-encode, that is, read the encoded data, decode if necessary,

re-encode it under the new code, and then write it back into

the relevant nodes. However, such an approach necessitates

significantly high overhead in terms of network bandwidth,

I/O, and CPU resources in the cluster. This disrupts the normal

operation of the storage system.

These applications have led to the study of the code con-

version problem [7], [8]. Code conversion (Figure 1) is the

process of transforming a collection of codewords encoding

data under an initial code CI into a collection of codewords

1In the literature, this set of n symbols is sometimes called a stripe instead
of a codeword. In this work, we make no distinctions between these two
terms.
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Fig. 1. Conversion process of codewords of an [nI , kI ] initial code into codewords of an [nF , kF ] final code. In this figure, each color represents a different
codeword. Code conversion is performed by downloading data from storage nodes to a central location, processing the data, and writing back the processed
data to the nodes. The total amount of data read is denoted by γR, and the total amount of data written is denoted by γW .

encoding the same data under a final code CF .2 Given certain

parameters for CI and CF , the goal is to design the codes

CI and CF along with a conversion procedure from CI to

CF that is efficient in conversion (according to some notion

of conversion cost as will be discussed subsequently). The

design is subject to additional decodability constraints on the

codes CI and CF , such as both satisfying the MDS property,

since both these codes encode data in the storage system

at different snapshots in time. A pair of codes designed to

efficiently convert encoded data from an [nI , kI ] code to an

[nF , kF ] code is called an (nI , kI ;nF , kF ) convertible code,

and the initial [nI , kI ] code is said to be (nF , kF )-convertible.

In practice, the exact value of the final parameters nF and kF

might not be known at the time of code construction, as it

might depend on future failure rates. Instead, one might have

some finite set of possible values for the pair (nF , kF ) that

will be chosen from at the time of conversion. For this reason,

we will also seek to construct initial codes which are simulta-

neously (nF , kF )-convertible for all (nF , kF ) in a given finite

set of final parameter values. This allows the flexibility to

choose the parameters nF and kF at the time conversion is

performed.

Existing works on convertible codes have studied efficiency

in terms of the access cost of conversion, which corresponds to

the number of codeword symbols accessed during conversion.

In particular, previous works [7], [8] have derived tight lower

bounds on the access cost of conversion for linear MDS

convertible codes, and presented explicit constructions of MDS

convertible codes that meet those lower bounds (i.e. access-

optimal MDS convertible codes). Another important resource

overhead incurred during conversion is that on the network

bandwidth, which we call conversion bandwidth. In the sys-

tem, this corresponds to the total amount of data transferred

between nodes during conversion. Access-optimal convertible

codes, by virtue of reducing the number of code symbols

accessed, also reduce conversion bandwidth as compared to

the default approach. However, it is not known if these codes

are also optimal with respect to conversion bandwidth.

In this paper, we study the conversion bandwidth of code

conversions. We specifically focus on MDS convertible codes

2The superscripts I and F stand for initial and final, respectively.

and a parameter regime known as the merge regime, which

has been shown to play the most critical role in the analysis

and construction of convertible codes [7]. The merge regime

corresponds to conversions where multiple initial codewords

are merged into a single final codeword (i.e. kF = λIkI for

some integer λI ≥ 2).

For the access cost of conversion in the merge regime, it is

known [8] that one cannot do better than the default approach

for a wide range of parameters (specifically, when (nI −
kI) < (nF − kF ), which we term the increasing-redundancy

region). For the remaining set of parameters (which we term

the decreasing-redundancy region), access-optimal convertible

codes lead to considerable reduction in access cost compared

to the default approach. Yet, it is viable that there is room

for a significant reduction in conversion bandwidth in both of

these regimes. This is possible by considering codes over finite

extensions of finite fields Fqα , where each codeword symbol

can be interpreted as an α-length vector of sub-symbols from

the base field Fq. Such codes are called vector codes. Vector

codes allow conversion procedures to download elements of

the base field from nodes, allowing them to download only a

fraction of the codeword symbols. This is inspired by the work

on regenerating codes by Dimakis et al. [9] who used vector

codes to reduce bandwidth cost of reconstructing a subset of

the codeword symbols.

In this paper, first, to analyze the conversion bandwidth,

we model the code conversion problem via a network infor-

mation flow graph. This is a directed acyclic graph with capac-

ities, where vertices represent nodes and edges represent the

communication between nodes. The approach of information

flow graphs was used by Dimakis et al. [9] in the study on

regenerating codes. Unlike in the case of regenerating codes,

the proposed model involves variable capacities on edges

representing data download during conversion. This feature

turns out to be critical; we show that conversion procedures

which download a uniform amount of data from each node

are necessarily sub-optimal.

Second, by using the information flow model, we derive

a tight lower bound on the conversion bandwidth for

MDS convertible codes in the merge regime. Specifically,

we use the information flow graph to derive constraints

on edge capacities that we then feed into an optimization
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TABLE I

COMPARISON OF THE READ CONVERSION BANDWIDTH (γR) OF DIFFERENT APPROACHES FOR MERGE CONVERSION. HERE rI := nI − kI ,

rF := nF − kF , AND WE ASSUME THAT rF ≤ kI . FOR THE THREE APPROACHES, THE WRITE CONVERSION

BANDWIDTH IS CONSTANT (γW = rF α)

problem whose objective is to minimize the bandwidth of

conversion. With this we derive a tight lower bound on

the total conversion bandwidth for given code parameters

(nI , kI ;nF , kF ).
Third, using the above derived (tight) lower bound,

we show that (1) in the increasing-redundancy region, where

no reduction in access cost as compared to the default

approach is possible, a substantial reduction in bandwidth

cost can be achieved, and (2) in the decreasing-redundancy

region, the access-optimal convertible codes are indeed

bandwidth-optimal.

Fourth, we present an explicit construction of MDS con-

vertible codes in the merge regime which achieves this

lower bound and is therefore optimal in terms of conversion

bandwidth. Table I shows a comparison of the conversion

bandwidth required by different approaches to conversion in

the merge regime. This construction exploits the Piggybacking

framework [10], which is a general framework for construct-

ing vector codes, and uses access-optimal MDS convertible

codes [8] as a building block.

Above, only a single value of final parameters nF and kF

was considered. In general, the ideal value of nF and kF might

be uncertain at the time of encoding, because it depends on

future observations. In such cases, having the ability to choose

nF and kF at the time of conversion is essential. So finally,

we propose a technique to transform our construction so as

to be simultaneously bandwidth-optimal in conversion for any

given set of potential final parameter values. The proposed

transformation exploits the piggybacking technique [10] in a

recursive fashion.

Organization: We review the necessary background and

discuss related work in Section II. In Section III, we describe

our model for the code conversion process as an information

flow graph. In Section IV, we derive a lower bound on the

conversion bandwidth of MDS convertible codes in the merge

regime. In Section V, we propose an explicit construction

for bandwidth-optimal MDS convertible codes in the merge

regime, including the transformation to make the construction

simultaneously bandwidth-optimal in conversion for multiple

final parameter values. In Section VI, we analyze the savings

enabled by bandwidth-optimal convertible codes. We conclude

the paper in Section VII.

II. BACKGROUND AND RELATED WORK

In this section we start by introducing concepts from the

existing literature that are used in this paper. We then do an

overview of other related work.

A. Vector Codes and Puncturing

In this section we introduce the basic notation for vector

codes. Let [i] denote the subset {1, 2, . . . , i}, for a natural

number i. An [n, k, α] vector code C over a finite field Fq is an

injective mapping C : F
αk
q → F

αn
q . For a given codeword c =

C(m) and i ∈ [n], define ci = Ci(m) = (cα(i−1)+1, . . . , cαi)
as the i-th symbol of c, which is a vector of length α over Fq.

We refer to elements from the base field Fq as subsymbols.

A code is said to be systematic if it always maps m to a

codeword that contains all the subsymbols of m uncoded. In a

linear [n, k, α] vector code C, the encoding of message m ∈
F

kα
q is given by the mapping m 7→ mG where G ∈ F

kα×nα
q

is called the generator matrix of C, and the columns of G are

called encoding vectors. The minimum distance of a vector

code is defined as:

dist(C) := min
m ̸=m

′

|{i ∈ [n] : Ci(m) ̸= Ci(m
′)}| .

An [n, k, α] vector code C is said to be maximum-distance-

separable (MDS) if dist(C) = n−k + 1 (i.e., it achieves the

Singleton bound [11]). MDS codes are commonly used in

practice because they achieve the optimal tradeoff between

storage overhead and failure tolerance.

A scalar code is a vector code with α = 1. We will omit

the parameter α when it is clear from context or when α = 1.

A puncturing of a vector code C is the resulting vector code

after removing a fixed subset of symbols from every codeword.

B. Convertible Codes [7], [8]

Convertible codes are designed to enable encoded data

to undergo efficient conversion. Let CI be an [nI , kI ] code

over Fq, and CF be an [nF , kF ] code over Fq. In the initial

configuration, data will be encoded under the initial code CI ,

and in the final configuration data will be encoded under the

final code CF . Let rI = (nI − kI) and rF = (nF − kF ).
In order to allow for a change in code dimension from kI to

kF , multiple codewords of codes CI and CF are converted at

the same time. The reason behind this is that in the initial and

final configurations, the system must encode the same total

number of message symbols (though encoded differently).

Thus, even the simplest non-trivial instance of the problem

involves multiple codewords in the initial and final config-

uration. Let m be a message of length M = lcm(kI , kF )
which in the initial configuration is encoded as λI = (M/kI)
codewords of CI and in the final configuration is encoded as

λF = (M/kF ) codewords of CF .
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For a subset I ⊆ [M ], we denote the restriction of m to the

coordinates in I as m|I ∈ F
|I|
q , and use the term submessage

to refer to such vectors. The mapping of message symbols

from m to different codewords is specified by two partitions

of the message symbol indices [M ]: an initial partition PI

and a final partition PF . Each subset P I
i ∈ PI must be of

size |P I
i | = kI , and indicates that the submessage m|P I

i
is

encoded by initial codeword i, for i ∈ [λI ]. Similarly, each

subset PF
j ∈ PI must be of size |PF

j | = kF , and indicates

that the submessage m|P F
j

is encoded by final codeword j,

for j ∈ [λF ]. A conversion from initial code CI to final CF

is a procedure that takes the initial codewords {CI(m|P I
i
) :

i ∈ [λI ]} and outputs the final codewords {CF (m|P F
i

) : i ∈

[λF ]}. Putting all these elements together, a convertible code

is formally defined as follows.

Definition 1 (Convertible Code [7]): An (nI , kI ;nF , kF )
convertible code over Fq is defined by: (1) a pair of initial

and final codes (CI , CF ) over Fq, where CI is an [nI , kI ] code

and CF is an [nF , kF ] code, (2) initial and final partitions

(PI ,PF ) of M such that |P I
i | = kI (∀P I

i ∈ PI) and

|PF
j | = kF (∀PF

j ∈ PF ), (3) a conversion procedure from

CI to CF .

▶

The access cost of a conversion procedure is the sum of the

read access cost, i.e. the total number of code symbols read,

and the write access cost, i.e. the total number of code symbols

written. An access-optimal convertible code is a convertible

code whose conversion procedure has the minimum access

cost over all convertible codes with given parameters (nI , kI ;
nF , kF ). Similarly, an [nI , kI ] code is said to be (nF , kF )-
access-optimally convertible if it is the initial code of an

access-optimal (nI , kI ;nF , kF ) convertible code.

Definition 1 considers single fixed values for parameters nF

and kF . In practice, the values of nF and kF for the conversion

might be unknown. Thus, constructing convertible codes which

are simultaneously (nF , kF )-access-optimally convertible for

several possible values of nF and kF is also important (as

will be discussed in Section V-B).

Though the definition of convertible codes allows for any

kind of initial and final codes, this work focuses on MDS

codes. A convertible code is said to be MDS when both CI

and CF are MDS. The access cost lower bound for linear MDS

convertible codes is known.

Theorem 1 [8]: Let d1 be the read access cost of a

linear MDS (nI , kI ;nF , kF ) convertible code, and d2 its write

access cost. When kI ̸= kF , for every access-optimal code:

d1=





λIrF +[λI mod λF ](kI−max{[kF mod kI ], rF }),

if rI ≥ rF and rF < min{kI , kF },

M, otherwise.

d2 = λF rF .

There are explicit constructions of access-optimal convertible

codes for all valid parameters (nI , kI ;nF , kF ): [12] gives

a construction when kF is a multiple of kI , and [8] gives

a construction for the general case. Notice that for the

increasing-redundancy region (rI < rF ), read access cost is

always M , which is the same as the default approach. In the

decreasing-redundancy region (rI ≥ rF ), on the other hand,

one can achieve lower access cost than the default approach

when rF < min{kI , kF }.

During conversion, code symbols from the initial codewords

can play multiple roles: they can become part of different final

codewords, their contents might be read or written, additional

code symbols may be added and existing code symbols may be

removed. Based on their role, code symbols can be divided into

three groups: (1) unchanged symbols, which are present both

in the initial and final codewords without any modifications;

(2) retired symbols, which are only present in the initial

codewords but not in the final codewords; and (3) new symbols,

which are present only in the final codewords but not in the

initial codewords. Both unchanged and retired symbols may

be read during conversion, and then linear combinations of

data read are written into the new symbols.

The merge regime is a fundamental regime of convertible

codes which corresponds to conversions which merge multiple

initial codewords into a single final codeword. Thus, convert-

ible codes in the merge regime are such that kF = λIkI for

some integer λI ≥ 2, and λF = 1. Notice that in this regime,

d1 in Theorem 1 reduces to λI min{rF , kI} if rI ≥ rF .

We recall two lemmas from previous work which are useful

for analyzing the merge regime.

Proposition 1 [7]: For every (nI , kI ;nF , λIkI) convert-

ible code, all possible pairs of initial and final partitions

(PI ,PF ) are equivalent up to relabeling.

In the merge regime, all data gets mapped to the same final

stripe. Thus, the initial and final partition do not play an

important role in this case.

Proposition 2 [7]: In an MDS (nI , kI ;nF , λIkI) convert-

ible code, there can be at most kI unchanged symbols from

each initial codeword.

This is because having more than kI unchanged symbols in

an initial codeword would contradict the MDS property.

Definition 2 (Stability): A convertible code is said to be

stable if its conversion procedure has the maximum number

of unchanged symbols (M when kI ̸= kF ).

1) Access-Optimal Convertible Code for Merge Regime :

When rI < rF , Theorem 1 implies that the default approach

has optimal access cost, and so constructing an access-optimal

code for this case is trivial. When rI ≥ rF and the code is

in the merge regime, the bound from Theorem 1 in the case

where rI ≥ rF and rF < kI reduces to d1 ≥ λIrF and

d2 ≥ rF . Thus in access-optimal conversion in the merge

regime, only rF code symbols from each initial codeword need

to be read. These symbols are then used to compute rF new

code symbols.

In [7], several constructions for access-optimal convertible

codes in the merge regime are presented. Codes built using

these constructions are (1) systematic, (2) linear, (3) during

conversion only access rF parities from each initial stripe,

and (4) when constructed with a given value of λI = λ and

rF = r, the initial [nI , kI ] code is (nF , kF )-access-optimally

convertible for all kF = λ′kI and nF = kF + r′ such that

1 ≤ λ′ ≤ λ and 1 ≤ r′ ≤ r. In Section V we use an access-

optimal convertible code in the merge regime as part of our
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Fig. 2. Piggybacking framework [10] for constructing vector codes.

construction of bandwidth-optimal convertible codes for the

merge regime. Next, we give a brief description of the code

construction that we use from [7] (referred to as the ªgeneral

constructionº).

Consider the case where rI ≥ rF and rF < kI (otherwise,

the construction is trivial). The codes CI and CF over finite

field Fq are defined via the matrices GI =
[
IkI | PI

]
and

GF =
[
IkF | PF

]
where:

• Ik is the k × k identity matrix,

• α1, α2, . . . , αrI are distinct elements from Fq,

• PI is the kI × rI Vandermonde matrix with evaluation

points (α1, . . . , αrI ),
• PF is the kF × rF Vandermonde matrix with evaluation

points (α1, . . . , αrF ).

(In the original construction [7], αi is chosen as θi−1 for some

primitive element θ ∈ Fq.) One important aspect of this con-

struction is that, due to the nature of Vandermonde matrices,

the i-th column of PF is equal to the vertical concatenation of

the respective i-th columns of PI , αkI

i PI , . . . , α
(λI−1)kI

i PI .

This property ensures that each final parity can be constructed

during conversion as a linear combination of one initial parity

from each initial codeword. As shown in [7], this construction

satisfies the properties (1±4) described above, and is MDS

for appropriately chosen points αi (i ∈ [rI ]) and sufficiently

large Fq.

Example 1 (Access-Optimal Code): Consider the parame-

ters (nI = 7, kI = 4; nF = 11, kF = 8) over F17: the

evaluation points (α1 = 1, α2 = 2, α3 = 6) yield an MDS

access-optimal code. It is easy to check that the codes defined

by the following matrices are MDS:

PI =




1 1 1
1 2 6
1 4 2
1 8 12


 PF =




1 1 1
1 2 6
1 4 2
1 8 12
1 16 4
1 15 7
1 13 8
1 9 14




Now, suppose the data (a1, . . . , a4) and (a5, . . . , a8) are

encoded with the initial code. It is easy to check that the

following holds:

(a1, . . . , a4)P
I + (a5, . . . , a8)P

I




1 0 0
0 16 0
0 0 4




= (a1, . . . , a8)P
F .

▶

C. Network Information Flow

Network information flow [13] is a class of problems that

model the transmission of information from sources to sinks in

a point-to-point communication network. Network coding [14],

[15], [16], [17], [18] is a generalization of store-and-forward

routing, where each node in the network is allowed to combine

its inputs using a code before communicating messages to

other nodes. For the purposes of this paper, an information

flow graph is a directed acyclic graph G = (V,E), where V
is the set of nodes, E ⊆ V × V × R≥0 is the set of edges

with non-negative capacities, and (i, j, c) ∈ E represents that

information can be sent noiselessly from node i to node j at

rate c. Let X1, X2, . . . , Xm be mutually independent infor-

mation sources with rates x1, x2, . . . , xm respectively. Each

information source Xi is associated with a source si ∈ V ,

where it is generated, and a sink ti ∈ V , where it is required.

In this paper we mainly make use of the information max-flow

bound [19] which indicates that it is impossible to transmit

Xi at a higher rate than the maximum flow from si to ti.
In other words, xi ≤ max-flow(si, ti) for all i ∈ [m] is a

necessary condition for a network coding scheme satisfying

all constraints to exist. In our analysis, we will consider si-ti-
cuts of the information flow graph, which give an upper bound

on max-flow(si, ti) and thus an upper bound on xi as well.

We will also utilize the fact that two independent information

sources with the same source and sink can be considered as a

single information source with rate equal to the sum of their

rates.

In [9], information flow and network coding is applied to

the repair problem in distributed storage systems. The repair

problem is the problem of reconstructing a small number of

failed code symbols in an erasure code (without having to

decode the full codeword). Dimakis et al. [9] use informa-

tion flow to establish bounds on the storage size and repair

network-bandwidth of erasure codes. In this work we use

information flow to model the process of code conversion

and establish lower bounds on the total amount of network

bandwidth used during conversion.

D. Piggybacking framework for Constructing Vector Codes

The Piggybacking framework [10], [20] is a framework for

constructing new vector codes building on top of existing

codes. The main technique behind the Piggybacking frame-

work is to take an existing code as a base code, create a

new vector code consisting of multiple instances of the base

code (as described below), and then add carefully designed

functions of the data (called piggybacks) from one instance

to the others. These piggybacks are added in a way such that
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it retains the decodability properties of the base code (such

as the MDS property). The piggyback functions are chosen

to confer additional desired properties to the resulting code.

In [10], the authors showcase the Piggybacking framework

by constructing codes that are efficient in reducing bandwidth

consumed in repairing codeword symbols.

More specifically, the Piggybacking framework works as

follows. Consider a length n code defined by the func-

tion f(m) = (f1(m), f2(m), . . . , fn(m)). Now, consider α
instances of this base code, each corresponding to a coordinate

of the α-length vector of each symbol in the new vector

code. Let (m1,m2, . . . ,mα) denote the independent messages

encoded under these α instances, as shown in Figure 2a. For

every i such that 2 ≤ i ≤ α, one can add to the data encoded

in instance i an arbitrary function of the data encoded by

instances {1, . . . , (i−1)}. Such functions are called piggyback

functions, and the piggyback function corresponding to code

symbol j ∈ [n] of instance i ∈ {2, . . . , α} is denoted as gi,j .

The decoding of the piggybacked code proceeds as follows.

Observe that instance 1 does not have any piggybacks. First,

instance 1 of the base code is decoded using the base code’s

decoding procedure in order to obtain m1. Then, m1 is used

to compute and subtract any of the piggybacks {g2,i(m1)}
n
i=1

from instance 2 and the base code’s decoding can then be

used to recover m2. Decoding proceeds like this, using the

data decoded from previous instances in order to remove

the piggybacks until all instances have been decoded. It is

clear that if an [n, k, α] vector code is constructed from

an [n, k] MDS code as the base code using the Piggy-

backing framework, then the resulting vector code is also

MDS. This is because any set of k symbols from the vector

code contains a set of k subsymbols from each of the α
instances.

In this paper, we use the Piggybacking framework to design

a code where piggybacks store data which helps in making the

conversion process efficient.

E. Other Related Work

Apart from [7], which presented a general formulation for

the code conversion problem, special cases of code conversion

have been studied in the literature. In [21], [22], the authors

study the problem of minimizing bandwidth usage when

adding extra parities, which corresponds to the case where

kI = kF and nI < nF . In [23], the authors propose two

specific pairs of non-MDS codes for a distributed storage

system which support conversion with lower access cost than

the default approach. In [24], the authors study two kinds of

conversion in the context of distributed matrix multiplication.

In [25], the authors propose an approach to conversion similar

to that of [7] and [8], but allow each individual codeword to

belong to a different code. These works focus on reducing

the access cost of conversion, whereas the focus of the

current paper is on conversion bandwidth. Furthermore, the

approaches proposed in these works [23], [24] do not come

with any theoretical guarantees on optimality, whereas the cur-

rent paper also presents tight lower bounds on the conversion

bandwidth along with bandwidth-optimal constructions.

A related line of research is that of regenerating codes.

Regenerating codes are erasure codes which are designed to

solve the repair problem (described in Section II-C above)

by downloading the least amount of data from the sur-

viving nodes. Regenerating codes were first proposed by

Dimakis et al. [9]. Several subsequent works have provided

constructions of codes with bandwidth-efficient repair [10],

[21], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35],

[36], [37], [38], [39], [40], [41], [42], [43], [44], [45], lower

bounds on the subpacketization of such codes [46], [47], [48],

constructions and bounds for scalar codes [49], [50], [51], [52],

[53], [54] and other generalizations of regenerating codes [55],

[56], [57], [58]. The regenerating codes framework measures

the cost of repair in a similar way to how we measure the

cost of conversion in this work: in terms of the total amount

of network bandwidth used, i.e. the total amount of data trans-

ferred during repair. Thus, some of the techniques used in this

paper are inspired by the existing regenerating codes literature,

as further explained in Section II-C. Furthermore, specific

instances of code conversion can be viewed as instances of

the repair problem, for example, increasing n while keeping k
fixed as studied in [10], [21] and [22]. In such a scenario,

one can view adding additional nodes as ªrepairingº them

as proposed in [21]. Note that this setting imposes a relaxed

requirement of repairing only a specific subset of nodes as

compared to regenerating codes which require optimal repair

of all nodes. Yet, the lower bound from regenerating codes

still applies for MDS codes, since as shown in [31], the

regenerating codes lower bound for MDS codes applies even

for repair of only a single specific node.

There have been several works studying the scaling prob-

lem [59], [60], [61], [62], [63], [64], [65], [66], [67], [68],

[69], [70]. This problem considers upgrading an erasure-coded

storage system with s new empty data nodes. The general goal

is to efficiently and evenly redistribute data across all nodes,

while updating parities to reflect the new placement of the

data. This is a fundamentally different problem from the code

conversion problem we study in this paper, due to the scaling

problem’s need to redistribute data across nodes.

III. MODELING CONVERSION FOR OPTIMIZING

CONVERSION BANDWIDTH

In this section, we model the conversion process as an

information flow problem. We utilize this model primarily for

deriving lower bounds on the total amount of information that

needs to be transferred during conversion. Since our focus

is on modeling the conversion process, we consider a single

value for each of the final parameters nF and kF . This model

continues to be valid for each individual conversion, even

when the final parameters might take multiple values.

In Section II-B, we reviewed the definition of convertible

codes from literature [7], [8]. Existing works on convertible

codes [7], [8] have considered only scalar codes, where

each code symbol corresponds to a scalar from a finite field

Fq. Considering scalar codes is sufficient when optimizing

for access cost, which was the focus in these prior works,

since the access cost is measured at the granularity of code
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Fig. 3. Information flow graph of conversion in the general case. Unchanged, retired, and new nodes are shown in different colors. Notice that each unchanged
node in this figure is drawn twice: once in the initial codewords and once in the final codewords. These correspond to exactly the same node, but are drawn
twice for clarity. Some representative edges are labeled with their capacities.

symbols. However, when optimizing conversion bandwidth,

vector codes can perform better than scalar codes since they

allow partial download from a node. This allows conversion

procedures to only download a fraction of a code symbol and

thus only incur the conversion bandwidth associated with the

size of that fraction. This can potentially lead to significant

reduction in the total conversion bandwidth. For this reason,

we consider the initial code CI as an [nI , kI , α] MDS code and

the final code CF as an [nF , kF , α] MDS code, where α ≥ 1 is

considered as a free parameter chosen to minimize conversion

bandwidth. This move to vector codes is inspired by the work

of Dimakis et al. [9] on regenerating codes, who showed the

benefit of vector codes in reducing network bandwidth in the

context of the repair problem. For MDS convertible codes,

message size will be B = Mα = lcm(kI , kF )α, which we

interpret as a vector m ∈ F
Mα
q composed of M symbols

made up of α subsymbols each. We will denote the number

of subsymbols downloaded from node s during conversion

as β(s) ≤ α and extend this notation to sets of nodes as

β(S) =
∑

s∈S β(s).
Consider an (nI , kI ;nF , kF ) MDS convertible code with

initial partition PI = {P I
1 , . . . , P I

λI} and final partition PF =
{PF

1 , . . . , PF
λF }. We model conversion using an information

flow graph as the one shown in Figure 3 where message

symbols are generated at source nodes, and sinks represent the

decoding constraints of the final code. Symbols of message

m are modeled as information sources X1, X2, . . . , XM of

rate α (over Fq) each. For each initial codeword i ∈ [λI ],
we include one source node si, where the information sources

corresponding to the message symbols in P I
i are generated.

Each code symbol of initial codeword i is modeled as a node

with an incoming edge from si. A coordinator node c models

the central location where the contents of new symbols are

computed, and it has incoming edges from all nodes in the

initial codewords. During conversion, some of the initial code

symbols will remain unchanged, some will be retired, and

some new code symbols will be added. Thus, we also include

the nodes corresponding to unchanged symbols in the final

codewords (that is, every unchanged node is shown twice

in Figure 3). Note that the unchanged nodes in the initial

codewords and the unchanged nodes in the final codewords

are identical, and thus do not add any conversion bandwidth.

For each new symbol we add a node that connects to the

coordinator node. From this point, we will refer to code

symbols and their corresponding nodes interchangeably. For

each final codeword j ∈ [λF ], we add a sink tj which connects

to some subset of nodes from final codeword j, and recovers

the information sources corresponding to the message symbols

in PF
j .

Thus, the information flow graph for a convertible code

comprises the following nodes:

• unchanged nodes Ui,j = {ui,j,1, . . . , ui,j,|Ui,j |} for all i ∈
[λI ], j ∈ [λF ], which are present both in the initial and

final codewords;

• retired nodes Ri = {vi,1, . . . , vi,|Ri|} for i ∈ [λI ], which

are only present in the initial codewords;

• new nodes Nj = {wj,1, . . . , wj,|Nj |} for j ∈ [λF ], which

are only present in the final codewords;

• source nodes si for i ∈ [λI ], representing the data to be

encoded;

• sink nodes tj for j ∈ [λF ], representing the data decoded;

and

• a coordinator node c.

In the information flow graph, information source Xl is

generated at node si if and only if l ∈ P I
i , and recovered

at node tl if and only if l ∈ PF
j .

Throughout this paper, we use the disjoint union symbol ⊔
when appropriate to emphasize that the two sets in the union

are disjoint. To simplify the notation, when ∗ is used as an

index, it denotes the disjoint union of the indexed set over the

range of that index, e.g. U∗,j =
⊔λI

i=1 Ui,j .

The information flow graph must be such that the following

conditions hold: (1) the number of nodes per initial codeword

is nI , i.e., |Ui,∗| + |Ri| = nI for all i ∈ [λI ]; and (2) the

number of nodes per final codeword is nF , i.e., |U∗,j |+|Nj | =
nF for all j ∈ [λF ]. Additionally, the information flow graph

contains the following set of edges E, where a directed edge
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Fig. 4. Information flow graph of conversion in the merge regime with two different cuts (used in proofs). For clarity, each unchanged node is drawn twice:
once in the initial codewords and once in the final codeword. These two instances are connected by a dashed arrow. Marked edges denote a graph cut.

from node u to v with capacity δ is represented with the triple

(u, v, δ):
• {(si, x, α) : x ∈ Ui,∗⊔Ri} ⊂ E for each i ∈ [λI ], where

the capacity corresponds to the size of the data stored on

each node;

• {(x, c, β(x)) : x ∈ Ui,∗ ⊔ Ri} ⊂ E for each i ∈ [λI ],
where the capacity corresponds to the amount of data

downloaded from node x;

• {(c, y, α) : y ∈ Nj} ⊂ E for each j ∈ [λF ], where

the capacity corresponds to the size of the data stored on

each new node;

• {(y, tj , α) : y ∈ Vj} ⊂ E for Vj ⊆ U∗,j ⊔ Nj such

that |Vj | = kF , for all j ∈ [λF ], where the capacity

corresponds to the size of the data stored on each node.

The sinks tj represent the decoding constraints of the final

code, and each choice of set Vj will represent a different choice

of kF code symbols for decoding the final codeword. A neces-

sary condition for a conversion procedure is to satisfy all sinks

tj for all possible V1, . . . , VλF . The sets Ui,j ,Ri,Nj and the

capacities β(x) are determined by the conversion procedure

of the convertible code. Figure 3 shows the information flow

graph of an arbitrary convertible code.

Definition 3 (Conversion Bandwidth): The read conversion

bandwidth γR is the total amount of data transferred from the

initial nodes to the coordinator node c. The write conversion

bandwidth γW is the total amount of data transferred from the

coordinator node c to the new nodes. The (total) conversion

bandwidth γ is the sum of the read conversion bandwidth and

the write conversion bandwidth. Formally:

γR := β(U∗,∗ ⊔R∗) , γW := |N∗|α, γ := γR + γW .

(1)

▶

Once the structure of the graph is set and fixed, information

flow analysis gives lower bounds on the capacities β(x).
Therefore, a part of our objective in designing convertible

codes is to set Ui,j ,Ri,Nj so as to minimize the lower bound

on γ.

Notice that the conversion process, as defined above, is not

a single-source multi-cast problem; therefore, the informa-

tion max-flow bound is not guaranteed to be achievable.

Nonetheless, information flow can be applied to obtain a lower

bound (Section IV), which we show is achievable by providing

a construction (Section V).

Remark 1: In practice, conversion bandwidth can some-

times be further reduced by placing the coordinator node along

with a new node and/or a retired node in the same server.

One can even first split the coordinator node into several

coordinator nodes, each processing data which is not used in

conjunction with data processed by other coordinator nodes,

and then place them in the same server as a new node and/or

a retired node. Such ªoptimizationsº do not fundamentally

alter our result, and hence are left out in order to make the

exposition clear.

IV. OPTIMIZING CONVERSION BANDWIDTH

IN THE MERGE REGIME

In this section, we use the information flow model presented

in Section III to derive a lower bound on the conversion

bandwidth for MDS codes in the merge regime. Recall from

Section II-B, that convertible codes in the merge regime

are those where kF = λIkI for some integer λI ≥ 2,

i.e., this regime corresponds to conversions where multiple

initial codewords are merged into a single final codeword.

As in the previous section, our analysis focuses on a single

conversion, and thus a single value for the final parameters nF

and kF . However, our analysis only depends on the conversion

process itself; therefore, the bound on the bandwidth still

applies even if we consider multiple conversions.

Consider an (nI , kI ;nF , λIkI) convertible code in the

merge regime, for some integer λI ≥ 2. Note that for all

convertible codes in the merge regime, it holds that the number

of final codewords is λF = 1. Since all initial and final

partitions (PI ,PF ) are equivalent up to relabeling in this

regime (by Proposition 1 [7]), we can omit them from our

analysis. Note also that all information sources are recovered

at the same sink node, t1. Thus, we may treat each source

node si as having a single information source Xi of rate αkI

(i ∈ [λI ]). For each source node and each sink node pair,

we can invoke the information max-flow bound (Section II-C)

to derive an inequality. For conversion to be possible, the

variable-capacity edges must take on values such that all these
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inequalities are simultaneously satisfied. Figure 4a shows the

information flow graph for a convertible code in the merge

regime.

First, we derive a general lower bound on conversion

bandwidth in the merge regime by considering a simple cut

in the information flow graph. Intuitively, this lower bound

emerges from the fact that new nodes need to have a certain

amount of information from each initial codeword in order to

fulfill the MDS property of the final code. This lower bound

depends on the number of unchanged nodes and achieves its

minimum when the number of unchanged nodes is maximized.

Recall from Section II-B that convertible codes with maximum

number of unchanged nodes are called stable convertible

codes. Thus, the derived lower bound is minimized for stable

convertible codes.

Lemma 2: Consider an MDS (nI , kI ;nF , λIkI) convert-

ible code. Then γR ≥ λIα min{rF , kI} and γW ≥ rF α,

where equality is only possible for stable codes.

Proof: We prove this inequality via an information flow

argument. Let i ∈ [λI ] and consider the information source

generated at source si. Let S ⊆ Ui,1 be a subset of unchanged

nodes from initial codeword i of size r̃i = min{rF , |Ui,1|}.

Consider a sink t1 that connects to nodes U∗,1 \S. We choose

the graph cut defined by nodes {si}⊔Ui,1⊔Ri (see Figure 4a,

which depicts the cut for i = λI ). This cut yields the following

inequality:

kIα ≤ max{|Ui,1| − rF , 0}α + β(Ui,1 ⊔Ri)

⇐⇒ β(Ui,1 ⊔Ri) ≥ (kI + rF − max{|Ui,1|, r
F })α

This inequality must hold for every i ∈ [λI ] simultaneously;

otherwise, it would be impossible for the sink to recover the

full data. By summing this inequality over all sources i ∈ [λI ]
and using the definition of γ (Equation (1)), we obtain:

γ ≥
λI∑

i=1

(kI + rF − max{|Ui,1|, r
F })α + |N1|α

By Proposition 2 [7], |Ui,1| ≤ kI . Therefore, it is clear that the

right hand side achieves its minimum if and only if |Ui,1| = kI

for all i ∈ [λI ] (i.e. the code is stable). Proposition 2 also

implies that γW ≥ rF α, proving the lemma.

Remark 2: Note that the conversion bandwidth lower bound

described in Lemma 2 coincides with the access-cost lower

bound described in Theorem 1 when rI ≥ rF . This follows

by recalling that each node corresponds to an α-length vector,

and for scalar codes α = 1.

▶

In particular, this implies that convertible codes in the merge

regime which are access-optimal and have rI ≥ rF are also

bandwidth-optimal (i.e. those in the decreasing-redundancy

region). However, as we will show next, this property fails

to hold when rI < rF (that is, increasing-redundancy region).

We next derive a lower bound on conversion bandwidth

which is tighter than Lemma 2 when rI < rF . Nevertheless,

it allows for less conversion bandwidth usage than the access-

optimal codes.

Intuitively, the data downloaded from retired nodes during

conversion will be ªmore usefulº than the data downloaded

from unchanged nodes, since unchanged nodes already form

part of the final codeword. At the same time, it is better to

have the maximum amount of unchanged nodes per initial

codeword (kI ) because this minimizes the number of new

nodes that need to be constructed. However, this leads to fewer

retired nodes per initial codeword (rI ). If the number of retired

nodes per initial codeword is less than the number of new

nodes (rI < rF ), then conversion procedures are forced to

download data from unchanged nodes. This is because one

needs to download at least rF α from each initial codeword (by

Lemma 2). Since data from unchanged nodes is ªless usefulº,

more data needs to be downloaded in order to construct the

new nodes.

As in the case of Lemma 2, this lower bound depends on

the number of unchanged nodes in each initial codeword, and

achieves its minimum in the case of stable convertible codes.

Lemma 3: Consider an MDS (nI , kI ;nF , λIkI) convert-

ible code, with parameters such that rI < rF ≤ kI . Then

γR ≥ λIα
(
rI + kI

(
1 − rI

rF

))
and γW ≥ rF α, where

equality is only possible for stable codes.

Proof: We prove this via an information flow argument.

Let i ∈ [λI ] and consider the information source generated

at source si. Let S ⊆ Ui,1 be a subset of size r̃i =
min{rF , |Ui,1|}. Consider a sink t1 that connects to the nodes

in U∗,1 \ S. Now, we choose a different cut from the one

considered in Lemma 2, which allows to derive a tighter bound

when rI < rF . We choose the graph cut defined by nodes

{si} ⊔ S ⊔ Ri (see Figure 4b, which depicts the cut when

i = λI ). This yields the following inequality:

kIα ≤ (|Ui,1| − r̃i)α + β(S) + β(Ri) .

This inequality must hold for all possible S ⊆ Ui,1 simultane-

ously; otherwise, there would exist at least one sink incapable

of recovering the full data, which violates the MDS property.

By rearranging this inequality and summing over all possible

choices of subset S, we obtain the following inequality:
(

|Ui,1|
r̃i

) (
kI + r̃i − |Ui,1|

)
α

≤

(
|Ui,1|−1
r̃i − 1

)
β (Ui,1) +

(
|Ui,1|

r̃i

)
β (Ri)

⇔ |Ui,1|
(
kI + r̃i − |Ui,1|

)
α ≤ r̃iβ (Ui,1) + |Ui,1|β (Ri) .

(2)

Then, our strategy to obtain a lower bound is to find the

minimum value for conversion bandwidth γ which satisfies

Equation (2) for all i ∈ [λI ], which can be formulated as the

following optimization problem:

minimize γ =
∑

i∈λI [β(Ui,1) + β(Ri)] + |N1|α

subject to inequality(2), for alli ∈ [λI ]

0 ≤ β(x) ≤ α, for all x ∈ U∗,1 ⊔R∗. (3)

Intuitively, this linear program shows that it is preferable

to download more data from retired nodes (β(Ri)) than

unchanged nodes (β(Ui,1)), since both have the same impact

on γ but the contribution of β(Ri) towards satisfying

Equation (2) is greater than or equal to that of β(Ui,1), because

r̃i ≤ |Ui,1| by definition. Thus to obtain an optimal solution we
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first set β(Ri) = min{kI +r̃i−|Ui,1|, |Ri|}α to the maximum

needed for all i ∈ [λI ], and then set:

∑

x∈Ui,1

β(x) =
max{r̃i − rI , 0}|Ui,1|α

r̃i

, for all i ∈ [λI ]

to satisfy the constraints. It is straightforward to check that this

solution satisfies the KKT (Karush-Kuhn-Tucker) conditions,

and thus is an optimal solution to linear program 3. By

replacing these terms back into γ and simplifying we obtain

the optimal objective value:

γ∗ =

λI∑

i=1

[
kI − min{rI , r̃i}

(
|Ui,1|

r̃i

− 1

)]
α + |N1|α

It is easy to show that the right hand side achieves its minimum

if and only if |Ui,1| = kI for all i ∈ [λI ] (i.e., the code is

stable). This gives the following lower bound for conversion

bandwidth:

γ ≥ λIα

(
rI + kI

(
1 −

rI

rF

))
+ rF α.

By Theorem 1, γW ≥ rF α, which proves the lemma.

By combining Lemmas 2 and 3 we obtain the following

general lower bound on conversion bandwidth of MDS con-

vertible codes in the merge regime.

Theorem 4: For any MDS (nI , kI ;nF , λIkI) convertible

code:

γR ≥

{
λIα min{kI , rF }, if rI ≥ rF or kI ≤ rF ,

λIα
(
rI + kI

(
1 − rI

rF

))
, otherwise.

γW ≥ rF α.

where equality can only be achieved by stable convertible

codes.

Proof: Follows from Lemmas 2 and 3.

In Section V, we show that the lower bound of Theorem 4

is indeed achievable for all parameter values in the merge

regime, and thus it is tight. We will refer to convertible codes

that meet this bound with equality as bandwidth-optimal.

Remark 3: Observe that the model above allows for nonuni-

form data download during conversion, that is, it allows the

amount of data downloaded from each node during conversion

to be different. If instead one were to assume uniform down-

load, i.e. β(x) = β(y) for all x, y ∈ U∗,∗ ⊔R∗, then a higher

lower bound for conversion bandwidth γ is obtained (mainly

due to Equation (2) in the proof of Lemma 3). Since the lower

bound of Theorem 4 is achievable, this implies that assuming

uniform download necessarily leads to a suboptimal solution.

Remark 4: The case where kI = kF can be analyzed using

the same techniques used in this section. In this case, λI = 1.

There are some differences compared to the case of the merge

regime: for example, in this case the number of unchanged

nodes can be at most min{nI , nF } (in contrast to the λIkI

maximum of the merge regime). So, conversion bandwidth in

the case where nI ≥ nF is zero, since we can simply keep

nF nodes unchanged. In the case where nI < nF , the same

analysis from Lemma 3 is followed, but the larger number of

unchanged nodes will lead to a slightly different inequality.

Thus, in the case of kI = kF the lower bound on conversion

bandwidth is:

γ ≥

{
0, if nI ≥ nF

α
(
kI + rI

) (
1 − rI

rF

)
+ (rF − rI)α, otherwise.

Readers familiar with regenerating codes might notice that

the above lower bound is equivalent to the lower bound on

the repair bandwidth [9], [42] when (rF − rI) symbols of an

[kI +rF , kI ] MDS code are to be repaired with the help of the

remaining (kI + rI) symbols. Note that this setting imposes

a relaxed requirement of repairing only a specific subset of

symbols as compared to regenerating codes which require

optimal repair of all nodes. Yet, the lower bound remains

the same. This is not surprising though, since it has been

shown [31] that the regenerating codes lower bound for MDS

codes applies even for repair of only a single specific symbol.

▶

V. EXPLICIT CONSTRUCTION OF BANDWIDTH-OPTIMAL

MDS CONVERTIBLE CODES IN THE MERGE REGIME

In this section, we present an explicit construction for

bandwidth-optimal convertible codes in the merge regime.

Our construction employs the Piggybacking framework [10].

Recall from Section II-D that the Piggybacking framework is

a framework for constructing vector codes using an existing

code as a base code and adding specially designed functions

called piggybacks which impart additional properties to the

resulting code. We use an access-optimal convertible code to

construct the base code and design the piggybacks to help

achieve minimum conversion bandwidth. First, in Section V-A,

we describe our construction of bandwidth-optimal convertible

codes in the case where we only consider fixed unique

values for the final parameters nF and kF = λIkI . Then,

in Section V-B, we show that initial codes built with this con-

struction are not only (nF , kF )-bandwidth-optimally convert-

ible, but also simultaneously bandwidth-optimally convertible

for multiple other values of the pair (nF , kF ). Additionally,

we present a construction which given any finite set of possible

final parameter values (nF , kF ), constructs an initial [nI , kI ]
code which is simultaneously (nF , kF )-bandwidth-optimally

convertible for every (nF , kF ) in that set.

A. Bandwidth-Optimal MDS Convertible Codes for Fixed

Final Parameters

The case where rF ≥ kI is trivial, since the default

approach to conversion is bandwidth-optimal in this case.

Therefore, in the rest of this section, we only consider

rF < kI . Moreover, in the case where rI ≥ rF (decreasing-

redundancy region), access-optimal convertible codes (for

which explicit constructions are known) are also bandwidth-

optimal. Therefore, we focus on the case rI < rF (increasing-

redundancy region).

We start by describing the base code used in our construc-

tion, followed by the design of piggybacks, and then describe

the conversion procedure along with the role of piggybacks

during conversion. To help illustrate the construction, we keep

a running example showing each step.
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1) Base Code for Piggybacking: As the base code for our

construction, we use a punctured initial code of an access-

optimal (kI + rF , kI ;nF , kF ) convertible code. Any access-

optimal convertible code can be used. However, as mentioned

in Section II-B, we assume that this convertible code is:

(1) systematic, (2) linear, and (3) only requires accessing the

first rF parities from each initial codeword during access-

optimal conversion. We refer to the [kI + rF , kI ] initial code

of this access-optimal convertible code as CI ′, to its [nF , kF ]
final code as CF ′

. Let CI ′′ be the punctured version of CI ′

where the last (rF − rI) parity symbols are punctured.

Example 2: Suppose we want to construct a bandwidth-

optimal (5, 4; 10, 8) convertible code over a finite field Fq

(assume that q is sufficiently large). As a base code, we use

a punctured access-optimal (6, 4; 10, 8) convertible code. For

this example, we use the code presented in Example 1 and

puncture the last parity. Thus, CI ′ is a [6, 4] code, CF ′
is a

[10, 8] code, and CI ′′ is a [5, 4] code.

▶

2) Piggyback Design: Now, we describe how to construct

the [nI , kI , α] initial vector code CI and the [nF , kF , α] final

vector code CF that make up the bandwidth-optimal (nI , kI ;
nF , λIkI) convertible code.

The first step is to choose the value of α. Let us reexamine

the lower bound derived in Theorem 4 for rI < rF < kI ,

which is rewritten below in a different form.

γ ≥ λI

(
rIα + kI

(
1 −

rI

rF

)
α

)
+ rF α.

We can see that one way to achieve this lower bound would

be to download exactly β1 = α subsymbols from each of

the rI retired nodes in the λI initial codewords, and to

download β2 = (1 − rI/rF ) α subsymbols from each of the

kI unchanged nodes in the λI initial stripes. Thus, we choose

α = rF , which is the smallest value that makes β1 and

β2 integers, thus making:

β1 = rF and β2 = (rF − rI).

The next step is to design the piggybacks. We first provide

the intuition behind the design. Recall from above that we can

download β2 = (rF − rI) subsymbols from each unchanged

node and all the α subsymbols from each retired node.

Hence, we can utilize up to β2 = (rF − rI) coordinates

from each of the rI parity nodes for piggybacking. Given

that there are precisely (rF − rI) punctured symbols and

α instances of CI ′′, we can store piggybacks corresponding

to rI instances of each of these punctured symbols. During

conversion, these punctured symbols can be reconstructed and

used for constructing the new nodes.

Consider a message m ∈ F
λIkIα
q split into λIα submes-

sages m
(s)
j ∈ F

kI

q , representing the data encoded by instance

j ∈ [α] of the base code in initial codeword s ∈ [λI ].
Recall that CI ′′ is systematic by construction. Therefore,

the submessage m
(s)
j will correspond to the contents of the

j-th coordinate of the kI systematic nodes in initial codeword

s. Let cI
i,j(s) denote the contents of the j-th coordinate of

parity symbol i in initial codeword s under code CI , and cF
i,j

let denote the same for the single final codeword encoded

under CF . These are constructed as follows:

cI
i,j(s) =





m
(s)
j pI

i , for

s ∈ [λI ],

i ∈ [rI ],

1 ≤ j ≤ rI

m
(s)
j pI

i + m
(s)
i pI

j , for

s ∈ [λI ],

i ∈ [rI ],

rI < j ≤ rF

cF
i,j = [m

(1)
j · · ·m

(λI)
j ]pF

i , for i ∈ [rF ], j ∈ [rF ],

where pI
i corresponds to the encoding vector of the i-th parity

of CI ′ and pF
i corresponds to the encoding vector of the

i-th parity of CF ′
. By using the access-optimal conversion

procedure from the base code, we can compute cF
i,j =

[m
(1)
j · · ·m

(λI)
j ]pF

i from {m
(s)
j pI

i : s ∈ [λI ]} for all i ∈ [rF ]

and j ∈ [rF ]. Notice that each initial codeword is independent

and encoded in the same way (as required).

This piggybacking design, that of using parity code sub-

symbols of the base code as piggybacks, is inspired by one of

the piggybacking designs proposed in [10], where it is used

for efficiently reconstructing failed (parity) code symbols.

Example 2 (Continued): Let pI
1,p

I
2 ∈ F

4×1
q be the encod-

ing vectors for the parities of CI ′, and pF
1 ,pF

2 ∈ F
8×1
q

be the encoding vector for the parities of CF ′
. Since α =

rF = 2, we construct a [5, 4, 2] initial vector code CI and

a [10, 8, 2] final vector code CF . Let a = (a1, . . . , a8) and

b = (b1, . . . , b8). Figure 5 shows the resulting piggybacked

codes encoding submessages a(1) = (a1, . . . , a4),a
(2) =

(a5, . . . , a8),b
(1) = (b1, . . . , b4),b

(2) = (b5, . . . , b8) ∈ F
1×4
q .

Recall from Example 1, that a(1)pI
i + α4

i a
(2)pI

i = apF
i for

i ∈ {1, 2} (and equivalently for b).

▶

3) Conversion Procedure: Conversion proceeds as follows:

1) Download D = {m
(s)
j : s ∈ [λI ] and rI < j ≤ rF },

C1 = {cI
i,j(s) : s ∈ [λI ], i ∈ [rI ], and 1 ≤ j ≤ rI},

and C2 = {cI
i,j(s) : s ∈ [λI ], i ∈ [rI ], and rI < j ≤

rF }.

2) Recover the piggybacks C3 = {m
(s)
j pI

i : s ∈ [λI ], rI <

i ≤ rF , and 1 ≤ j ≤ rI} by computing m
(s)
i pI

j from

D and obtaining m
(s)
j pI

i = cI
j,i(s) − m

(s)
i pI

j using C2.

3) Compute the remaining base code symbols from the

punctured symbols C4 = {m
(s)
i pI

j : s ∈ [λI ], rI <
i ≤ rF , and rI < j ≤ rF } using D.

4) Compute the parity nodes of the final codeword specified

by the subsymbols C5 = {cF
i,j : i ∈ [rF ], j ∈ [rF ]}.

This is done by using the conversion procedure from

the access-optimal convertible code used as base code

to compute C5 from C1, C2, C3, and C4.

This procedure requires downloading β1 subsymbols from

each retired node and β2 subsymbols from each unchanged

node. Thus, the read conversion bandwidth is:

γR = λI
(
rIβ1 + kIβ2

)

= λI

(
rIα + kI

(
1 −

rI

rF

)
α

)
.
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Fig. 5. Example of a bandwidth-optimal (5, 4; 10, 8) convertible code. Each block in this diagram represents a codeword, where each column corresponds
to a distinct coordinate of the α-length vector (α = 2 in this case), and each row corresponds to a node. The shaded rows correspond to retired nodes for the
first two blocks (initial codewords), and new nodes for the third block (final codeword). For the initial codewords, text color is used emphasize the piggybacks.
In the final codeword, text color is used to denote the base code subsymbol that is constructed from the piggybacks.

Additionally, rF α write conversion bandwidth is required for

the new nodes.

γW = rF α

Since γ = γR + γW , this matches Theorem 4.

Example 2 (Continued): During conversion, only 12 sub-

symbols need to be downloaded: b(1),b(2) and all the par-

ity symbols from both codewords. From these subsymbols,

we can recover the piggyback terms a(1)pI
2 and a(2)pI

2,

and then compute b(1)pI
2 and b(2)pI

2 in order to recon-

struct the second parity symbol of CI ′. Finally, we use

a(i)pI
1,b

(i)pI
1,a

(i)pI
2,b

(i)pI
2 for i ∈ {1, 2} with the con-

version procedure from the access-optimal convertible code

to compute the base code symbols a pF
1 ,a pF

2 ,b pF
1 and

b pF
2 of the new nodes.

The default approach would require one to download 16

subsymbols in total from the initial nodes. Both approaches

require downloading 4 subsymbols in total from the coordi-

nator node to the new nodes. Thus, the proposed construction

leads to 20% reduction in conversion bandwidth as compared

to the default approach of reencoding.

▶

B. Convertible Codes With Bandwidth-Optimal Conversion

for Multiple Final Parameters

In practice, the final parameters nF , kF might depend on

observations made after the initial encoding of the data and

hence they may be unknown at code construction time. In par-

ticular, for a (nI , kI ;nF , λIkI) convertible code in the merge

regime this means that the values of λI and rF = (nF − kF )
are unknown.

To ameliorate this problem, we now present convertible

codes which support bandwidth-optimal conversion simulta-

neously for multiple possible values of the final parameters.

Recall property (4) of the access-optimal base code which

we reviewed in Section II-B: when constructed with a given

value of λI = λ and rF = r, the initial [nI , kI ] code is

(nF , kF )-access-optimally convertible for all kF = λ′kI and

nF = kF + r′ such that 1 ≤ λ′ ≤ λ and 1 ≤ r′ ≤ r.

1) Supporting Multiple Values of λI : The construction from

Section V with a particular value of λI = λ, intrinsically

supports bandwidth-optimal conversion for any λI = λ′ < λ.

This is a consequence of property (4) above, and can be

done easily by considering one or multiple of the initial

codewords as consisting of zeroes only, and ignoring them

during conversion. From Theorem 4, it is easy to see that this

modified conversion procedure achieves the optimal conver-

sion bandwidth for the new parameter λI = λ′.

2) Supporting Multiple Values of rF : We break this sce-

nario into two cases:

Case 1 (supporting rF ≤ rI ): due to property (4) above,

the base code used in the construction from Section V sup-

ports access-optimal conversion for any value of rF = r
such that r ≤ rI . Using this property, one can achieve

bandwidth optimality for any r ≤ rI by simply using the

access-optimal conversion on each of the α instances of the

base code independently. The only difference is that some of

the instances might have piggybacks, which can be simply

ignored. The final code might still have these piggybacks,

however they will still satisfy the property that the piggybacks

in instance i (2 ≤ i ≤ α) only depend on data from instances

{1, . . . , (i − 1)}. Thus, the final code will have the MDS

property and the desired parameters.

Case 2 (supporting rF > rI ): for supporting multiple values

of rF ∈ {r1, r2, . . . , rs} such that ri > rI (i ∈ [s]), we start

with an access-optimal convertible code having rF = maxi ri.

Then we repeat the piggybacking step of the construction (see

Section V-A) for each ri, using the resulting code from step i
(with the punctured symbols from CI ′ added back) as a base

code for step (i + 1). Therefore, the resulting code will have

α =
∏s

i=1 ri. Since the piggybacking step will preserve the

MDS property of its base code, and the initial code used in

the first piggyback step is MDS, it is clear that the initial code

resulting from the last piggybacking step will also be MDS.

Conversion for one of the supported rF = ri is performed as

described in Section V-A on each of the additional instances

created by steps (i + 1), . . . , s (i.e.
∏s

i′=(i+1) ri′ in total).

As before, some of these instances after conversion will have

piggybacks, which can be simply ignored, as the resulting code

will continue to have the property that piggybacks from a given

instance only depend on data from earlier instances.

Example 3 (Bandwidth-Optim Conversion for Multiple

Final Parameters): In this example, we will extend the (5,
4; 10, 8) convertible code from Example 2 (rF = 2) to
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Fig. 6. Example of a [5, 4] MDS code that supports bandwidth-optimal conversion to multiple final codes. This code supports bandwidth-optimal conversion
to a [8 + r, 8] MDS code for r = 1, 2, 3. Piggybacks from the first round (r = 2) are colored orange and piggybacks from the second round (r = 3)
are colored magenta. In the possible final codewords, text color is used to show base code symbols which are directly computed from the corresponding
piggybacks, or to denote leftover piggybacks that were not used during conversion.

construct a code which additionally supports bandwidth-

optimal conversion to an [11, 8] MDS code (rF = 3). Figure 6

shows initial codeword i ∈ {1, 2} of the new initial vector

code, which has α = 2 · 3 = 6. Here a(1) = (a1, . . . , a4),
a(2) = (a5, . . . , a8) ∈ F

1×4
q , a = (a1, . . . , a8) ∈ F

1×8
q ,

and similarly for b, . . . , f . The vectors pI
i ∈ F

4×1
q are the

encoding vectors of the initial code CI ′ and pF
i ∈ F

8×1
q

are encoding vectors of the final code CF ′
(i ∈ {1, 2, 3}).

Since the maximum supported rF is 3, we start with an

access-optimal (7, 4; 11, 8) convertible code. Thus, CI ′ is a

[7, 4] code, CF ′
is a [11, 8] code, and CI ′′ is a [5, 4] code. In

the first round of piggybacking we consider rF = 2, which

yields the code shown in Example 2. In the second round

of piggybacking we consider rF = 3 and piggyback the

code resulting from the first round, which yields the code

shown in Figure 6. Conversion for rF = 1 proceeds by

simply downloading the contents of the single parity node and

using the access-optimal conversion procedure. Conversion for

rF = 2 proceeds by treating this code as three instances of the

code from Example 2 and performing conversion for each one

independently. Conversion for rF = 3 proceeds by treating

this code as a vector code with α = 3 and base field Fq2 (i.e.

each element is a vector over Fq of length 2).

Remark 5 (Field Size Requirement): The field size require-

ment for Fq of the constructions presented in this section is

given by the field size requirement of the base code used. The

currently lowest known field size requirement for an explicit

construction of systematic linear access-optimal convertible

codes in the merge regime is given by [7]. For typical

parameters, this requirement is roughly q ≥ Ω(2λI(nI)3).
When rF ≤ rI − λI + 1, this can be significantly reduced

to q ≥ kIrI . And when rF ≤ ⌊rI/λI⌋, this can be further

reduced to q ≥ max{nI , nF }. ▶

Fig. 7. Achievable savings in conversion bandwidth by bandwidth-optimal
convertible codes in comparison to the default approach to conversion. Here
r̃I = rI/kI and r̃F = rF /kI are the initial and final redundancies, divided
by the initial code dimension. Each curve shows the relative savings for a fixed
value of r̃I , as r̃F varies. Solid lines indicate bandwidth-optimal convertible
codes, and dashed lines indicate access-optimal convertible codes. Notice that
each curve overlaps with the red curve (r̃I ≥ 1) in the range r̃F ∈ (0, r̃I ].

VI. BANDWIDTH SAVINGS OF BANDWIDTH-OPTIMAL

CONVERTIBLE CODES

In this section, we show the amount of savings in bandwidth

that can be obtained by using bandwidth-optimal convertible

codes in the merge regime, relative to the default approach to

conversion. We present the amount of savings in terms of two

ratios:

r̃I = (r
I/k

I) and r̃F = (r
F/k

I),

i.e. the initial and final amount of ªredundancyº relative to the

initial dimension of the code. For simplicity, we only consider
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the read conversion bandwidth (data sent from initial nodes to

the coordinator node), since the write conversion bandwidth

(data sent from the coordinator node to the new nodes) is

fixed for stable convertible codes (specifically, it is equal to

αrF ). Thus, the conversion bandwidth of the default approach

is always λIkIα. Figure 7 shows the relative savings, i.e. the

ratio between the conversion bandwidth of optimal conversion

and the conversion bandwidth of the default approach, for fixed

values of r̃I ∈ (0,∞) and varying r̃F ∈ (0,∞).
Each curve shown in Figure 7 can be divided into three

regions, depending on the value of r̃F :

• Region 0 < r̃F ≤ r̃I and r̃F < 1: these conditions imply

that rF ≤ rI , so by Lemma 2 the conversion bandwidth

is λIrF α, and the relative savings are:

ρ = 1 −
λIrF α

λIkIα
= 1 − r̃F .

This region corresponds to the decreasing-redundancy

region, and in this region access-optimal convertible

codes are also bandwidth-optimal. This region of the

curve is linear, and the amount of savings is not affected

by r̃I .

• Region r̃I < r̃F < 1: this implies that rI ≤ rF ≤ kI ,

and by Lemma 2 the conversion bandwidth is λIα(rI +
kI(1 − rI/rF )), and the relative savings are:

ρ = 1 −
λIα

(
rI + kI

(
1 − rI

rF

))

λIkIα
= r̃I

(
1

r̃F
− 1

)
.

This corresponds to the increasing-redundancy region,

where access-optimal convertible codes provide no con-

version bandwidth savings. Thus bandwidth-optimal con-

vertible codes provide substantial savings in conversion

bandwidth in this regime, compared to access-optimal

convertible codes.

• Region r̃F ≥ 1: this implies that rF ≥ kI and by

Lemma 2 a conversion bandwidth of λIkIα is required.

Thus no savings in conversion bandwidth are possible in

this region.

Thus, bandwidth-optimal convertible codes allow for sav-

ings in conversion bandwidth on a much broader region

relative to access-optimal convertible codes.

VII. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we studied the conversion bandwidth of

convertible codes. We showed that the conversion problem

can be effectively modeled using network information flow

to obtain lower bounds on conversion bandwidth. Using the

bounds derived, we showed that for the merge regime access-

optimal convertible codes are also bandwidth optimal when

rI ≥ rF (increasing-redundancy region) and that there is room

for reducing conversion bandwidth when rI < rF (decreasing-

redundancy region). We proposed an explicit construction

which achieves the optimal conversion bandwidth for all

parameters in the merge regime. Finally, we showed that

bandwidth-optimal convertible codes can achieve substantial

savings in conversion bandwidth over the default approach

and access-optimal convertible codes.

This work leads to several open problems. One of the main

open problems is to extend the conversion bandwidth lower

bounds and bandwidth-optimal constructions to encompass all

possible parameter regimes (i.e. the general regime). Another

important open problem is characterizing the optimal value of

α, especially in the case of multiple possible final parameter

values, where α can become very large when using the

construction proposed in this paper. Yet another open problem

is lowering the field size requirement of bandwidth-optimal

convertible code constructions, as well as deriving lower

bounds for their field size requirements.
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