IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 8, AUGUST 2023

4993

Bandwidth Cost of Code Conversions in Distributed
Storage: Fundamental Limits and
Optimal Constructions

Francisco Maturana, Student Member, IEEE, and K. V. Rashmi*“, Member, IEEE

Abstract—Erasure codes have become an integral part of
distributed storage systems as a tool for providing data reliability
and durability under the constant threat of device failures. In
such systems, an [n, k] code over a finite field F, encodes
k message symbols from F, into n codeword symbols from
F, which are then stored on n different nodes in the system.
Recent work has shown that significant savings in storage space
can be obtained by tuning n and k to variations in device
failure rates. Such a tuning necessitates code conversion: the
process of converting already encoded data under an initial
[n, k'] code to its equivalent under a final [n¥, k%] code.
The default approach to conversion is to re-encode the data
under the new code, which places significant burden on system
resources. Convertible codes are a recently proposed class of
codes for enabling resource-efficient conversions. Existing work
on convertible codes has focused on minimizing the access cost,
i.e., the number of code symbols accessed during conversion.
Bandwidth, which corresponds to the amount of data read and
transferred, is another important resource to optimize during
conversions. In this paper, we study the fundamental limits on
bandwidth used during code conversion and present construc-
tions for bandwidth-optimal convertible codes. First, we model
the code conversion problem using network information flow
graphs with variable capacity edges. Second, focusing on MDS
codes and an important parameter regime called the merge
regime, we derive tight lower bounds on conversion bandwidth.
The derived bounds show that conversion bandwidth can be
significantly reduced as compared to the default approach even
in regions where it has been shown that access cost cannot
be reduced. Third, we present a new construction for MDS
convertible codes which matches the proposed lower bound and
is thus bandwidth-optimal during conversion.

Index Terms— Convertible codes, distributed storage systems,
erasure codes.

I. INTRODUCTION
RASURE codes are an essential tool in distributed stor-
age systems used to add redundancy to data in order

Manuscript received 29 September 2022; revised 8 February 2023;
accepted 18 March 2023. Date of publication 7 April 2023; date of cur-
rent version 14 July 2023. This work was supported in part by the NSF
CAREER under Award 19434090, in part by the NSF Computer and
Network Systems (CNS) under Award 1956271, in part by the Google
Faculty Research Award, and in part by the Facebook Distributed Sys-
tems Research Award. An earlier version of this paper was presented
in part at the 2021 IEEE International Symposium on Information The-
ory (ISIT) [DOI: 10.1109/1S1T45174.2021.9518121]. (Corresponding author:
Francisco Maturana.)

The authors are with the Computer Science Department, Carnegie Mel-
lon University, Pittsburgh, PA 15213 USA (e-mail: fmaturan@cs.cmu.edu;
rvinayak @cs.cmu.edu).

Communicated by G. Ge, Associate Editor for Coding and Decoding.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TIT.2023.3265512.

Digital Object Identifier 10.1109/TIT.2023.3265512

to avoid data loss when device failures occur [2], [3], [4],
[5]. In particular, Maximum Distance Separable (MDS) codes
are widely used for this purpose in practice because they
require the minimum amount of storage overhead for a given
level of failure tolerance. In this setting, an [n,k] MDS
code over a finite field IF, is used to encode a message
consisting of k symbols of F, into a codeword consisting
of n symbols of IFq.l Each of these n codeword symbols
are then stored on n distinct nodes of the distributed storage
system (typically, nodes correspond to storage devices residing
on different servers). Large-scale distributed storage systems
usually comprise hundreds to thousands of nodes, while n is
much smaller in comparison, meaning that these systems store
many such codewords distributed across different subsets of
nodes. The MDS property ensures that any subset of £ symbols
out of the n symbols in the codeword is enough to decode the
original data. This provides tolerance for up to (n — k) node
failures.

The parameters n and k are typically set based on the
reliability of storage devices and additional requirements on
system performance and storage overhead. Recent work by
Kadekodi et al. [6] has shown that the failure rate of disks
can vary drastically over time, and that significant savings
in storage space (and hence operating costs) can be achieved
by tuning the code rate to the observed failure rates. Such
tuning typically needs to change both n and £ of the code, due
to other practical system constraints on these parameters [6].
Other reasons for tuning parameters include changing % in
response to changes in data popularity, and adapting the code
rate to limit the total amount of storage space used. Such
tuning of parameters requires converting the already encoded
data from one set of parameters to the newly chosen set
of parameters. The default approach to achieving this is to
re-encode, that is, read the encoded data, decode if necessary,
re-encode it under the new code, and then write it back into
the relevant nodes. However, such an approach necessitates
significantly high overhead in terms of network bandwidth,
I/0, and CPU resources in the cluster. This disrupts the normal
operation of the storage system.

These applications have led to the study of the code con-
version problem [7], [8]. Code conversion (Figure 1) is the
process of transforming a collection of codewords encoding
data under an initial code C! into a collection of codewords

'In the literature, this set of 7 symbols is sometimes called a stripe instead
of a codeword. In this work, we make no distinctions between these two
terms.

0018-9448 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 04,2023 at 16:12:09 UTC from IEEE Xplore. Restrictions apply.

4994

[n!, k!] coded data

Fig. 1.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 8, AUGUST 2023

Write Yw

(D
gs = e
- o
ll.l.‘
-

[nF, k¥'] coded data

Conversion process of codewords of an [n!, k'] initial code into codewords of an [n¥", k'] final code. In this figure, each color represents a different

codeword. Code conversion is performed by downloading data from storage nodes to a central location, processing the data, and writing back the processed
data to the nodes. The total amount of data read is denoted by g, and the total amount of data written is denoted by ~yy-.

encoding the same data under a final code C*'.> Given certain
parameters for C! and C¥', the goal is to design the codes
C! and C¥ along with a conversion procedure from C! to
CF that is efficient in conversion (according to some notion
of conversion cost as will be discussed subsequently). The
design is subject to additional decodability constraints on the
codes CT and CF, such as both satisfying the MDS property,
since both these codes encode data in the storage system
at different snapshots in time. A pair of codes designed to
efficiently convert encoded data from an [n!, k’] code to an
[nF', k¥ code is called an (nf, kT;nf k¥ convertible code,
and the initial [n!, k7] code is said to be (n’", kT')-convertible.
In practice, the exact value of the final parameters n‘" and k%’
might not be known at the time of code construction, as it
might depend on future failure rates. Instead, one might have
some finite set of possible values for the pair (nf’, k") that
will be chosen from at the time of conversion. For this reason,
we will also seek to construct initial codes which are simulta-
neously (nf', k¥')-convertible for all (nf', k') in a given finite
set of final parameter values. This allows the flexibility to
choose the parameters n/" and k% at the time conversion is
performed.

Existing works on convertible codes have studied efficiency
in terms of the access cost of conversion, which corresponds to
the number of codeword symbols accessed during conversion.
In particular, previous works [7], [8] have derived tight lower
bounds on the access cost of conversion for linear MDS
convertible codes, and presented explicit constructions of MDS
convertible codes that meet those lower bounds (i.e. access-
optimal MDS convertible codes). Another important resource
overhead incurred during conversion is that on the network
bandwidth, which we call conversion bandwidth. In the sys-
tem, this corresponds to the total amount of data transferred
between nodes during conversion. Access-optimal convertible
codes, by virtue of reducing the number of code symbols
accessed, also reduce conversion bandwidth as compared to
the default approach. However, it is not known if these codes
are also optimal with respect to conversion bandwidth.

In this paper, we study the conversion bandwidth of code
conversions. We specifically focus on MDS convertible codes

2The superscripts I and F' stand for initial and final, respectively.

and a parameter regime known as the merge regime, which
has been shown to play the most critical role in the analysis
and construction of convertible codes [7]. The merge regime
corresponds to conversions where multiple initial codewords
are merged into a single final codeword (i.e. k¥ = M k! for
some integer A > 9).

For the access cost of conversion in the merge regime, it is
known [8] that one cannot do better than the default approach
for a wide range of parameters (specifically, when (n! —
k') < (nf" — kT), which we term the increasing-redundancy
region). For the remaining set of parameters (which we term
the decreasing-redundancy region), access-optimal convertible
codes lead to considerable reduction in access cost compared
to the default approach. Yet, it is viable that there is room
for a significant reduction in conversion bandwidth in both of
these regimes. This is possible by considering codes over finite
extensions of finite fields F4«, where each codeword symbol
can be interpreted as an a-length vector of sub-symbols from
the base field IF,. Such codes are called vector codes. Vector
codes allow conversion procedures to download elements of
the base field from nodes, allowing them to download only a
fraction of the codeword symbols. This is inspired by the work
on regenerating codes by Dimakis et al. [9] who used vector
codes to reduce bandwidth cost of reconstructing a subset of
the codeword symbols.

In this paper, first, to analyze the conversion bandwidth,
we model the code conversion problem via a network infor-
mation flow graph. This is a directed acyclic graph with capac-
ities, where vertices represent nodes and edges represent the
communication between nodes. The approach of information
flow graphs was used by Dimakis et al. [9] in the study on
regenerating codes. Unlike in the case of regenerating codes,
the proposed model involves variable capacities on edges
representing data download during conversion. This feature
turns out to be critical; we show that conversion procedures
which download a uniform amount of data from each node
are necessarily sub-optimal.

Second, by using the information flow model, we derive
a tight lower bound on the conversion bandwidth for
MDS convertible codes in the merge regime. Specifically,
we use the information flow graph to derive constraints
on edge capacities that we then feed into an optimization

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 04,2023 at 16:12:09 UTC from IEEE Xplore. Restrictions apply.

MATURANA AND RASHMI: BANDWIDTH COST OF CODE CONVERSIONS IN DISTRIBUTED STORAGE

4995

TABLE I

COMPARISON OF THE READ CONVERSION BANDWIDTH (yg) OF DIFFERENT APPROACHES FOR MERGE CONVERSION. HERE r! := n! — kI,
rF .= n¥ — k¥ AND WE ASSUME THAT ¥ < k!. FOR THE THREE APPROACHES, THE WRITE CONVERSION
BANDWIDTH IS CONSTANT (v = ¥ a)

Approach Read bandwidth (r! < rf) Read bandwidth (r! > ¥
Default METa MiTa
Access optimal [7] MEla MrFo
This paper Mila — AMrla (% -) MrFa
s

problem whose objective is to minimize the bandwidth of
conversion. With this we derive a tight lower bound on
the total conversion bandwidth for given code parameters
(nt kl;nf kF).

Third, using the above derived (tight) lower bound,
we show that (1) in the increasing-redundancy region, where
no reduction in access cost as compared to the default
approach is possible, a substantial reduction in bandwidth
cost can be achieved, and (2) in the decreasing-redundancy
region, the access-optimal convertible codes are indeed
bandwidth-optimal.

Fourth, we present an explicit construction of MDS con-
vertible codes in the merge regime which achieves this
lower bound and is therefore optimal in terms of conversion
bandwidth. Table I shows a comparison of the conversion
bandwidth required by different approaches to conversion in
the merge regime. This construction exploits the Piggybacking
framework [10], which is a general framework for construct-
ing vector codes, and uses access-optimal MDS convertible
codes [8] as a building block.

Above, only a single value of final parameters n’ and k¥
was considered. In general, the ideal value of n/" and k¥ might
be uncertain at the time of encoding, because it depends on
future observations. In such cases, having the ability to choose
n* and k% at the time of conversion is essential. So finally,
we propose a technique to transform our construction so as
to be simultaneously bandwidth-optimal in conversion for any
given set of potential final parameter values. The proposed
transformation exploits the piggybacking technique [10] in a
recursive fashion.

Organization: We review the necessary background and
discuss related work in Section II. In Section III, we describe
our model for the code conversion process as an information
flow graph. In Section IV, we derive a lower bound on the
conversion bandwidth of MDS convertible codes in the merge
regime. In Section V, we propose an explicit construction
for bandwidth-optimal MDS convertible codes in the merge
regime, including the transformation to make the construction
simultaneously bandwidth-optimal in conversion for multiple
final parameter values. In Section VI, we analyze the savings
enabled by bandwidth-optimal convertible codes. We conclude
the paper in Section VII.

II. BACKGROUND AND RELATED WORK

In this section we start by introducing concepts from the
existing literature that are used in this paper. We then do an
overview of other related work.

A. Vector Codes and Puncturing

In this section we introduce the basic notation for vector
codes. Let [i] denote the subset {1,2,...,i}, for a natural
number 7. An [n, k, o vector code C over a finite field F,, is an
injective mapping C : ng — [Fg". For a given codeword ¢ =
C(m) and i € [n], define ¢; = C;(m) = (Ca(i=1)41>- - - Cai)
as the i-th symbol of c, which is a vector of length « over IF,.
We refer to elements from the base field F, as subsymbols.
A code is said to be systematic if it always maps m to a
codeword that contains all the subsymbols of m uncoded. In a
linear [n, k,a] vector code C, the encoding of message m €
]F’;O‘ is given by the mapping m — mG where G € F’;O‘X"O‘
is called the generator matrix of C, and the columns of G are
called encoding vectors. The minimum distance of a vector
code is defined as:

dist(C) :

min [€ [n] : C;(m) 7 C,(m")}].

An [n,k,a] vector code C is said to be maximum-distance-
separable (MDS) if dist(C) = n—k + 1 (i.e., it achieves the
Singleton bound [11]). MDS codes are commonly used in
practice because they achieve the optimal tradeoff between
storage overhead and failure tolerance.

A scalar code is a vector code with o = 1. We will omit
the parameter o when it is clear from context or when av = 1.
A puncturing of a vector code C is the resulting vector code
after removing a fixed subset of symbols from every codeword.

B. Convertible Codes [7], [8]

Convertible codes are designed to enable encoded data
to undergo efficient conversion. Let C! be an [n!,k!] code
over F,, and CT be an [nF JEF] code over F,. In the initial
configuration, data will be encoded under the initial code cl,
and in the final configuration data will be encoded under the
final code C¥'. Let 1 = (n! — k) and v¥" = (n¥" — kF).
In order to allow for a change in code dimension from k! to
k¥, multiple codewords of codes C! and C*" are converted at
the same time. The reason behind this is that in the initial and
final configurations, the system must encode the same total
number of message symbols (though encoded differently).
Thus, even the simplest non-trivial instance of the problem
involves multiple codewords in the initial and final config-
uration. Let m be a message of length M = lem(k!, k")
which in the initial configuration is encoded as A\ = (M /x7)
codewords of C! and in the final configuration is encoded as
A = (M /i) codewords of CF'.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 04,2023 at 16:12:09 UTC from IEEE Xplore. Restrictions apply.

4996

For a subset Z C [M], we denote the restriction of m to the
coordinates in Z as m|z € F!II‘, and use the term submessage
to refer to such vectors. The mapping of message symbols
from m to different codewords is specified by two partitions
of the message symbol indices [M]: an initial partition Py
and a final partition Pr. Each subset PZ-I € Pr must be of
size |P!| = k!, and indicates that the submessage m| pr is
encoded by initial codeword i, for i € [\]. Similarly, each
subset PjF € Pr must be of size \P]-F | = k¥, and indicates
that the submessage m)| PF is encoded by final codeword j,
for j € [AF]. A conversion from initial code C’ to final C¥'
is a procedure that takes the initial codewords {C’(m)] pr)
i € [M]} and outputs the final codewords {C* (m|pr) i€
[AF]}. Putting all these elements together, a convertible code
is formally defined as follows.

Definition 1 (Convertible Code [7]): An (n!,kl;nt" EF)
convertible code over I, is defined by: (1) a pair of initial
and final codes (C!,CY") over F,, where C! is an [n’, k'] code
and CI" is an [nf' k] code, (2) initial and final partitions
(Pr,Pr) of M such that |Pf| = k! (VP! € P;) and
|Pf'| = EF(VPf € Pr), (3) a conversion procedure from
¢’ to CF.

>

The access cost of a conversion procedure is the sum of the
read access cost, i.e. the total number of code symbols read,
and the write access cost, i.e. the total number of code symbols
written. An access-optimal convertible code is a convertible
code whose conversion procedure has the minimum access
cost over all convertible codes with given parameters (n', k;
nf k). Similarly, an [nf, k!] code is said to be (nf, k)-
access-optimally convertible if it is the initial code of an
access-optimal (n!, k;nf" k) convertible code.

Definition 1 considers single fixed values for parameters n'’
and k. In practice, the values of n’" and k%" for the conversion
might be unknown. Thus, constructing convertible codes which
are simultaneously (n’", kf")-access-optimally convertible for
several possible values of nf" and k¥ is also important (as
will be discussed in Section V-B).

Though the definition of convertible codes allows for any
kind of initial and final codes, this work focuses on MDS
codes. A convertible code is said to be MDS when both C’
and C*" are MDS. The access cost lower bound for linear MDS
convertible codes is known.

Theorem 1 [8]: Let d; be the read access cost of a
linear MDS (n?, k;nf" kF") convertible code, and ds its write
access cost. When k! # kT, for every access-optimal code:

MrF M mod AF)(kf— max{[k¥ mod k’],rF'}),
if 1 > 7 and 7 < min{k’, k*'},
otherwise.

dy = Art.

There are explicit constructions of access-optimal convertible
codes for all valid parameters (n!, k%;n® kf"): [12] gives
a construction when k" is a multiple of k!, and [8] gives
a construction for the general case. Notice that for the
increasing-redundancy region (r! < rf), read access cost is

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 8, AUGUST 2023

always M, which is the same as the default approach. In the
decreasing-redundancy region (! >), on the other hand,
one can achieve lower access cost than the default approach
when r < min{k!, k¥'}.

During conversion, code symbols from the initial codewords
can play multiple roles: they can become part of different final
codewords, their contents might be read or written, additional
code symbols may be added and existing code symbols may be
removed. Based on their role, code symbols can be divided into
three groups: (1) unchanged symbols, which are present both
in the initial and final codewords without any modifications;
(2) retired symbols, which are only present in the initial
codewords but not in the final codewords; and (3) new symbols,
which are present only in the final codewords but not in the
initial codewords. Both unchanged and retired symbols may
be read during conversion, and then linear combinations of
data read are written into the new symbols.

The merge regime is a fundamental regime of convertible
codes which corresponds to conversions which merge multiple
initial codewords into a single final codeword. Thus, convert-
ible codes in the merge regime are such that k¥ = A\ k! for
some integer A’ > 2, and A’ = 1. Notice that in this regime,
dy in Theorem 1 reduces to A min{rf kf} if r{ > rF.
We recall two lemmas from previous work which are useful
for analyzing the merge regime.

Proposition 1 [7]: For every (n!, kT;nf" Ak!) convert-
ible code, all possible pairs of initial and final partitions
(Pr, Pr) are equivalent up to relabeling.

In the merge regime, all data gets mapped to the same final
stripe. Thus, the initial and final partition do not play an
important role in this case.

Proposition 2 [7]: ITn an MDS (n', kT;n®", \'k!) convert-
ible code, there can be at most k! unchanged symbols from
each initial codeword.

This is because having more than k! unchanged symbols in
an initial codeword would contradict the MDS property.

Definition 2 (Stability): A convertible code is said to be
stable if its conversion procedure has the maximum number
of unchanged symbols (M when k! # k).

1) Access-Optimal Convertible Code for Merge Regime :
When ! < 7', Theorem 1 implies that the default approach
has optimal access cost, and so constructing an access-optimal
code for this case is trivial. When rf > ¥ and the code is
in the merge regime, the bound from Theorem 1 in the case
where ! > rF and r¥ < k! reduces to d; > Arf and
dy > rF. Thus in access-optimal conversion in the merge
regime, only 7" code symbols from each initial codeword need
to be read. These symbols are then used to compute " new
code symbols.

In [7], several constructions for access-optimal convertible
codes in the merge regime are presented. Codes built using
these constructions are (1) systematic, (2) linear, (3) during
conversion only access % parities from each initial stripe,
and (4) when constructed with a given value of A/ = \ and
rf = r, the initial [n’, k'] code is (n'", k¥')-access-optimally
convertible for all k¥ = Nk! and n' = kf + ¢’ such that
1< XN <Xand 1 <7 <r.In Section V we use an access-
optimal convertible code in the merge regime as part of our

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 04,2023 at 16:12:09 UTC from IEEE Xplore. Restrictions apply.

MATURANA AND RASHMI: BANDWIDTH COST OF CODE CONVERSIONS IN DISTRIBUTED STORAGE 4997
Symbol 1 | f1(m1) | f1(m2) fi(mg) fi(my) | fi(mi) + g2,1(m2) fi(mga) + go,1(my, ..., mgy)
Symbol 2 | fa(m1) | fa(m2) f2(ma) f2(m1) | fo(mi) + g2,2(m2) f2(ma) + ga,2(my, ..., ma)
Symbol n | fn(mi1) | fn(m2) fn(ma) | | fa(mi) | fr(mi) + g2,n(m2) f1(ma) + gan(my, ..., ma)

(a) « instances of the base code

Fig. 2. Piggybacking framework [10] for constructing vector codes.

construction of bandwidth-optimal convertible codes for the
merge regime. Next, we give a brief description of the code
construction that we use from [7] (referred to as the “general
construction”).

Consider the case where ! > v and r¥ < kT (otherwise,
the construction is trivial). The codes C! and C¥ over finite
field F, are defined via the matrices G/ = [Ikz | P!] and
G = [I;r | P¥] where:

e I is the k x k identity matrix,

e Q,Q,...,q, are distinct elements from F,,

o P is the k' x r! Vandermonde matrix with evaluation

points (aq,...,q.1),

o P% is the k¥ x r¥" Vandermonde matrix with evaluation

points (aq,...,q.F).

(In the original construction [7], c; is chosen as #*~1 for some
primitive element § € F,.) One important aspect of this con-
struction is that, due to the nature of Vandermonde matrices,
the i-th column of P¥ is equal to the vertical concatlenati(?n of
the respective i-th columns of PI,afIPI, ... ,ag’\ D pr,
This property ensures that each final parity can be constructed
during conversion as a linear combination of one initial parity
from each initial codeword. As shown in [7], this construction
satisfies the properties (1-4) described above, and is MDS
for appropriately chosen points «; (i € [r!]) and sufficiently
large F,.

Example 1 (Access-Optimal Code): Consider the parame-
ters (nf = 7, kT = 4;nF = 11,k = 8) over Fy;: the
evaluation points (ay = 1,y = 2,3 = 6) yield an MDS
access-optimal code. It is easy to check that the codes defined
by the following matrices are MDS:

11 1
1 2 6

11 1 1 4 2
;o112 6 Fo |1 8 12
Pr=11 4 PP=11 16 4
18 12 115 7

1 13 8

1 9 14

Now, suppose the data (aj,...,as) and (as,...,ag) are
encoded with the initial code. It is easy to check that the
following holds:

0

—
(=)

1 0
(a1,...,a0)PT 4 (as,...,a3)P? |0 0
0 4

o

= (ay,...,ag)PF.

>

(b) Piggybacked code

C. Network Information Flow

Network information flow [13] is a class of problems that
model the transmission of information from sources to sinks in
a point-to-point communication network. Network coding [14],
[15], [16], [17], [18] is a generalization of store-and-forward
routing, where each node in the network is allowed to combine
its inputs using a code before communicating messages to
other nodes. For the purposes of this paper, an information
flow graph is a directed acyclic graph G = (V, E), where V
is the set of nodes, £ C V x V x R>(is the set of edges
with non-negative capacities, and (i, j,¢) € F represents that
information can be sent noiselessly from node ¢ to node j at
rate c. Let X1, X5,...,X,, be mutually independent infor-
mation sources with rates xi,xo,...,Z,, respectively. Each
information source X; is associated with a source s; € V,
where it is generated, and a sink ¢; € V, where it is required.
In this paper we mainly make use of the information max-flow
bound [19] which indicates that it is impossible to transmit
X, at a higher rate than the maximum flow from s; to ;.
In other words, z; < max-flow(s;,¢;) for all ¢ € [m] is a
necessary condition for a network coding scheme satisfying
all constraints to exist. In our analysis, we will consider s;-¢;-
cuts of the information flow graph, which give an upper bound
on max-flow(s;, ;) and thus an upper bound on z; as well.
We will also utilize the fact that two independent information
sources with the same source and sink can be considered as a
single information source with rate equal to the sum of their
rates.

In [9], information flow and network coding is applied to
the repair problem in distributed storage systems. The repair
problem is the problem of reconstructing a small number of
failed code symbols in an erasure code (without having to
decode the full codeword). Dimakis et al. [9] use informa-
tion flow to establish bounds on the storage size and repair
network-bandwidth of erasure codes. In this work we use
information flow to model the process of code conversion
and establish lower bounds on the total amount of network
bandwidth used during conversion.

D. Piggybacking framework for Constructing Vector Codes

The Piggybacking framework [10], [20] is a framework for
constructing new vector codes building on top of existing
codes. The main technique behind the Piggybacking frame-
work is to take an existing code as a base code, create a
new vector code consisting of multiple instances of the base
code (as described below), and then add carefully designed
functions of the data (called piggybacks) from one instance
to the others. These piggybacks are added in a way such that

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 04,2023 at 16:12:09 UTC from IEEE Xplore. Restrictions apply.

4998

it retains the decodability properties of the base code (such
as the MDS property). The piggyback functions are chosen
to confer additional desired properties to the resulting code.
In [10], the authors showcase the Piggybacking framework
by constructing codes that are efficient in reducing bandwidth
consumed in repairing codeword symbols.

More specifically, the Piggybacking framework works as
follows. Consider a length n code defined by the func-
tion f(m) = (fi(m), fo(m),..., f,(m)). Now, consider «
instances of this base code, each corresponding to a coordinate
of the a-length vector of each symbol in the new vector
code. Let (m;, mo, ..., m,) denote the independent messages
encoded under these « instances, as shown in Figure 2a. For
every ¢ such that 2 < ¢ < «, one can add to the data encoded
in instance ¢ an arbitrary function of the data encoded by
instances {1,...,(¢—1)}. Such functions are called piggyback
functions, and the piggyback function corresponding to code
symbol j € [n] of instance ¢ € {2,...,a} is denoted as g; ;.

The decoding of the piggybacked code proceeds as follows.
Observe that instance 1 does not have any piggybacks. First,
instance 1 of the base code is decoded using the base code’s
decoding procedure in order to obtain m;. Then, m; is used
to compute and subtract any of the piggybacks {g2 ;(m1)}7,
from instance 2 and the base code’s decoding can then be
used to recover my. Decoding proceeds like this, using the
data decoded from previous instances in order to remove
the piggybacks until all instances have been decoded. It is
clear that if an [n,k,a] vector code is constructed from
an [n,k] MDS code as the base code using the Piggy-
backing framework, then the resulting vector code is also
MDS. This is because any set of k symbols from the vector
code contains a set of k£ subsymbols from each of the «
instances.

In this paper, we use the Piggybacking framework to design
a code where piggybacks store data which helps in making the
conversion process efficient.

E. Other Related Work

Apart from [7], which presented a general formulation for
the code conversion problem, special cases of code conversion
have been studied in the literature. In [21], [22], the authors
study the problem of minimizing bandwidth usage when
adding extra parities, which corresponds to the case where
k! = kF and n! < nf. In [23], the authors propose two
specific pairs of non-MDS codes for a distributed storage
system which support conversion with lower access cost than
the default approach. In [24], the authors study two kinds of
conversion in the context of distributed matrix multiplication.
In [25], the authors propose an approach to conversion similar
to that of [7] and [8], but allow each individual codeword to
belong to a different code. These works focus on reducing
the access cost of conversion, whereas the focus of the
current paper is on conversion bandwidth. Furthermore, the
approaches proposed in these works [23], [24] do not come
with any theoretical guarantees on optimality, whereas the cur-
rent paper also presents tight lower bounds on the conversion
bandwidth along with bandwidth-optimal constructions.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 8, AUGUST 2023

A related line of research is that of regenerating codes.
Regenerating codes are erasure codes which are designed to
solve the repair problem (described in Section II-C above)
by downloading the least amount of data from the sur-
viving nodes. Regenerating codes were first proposed by
Dimakis et al. [9]. Several subsequent works have provided
constructions of codes with bandwidth-efficient repair [10],
(211, [26], [27], [28], [29], [301, [31], [32], [33], [34], [35],
[36], [37], [38], [39], [40], [41], [42], [43], [44], [45], lower
bounds on the subpacketization of such codes [46], [47], [48],
constructions and bounds for scalar codes [49], [50], [51], [52],
[53], [54] and other generalizations of regenerating codes [55],
[56], [57], [58]. The regenerating codes framework measures
the cost of repair in a similar way to how we measure the
cost of conversion in this work: in terms of the total amount
of network bandwidth used, i.e. the total amount of data trans-
ferred during repair. Thus, some of the techniques used in this
paper are inspired by the existing regenerating codes literature,
as further explained in Section II-C. Furthermore, specific
instances of code conversion can be viewed as instances of
the repair problem, for example, increasing n while keeping &
fixed as studied in [10], [21] and [22]. In such a scenario,
one can view adding additional nodes as “repairing” them
as proposed in [21]. Note that this setting imposes a relaxed
requirement of repairing only a specific subset of nodes as
compared to regenerating codes which require optimal repair
of all nodes. Yet, the lower bound from regenerating codes
still applies for MDS codes, since as shown in [31], the
regenerating codes lower bound for MDS codes applies even
for repair of only a single specific node.

There have been several works studying the scaling prob-
lem [59], [60], [61], [62], [63], [64], [65], [66], [67], [68],
[69], [70]. This problem considers upgrading an erasure-coded
storage system with s new empty data nodes. The general goal
is to efficiently and evenly redistribute data across all nodes,
while updating parities to reflect the new placement of the
data. This is a fundamentally different problem from the code
conversion problem we study in this paper, due to the scaling
problem’s need to redistribute data across nodes.

III. MODELING CONVERSION FOR OPTIMIZING
CONVERSION BANDWIDTH

In this section, we model the conversion process as an
information flow problem. We utilize this model primarily for
deriving lower bounds on the total amount of information that
needs to be transferred during conversion. Since our focus
is on modeling the conversion process, we consider a single
value for each of the final parameters n/" and k%". This model
continues to be valid for each individual conversion, even
when the final parameters might take multiple values.

In Section II-B, we reviewed the definition of convertible
codes from literature [7], [8]. Existing works on convertible
codes [7], [8] have considered only scalar codes, where
each code symbol corresponds to a scalar from a finite field
IF,. Considering scalar codes is sufficient when optimizing
for access cost, which was the focus in these prior works,
since the access cost is measured at the granularity of code

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 04,2023 at 16:12:09 UTC from IEEE Xplore. Restrictions apply.

MATURANA AND RASHMI: BANDWIDTH COST OF CODE CONVERSIONS IN DISTRIBUTED STORAGE

Initial
codewords

Final
codewords

Fig. 3.

4999

Information flow graph of conversion in the general case. Unchanged, retired, and new nodes are shown in different colors. Notice that each unchanged

node in this figure is drawn twice: once in the initial codewords and once in the final codewords. These correspond to exactly the same node, but are drawn

twice for clarity. Some representative edges are labeled with their capacities.

symbols. However, when optimizing conversion bandwidth,
vector codes can perform better than scalar codes since they
allow partial download from a node. This allows conversion
procedures to only download a fraction of a code symbol and
thus only incur the conversion bandwidth associated with the
size of that fraction. This can potentially lead to significant
reduction in the total conversion bandwidth. For this reason,
we consider the initial code C! as an [n!, k!, o] MDS code and
the final code C¥" as an [nf", k¥, o] MDS code, where a > 1 is
considered as a free parameter chosen to minimize conversion
bandwidth. This move to vector codes is inspired by the work
of Dimakis et al. [9] on regenerating codes, who showed the
benefit of vector codes in reducing network bandwidth in the
context of the repair problem. For MDS convertible codes,
message size will be B = Ma = lem(k!, k™), which we
interpret as a vector m € IF(IJVIO‘ composed of M symbols
made up of « subsymbols each. We will denote the number
of subsymbols downloaded from node s during conversion
as ((s) < « and extend this notation to sets of nodes as
B(S) = Y e Bs).

Consider an (nf,k’;nf", k™) MDS convertible code with
initial partition P; = {P{, ..., P},} and final partition Pp =
{PEF, ..., pr} We model conversion using an information
flow graph as the one shown in Figure 3 where message
symbols are generated at source nodes, and sinks represent the
decoding constraints of the final code. Symbols of message
m are modeled as information sources X1, Xo,..., X of
rate « (over FF,) each. For each initial codeword i € [\],
we include one source node s;, where the information sources
corresponding to the message symbols in P/ are generated.
Each code symbol of initial codeword ¢ is modeled as a node
with an incoming edge from s;. A coordinator node c models
the central location where the contents of new symbols are
computed, and it has incoming edges from all nodes in the
initial codewords. During conversion, some of the initial code
symbols will remain unchanged, some will be retired, and
some new code symbols will be added. Thus, we also include
the nodes corresponding to unchanged symbols in the final
codewords (that is, every unchanged node is shown twice

in Figure 3). Note that the unchanged nodes in the initial
codewords and the unchanged nodes in the final codewords
are identical, and thus do not add any conversion bandwidth.
For each new symbol we add a node that connects to the
coordinator node. From this point, we will refer to code
symbols and their corresponding nodes interchangeably. For
each final codeword j € [A'], we add a sink ¢; which connects
to some subset of nodes from final codeword j, and recovers
the information sources corresponding to the message symbols
in Pf".

Thus, the information flow graph for a convertible code
comprises the following nodes:

o unchanged nodes U; ; = {u; j1,-- -, u,)} forallie
[M], j € [A\F], which are present both in the initial and
final codewords;

o retired nodes R; = {v; 1,...,v; g, } for i € [\], which
are only present in the initial codewords;

o new nodes Nj = {wj1,...,w;n, } for j € [A\F], which
are only present in the final codewords;

« source nodes s; for i € [\!], representing the data to be
encoded;

« sink nodes ¢; for j € [A\F'], representing the data decoded;
and

 a coordinator node c.

In the information flow graph, information source X; is
generated at node s; if and only if [€ Pil , and recovered
at node ¢, if and only if I € P/

Throughout this paper, we use the disjoint union symbol LI
when appropriate to emphasize that the two sets in the union
are disjoint. To simplify the notation, when * is used as an
index, it denotes the disjoint union 9f the indexed set over the
range of that index, e.g. U, ; = |_|;‘:1 U; ;.

The information flow graph must be such that the following
conditions hold: (1) the number of nodes per initial codeword
is nl, ie., [Ui.| + |Ri| = nl for all i € [A]; and (2) the
number of nodes per final codeword is nf', i.e., |Us ;| +|N;| =
nt for all j € [A\F]. Additionally, the information flow graph
contains the following set of edges E, where a directed edge

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 04,2023 at 16:12:09 UTC from IEEE Xplore. Restrictions apply.

5000

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 8, AUGUST 2023

Fig. 4.

Information flow graph of conversion in the merge regime with two different cuts (used in proofs). For clarity, each unchanged node is drawn twice:

once in the initial codewords and once in the final codeword. These two instances are connected by a dashed arrow. Marked edges denote a graph cut.

from node u to v with capacity J is represented with the triple
(u,v,0):

e {(si,x,0) 2 €U; UR;} C E for each i € [\!], where
the capacity corresponds to the size of the data stored on
each node;

e {(z,¢,B(x)) : x € Ui UR;} C E for each i € [A],
where the capacity corresponds to the amount of data
downloaded from node z;

e {(c,y,0) : y € N;} C E for each j € [A\], where
the capacity corresponds to the size of the data stored on
each new node;

e {(y,tj,0) 1y € V;} C E for V; C U, ; UN; such
that |V;| = k%, for all j € [AF], where the capacity
corresponds to the size of the data stored on each node.

The sinks ?; represent the decoding constraints of the final
code, and each choice of set V; will represent a different choice
of k¥ code symbols for decoding the final codeword. A neces-
sary condition for a conversion procedure is to satisfy all sinks
t; for all possible Vi, ..., Vyr. The sets U; ;, R;, N; and the
capacities $(x) are determined by the conversion procedure
of the convertible code. Figure 3 shows the information flow
graph of an arbitrary convertible code.

Definition 3 (Conversion Bandwidth): The read conversion
bandwidth v is the total amount of data transferred from the
initial nodes to the coordinator node c. The write conversion
bandwidth ~yy is the total amount of data transferred from the
coordinator node ¢ to the new nodes. The (total) conversion
bandwidth ~ is the sum of the read conversion bandwidth and
the write conversion bandwidth. Formally:

YR = BUsx URS), w = [Nia, ~v:=7r+w.

6]

>

Once the structure of the graph is set and fixed, information

flow analysis gives lower bounds on the capacities [(x).

Therefore, a part of our objective in designing convertible

codes is to set U; j, R;, N; so as to minimize the lower bound
on 7.

Notice that the conversion process, as defined above, is not

a single-source multi-cast problem; therefore, the informa-

tion max-flow bound is not guaranteed to be achievable.

Nonetheless, information flow can be applied to obtain a lower
bound (Section IV), which we show is achievable by providing
a construction (Section V).

Remark 1: In practice, conversion bandwidth can some-
times be further reduced by placing the coordinator node along
with a new node and/or a retired node in the same server.
One can even first split the coordinator node into several
coordinator nodes, each processing data which is not used in
conjunction with data processed by other coordinator nodes,
and then place them in the same server as a new node and/or
a retired node. Such “optimizations” do not fundamentally
alter our result, and hence are left out in order to make the
exposition clear.

IV. OPTIMIZING CONVERSION BANDWIDTH
IN THE MERGE REGIME

In this section, we use the information flow model presented
in Section III to derive a lower bound on the conversion
bandwidth for MDS codes in the merge regime. Recall from
Section II-B, that convertible codes in the merge regime
are those where k¥ = M k! for some integer \| > 2,
i.e., this regime corresponds to conversions where multiple
initial codewords are merged into a single final codeword.
As in the previous section, our analysis focuses on a single
conversion, and thus a single value for the final parameters n!’
and k%'. However, our analysis only depends on the conversion
process itself; therefore, the bound on the bandwidth still
applies even if we consider multiple conversions.

Consider an (n!,k%;n® Ak!) convertible code in the
merge regime, for some integer A’ > 2. Note that for all
convertible codes in the merge regime, it holds that the number
of final codewords is A" = 1. Since all initial and final
partitions (P, Pr) are equivalent up to relabeling in this
regime (by Proposition 1 [7]), we can omit them from our
analysis. Note also that all information sources are recovered
at the same sink node, ¢;. Thus, we may treat each source
node s; as having a single information source X; of rate ok’
(i € [M]). For each source node and each sink node pair,
we can invoke the information max-flow bound (Section II-C)
to derive an inequality. For conversion to be possible, the
variable-capacity edges must take on values such that all these

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 04,2023 at 16:12:09 UTC from IEEE Xplore. Restrictions apply.

MATURANA AND RASHMI: BANDWIDTH COST OF CODE CONVERSIONS IN DISTRIBUTED STORAGE

inequalities are simultaneously satisfied. Figure 4a shows the
information flow graph for a convertible code in the merge
regime.

First, we derive a general lower bound on conversion
bandwidth in the merge regime by considering a simple cut
in the information flow graph. Intuitively, this lower bound
emerges from the fact that new nodes need to have a certain
amount of information from each initial codeword in order to
fulfill the MDS property of the final code. This lower bound
depends on the number of unchanged nodes and achieves its
minimum when the number of unchanged nodes is maximized.
Recall from Section II-B that convertible codes with maximum
number of unchanged nodes are called stable convertible
codes. Thus, the derived lower bound is minimized for stable
convertible codes.

Lemma 2: Consider an MDS (n!, k%;nf M k) convert-
ible code. Then vg > Mamin{rf' K’} and vy > 7¥a,
where equality is only possible for stable codes.

Proof: We prove this inequality via an information flow
argument. Let i € [A] and consider the information source
generated at source s;. Let S C U; 1 be a subset of unchanged
nodes from initial codeword i of size 7; = min{r®,|U; 1|}.
Consider a sink ?; that connects to nodes U, 1 \ S. We choose
the graph cut defined by nodes {s; } Ul; 1 LIR; (see Figure 4a,
which depicts the cut for i = \?). This cut yields the following
inequality:

ko < max{|t; 1| — ¥, 0}a + BU1 UR,)
= BUi1 UR;) > (kT +rF —max{|U; 1], 7"}
This inequality must hold for every i € [\!] simultaneously;
otherwise, it would be impossible for the sink to recover the
full data. By summing this inequality over all sources i € [\f]
and using the definition of v (Equation (1)), we obtain:
)\I
7> ST 4T — max{Usal, r7 o+ [Mia
i=1
By Proposition 2 [7], [U; 1| < k!. Therefore, it is clear that the
right hand side achieves its minimum if and only if [4; 1| = k!
for all i € [A] (i.e. the code is stable). Proposition 2 also
implies that vy > 7« proving the lemma.]

Remark 2: Note that the conversion bandwidth lower bound
described in Lemma 2 coincides with the access-cost lower
bound described in Theorem 1 when 7 > r&. This follows
by recalling that each node corresponds to an a-length vector,
and for scalar codes o = 1.

>

In particular, this implies that convertible codes in the merge
regime which are access-optimal and have rI > ¢ are also
bandwidth-optimal (i.e. those in the decreasing-redundancy
region). However, as we will show next, this property fails
to hold when 7! < ¥ (that is, increasing-redundancy region).

We next derive a lower bound on conversion bandwidth
which is tighter than Lemma 2 when ! < 7", Nevertheless,
it allows for less conversion bandwidth usage than the access-
optimal codes.

Intuitively, the data downloaded from retired nodes during
conversion will be “more useful” than the data downloaded
from unchanged nodes, since unchanged nodes already form

5001

part of the final codeword. At the same time, it is better to
have the maximum amount of unchanged nodes per initial
codeword (k') because this minimizes the number of new
nodes that need to be constructed. However, this leads to fewer
retired nodes per initial codeword (r!). If the number of retired
nodes per initial codeword is less than the number of new
nodes (r! < r¥), then conversion procedures are forced to
download data from unchanged nodes. This is because one
needs to download at least "o from each initial codeword (by
Lemma 2). Since data from unchanged nodes is “less useful”,
more data needs to be downloaded in order to construct the
new nodes.

As in the case of Lemma 2, this lower bound depends on
the number of unchanged nodes in each initial codeword, and
achieves its minimum in the case of stable convertible codes.

Lemma 3: Consider an MDS (n!, k%;nf M kT) convert-
ible code, with parameters such that ! < 7 < k!, Then
YR >)\IangJrkI 171—;) and vy > rF
equality is only possible for stable codes.

Proof: We prove this via an information flow argument.
Let i € [A] and consider the information source generated
at source s;. Let S C U;; be a subset of size 7; =
min{r¥,|¢4; 1|}. Consider a sink ¢; that connects to the nodes
in U1 \ S. Now, we choose a different cut from the one
considered in Lemma 2, which allows to derive a tighter bound
when 7! < 7. We choose the graph cut defined by nodes
{s;} U S UR,; (see Figure 4b, which depicts the cut when
i = AT). This yields the following inequality:

kIOz S (|Z/{Z71\ - 73‘)01 + ﬁ(S) + ﬁ(Rl) .

«, where

This inequality must hold for all possible S C Uf; ; simultane-
ously; otherwise, there would exist at least one sink incapable
of recovering the full data, which violates the MDS property.
By rearranging this inequality and summing over all possible
choices of subset .S, we obtain the following inequality:

(|Z/%1|) (/ﬂl + 7 — |Z/li,1\> «a

U 1|—1
< (| f1_| 1) B (Uiq) + () B(Rs)
& Ui | (K + 7 — [Uin]) o < FiB (Us) + Uin] B(R:) -
2
Then, our strategy to obtain a lower bound is to find the
minimum value for conversion bandwidth v which satisfies
Equation (2) for all i € [A], which can be formulated as the
following optimization problem:
minimize v =, s [B(Us1) + B(Ri)] + [N
inequality(2), for alli € [A]
0<fB(x)<a, foral z ety UR.. ()

Ui 1]

T

subject to

Intuitively, this linear program shows that it is preferable
to download more data from retired nodes (3(R;)) than
unchanged nodes (3({4;,1)), since both have the same impact
on 7 but the contribution of B(R;) towards satisfying
Equation (2) is greater than or equal to that of 3(U; 1), because
7; < |U;,1| by definition. Thus to obtain an optimal solution we

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 04,2023 at 16:12:09 UTC from IEEE Xplore. Restrictions apply.

5002

first set B(R;) = min{k! +7; — [U; 1], |R:|}a to the maximum
needed for all i € [A\!], and then set:

7ol .
Z B(z) = max{f; =1 ’0}W1"1|a, for all i € [\]

T

TEU; 1

to satisfy the constraints. It is straightforward to check that this
solution satisfies the KKT (Karush-Kuhn-Tucker) conditions,
and thus is an optimal solution to linear program 3. By
replacing these terms back into v and simplifying we obtain
the optimal objective value:

)\I

A= Z {kl — min{r!, 7;} (IZJ;: -

=1

1)] a+ |NMla

It is easy to show that the right hand side achieves its minimum
if and only if |U; 1| = k! for all i € [M] (i.e., the code is
stable). This gives the following lower bound for conversion
bandwidth:

I
'yzAIa (rl—l—kl (1—;))4—7“}?@.

By Theorem 1, i > r¥a, which proves the lemma. [
By combining Lemmas 2 and 3 we obtain the following
general lower bound on conversion bandwidth of MDS con-
vertible codes in the merge regime.
Theorem 4: For any MDS (n!,k’;nf" MkT) convertible
code:

Mamin{k!, rF}, if 1 > or kT <P,
>
TR =\ (7‘1 + kT (1 — :—;)) , otherwise.
YW > rFa.

where equality can only be achieved by stable convertible
codes.
Proof: Follows from Lemmas 2 and 3.]
In Section V, we show that the lower bound of Theorem 4
is indeed achievable for all parameter values in the merge
regime, and thus it is tight. We will refer to convertible codes
that meet this bound with equality as bandwidth-optimal.
Remark 3: Observe that the model above allows for nonuni-
form data download during conversion, that is, it allows the
amount of data downloaded from each node during conversion
to be different. If instead one were to assume uniform down-
load, ie. 8(z) = B(y) for all z,y € U, . LR, then a higher
lower bound for conversion bandwidth y is obtained (mainly
due to Equation (2) in the proof of Lemma 3). Since the lower
bound of Theorem 4 is achievable, this implies that assuming
uniform download necessarily leads to a suboptimal solution.
Remark 4: The case where k/ = k%' can be analyzed using
the same techniques used in this section. In this case, A’ = 1.
There are some differences compared to the case of the merge
regime: for example, in this case the number of unchanged
nodes can be at most min{n’, n*'} (in contrast to the Ak’
maximum of the merge regime). So, conversion bandwidth in
the case where n! > n! is zero, since we can simply keep
n¥ nodes unchanged. In the case where n! < nf, the same
analysis from Lemma 3 is followed, but the larger number of
unchanged nodes will lead to a slightly different inequality.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 8, AUGUST 2023

Thus, in the case of k! = k¥ the lower bound on conversion
bandwidth is:

0, if n! > nF
V= I 0 ! F_ 0 -
o (k' +rl) (1 - TT—F) + (r* —r")a, otherwise.

Readers familiar with regenerating codes might notice that
the above lower bound is equivalent to the lower bound on
the repair bandwidth [9], [42] when (rf" —71) symbols of an
[kf+7F kT] MDS code are to be repaired with the help of the
remaining (k! 4 r!) symbols. Note that this setting imposes
a relaxed requirement of repairing only a specific subset of
symbols as compared to regenerating codes which require
optimal repair of all nodes. Yet, the lower bound remains
the same. This is not surprising though, since it has been
shown [31] that the regenerating codes lower bound for MDS
codes applies even for repair of only a single specific symbol.

>

V. EXPLICIT CONSTRUCTION OF BANDWIDTH-OPTIMAL
MDS CONVERTIBLE CODES IN THE MERGE REGIME

In this section, we present an explicit construction for
bandwidth-optimal convertible codes in the merge regime.
Our construction employs the Piggybacking framework [10].
Recall from Section II-D that the Piggybacking framework is
a framework for constructing vector codes using an existing
code as a base code and adding specially designed functions
called piggybacks which impart additional properties to the
resulting code. We use an access-optimal convertible code to
construct the base code and design the piggybacks to help
achieve minimum conversion bandwidth. First, in Section V-A,
we describe our construction of bandwidth-optimal convertible
codes in the case where we only consider fixed unique
values for the final parameters n’" and k¥ = M E!. Then,
in Section V-B, we show that initial codes built with this con-
struction are not only (n'", k¥')-bandwidth-optimally convert-
ible, but also simultaneously bandwidth-optimally convertible
for multiple other values of the pair (n’", kf"). Additionally,
we present a construction which given any finite set of possible
final parameter values (n%", k"), constructs an initial [n!, k7]
code which is simultaneously (nf", k")-bandwidth-optimally
convertible for every (nf’, k') in that set.

A. Bandwidth-Optimal MDS Convertible Codes for Fixed
Final Parameters

The case where I > k! is trivial, since the default
approach to conversion is bandwidth-optimal in this case.
Therefore, in the rest of this section, we only consider
rf < k. Moreover, in the case where ! > 7" (decreasing-
redundancy region), access-optimal convertible codes (for
which explicit constructions are known) are also bandwidth-
optimal. Therefore, we focus on the case r! < r! (increasing-
redundancy region).

We start by describing the base code used in our construc-
tion, followed by the design of piggybacks, and then describe
the conversion procedure along with the role of piggybacks
during conversion. To help illustrate the construction, we keep
a running example showing each step.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 04,2023 at 16:12:09 UTC from IEEE Xplore. Restrictions apply.

MATURANA AND RASHMI: BANDWIDTH COST OF CODE CONVERSIONS IN DISTRIBUTED STORAGE

1) Base Code for Piggybacking: As the base code for our
construction, we use a punctured initial code of an access-
optimal (k! + % kT;nf k') convertible code. Any access-
optimal convertible code can be used. However, as mentioned
in Section II-B, we assume that this convertible code is:
(1) systematic, (2) linear, and (3) only requires accessing the
first 7f" parities from each initial codeword during access-
optimal conversion. We refer to the [k + 7", k'] initial code
of this access-optimal convertible code as C! " to its [nf, EF
final code as CF’. Let CI” be the punctured version of C!
where the last (rf" — 1) parity symbols are punctured.

Example 2: Suppose we want to construct a bandwidth-
optimal (5,4;10,8) convertible code over a finite field F,
(assume that q is sufficiently large). As a base code, we use
a punctured access-optimal (6, 4;10,8) convertible code. For
this example, we use the code presented in Example 1 and
puncture the last parity. Thus, C!’ is a [6,4] code, CF "is a
[10,8] code, and " is a [5, 4] code.

»

2) Piggyback Design: Now, we describe how to construct
the [n!, k!, o] initial vector code C! and the [nf', k¥,] final
vector code CF" that make up the bandwidth-optimal (n!, k7;
n® M Ek!) convertible code.

The first step is to choose the value of «. Let us reexamine
the lower bound derived in Theorem 4 for ! < ¥ < kI,
which is rewritten below in a different form.

I
v >\ <rloz—|—k1 <1—7’F)a>—|—7‘Foz.
T

We can see that one way to achieve this lower bound would
be to download exactly #; = « subsymbols from each of
the ! retired nodes in the A’ initial codewords, and to
download 33 = (1 — r'/r¥) @ subsymbols from each of the
k! unchanged nodes in the A\’ initial stripes. Thus, we choose
a = r¥, which is the smallest value that makes £1 and
(2 integers, thus making:

B =1t ﬂgz(rFf'rI).

The next step is to design the piggybacks. We first provide
the intuition behind the design. Recall from above that we can
download 32 = (rf — r!) subsymbols from each unchanged
node and all the o subsymbols from each retired node.
Hence, we can utilize up to o = (rf" — 1) coordinates
from each of the 7! parity nodes for piggybacking. Given
that there are precisely (rf — rf) punctured symbols and
« instances of C! ”, we can store piggybacks corresponding
to 7! instances of each of these punctured symbols. During
conversion, these punctured symbols can be reconstructed and
used for constructing the new nodes.

Consider a message m € Félk!d split into Ao submes-
sages mgs) € IE";I, representing the data encoded by instance
j € [a] of the base code in initial codeword s € [\].
Recall that C7" is systematic by construction. Therefore,
the submessage m§5) will correspond to the contents of the
j-th coordinate of the k! systematic nodes in initial codeword
s. Let ¢f ;(s) denote the contents of the j-th coordinate of
parity symbol i in initial codeword s under code C’, and cf j

and

5003

let denote the same for the single final codeword encoded
under C¥'. These are constructed as follows:

)
mg-s)pf, for i€ [r],
1<j<p!
I _ 7=
cz,j(s) - sc [)‘IL
mE-S)piI + mgs)pjl., for e [rl],
r! <5< rf
1 A . .
cf:j:[mé)--~m§)]pf, for i € [rF], j € [r"],

where p! corresponds to the encoding vector of the i-th parity
of ¢!’ and pl corresponds to the encoding vector of the
i-th parity of C¥ ' By using the access-optimal conversion
procedure from the base code, we can compute cf i =
[mgl) e mg.)‘l)]pf from {mgs)p{ : 5 € [M]} for all 5 € [rF]
and j € [rf]. Notice that each initial codeword is independent
and encoded in the same way (as required).

This piggybacking design, that of using parity code sub-
symbols of the base code as piggybacks, is inspired by one of
the piggybacking designs proposed in [10], where it is used
for efficiently reconstructing failed (parity) code symbols.

Example 2 (Continued): Let pl,pl € F‘;Xl be the encod-
ing vectors for the parities of C’', and p},p} € F&*!
be the encoding vector for the parities of C* ' Since o =
rf' = 2, we construct a [5,4,2] initial vector code C! and
a [10,8,2] final vector code C¥'. Let a = (ay,...,ag) and
b = (b1,...,bs). Figure 5 shows the resulting piggybacked
codes encoding submessages a) = (a,...,a4),a® =
(CL5, RN ag),b(l) = (bl, RN b4), b = (b5, RN bg) S]Féxél.
Recall from Example 1, that al)p! + afa®p! = ap!” for
i € {1,2} (and equivalently for b).

>

3) Conversion Procedure: Conversion proceeds as follows:

1) Download D = {mgs) cs € [Mandr! < j <y,

Cr=A{cl;(s):se M, ie[r], and 1 <j < ¢},

and Cy = {cf;(s) : s €], i € [r'], and r/ < j <
rf.

2) Recover the piggybacks C3 = {m§»5)pf cse M), rf <
(s)

%

1 < TF, and 1 <5 < rl} by computing m
D and obtaining mgs)p{ =cf(s) — mgs)p§ using C.

3) Compute the remaining base code symbols from the
punctured symbols Cy = {mz(-s)pjf. cs e M), ! <
i <rf, and r! < j <} using D.

4) Compute the parity nodes of the final codeword specified
by the subsymbols Cs5 = {c¢[; : i € [rF], j € [r"]}.
This is done by using the conversion procedure from
the access-optimal convertible code used as base code
to compute C5 from C7, Cs, C3, and Cy.

This procedure requires downloading 3; subsymbols from

each retired node and (5 subsymbols from each unchanged

node. Thus, the read conversion bandwidth is:

r =N (r'B1+ k' 32)

=\ (TIOH-k:I (1— TI) a>
= F .

ij» from

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 04,2023 at 16:12:09 UTC from IEEE Xplore. Restrictions apply.

5004

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 8, AUGUST 2023

final codeword (CT")

a by
initial codeword 1 (CY) initial codeword 2 (C?)
a by as bs ay ba
: as bs
as by as bs :
alp{ | bWp{ +ap) | | a®p{ | b®p{ +a%p] | | as bg
ap{ bp{’
apy bp;

Fig. 5.

Example of a bandwidth-optimal (5, 4; 10, 8) convertible code. Each block in this diagram represents a codeword, where each column corresponds

to a distinct coordinate of the a-length vector (o« = 2 in this case), and each row corresponds to a node. The shaded rows correspond to retired nodes for the
first two blocks (initial codewords), and new nodes for the third block (final codeword). For the initial codewords, text color is used emphasize the piggybacks.
In the final codeword, text color is used to denote the base code subsymbol that is constructed from the piggybacks.

Additionally, ¥« write conversion bandwidth is required for
the new nodes.

w = rfa

Since v = yr + Yw, this matches Theorem 4.

Example 2 (Continued): During conversion, only 12 sub-
symbols need to be downloaded: b("), b and all the par-
ity symbols from both codewords. From these subsymbols,
we can recover the piggyback terms a(l)pé and a(Q)pé,
and then compute bM)pl and b®pl in order to recon-
struct the second parity symbol of Cf ' Finally, we use
a@pl bOp! apl b®pl for i € {1,2} with the con-
version procedure from the access-optimal convertible code
to compute the base code symbols a pi’,a pf,b pf and
b p’ of the new nodes.

The default approach would require one to download 16
subsymbols in total from the initial nodes. Both approaches
require downloading 4 subsymbols in total from the coordi-
nator node to the new nodes. Thus, the proposed construction
leads to 20% reduction in conversion bandwidth as compared
to the default approach of reencoding.

>

B. Convertible Codes With Bandwidth-Optimal Conversion
for Multiple Final Parameters

In practice, the final parameters n’" k¥ might depend on
observations made after the initial encoding of the data and
hence they may be unknown at code construction time. In par-
ticular, for a (n’, k%;nf", M k) convertible code in the merge
regime this means that the values of A\’ and r¥ = (n" — kf")
are unknown.

To ameliorate this problem, we now present convertible
codes which support bandwidth-optimal conversion simulta-
neously for multiple possible values of the final parameters.
Recall property (4) of the access-optimal base code which
we reviewed in Section II-B: when constructed with a given
value of A\ = X and r¥" = 7, the initial [n!, k] code is
(nt', kT")-access-optimally convertible for all £ = \'k! and
nF =kF 4+ suchthat 1<)X <Xand 1<+ <r.

1) Supporting Multiple Values of ' : The construction from
Section V with a particular value of A! =), intrinsically
supports bandwidth-optimal conversion for any A/ = X < \.

This is a consequence of property (4) above, and can be
done easily by considering one or multiple of the initial
codewords as consisting of zeroes only, and ignoring them
during conversion. From Theorem 4, it is easy to see that this
modified conversion procedure achieves the optimal conver-
sion bandwidth for the new parameter A/ =).

2) Supporting Multiple Values of v¥': We break this sce-
nario into two cases:

Case 1 (supporting rf < r7): due to property (4) above,
the base code used in the construction from Section V sup-
ports access-optimal conversion for any value of 7 = r
such that » < r!. Using this property, one can achieve
bandwidth optimality for any » < 7! by simply using the
access-optimal conversion on each of the « instances of the
base code independently. The only difference is that some of
the instances might have piggybacks, which can be simply
ignored. The final code might still have these piggybacks,
however they will still satisfy the property that the piggybacks
in instance ¢ (2 < ¢ < «) only depend on data from instances
{1,...,(¢ = 1)}. Thus, the final code will have the MDS
property and the desired parameters.

Case 2 (supporting 7" > r1): for supporting multiple values
of r¥ € {ry,r9,...,7s} such that r; > r! (i € [s]), we start
with an access-optimal convertible code having " = max; r;.
Then we repeat the piggybacking step of the construction (see
Section V-A) for each r;, using the resulting code from step ¢
(with the punctured symbols from C’ " added back) as a base
code for step (i 4 1). Therefore, the resulting code will have
a = Hle r;. Since the piggybacking step will preserve the
MDS property of its base code, and the initial code used in
the first piggyback step is MDS, it is clear that the initial code
resulting from the last piggybacking step will also be MDS.
Conversion for one of the supported " = r; is performed as
described in Section V-A on each of the additional instances
created by steps (i + 1),...,s (ie. Hf/=(1:+1) ry in total).
As before, some of these instances after conversion will have
piggybacks, which can be simply ignored, as the resulting code
will continue to have the property that piggybacks from a given
instance only depend on data from earlier instances.

Example 3 (Bandwidth-Optim Conversion for Multiple
Final Parameters): In this example, we will extend the (5,
4;10,8) convertible code from Example 2 (rf = 2) to

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 04,2023 at 16:12:09 UTC from IEEE Xplore. Restrictions apply.

MATURANA AND RASHMI: BANDWIDTH COST OF CODE CONVERSIONS IN DISTRIBUTED STORAGE

initial codeword 4 (C!)

a4i—3 bai—3 C4i—3 dgi—3 €4i—3 fai—3
aq; ba; on dy; €4i fai
2@ pT [b@pI + a®pl [c@pl + a®@pl [dPpI T cDpl + b@pl [6@pl + a®Wpl [fPpl + eWpl + b@pl

final codeword (rf = 2)

5005

a1 | by c1 d1 e1 f1
as | bs cs ds es fs
ap{’ |bpf ||cpf +2aVp) +a®p]|dpf |epf +ap] +a®pl|fpf
dpé bpg Cpg dpg epé’ fpg
final codeword (rf = 3)

ay by c1 | dy e1 | fi

ag bs cg | ds || es | fs

ap!” |bpl +aVpl + a®pl |lcpf|dp! ||epl |fpf

apg bpf cpg dpg epg fpg

apf bpéE cpéJ dpg epg fpg

Fig. 6. Example of a [5,4] MDS code that supports bandwidth-optimal conversion to multiple final codes. This code supports bandwidth-optimal conversion
to a [8 + r,8] MDS code for r = 1,2, 3. Piggybacks from the first round (r = 2) are colored orange and piggybacks from the second round (r = 3)
are colored magenta. In the possible final codewords, text color is used to show base code symbols which are directly computed from the corresponding
piggybacks, or to denote leftover piggybacks that were not used during conversion.

construct a code which additionally supports bandwidth-
optimal conversion to an [11, 8] MDS code (rf" = 3). Figure 6
shows initial codeword ¢ € {1,2} of the new initial vector
code, which has o = 2 -3 = 6. Here alV) = (a1y...,a4),
a® = (as,...,as) € FI*', a = (a1,...,as) € FJ*5,
and similarly for b, ... f. The vectors p/ € F2*! are the
encoding vectors of the initial code ¢! and pf € Fext

are encoding vectors of the final code C*' (i € {1,2,3}).
Since the maximum supported £ is 3, we start with an
access-optimal (7,4;11,8) convertible code. Thus, C! "is a
[7,4] code, CF" is a [11,8] code, and C*" is a [5,4] code. In
the first round of piggybacking we consider 7" = 2, which
yields the code shown in Example 2. In the second round
of piggybacking we consider 7" = 3 and piggyback the
code resulting from the first round, which yields the code
shown in Figure 6. Conversion for r = 1 proceeds by
simply downloading the contents of the single parity node and
using the access-optimal conversion procedure. Conversion for
r¥ = 2 proceeds by treating this code as three instances of the
code from Example 2 and performing conversion for each one
independently. Conversion for 7" = 3 proceeds by treating
this code as a vector code with a = 3 and base field Fg> (i.e.
each element is a vector over F, of length 2).

Remark 5 (Field Size Requirement): The field size require-
ment for I, of the constructions presented in this section is
given by the field size requirement of the base code used. The
currently lowest known field size requirement for an explicit
construction of systematic linear access-optimal convertible
codes in the merge regime is given by [7]. For typical
parameters, this requirement is roughly ¢ > Q(QAI("I)S).
When 7 < I — A\ 4+ 1, this can be significantly reduced
to ¢ > kfr!. And when r¥ < [#'/A7], this can be further
reduced to q¢ > max{n!,nf'}. >

1.0 1

o ©
o o
! !

p (relative savings in
o
iy
)

conversion bandwidth)

o
N
)

0.0 1

Fig. 7. Achievable savings in conversion bandwidth by bandwidth-optimal
convertible codes in comparison to the default approach to conversion. Here
7 =l /k! and 77 = ¥ /k! are the initial and final redundancies, divided
by the initial code dimension. Each curve shows the relative savings for a fixed

value of 71, as 7F varies. Solid lines indicate bandwidth-optimal convertible

codes, and dashed lines indicate access-optimal convertible codes. Notice that
each curve overlaps with the red curve (7! > 1) in the range 7% € (0,77].

VI. BANDWIDTH SAVINGS OF BANDWIDTH-OPTIMAL
CONVERTIBLE CODES

In this section, we show the amount of savings in bandwidth
that can be obtained by using bandwidth-optimal convertible
codes in the merge regime, relative to the default approach to
conversion. We present the amount of savings in terms of two
ratios:

',FF

7= and

(r'/k") = (""/¥'),

i.e. the initial and final amount of “redundancy” relative to the
initial dimension of the code. For simplicity, we only consider

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 04,2023 at 16:12:09 UTC from IEEE Xplore. Restrictions apply.

5006

the read conversion bandwidth (data sent from initial nodes to
the coordinator node), since the write conversion bandwidth
(data sent from the coordinator node to the new nodes) is
fixed for stable convertible codes (specifically, it is equal to
arf’). Thus, the conversion bandwidth of the default approach
is always A/ k’q. Figure 7 shows the relative savings, i.e. the
ratio between the conversion bandwidth of optimal conversion
and the conversion bandwidth of the default approach, for fixed
values of 7! € (0, 00) and varying 7" € (0, o0).

Each curve shown in Figure 7 can be divided into three
regions, depending on the value of 7'

o Region 0 < 7" < 77 and 7¥" < 1: these conditions imply
that 7¥ < !, so by Lemma 2 the conversion bandwidth
is A7, and the relative savings are:

I.F

p:l—)\ ra o

MELo
This region corresponds to the decreasing-redundancy
region, and in this region access-optimal convertible
codes are also bandwidth-optimal. This region of the
curve is linear, and the amount of savings is not affected
by 7.

o Region 7/ < 7" < 1: this implies that ! < " < kI,
and by Lemma 2 the conversion bandwidth is M a(r 4
ET(1 —rf/rf)), and the relative savings are:

Va4 (1-) ().

METa F

=
This corresponds to the increasing-redundancy region,
where access-optimal convertible codes provide no con-
version bandwidth savings. Thus bandwidth-optimal con-
vertible codes provide substantial savings in conversion
bandwidth in this regime, compared to access-optimal
convertible codes.

o Region 7" > 1: this implies that r > k! and by
Lemma 2 a conversion bandwidth of A k!« is required.
Thus no savings in conversion bandwidth are possible in
this region.

Thus, bandwidth-optimal convertible codes allow for sav-

ings in conversion bandwidth on a much broader region
relative to access-optimal convertible codes.

p=1-

VII. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we studied the conversion bandwidth of
convertible codes. We showed that the conversion problem
can be effectively modeled using network information flow
to obtain lower bounds on conversion bandwidth. Using the
bounds derived, we showed that for the merge regime access-
optimal convertible codes are also bandwidth optimal when
r! > rF (increasing-redundancy region) and that there is room
for reducing conversion bandwidth when ! < r%" (decreasing-
redundancy region). We proposed an explicit construction
which achieves the optimal conversion bandwidth for all
parameters in the merge regime. Finally, we showed that
bandwidth-optimal convertible codes can achieve substantial
savings in conversion bandwidth over the default approach
and access-optimal convertible codes.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 8, AUGUST 2023

This work leads to several open problems. One of the main
open problems is to extend the conversion bandwidth lower
bounds and bandwidth-optimal constructions to encompass all
possible parameter regimes (i.e. the general regime). Another
important open problem is characterizing the optimal value of
a, especially in the case of multiple possible final parameter
values, where « can become very large when using the
construction proposed in this paper. Yet another open problem
is lowering the field size requirement of bandwidth-optimal
convertible code constructions, as well as deriving lower
bounds for their field size requirements.

REFERENCES

[1] F. Maturana and K. V. Rashmi, “Bandwidth cost of code conversions in
distributed storage: Fundamental limits and optimal constructions,” in
Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2021, pp. 2334-2339.

[2] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,”
in Proc. 19th ACM Symp. Operating Syst. Princ., M. L. Scott and
L. L. Peterson, Eds. Bolton Landing, NY, USA, Oct. 2003, pp. 29-43.

[3] D. Borthakur, R. Schmidt, R. Vadali, S. Chen, and P. Kling.
HDFS RAID—Facebook. Accessed: Jul. 23, 2019. [Online]. Available:
http://www.slideshare.net/ydn/hdfs-raid-facebook

[4] C. Huang et al., “Erasure coding in Windows azure storage,” in Proc.
USENIX Annu. Tech. Conf., G. Heiser and W. C. Hsieh, Eds. Boston,
MA, USA: USENIX Association, Jun. 2012, pp. 15-26.

[5] Apache Software Foundation. Apache Hadoop: HDFS
Erasure Coding. Accessed: Jul. 23, 2019. [Online]. Available:
https://hadoop.apache.org/docs/r3.0.0/hadoop-project-dist/hadoop-
hdfs/HDFSErasureCoding.html

[6] S. Kadekodi, K. V. Rashmi, and G. R. Ganger, “Cluster storage systems
gotta have heart: Improving storage efficiency by exploiting disk-
reliability heterogeneity,” in Proc. 17th USENIX Conf. File Storage
Technol. (FAST), A. Merchant and H. Weatherspoon, Eds. Boston, MA,
USA: USENIX Association, Feb. 2019, pp. 345-358.

[7]1 F. Maturana and K. V. Rashmi, “Convertible codes: New class of codes
for efficient conversion of coded data in distributed storage,” in Proc.
11th Innov. Theor. Comput. Sci. Conf. (ITCS), vol. 151, T. Vidick, Ed.
Seattle, Washington, DC, USA: Schloss Dagstuhl-Leibniz-Zentrum fiir
Informatik, Jan. 2020, p. 66.

[8] F. Maturana, V. S. C. Mukka, and K. V. Rashmi, “Access-optimal linear
MDS convertible codes for all parameters,” in Proc. IEEE Int. Symp.
Inf. Theory (ISIT), Los Angeles, CA, USA, Jun. 2020, pp. 577-582.

[9]1 A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ram-
chandran, “Network coding for distributed storage systems,” IEEE Trans.
Inf. Theory, vol. 56, no. 9, pp. 4539-4551, Sep. 2010.

[10] K. Rashmi, N. B. Shah, and K. Ramchandran, “A piggybacking design
framework for read-and download-efficient distributed storage codes,”
IEEE Trans. Inf. Theory, vol. 63, no. 9, pp. 5802-5820, Sep. 2017.

[11] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting

Codes, vol. 16. Amsterdam, The Netherlands: Elsevier, 1977.

F. Maturana and K. V. Rashmi, “Convertible codes: Enabling efficient

conversion of coded data in distributed storage,” IEEE Trans. Inf. Theory,

vol. 68, no. 7, pp. 4392-4407, Jul. 2022.

R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network infor-

mation flow,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204-1216,

Jul. 2000.

S.-Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding,” I[EEE

Trans. Inf. Theory, vol. 49, no. 2, pp. 371-381, Feb. 2003.

R. Koetter and M. Médard, “An algebraic approach to network coding,”

IEEE/ACM Trans. Netw., vol. 11, no. 5, pp. 782-795, Oct. 2003.

T. Ho et al., “A random linear network coding approach to multicast,”

IEEE Trans. Inf. Theory, vol. 52, no. 10, pp. 4413-4430, Oct. 2006.

P. Sanders, S. Egner, and L. Tolhuizen, “Polynomial time algorithms

for network information flow,” in Proc. 15th Annu. ACM Symp. Parallel

Algorithms Archit., A. L. Rosenberg and F. M. auf der Heide, Eds. San

Diego, CA, USA, Jun. 2003, pp. 286-294.

S. Jaggi et al., “Polynomial time algorithms for multicast network code

construction,” IEEE Trans. Inf. Theory, vol. 51, no. 6, pp. 1973-1982,

Jun. 2005.

R. W. Yeung, A First Course in Information Theory. Boston, MA, USA:

Springer, 2002.

[12]

(13]

[14]
[15]
[16]

[17]

(18]

[19]

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 04,2023 at 16:12:09 UTC from IEEE Xplore. Restrictions apply.

MATURANA AND RASHMI: BANDWIDTH COST OF CODE CONVERSIONS IN DISTRIBUTED STORAGE

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

K. V. Rashmi, N. B. Shah, and K. Ramchandran, “A piggybacking
design framework for read-and download-efficient distributed storage
codes,” in Proc. IEEE Int. Symp. Inf. Theory, Istanbul, Turkey, Jul. 2013,
pp. 331-335.

K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Enabling node

repair in any erasure code for distributed storage,” in Proc.
IEEE Int. Symp. Inf. Theory, A. Kuleshov, V. M. Blinovsky,
and A. Ephremides, Eds. St. Petersburg, Russia, Jul. 2011,

pp. 1235-1239.

S. Mousavi, T. Zhou, and C. Tian, “Delayed parity generation in MDS
storage codes,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Vail, CO,
USA, Jun. 2018, pp. 1889-1893.

M. Xia, M. Saxena, M. Blaum, and D. Pease, “A tale of two erasure
codes in HDFS,” in Proc. 13th USENIX Conf. File Storage Technol.
(FAST), J. Schindler and E. Zadok, Eds. Santa Clara, CA, USA: USENIX
Association, Feb. 2015, pp. 213-226.

X. Su, X. Zhong, X. Fan, and J. Li, “Local re-encoding
for coded matrix multiplication,” in Proc. IEEE Int. Symp.
Inf. Theory (ISIT), Los Angeles, CA, USA, Jun. 2020,
pp. 221-226.

S. Wu, Z. Shen, and P. P. C. Lee, “Enabling I/O-efficient redundancy
transitioning in erasure-coded KV stores via elastic Reed—Solomon
codes,” in Proc. Int. Symp. Reliable Distrib. Syst. (SRDS), Shanghai,
China, Sep. 2020, pp. 246-255.

K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal exact-regenerating
codes for distributed storage at the MSR and MBR points via a
product-matrix construction,” IEEE Trans. Inf. Theory, vol. 57, no. 8,
pp. 5227-5239, Aug. 2011.

N. B. Shah, K. V. Rashmi, P. V. Kumar, and K. Ramchandran, “Dis-
tributed storage codes with repair-by-transfer and nonachievability of
interior points on the storage-bandwidth tradeoff,” IEEE Trans. Inf.
Theory, vol. 58, no. 3, pp. 1837-1852, Mar. 2012.

C. Suh and K. Ramchandran, “Exact-repair MDS code construction
using interference alignment,” IEEE Trans. Inf. Theory, vol. 57, no. 3,
pp. 1425-1442, Mar. 2011.

V. R. Cadambe, C. Huang, J. Li, and S. Mehrotra, “Polynomial
length MDS codes with optimal repair in distributed storage,” in
Proc. Conf. Rec. 45th Asilomar Conf. Signals, Syst. Comput. (ASILO-
MAR), M. B. Matthews, Eds. Pacific Grove, CA, USA, Nov. 2011,
pp. 1850-1854.

Z. Wan, I. Tamo, and J. Bruck, “On codes for optimal rebuilding
access,” in Proc. 49th Annu. Allerton Conf. Commun., Control, Comput.,
Monticello, IL, USA, Sep. 2011, pp. 1374-1381.

N. B. Shah, K. V. Rashmi, P. V. Kumar, and K. Ramchandran,
“Interference alignment in regenerating codes for distributed storage:
Necessity and code constructions,” IEEE Trans. Inf. Theory, vol. 58,
no. 4, pp. 2134-2158, Apr. 2012.

I. Tamo, Z. Wang, and J. Bruck, “Zigzag codes: MDS array codes
with optimal rebuilding,” IEEE Trans. Inf. Theory, vol. 59, no. 3,
pp. 1597-1616, Mar. 2013.

D. Papailiopoulos, A. G. Dimakis, and V. Cadambe, “Repair optimal
erasure codes through Hadamard designs,” IEEE Trans. Inf. Theory,
vol. 59, no. 5, pp. 3021-3037, May 2013.

A. Chowdhury and A. Vardy, “New constructions of MDS codes with
asymptotically optimal repair,” in Proc. IEEE Int. Symp. Inf. Theory
(ISIT), Vail, CO, USA, Jun. 2018, pp. 1944-1948.

K. Mahdaviani, S. Mohajer, and A. Khisti, “Product matrix MSR codes
with bandwidth adaptive exact repair,” IEEE Trans. Inf. Theory, vol. 64,
no. 4, pp. 3121-3135, Apr. 2018.

B. Sasidharan, M. Vajha, and P. V. Kumar, “An explicit, coupled-
layer construction of a high-rate MSR code with low sub-
packetization level, small field size and d < (n - 1), in Proc.
IEEE Int. Symp. Inf. Theory (ISIT), Aachen, Germany, Jun. 2017,
pp. 2048-2052.

M. Ye and A. Barg, “Explicit constructions of high-rate MDS array
codes with optimal repair bandwidth,” IEEE Trans. Inf. Theory, vol. 63,
no. 4, pp. 20012014, Apr. 2017.

A. S. Rawat, I. Tamo, V. Guruswami, and K. Efremenko, “MDS
code constructions with small sub-packetization and near-optimal repair
bandwidth,” IEEE Trans. Inf. Theory, vol. 64, no. 10, pp. 6506-6525,
Oct. 2018.

S. Goparaju, A. Fazeli, and A. Vardy, “Minimum storage regenerating
codes for all parameters,” IEEE Trans. Inf. Theory, vol. 63, no. 10,
pp. 6318-6328, Oct. 2017.

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

5007

K. V. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and K. Ram-
chandran, “A ‘hitchhiker’s’ guide to fast and efficient data reconstruction
in erasure-coded data centers,” in Proc. ACM Conf. SIGCOMM, F. E.
Bustamante, Y. C. Hu, A. Krishnamurthy, and S. Ratnasamy, Eds.
Chicago, IL, USA, Aug. 2014, pp. 331-342.

K. V. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and
K. Ramchandran, “A solution to the network challenges of data recovery
in erasure-coded distributed storage systems: A study on the Facebook
warehouse cluster,” in Proc. 5th USENIX Workshop Hot Topics Storage
File Syst., A. Gulati, Ed. San Jose, CA, USA: USENIX Association,
Jun. 2013, pp. 1-67.

V. R. Cadambe, S. A. Jafar, H. Maleki, K. Ramchandran, and C. Suh,
“Asymptotic interference alignment for optimal repair of MDS codes
in distributed storage,” IEEE Trans. Inf. Theory, vol. 59, no. 5,
pp. 2974-2987, May 2013.

Z. Wang, 1. Tamo, and J. Bruck, “Long MDS codes for optimal repair
bandwidth,” in Proc. IEEE Int. Symp. Inf. Theory, Cambridge, MA,
USA, Jul. 2012, pp. 1182-1186.

N. B. Sha, K. V. Rashmi, and P. V. Kumar, “A flexible class of
regenerating codes for distributed storage,” in Proc. IEEE Int. Symp.
Inf. Theory, Austin, TX, USA, Jun. 2010, pp. 1943-1947.

M. Ye and A. Barg, “Explicit constructions of MDS array codes and
RS codes with optimal repair bandwidth,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Barcelona, Spain, Jul. 2016, pp. 1202-1206.

O. Alrabiah and V. Guruswami, “An exponential lower bound on the
sub-packetization of MSR codes,” in Proc. 51st Annu. ACM SIGACT
Symp. Theory Comput., M. Charikar and E. Cohen, Eds. Phoenix, AZ,
USA, Jun. 2019, pp. 979-985.

S. B. Balaji and P. V. Kumar, “A tight lower bound on the sub-
packetization level of optimal-access MSR and MDS codes,” in Proc.
IEEE Int. Symp. Inf. Theory (ISIT), Vail, CO, USA, Jun. 2018,
pp. 2381-2385.

I. Tamo, Z. Wang, and J. Bruck, “Access versus bandwidth in codes
for storage,” IEEE Trans. Inf. Theory, vol. 60, no. 4, pp. 2028-2037,
Apr. 2014.

H. Dau, I. Duursma, H. M. Kiah, and O. Milenkovic, “Repairing Reed—
Solomon codes with multiple erasures,” IEEE Trans. Inf. Theory, vol. 64,
no. 10, pp. 6567-6582, Oct. 2018.

V. Guruswami and M. Wootters, “Repairing Reed-Solomon codes,”
IEEE Trans. Inf. Theory, vol. 63, no. 9, pp. 5684-5698, Sep. 2017.

J. Li, X. Tang, and C. Tian, “A generic transformation to enable optimal
repair in MDS codes for distributed storage systems,” IEEE Trans. Inf.
Theory, vol. 64, no. 9, pp. 6257-6267, Sep. 2018.

J. Mardia, B. Bartan, and M. Wootters, “Repairing multiple failures
for scalar MDS codes,” IEEE Trans. Inf. Theory, vol. 65, no. 5,
pp. 2661-2672, May 2019.

K. Shanmugam, D. S. Papailiopoulos, A. G. Dimakis, and G. Caire,
“A repair framework for scalar MDS codes,” IEEE J. Sel. Areas
Commun., vol. 32, no. 5, pp. 998-1007, May 2014.

I. Tamo, M. Ye, and A. Barg, “Optimal repair of Reed—Solomon codes:
Achieving the cut-set bound,” in Proc. IEEE 58th Annu. Symp. Found.
Comput. Sci. (FOCS), Berkeley, CA, USA, C. Umans, Ed. Oct. 2017,
pp. 216-227.

K. W. Shum, “Cooperative regenerating codes for distributed storage
systems,” in Proc. IEEE Int. Conf. Commun. (ICC), Kyoto, Japan,
Jun. 2011, pp. 1-5.

G. M. Kamath, N. Prakash, V. Lalitha, and P. V. Kumar, “Codes with
local regeneration and erasure correction,” IEEE Trans. Inf. Theory,
vol. 60, no. 8, pp. 4637-4660, Aug. 2014.

D. S. Papailiopoulos and A. G. Dimakis, “Locally repairable codes,”
IEEE Trans. Inf. Theory, vol. 60, no. 10, pp. 5843-5855, Oct. 2014.
M. Ye, “New constructions of cooperative MSR codes: Reducing
node size to exp(O(n)),” IEEE Trans. Inf. Theory, vol. 66, no. 12,
pp. 7457-7464, Dec. 2020.

G. Zhang, W. Zheng, and J. Shu, “ALV: A new data redistribution
approach to RAID-5 scaling,” IEEE Trans. Comput., vol. 59, no. 3,
pp. 345-357, Mar. 2010.

W. Zheng and G. Zhang, “Fastscale: Accelerate RAID scaling by
minimizing data migration,” in Proc. 9th USENIX Conf. File Storage
Technol., G. R. Ganger and J. Wilkes, Eds. San Jose, CA, USA,
Feb.2011, pp. 149-161.

C. Wu and X. He, “GSR: A global stripe-based redistribution approach
to accelerate RAID-5 scaling,” in Proc. 41st Int. Conf. Parallel Process.,
Pittsburgh, PA, USA, Sep. 2012, pp. 460—469.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 04,2023 at 16:12:09 UTC from IEEE Xplore. Restrictions apply.

5008

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

G. Zhang, W. Zheng, and K. Li, “Rethinking RAID-5 data layout for
better scalability,” IEEE Trans. Comput., vol. 63, no. 11, pp. 28162828,
Nov. 2014.

J. Huang, X. Liang, X. Qin, P. Xie, and C. Xie, “Scale-RS: An efficient
scaling scheme for RS-coded storage clusters,” IEEE Trans. Parallel
Distrib. Syst., vol. 26, no. 6, pp. 1704-1717, Jun. 2015.

S. Wu, Y. Xu, Y. Li, and Z. Yang, “I/O-efficient scaling schemes for
distributed storage systems with CRS codes,” IEEE Trans. Parallel
Distrib. Syst., vol. 27, no. 9, pp. 2639-2652, Sep. 2016.

X.Zhang, Y. Hu, P. P. C. Lee, and P. Zhou, “Toward optimal storage scal-
ing via network coding: From theory to practice,” in Proc. IEEE Conf.
Comput. Commun., Honolulu, HI, USA, Apr. 2018, pp. 1808-1816.

Y. Hu, X. Zhang, P. P. C. Lee, and P. Zhou, “Generalized optimal storage
scaling via network coding,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Vail, CO, USA, Jun. 2018, pp. 956-960.

X. Y. Zhang and Y. C. Hu, “Efficient storage scaling for MBR and MSR
codes,” IEEE Access, vol. 8, pp. 7899279002, 2020.

B. K. Rai, V. Dhoorjati, L. Saini, and A. K. Jha, “On adaptive distributed
storage systems,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Hong
Kong, Jun. 2015, pp. 1482-1486.

B. K. Rai, “On adaptive (functional MSR code based) distributed storage
systems,” in Proc. Int. Symp. Netw. Coding (NetCod), Sydney, NSW,
Australia, Jun. 2015, pp. 46-50.

S. Wu, Z. Shen, and P. P. C. Lee, “On the optimal repair-scaling trade-
off in locally repairable codes,” in Proc. IEEE Conf. Comput. Commun.,
Jul. 2020, pp. 2155-2164.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 8, AUGUST 2023

Francisco Maturana (Student Member, IEEE) received the B.S. and M.S.
degrees in computer science from the Pontificia Universidad de Chile,
Santiago, Chile, in 2017. He is currently pursuing the Ph.D. degree with
the Computer Science Department, Carnegie Mellon University, USA. His
research interests include the intersection of theoretical computer science and
computer systems.

K. V. Rashmi (Member, IEEE) received the Ph.D. degree from UC
Berkeley in 2016. She was a Post-Doctoral Scholar with UC Berkeley
from 2016 to 2017. She is currently an Assistant Professor with the Computer
Science Department, Carnegie Mellon University. Her research interests
include information/coding theory and computer/networked systems. Her
work has received the USENIX NSDI 2021 Community (Best Paper) Award
and the IEEE Data Storage Best Paper and Best Student Paper Awards
for the years 2011/2012. During her Ph.D. studies, she was a recipient
of the Facebook Fellowship from 2012 to 2013, the Microsoft Research
Ph.D. Fellowship from 2013 to 2015, and the Google Anita Borg Memorial
Scholarship from 2015 to 2016. Her Ph.D. thesis was awarded the UC
Berkeley Eli Jury Dissertation Award in 2016. She was a recipient of the
Facebook Communications and Networking Research Award in 2017, the
Google Faculty Research Award in 2018, the Facebook Distributed Systems
Research Award in 2019, the VMWare Systems Research Award in 2021, the
Tata Institute of Fundamental Research Memorial Lecture Award in 2020, and
the NSF CAREER Award from 2020 to 2025.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 04,2023 at 16:12:09 UTC from IEEE Xplore. Restrictions apply.

