2023 IEEE International Symposium on Information Theory (ISIT) | 978-1-6654-7554-9/23/$31.00 ©2023 IEEE | DOI: 10.1109/ISIT54713.2023.10206604

2023 IEEE International Symposium on Information Theory (ISIT)

Locally Repairable

Convertible Codes:

Erasure Codes for Efficient Repair and Conversion

Francisco Maturana and K. V. Rashmi
Carnegie Mellon University
Computer Science Department
{fmaturan,rvinayak } @cs.cmu.edu

Abstract—Erasure codes are typically used in distributed stor-
age systems in order to protect against failures and unavailabilities
with low storage overhead. An important disadvantage of classic
erasure codes (such as Reed-Solomon codes) is the high cost of
repairing failures. Locally repairable codes (LRCs) reduce the
repair cost at the cost of higher storage overhead. In practice,
the parameters of LRCs are chosen based on several factors,
such as failure rates, workloads, and budget constraints. However,
encoded data is stored for long periods of time, and during that
time these factors can vary, and thus the ideal parameters can
change. The process of changing the code parameters on encoded
data is called code conversion. The default approach to code
conversion is to read all data, re-encode it, and write it back,
which can be prohibitively expensive. To address this problem,
we propose a new construction technique for designing LRCs
that can perform code conversion at a lower cost than the default
approach. We apply this technique to design codes for several
code conversion scenarios which are of practical interest.

I. INTRODUCTION

Nowadays, large-scale distributed storage systems store
petabytes of data across thousands of disks. In such systems,
failures and unavailabilities are common, and thus erasure
coding has become essential to protect data. Several factors
affect the choice of code, such as failure rates [2], workloads [3],
and budget constraints. However, stored data lives for a long
time, over which these factors vary, prompting one to change the
code. The process of converting already-encoded data into its
encoding under a different code is known as code conversion [4].
The default approach to code conversion is to read all data,
encode it under the new code, and write it back. Yet, in most
cases it is possible to convert data more efficiently. The key idea
behind efficient code conversion is to design the code in such
a way that existing code symbols can be used in creating the
new code symbols without needing access to all the message
symbols. Existing works [4]-[7] on code conversion focus on
conversion of maximum-distance-separable (MDS) codes from
length n! and dimension k! to n" and k¥, respectively.

Recently, there has been increased interest in wide codes,
i.e. codes with large k, as they can achieve lower storage
overhead given a target level of failure tolerance. One important
drawback of wide codes is that even if a single node becomes
unavailable, one must incur high resource-costs to repair it.
For example, in the case of an MDS code, one must read &
different nodes and reconstruct the original data to repair a
node. In practice, repair operations are common enough that
those costs negatively affect the performance of the cluster [8]-

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on

978-1-6654-7554-9/23/$31.00 ©2023 IEEE

03

— 0 9=
L

Fig. 1: Example of LRC conversion. Empty boxes are message
symbols. L and G are local and global parities respectively.

[10]. Locally repairable codes (LRCs) [11], [12] mitigate this
problem by encoding data in a way that allows nodes to be
repaired by accessing < k nodes only.

To change the optimal repair properties over time, we study
the code conversion problem for LRCs (see Fig. 1). This work
focuses on codes with (r, ¢) data locality, where k data nodes
are divided into groups of size r, each with ¢ local parities
that are a function of those r data nodes only. In addition,
the code has g global parities which are a function of all &
data nodes. We focus on LRCs with optimal distance [13]. As
the cost of conversions, we consider conversion bandwidth,
defined as the total amount of data communicated between
nodes during conversion. Our contribution is a new construction
technique for LRCs with efficient conversion. This technique
can be applied to different types of conversions: in this
paper we focus on global conversions, which only change
k and g. Even though it is possible to do this type of
conversion with existing constructions for MDS codes [6],
[7], the constructions presented in this paper are able to further
reduce conversion bandwidth by using both local and global
parities. E.g., our construction achieves the conversion of
(k,g,r,£) from (40, 2,10, 2) to (20, 3,10, 2) with 17.89% less
conversion bandwidth than existing constructions [7]. Proofs
of this paper can be found in the extended version [1].

II. BACKGROUND AND RELATED WORK

Let [i] == {1,...,i}. Let v|; ;) denote entries i through j of
a vector v. A linear [n, k, d,] vector code C over finite field
F is a linear subspace of F*" of dimension ak. We refer to
each coordinate (an element of) as a symbol. A codeword
c € C is divided into n nodes c; = (Ci,j)?:1 (¢ € [n]). The
minimum distance of C is d, and it is defined as the minimum
Hamming distance over F* between distinct codewords in C.
The code C is said to be MDS if d = n — k + 1 (in which
case d is omitted). Data m € F®* is encoded via a ak x an
generator matrix G as ¢ = mG. As an abuse of notation, we

3October 04,2023 at 16:23:46 UTC from IEEE Xplore. Restrictions apply.

2023 IEEE International Symposium on Information Theory (ISIT)

Final codeword

" . ay b &)
Initial codeword 1 Initial codeword 2 ! =
a b a ar by er w2 by “ =
a2 bo c2 ag bs s a3 bs c3 -
B B P[1,3] * €[1,3] +
a3 b3 c3 ag by Co Pi3] a3 | Pl - by t1,3) - a3
oot | = | Pl4,6] " A46] | P " blae) § "o T
Pi13 - a3 | P by | LY e P - Aol | P - brrgy | LT | AL |
: - : Pr3) - a9 | Prg) - bre e
Pl 246 | Pl - bug § "% Pi6] - (10,12] | Ppa.6] - bruo,izy} L% Acgl[f(ffif | (L3 PO 4t) - apro) "
: : : : 4,6] * €[10,12
|p["1-6] "110,12] | Ppag] bruo,izy] % o'
o 6] " e+ T 6] " Sz +
el -2 | ape - brg | 6% 6] - Af712] | Aprg) - bproazy |00 T
d[1,12] - A[L,12] |qqr12) - bz Aiz12) - C.12)
tr12) - apig) |12y Pz tz) iz

Fig. 2: (Ex. 1) Example of global merge conversion with parameters k! = 6, k' =12, ¢! =1, g =2, r =3,/ = 1.

denote the encoding of m under C as C(m). Code C is said to
be systematic if ¢; = m; := (m; ;)5_, for i € [k]. The support
of a code symbol is the set of data symbols corresponding
to the non-zero indices in its generator matrix column; the

support of a node is the union of the supports of its symbols.

A systematic code C is said to have (r, £) data locality if for
each data node c; there exists a set of indices I'(¢) containing
i such that [I'(4)| < r 4+ ¢ and the restriction of C to I'(¢) has
minimum distance at least £ + 1. Prior work [14] has shown
that a code with (r, £) data locality satisfies:

ssanor- (2]

In this paper, we consider codes defined by parameters
(k,g,r,¢), denoting a [n,k,d,«] vector code with n
k+ [%£] + g, having (r, ¢) data locality, and minimum distance
d satisfying (1) with equality (i.e. optimal distance); we assume
r | k and treat « as a free variable. The constructions that we
present are systematic codes with the following structure: the
code has m := § disjoint local groups each with r data nodes

(D

and ¢ local parity nodes, and g additional global parity nodes.

A. Systematic Vandermonde code

A systematic Vandermonde code is an [n, k, d, «=1] code
defined by a generator matrix that is the concatenation of a
k x k identity matrix and a k x (n — k) Vandermonde matrix
with evaluation points (£;)7".
choosing &; := 6!, where 0 is a primitive element, guarantees
the MDS property (construction in [5, §V]). Column ¢ of a
Vandermonde matrix has the following property: consider a
subvector and scale it by a power of &;; this is equivalent
to shifting the subvector by 7 entries. In particular, let k :=
M, and h() = (¢ _1);?:1 be the i-th encoding vector; then

(2) _ c(m=1)ty (4)
h[(mfl)tJrl,mt] - 61 h[l,t
B. Basic pyramid code [11]

One method for constructing a code with (r, ¢) data locality
and optimal distance is to start with a [k + ¢ + g, k, o] MDS
systematic linear code C. Then, the generator matrix column

If the field is large enough,

 forall i € [n—k] and m € [A].

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on

03

of local parity j € [¢] in local group i € [%] is constructed by
taking the column of parity j in C, and setting all the entries
outside of rows {(j — 1)r+1,...,jr} to 0.

C. Piggybacking framework [15]

The piggybacking framework constructs an [n, k, d, o] vector
code, by using « instances of an [n, k, d] base code and adding
special functions (called piggybacks) to certain symbols. lL.e.
symbol ¢; ; is the encoding of (m; ;)% ; under the base code,
plus an specially designed piggyback. We refer to the non-
piggyback part of a symbol as the base. A piggybacked code
must have a decoding order for the instances of the base
code given by a permutation o : [a] — [a]. To satisfy o,
the piggybacking functions used in instance ¢ can only use
data from instance j if o (i) > o(j). Thus, when decoding by
the order o, the already-decoded instances are used to remove
piggybacks, and the bodies are decoded with the base code. The
utility of piggybacks is that they can store useful information
which can be retrieved by subtracting the base.

D. Other related work

Codes designed to have small localities were first proposed
in [11], [16], and a bound on the minimum distance of
LRCs was proved in [13]. LRCs have been the subject
of a wide range of works [9], [11], [12], [14], [17]-[30],
which has proposed constructions, bounds on field size, and
stronger recoverability properties than optimal distance (such
as maximum recoverability).

The general problem of code conversion was introduced
in [5]. Several works [4]-[7], [31], [32] have proposed construc-
tions for code conversion. The results in these works consider
two types of cost (access cost and conversion bandwidth) and
focus on constructions and lower bounds for code conversions
in which both the initial and final codes are MDS.

To the best of our knowledge, the idea of converting
between different LRCs was first considered in [3] (called
up/downcoding). Xia et al. [3] propose a conversion procedure
for converting between two specific LRCs with different r
parameter (and constant / = 1, k, g). This conversion procedure

4October 04,2023 at 16:23:46 UTC from IEEE Xplore. Restrictions apply.

2023 IEEE International Symposium on Information Theory (ISIT)

Initial codeword

Final codeword 1

a by a dy by ar cr dr
ax by &) dy
ay by 2 dy bg ag 8 dg
as ba c2 ds
as b3 c3 ds by ag Co dy
as bs c3 d3
. 3 b + . 3 birg + . .
Pl - as) | PR PR T Plg) c €] | Prg) - dpg) Py e | Pas) t ame) | Pt O] | Pps) - dirg)
B e T P ETET P - ap,g | Prsl Pus t py g ey g1 - djy
Ppao) - A | PR 20T Pl Cae) | Plag) - il Peal 2ho12 HPiae) - Aozl [Pl - €pozl [P - o (131783 | “a g e | POLETELE] PRS-
. Pl4.6] - Pla6 . <
[Praer-2wer | 5, 76T | Puer - cuar | P - dugy
) - a0 - brig .
sun s [ey e [cnsafansa - diusa :
T [T | q[1,6] * A[1,6) | q1,6) - biig) | ape) - Sl | S |
t17,12) - Brz1z)] b7z - Az | ba12) - €112) | b,12) - djiag)
qpe - dig) v(ape - dizgo)

Fig. 3: (Ex. 2) Example of global split conversion with parameters k=12, kI =6, gI =2, gF =1,r=3,¢=1.In the
code, v = §g. For compactness, only one final codeword is shown; the other final codeword has the same encoding.

& & ‘3‘&?:

6’%\ ?‘%\ Qﬁ;\ & @6‘ @ec,

Merge '__ R » I__I“r———|————]
—t . .

Spllt P Bl » -
parity
Unchanged 1~)
parity E-j » 1

Fig. 4: Parity designs. Data is shown with a dashed box; parities
with a solid box. Parities have one special block (B-block then
A-block), a regular block, and a remainder block. Numbers
indicate how initial parity symbols are used in the final parities.

can be viewed as reducing the number of nodes read during
conversion (i.e. access cost [5]). In this paper, we focus
on reducing conversion bandwidth instead. Minimization of
conversion bandwidth for MDS codes was studied in [6], [7].
Recently, [33]-[36] studied LRC conversion (also called
scaling) in a clustered setting, where code symbols are placed in
clusters with the goal of reducing inter-cluster communication
and satisfying some fault-tolerance constraints. The present
paper is, to the best of our knowledge, the first one to focus on
LRC conversion bandwidth (i.e. inter-node communication).

III. CONVERSION OF LRCs

We study the LRC conversion from initial parameters
(K1, gT, 71 ¢%) to final parameters (k%' g¥' v ¢F). Conversion
is carried by a converter which reads data from nodes, computes
new symbols, and writes them. Cost is measured as conversion
bandwidth [6]: the total amount of data communicated to and
from the converter. We focus on reducing read conversion
bandwidth (i.e. number of symbols read), since the number of
symbols written is fixed. We denote read conversion bandwidth
as 7, and normalize it as 4 := /a. Codes must satisfy:

P1) the initial [n!, k%, d!, a] code has (!, ¢!) data locality and
optimal distance d,

P2) the final [nf k¥ d¥ a] code has (r%, ¢F) data locality
and optimal distance dF’,

P3) there is a conversion procedure from initial code to final
code that is efficient in conversion bandwidth.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on

0
035

As in the code conversion literature [5], k£ is changed by
considering M := lem(k’, k¥') data nodes evenly divided
among \ := % codewords in the initial code and \f" := kMF
codewords in the final code. Our approach is to construct a code
with the piggybacking framework and using the piggybacks to
reduce conversion bandwidth. As the base code, we use a basic
pyramid code derived from a systematic Vandermonde code,
which guarantees optimal distance. Our constructions combine
a small number of techniques, which simplifies their description
and analysis. We start by presenting two running examples
used throughout the paper to illustrate our techniques. Details
will be made clear as we explain our construction approach.

Example 1: Figure 2 shows an example of conver-
sion from (k'=6, g'=1,r'=3,(1=1) to (kF'=12, g¥'=2, rF'=3,
¢F=1). We refer to this type of conversion as a global merge
conversion. In the example, data corresponds to (a, b, c), and
the encoding vectors of the base code are p (local parity)
and (q,t) (global parities). The non-gray symbols in the
initial codewords are read and used in generating the colored
symbols in the final codeword (where colors denote techniques
that will be described later). Conversion uses the property of
Vandermonde codes that, €.g, Py,6) = §f’p[173]. The decoding
order in the initial and final codes is (1,2, 3). By using this
construction, conversion requires ¥ = 7%, compared to 12
(default approach) or 8 (MDS code in [6]). >

Example 2: Figure 3 shows conversion from (k'=12, g'=2,
rI=3,01=1) to (k¥'=6, g"'=1,rF'=3,¢F'=1). We refer to this
type of conversion as a global split conversion. As in the
previous example, data corresponds to (a, b, c,d), encoding
vectors are p (local parity) and (q,t) (global parities), and
non-gray symbols in the initial codeword are read and used in
generating the non-gray symbols in the final codewords. The
decoding order is (3,4, 1,2) in the initial code, and (3, 1,4, 2)
in the final code. Conversion requires 4 = 5, compared to 12
(default approach) or 5% (MDS code in [7]). >
These examples show that it is possible to reduce conversion
bandwidth compared to other approaches. Now, we describe
our general approach in detail.

A. Base code

Let k := max{k’,kF} and § := max{¢' + ¢', 0¥ + ¢F}.
First, we construct a systematic Vandermonde MDS code C
(81I-A) of length £+ g and dimension k. Then, we shorten and

ctober 04,2023 at 16:23:46 UTC from |IEEE Xplore. Restrictions apply.

2023 IEEE International Symposium on Information Theory (ISIT)

puncture C by removing the last & — k! rows, the last k — k!
data columns, and the last § — ¢/ — g/ parity columns from
the generator matrix to obtain C’. Finally, we derive the initial
base code as a basic pyramid code (§II-B) of C! (and likewise
for the final base code).

B. Conversion techniques

For ease of exposition, we first present the techniques that
will be used in designing conversion-bandwidth efficient codes:
Direct computation (DC). A final parity symbol is computed
from the data symbols in its support. E.g., this is used in Ex. 1
to compute Q[1,12] . C[1712] from c.

Projection (Pr). A final parity symbol with support S’ is
computed from an initial parity symbol with support S 2 S’
and data symbols in S\ S’. E.g., used in Ex. 2 to compute
d1,6) - a[1,6) from (a1 - a[1,6) + j7,12) - Bj7,12)) and b.
Piggybacks (Pb). A final parity symbol for instance j € [o]
is stored as a piggyback on an initial parity symbol of instance
i € [a] such that o(i) > o(j). The piggyback is recovered
by computing and subtracting the base of the initial parity
using the data in instance :. E.g., this is used in Ex. 1 to
compute t[1 12 - bp1,12) from (qp 6 - c1,6) + tiie - bpie))s
(ap,6) - €7,12) + t[1,6) - bp7,12))- and c.

Projected piggybacks (PP). A final parity symbol for instance
J € [a] is stored as a piggyback on an initial parity symbol
of instance i € [a] with o(i) > o(j). The base of the initial
parity symbol (with support S) is projected using the data in
a subset S’ C S; the remaining part (with support S \ S’)
becomes a piggyback in the final parity symbol. In the final
code, ¢ and j are swapped in the decoding order. E.g., this is
used in Ex. 2 to compute (q;) - dj1,6) + t[1,6] - ap1,6)) from
(tre-ap,e) + triz - brrag +dpe - dpe) and b.

Linear combination (LC). A final parity symbol with support
T is computed as a linear combination of symbols with support
S; such that T' = |, S;. The linear combination is determined
by the base code. E.g., this is used in Ex. 1 to compute q(; 19-
a1, 12) from qp 6] - ap1,6) and qp1 6] - A[7,12)-

Instance reassignment (IR). During conversion, the data
symbols associated to data node ¢ € [k] are reassigned to
instances via some permutation 7; : [@] — [a]. That is, data in

the final code is interpreted as m; = (m; x,(;))§=; for i € [k].

This reassignment affects the supports of parities, but it does
not modify data nodes. E.g., this is used in Ex. 2 to exchange
a and b during conversion in some nodes.

We denote linear combination of multiple piggybacks as
Pb+LC, e.g., as used in the piggybacks of local parities in
both examples. In diagrams, we denote the use of IR with letters,
and use the following colors to distinguish the other techniques:

EDC EPr EPb EPP @OLC BPb+LC

C. General strategy

As the output of conversion, the converter constructs new
parity nodes, called target parities. Target parities are grouped
into s sets, such that parity nodes that have the same support
are in the same set. Data nodes are divided into s disjoint
batches of equal size, corresponding to the supports of the s

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on

0
036

sets of target parities. In other words, target parities in set ¢
are in the span of batch i (¢ € [s]). E.g., in Ex. 1, there is
single target parity and s=1 set., while in Ex. 2 there are two
final parities (one in each final codeword) and thus s=2 sets.

The « instances are divided into s blocks of size B, plus a
remainder block of size R (i.e. a := sB + R), where s, B, and
R are positive integers set depending on the type of conversion.
E.g., in Ex. 1, B=3 and R=0, while in Ex. 2 B=1 and R=2.

We refer to block ¢ € [s] of nodes in batch ¢ as a special
block, and to blocks j # i € [s] as regular blocks. Special
blocks are divided into two sub-blocks: an accessed sub-block
(A-block) of size ' and an unaccessed sub-block (B-block)
of size B — E. In initial parity nodes, block ¢ € [s] is special
if its support and the data in batch ¢ (i.e. data in a special
block ¢) have a non-empty intersection; otherwise, the block
is regular. Notice that for each i € [s], there is a single batch
whose nodes have block ¢ as special. In particular, when s = 1,
all nodes have a single special block, and no regular blocks.
E.g., in Ex. 1, each node has a single block (special) and E=1.
In Ex. 2, each node has one regular, special, and remainder
block; the special block corresponds to b and E=0.

D. Design of parities and conversion

We describe three types of parity design: merge parities, split
parities, and unchanged parities (see Fig. 4). In each design,
we describe the techniques associated which each symbol.

During conversion, for each batch, the converter downloads
all symbols in regular blocks and A-blocks of data nodes (i.e.
B-blocks and remainder blocks are not read). In addition, the
converter downloads symbols from initial parities and uses
them as specified by the parity type. To ensure the final code
has optimal distance, each initial parity symbol is used in
constructing at most one final parity symbol (which avoids
linear dependencies that reduce distance). Thus, we assign at
most one technique to each initial parity symbol. In addition,
piggybacks in local parities must be a function of data in
their local group, and piggybacks in global parities must be a
functions of the data in their codeword.

In all parity types, A-blocks and regular blocks are designed

the same way: these blocks use Pb or Pb+LC. For symbols in
these blocks, all data in their supports is read during conversion,
and so piggybacks in them can be recovered. Piggybacks in
A-blocks are chosen as parity symbols of instances in the
corresponding B-blocks; piggybacks from regular blocks are
chosen as parity symbols of instances in the remainder block.
Target parity symbols that are a function of data in A-blocks
or regular blocks use DC.
Merge parities: This design is used for parities whose support
is a strict subset of the support of a target parity. E.g., in Ex. 1
the initial global parities are merge parities. When d! > d*’,
the B-block and remainder block of target parities can be fully
constructed via LC of initial parity symbols in the respective
blocks. Otherwise, we use LC to construct the B-block and
remainder block of some target parities, and use Pb or Pb+LC
from A-blocks and regular blocks for other target parities.

ctober 04,2023 at 16:23:46 UTC from |IEEE Xplore. Restrictions apply.

2023 IEEE International Symposium on Information Theory (ISIT)

m groups
B-FE FE

l—\ T
E é
N

A codewords

M'm, groups \

~

<

Initial codewords
Final codeword

. . I
Fig. 5: Global merge conversion (r = %, M =2 and ¢! < ¢g%).

Split parities: This design is used for parities whose support
is a strict superset of the support of a target parity. E.g., in
Ex. 2 the initial global parities are split parities. The remainder
block of split parities is unused. When d! > d¥’, then the B-
block of target parities can be fully constructed via Pr of split
parities in B-blocks. If d > d¥’, the rest of the initial parity
symbols in B-blocks use PP to construct final parity symbols
in a remainder block. When d! < d¥, the whole B-block of
split parities uses Pr. The rest of the final parity symbols in
the B-block use Pb from A-blocks.

Unchanged parities: Both B-blocks and remainder blocks are
unused. E.g., in both examples local parities are unchanged
parities.This type of parity can be kept in the final code.

E. Instance reassignment

In conversions where the number of codewords increases,
we have to ensure that final codewords use the same code.
Otherwise, systems would need to keep extra metadata for
each codeword, which induces extra complexity and overhead.
The template described so far does not meet this requirement:we
use IR to correct this. Let batch(i) := Vi;})s
i, We use permutation:

. {((j — batch(i)B — 1) mod sB) + 1, if j < sB,
Uy =

J . For data node

7, otherwise.

Theorem 1: The construction template presented in this
section yields codes satisfying properties P1-3.]

IV. CONVERSION OF GLOBAL PARAMETERS

In this section, we describe constructions where both k£ and
g vary, with r and ¢ constant. These conversions are useful
to alter the durability of the code. In particular, we explore
two types: global merge conversions, which combine multiple
codewords into one; and global split conversions, which divide
one codeword into multiple. In both types, g changes arbitrarily.

One way to achieve these conversions is to ignore local
parities, and use existing constructions for MDS codes [6], [7].
The new constructions also use local parities in conversion,
and thus can reduce the conversion bandwidth compared to
previous constructions.

A. Global merge conversion

In global merge conversions, A/ > 2 codewords are merged
into one, i.e. k' = ME! Local parities are designed as
unchanged parities, and global parities as merge parities.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on

0
037

BB B R
N : c \
T N 8
S ! : r AlB|C B
() H
o T l [
o e]
: ‘-
s 9 =
= £
= N i
C -

codewords

. A . . k! o
Fig. 6: Global split conversion (r = %, A" = 3, and ¢’ > ¢").

Theorem 2: The construction presented in this section
achieves the following conversion bandwidth:

if g* < g,

/\I i
=) u
v {)\I(WW + 91)7 otherwise.

This construction generalizes the MDS construction (¢ = 0).
Case g7 < g': Conversion is carried out using only global
parities, as in the MDS case [6].

Case g7 > g': In this construction (see Fig. 5), we set:

s=1, B=gl"+¢, R=0, E =g —4h

During conversion, LC is used in the global parities to construct
symbols in the first g/ final global parities. The rest of the
final symbols are constructed via Pb, Pb+LC, or DC.

B. Global split conversion

In global split conversions, a single initial codeword is split
into A\f' > 2, i.e. k¥ = A'kF. Local parities are designed as
unchanged parities, and global parities as split parities.

Theorem 3: The construction presented in this section
achieves the following conversion bandwidth:

F F_ A=) (E+m) +g" .- I
- Ayg OF _DgF gl t(Z\VF—1)° ifg" <g,
Y= /\FgF((kF_,’_mFe)()\FgF_gI)_,’_gIgF) .
otherwise.

)\FgF(gF_;'_e)_gIe)
This construction generalizes the MDS construction (¢ = 0).
Case g/ > ¢": Variables are set as follows (see Fig. 6):

s=\N, B=gl', R=tODF-1)+4¢'—¢", E=0.

The first g*" global parities use Pr to construct symbols in the
final global parities; the remaining initial global parities use
PP to construct symbols in remainder blocks. Local parities
use Pb+LC to construct symbols from remainder blocks.
Case g/ < g¥': We set the construction variables as follows:

s=\ B=(g")? R=Xltg"—1tg", E=g"(g" —g".

During conversion, initial global parities use Pr to construct
symbols for the B-blocks of the first g/ global parities in each
final codeword. The rest of the symbols are constructed via Pb
and Pb+LC from the A-blocks. The remainder block of final
global parities is constructed via Pb+LC on local parities.

ctober 04,2023 at 16:23:46 UTC from |IEEE Xplore. Restrictions apply.

(1]

(2]

(3]

(4]

(31

(6]

(71

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

2023 IEEE International Symposium on Information Theory (ISIT)

REFERENCES

“Locally repairable convertible codes: erasure codes for efficient re-
pair and conversion.” http://www.cs.cmu.edu/~rvinayak/papers/LRC_
conversion_ISIT2023_extension.pdf.

S. Kadekodi, K. V. Rashmi, and G. R. Ganger, “Cluster storage systems
gotta have HeART: improving storage efficiency by exploiting disk-
reliability heterogeneity,” in /7th USENIX Conference on File and
Storage Technologies, FAST 2019, Boston, MA, February 25-28, 2019
(A. Merchant and H. Weatherspoon, eds.), pp. 345-358, USENIX
Association, 2019.

M. Xia, M. Saxena, M. Blaum, and D. Pease, “A tale of two erasure
codes in HDFS,” in Proceedings of the 13th USENIX Conference on File
and Storage Technologies, FAST 2015, Santa Clara, CA, USA, February
16-19, 2015 (J. Schindler and E. Zadok, eds.), pp. 213-226, USENIX
Association, 2015.

F. Maturana, V. S. C. Mukka, and K. V. Rashmi, “Access-optimal
linear MDS convertible codes for all parameters,” in IEEE International
Symposium on Information Theory, ISIT 2020, Los Angeles, California,
USA, June 21-26, 2020, 2020.

F. Maturana and K. V. Rashmi, “Convertible codes: enabling efficient
conversion of coded data in distributed storage,” IEEE Transactions on
Information Theory, vol. 68, pp. 4392-4407, 2022.

F. Maturana and K. V. Rashmi, “Bandwidth cost of code conversions
in distributed storage: fundamental limits and optimal constructions,”
in IEEE International Symposium on Information Theory, ISIT 2021,
Melbourne, Australia, July 12-20, 2021, pp. 2334-2339, IEEE, 2021.
F. Maturana and K. V. Rashmi, “Bandwidth cost of code conversions in
the split regime,” (Espoo, Finland), pp. 3262-3267, IEEE, 2022.

K. V. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and
K. Ramchandran, “A solution to the network challenges of data recovery
in erasure-coded distributed storage systems: A study on the Facebook
warehouse cluster,” in 5th USENIX Workshop on Hot Topics in Storage
and File Systems, HotStorage’l3, San Jose, CA, USA, June 27-28, 2013
(A. Gulati, ed.), USENIX Association, 2013.

M. Sathiamoorthy, M. Asteris, D. S. Papailiopoulos, A. G. Dimakis,
R. Vadali, S. Chen, and D. Borthakur, “XORing elephants: novel erasure
codes for big data,” Proceedings of the VLDB Endowment, vol. 6, no. 5,
pp. 325-336, 2013.

K. V. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and
K. Ramchandran, “A" hitchhiker’s" guide to fast and efficient data
reconstruction in erasure-coded data centers,” in Proceedings of the
2014 ACM conference on SIGCOMM, pp. 331-342, 2014.

C. Huang, M. Chen, and J. Li, “Pyramid codes: flexible schemes to
trade space for access efficiency in reliable data storage systems,” ACM
Transactions on Storage, vol. 9, pp. 3:1-3:28, Mar. 2013.

D. S. Papailiopoulos and A. G. Dimakis, “Locally repairable codes,” IEEE
Transactions on Information Theory, vol. 60, no. 10, pp. 5843-5855,
2014.

P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the locality of
codeword symbols,” IEEE Transactions on Information Theory, vol. 58,
no. 11, pp. 6925-6934, 2012.

N. Prakash, G. M. Kamath, V. Lalitha, and P. V. Kumar, “Optimal
linear codes with a local-error-correction property,” in Proceedings of the
2012 IEEE International Symposium on Information Theory, ISIT 2012,
Cambridge, MA, USA, July 1-6, 2012, pp. 2776-2780, IEEE, 2012.

K. V. Rashmi, N. B. Shah, and K. Ramchandran, “A piggybacking design
framework for read-and download-efficient distributed storage codes,”
IEEE Transactions on Information Theory, vol. 63, no. 9, pp. 5802-5820,
2017.

J. Han and L. A. Lastras-Montafio, “Reliable memories with subline
accesses,” in IEEE International Symposium on Information Theory, ISIT
2007, Nice, France, June 24-29, 2007, pp. 2531-2535, IEEE, 2007.

A. S. Rawat, O. O. Koyluoglu, N. Silberstein, and S. Vishwanath,
“Optimal locally repairable and secure codes for distributed storage
systems,” IEEE Transactions on Information Theory, vol. 60, no. 1,
pp. 212-236, 2013.

M. Blaum, J. L. Hafner, and S. Hetzler, “Partial-MDS codes and
their application to RAID type of architectures,” IEEE Transactions
on Information Theory, vol. 59, no. 7, pp. 45104519, 2013.

N. Silberstein, A. S. Rawat, O. O. Koyluoglu, and S. Vishwanath,
“Optimal locally repairable codes via rank-metric codes,” (Istanbul,
Turkey), pp. 1819-1823, IEEE, 2013.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on

03

[20]
[21]
[22]
(23]
[24]

[25]

[26]

[27]
[28]

(29]

[30]

(31]

[32]

[33]

[35]

[36]

0
8

I. Tamo and A. Barg, “A family of optimal locally recoverable codes,”
IEEE Transactions on Information Theory, vol. 60, no. 8, pp. 46614676,
2014.

P. Gopalan, C. Huang, B. Jenkins, and S. Yekhanin, “Explicit maximally
recoverable codes with locality,” IEEE Transactions on Information
Theory, vol. 60, no. 9, pp. 5245-5256, 2014.

V. R. Cadambe and A. Mazumdar, “Bounds on the size of locally
recoverable codes,” IEEE Transactions on Information Theory, vol. 61,
no. 11, pp. 5787-5794, 2015.

I. Tamo, A. Barg, and A. A. Frolov, “Bounds on the parameters of locally
recoverable codes,” IEEE Transactions on Information Theory, vol. 62,
no. 6, pp. 3070-3083, 2016.

I. Tamo, D. S. Papailiopoulos, and A. G. Dimakis, “Optimal locally
repairable codes and connections to matroid theory,” IEEE Transactions
on Information Theory, vol. 62, no. 12, pp. 6661-6671, 2016.

S. L. Frank-Fischer, V. Guruswami, and M. Wootters, “Locality via
partially lifted codes,” in Approximation, Randomization, and Combi-
natorial Optimization. Algorithms and Techniques, APPROX/RANDOM
2017, August 16-18, 2017, Berkeley, CA, USA (K. Jansen, J. D. P. Rolim,
D. Williamson, and S. S. Vempala, eds.), vol. 81(43) of LIPIcs, pp. 1-17,
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

A. Barg, K. Haymaker, E. W. Howe, G. L. Matthews, and A. Virilly-
Alvarado, “Locally recoverable codes from algebraic curves and surfaces,”
in Algebraic Geometry for Coding Theory and Cryptography (E. W. Howe,
K. E. Lauter, and J. L. Walker, eds.), (Cham), pp. 95-127, Springer
International Publishing, 2017.

A. Mazumdar, “Capacity of locally recoverable codes,” in IEEE Informa-
tion Theory Workshop, ITW 2018, Guangzhou, China, November 25-29,
2018, pp. 1-5, IEEE, 2018.

A. Agarwal, A. Barg, S. Hu, A. Mazumdar, and I. Tamo, “Combina-
torial alphabet-dependent bounds for locally recoverable codes,” IEEE
Transactions on Information Theory, vol. 64, no. 5, pp. 3481-3492, 2018.

S. Gopi, V. Guruswami, and S. Yekhanin, “Maximally recoverable LRCs:
A field size lower bound and constructions for few heavy parities,” in
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019
(T. M. Chan, ed.), pp. 2154-2170, SIAM, 2019.

V. Guruswami, C. Xing, and C. Yuan, “How long can optimal locally
repairable codes be?,” IEEE Transactions on Information Theory, vol. 65,
no. 6, pp. 3662-3670, 2019.

K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Enabling node repair in
any erasure code for distributed storage,” in 2011 IEEE International
Symposium on Information Theory Proceedings, ISIT 2011, St. Petersburg,
Russia, July 31 - August 5, 2011 (A. Kuleshov, V. M. Blinovsky, and
A. Ephremides, eds.), pp. 1235-1239, IEEE, 2011.

S. Mousavi, T. Zhou, and C. Tian, “Delayed parity generation in MDS
storage codes,” in 2018 IEEE International Symposium on Information
Theory, ISIT 2018, Vail, CO, USA, June 17-22, 2018, pp. 1889-1893,
IEEE, 2018.

S. Wu, Z. Shen, and P. P. C. Lee, “On the optimal repair-scaling trade-off
in locally repairable codes,” in 2020 IEEE Conference on Computer
Communications, INFOCOM 2020, Virtual Conference, July 6-9, 2020,
IEEE, 2020.

Y. Hu, L. Cheng, Q. Yao, P. P. C. Lee, W. Wang, and W. Chen, “Exploiting
combined locality for wide-stripe erasure coding in distributed storage,”
in 19th USENIX Conference on File and Storage Technologies, FAST
2021, February 23-25, 2021 (M. K. Aguilera and G. Yadgar, eds.),
pp. 233-248, USENIX Association, 2021.

S. Wu, Z. Shen, P. P. C. Lee, and Y. Xu, “Optimal repair-scaling trade-off
in locally repairable codes: analysis and evaluation,” IEEE Transactions
on Parallel and Distributed Systems, vol. 33, pp. 56-69, 2022.

S. Wu, Q. Du, P. P. C. Lee, Y. Li, and Y. Xu, “Optimal data placement for
stripe merging in locally repairable codes,” (London, United Kingdom),
pp. 1669-1678, IEEE, 2022.

ctober 04,2023 at 16:23:46 UTC from |IEEE Xplore. Restrictions apply.

