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1. Introduction 

The majority of organic carbon (C) in terrestrial ecosystems resides 
in soils (Jobbágy and Jackson, 2000; Lal, 2003; Jackson et al., 2017). 
Chemical, physical, and biological drivers are combined to influence soil 
organic carbon (SOC) stocks (Jackson et al., 2017). Decades of research 
emphasize the role of climate (Davidson et al., 2000; Lal, 2004; David
son and Janssens, 2006; Bradford et al., 2016; Crowther et al., 2016) and 
land-use change (e.g., conversion of native systems to agriculture; 
Conant et al., 2017; Deng et al., 2016; Guo and Gifford, 2002; Tang et al., 
2019) as drivers of SOC transformations. A key motivating factor in 
many of these and related studies is the potential feedback of SOC 
mineralization to atmospheric CO2. However, the stabilization or 
destabilization of SOC also governs another, less-appreciated but 
important driver of land–atmosphere feedbacks. Specifically, changes in 
SOC form and content can modify soil structure (Tisdall and Oades, 
1982; Six et al., 2000; Loveland and Webb, 2003; Schwendenmann and 
Pendall, 2006; Meurer et al., 2020; Sullivan et al., 2022), which can 
further influence water storage, flow and land surface fluxes (Rawls 
et al., 2003; Minasny and McBratney, 2018) thus impacting ecosystem 
productivity (Banwart et al., 2019; Fatichi et al., 2020). 

The idea that SOC and its biotic generation and transformation can 
influence soil structure and thus subsurface hydrologic flow paths is 
well-founded, and such transformations may occur across timescales far 
shorter than historically thought (Sullivan et al., 2022). For example, 
root activities and other C inputs to a soil profile can promote aggregate 
structure (Gould et al., 2016; Le Bissonnais et al., 2018). Such processes 
govern the structure of soil pore networks, which in turn modify water 
flow and nutrient transport, potentially affecting ecosystem productivity 
(Yudina and Kuzyakov, 2019). It is well-documented that soils with high 
organic matter (OM) content reduce bulk density (Haynes and Naidu, 
1998; Ruehlmann and Körschens, 2009; Meurer et al., 2020), and in
fluence the pore network architecture via the formation of aggregates as 
organic compounds act as binding agents linking soil mineral particles to 
each other (Six et al., 2004; Bronick and Lal, 2005). In spite of the link 
between SOC content and soil structure, relatively few studies have 
investigated the importance of interactions between biotically-mediated 
SOC stores and soil structure, especially deep in the subsurface (Banwart 
et al., 2011; Banwart et al., 2019; Brantley et al., 2017). To do so, and to 
make associated inferences about ecosystem functioning, requires un
derstanding of these interacting phenomena in both surface and deep 
horizons (Rumpel and Kögel-Knabner, 2011; Sulman et al., 2020). 

The depth distribution of SOC is governed by multiple, interacting 
features. Roots serve as a key C input, connecting the soil to the atmo
sphere and exerting control on the distribution of resources for biota 
—via water, nutrients, and gasses transport— throughout soils (Hin
singer et al., 2009). While rooting depth of the vegetation is perhaps the 
most intuitive driver of SOC inputs, its depth distribution is also gov
erned by water availability, through multiple pathways. Water avail
ability affects soil moisture that in turn dictates ecosystem productivity, 
and thus C inputs. Water availability, dictated in part by the balance 
between precipitation (P) and evapotranspiration (ET) demands, affects 
soil moisture and thus C inputs to the soil. Precipitation inputs often 
translate into hydrological flows through soil profiles that also can 
promote the movement of mobile SOC pools such as dissolved and 
particulate organic matter (DOM, POM) through soils (Kaiser and Kal
bitz, 2012; Marín-Spiotta et al., 2014; Bowering et al., 2023). Rooting 
systems and water availability interactions control the spatial distribu
tion of soil moisture whether by promoting hydraulic lift (Caldwell 
et al., 1998; Schenk and Jackson, 2002; Hinsinger et al., 2009) or 
forming preferential flow paths through which water can infiltrate 
(Hinsinger et al., 2009; Lu et al., 2020). These processes affect wetting 
and drying cycles that can move soil (Lu et al., 2020; Sullivan et al., 
2022), influencing soil porosity and thus SOC transport throughout soil 
profiles (Jobbágy and Jackson, 2000). Soil texture modulates the ca
pacity of a soil to move water, with relatively high clay concentrations 

offering greater resistance to water flow in many soils (Tisdall and 
Oades, 1982; Saxton et al., 1986; Saxton and Rawls, 2006). The presence 
or absence of roots and their capacity to redistribute water thus interacts 
with multiple soil attributes to direct temporally-variable soil structure 
and its capacity to protect C (Sullivan et al., 2022). 

Because roots serve as an input of soil C and influence soil structure 
in ways that affect soil water dynamics, the interplay between root 
abundance, available moisture, and soil structure likely plays an 
important role in SOC depth distributions. For example, as C allocation 
belowground varies and deep root densities decrease upon the conver
sion of perennial systems to annual crops (Canadell et al., 1996; Jackson 
et al., 2000; Fan et al., 2016; Billings et al., 2018, Hauser et al., 2022), 
the associated formation of granular soil structure can be inhibited 
(Mohammed et al., 2020), likely affecting water flow (Sullivan et al., 
2022) and the transport of DOC from surface to the subsurface (Kalbitz 
and Kaiser, 2008; Kaiser and Kalbitz, 2012; Podrebarac et al., 2021). The 
degree to which changes in rooting systems affect soil structure will 
depend on the rate that roots preferentially occupy extant pores (Dexter, 
1987; White and Kirkegaard, 2010) versus perforating soils de novo, 
compacting soil in their immediate surroundings in the process (Helli
well et al., 2017; Martinez et al., 2021). Both outcomes have important 
implications for porosity, bulk density, and water flow (Lucas et al., 
2019a; Lu et al., 2020; Sullivan et al., 2022). Thus, deep roots can 
control SOC at depth not only by the changes in direct C inputs, but also 
by influencing structural characteristics that define pore space and thus 
the ability of water to transport organic compounds down-profile. 

Given that the distribution of roots through a soil profile can control 
SOC inputs to relatively deep soil layers (i.e., greater than the horizon in 
which root abundance is greatest) via diverse direct and indirect 
mechanisms, surface activities such as land-use change that alter a 
system’s root abundances may exert influences more deeply in the 
profile than is typically appreciated (i.e., the plow layer). While direct 
effects of land-use conversion on soil C stocks have been extensively 
studied (Houghton, 1995; Post and Kwon, 2000; Guo and Gifford, 2002; 
Deng et al., 2016; Sulman et al., 2020; Beillouin et al., 2022), more 
recent investigations have begun to explore these influences in relatively 
deep horizons (Rumpel and Kögel-Knabner, 2011; Sulman et al., 2020). 
For instance, losses of deep roots via land-use change are known to alter 
deep soil biogeochemical environments even below the zone of highest 
root densities (Billings et al., 2018); this has important implications for 
the overall SOC stocks (Jobbágy and Jackson, 2000). However, the 
interacting effects of root abundances, soil moisture availability, and soil 
structure on SOC depth distributions are only rarely explored, especially 
considering changes to the landscape and climate promoted by anthro
pogenic activity. 

We investigated the role of these ecosystem features on the depth 
distribution of SOC in the C-rich Mollisols of the upper U.S. Midwest. We 
used a dataset derived from the National Cooperative Soil Survey Soil 
Characterization database to parameterize and compare the rate of SOC 
decrease with depth under plowed and unplowed lands across a climatic 
gradient at a regional scale. To uncover the mechanisms driving these 
vertical SOC patterns in different land uses, we analyzed samples from 
soil profiles sampled over a smaller area representative of the same land 
use and climate gradient present in the larger dataset for biological, 
physical, and chemical characterization to 2 m depth. We hypothesized 
that greater availability of water in these systems promotes the growth 
and transport of living (i.e., roots) and dead surficial, in-situ C down- 
profile and that this downward flux both influences and is mediated 
by soil structural attributes which are, in part, governed by biotic ac
tivity. We test this hypothesis working across gradients of effective 
precipitation and land use, examining the relationships between SOC 
depth distributions, root abundances, soil radiocarbon signatures, 
aggregate size distribution, and soil microbial activity. Our work helps 
to clarify the pace at which human activities can modify soil structural 
and biotic characteristics in ways relevant for a soil’s capacity to store C 
and promote ecosystem functions in a changing climate. 
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Table 1 
Study sites across the state of Kansas, USA. Site names in bold font represent sites where soils were subjected to a greater number of analyses (see text for detail).  

Site Land use Latitude Longitude MAP1 

(mm) 
MAT2 

(◦C) 
Date 
Sampled 
(YYYY- 
MM-DD) 

Sampling 
Method 

Soil 
series3 

Parent material3 Slope3 

Tribune, KS (TRB) Agriculture 38◦28′09′′N 101◦46′55′′W 456 11.3 2019-08- 
19 

Giddings Richfield Loess 0–1% 

2019-11- 
05 

Genetic 
horizons 

Native 
prairie 

38◦28′10′′N 101◦46′56′′W 456 11.3 2019-08- 
19 

Giddings Richfield Loess 0–1% 

2019-11- 
05 

Genetic 
horizons 

Logan County (LGN) Native 
prairie 

38◦47′19′′N 101◦10′01′′W 471 11.6 2021-07- 
07 

Giddings Ulysses Loess 0–1% 

Smoky Valley Ranch 
(SVR) 

Agriculture 38◦52′18′′N 100◦58′58′′W 478 11.6 2019-07- 
18 

Giddings Ulysses Loess 0–1% 

Native 
prairie 

38◦51′57′′N 100◦59′42′′W 476 11.7 2019-07- 
18 

Giddings Ulysses Loess 6–15% 

Trego County (TRG) Agriculture 39◦00′48′′N 99◦45′37′′W 580 12.0 2021-07- 
08 

Giddings Penden Loess over alluvium 1–3% 

Native 
prairie 

39◦00′54′′N 99◦44′40′′W 580 12.0 2021-07- 
08 

Giddings Holdrege Loess 1–3% 

K-State Agricultural 
Research Extension 
Facility (HAY) 

Agriculture 38◦50′34′′N 99◦18′52′′W 604 12.3 2018-05- 
08 

Giddings Harney Calcareous loess 0–1% 

2018-08- 
23 

Genetic 
horizons 

Hays, KS (HAY) Native 
prairie 

38◦50′07′′N 99◦18′11′′W 604 12.3 2018-05- 
08 

Giddings Harney Calcareous loess 0–1% 

2018-08- 
23 

Genetic 
horizons 

Rooks County (RKS) Agriculture 39◦14′30′′N 99◦12′52′′W 627 11.8 2019-08- 
26 

Giddings Harney Loess 0–1% 

Native 
prairie 

39◦10′29′′N 99◦09′00′′W 638 11.9 2019-08- 
26 

Giddings Harney Calcareous loess 0–1% 

Hanks Nature 
Conservation (HNC) 

Agriculture 38◦53′17′′N 97◦59′29′′W 740 12.7 2021-08- 
06 

Giddings Wells Residuum weathered 
from sandstone and 
shale 

3–7% 

Native 
prairie 

38◦53′31′′N 97◦59′15′′W 740 12.7 2021-08- 
06 

Giddings Wells Residuum weathered 
from sandstone and 
shale 

3–7% 

The Land  

Institute (TLI) 

Agriculture 38◦41′39′′N 97◦35′28′′W 780 13.2 2019-08- 
26 

Giddings Hord Alluvium 0–1% 

Native 
prairie 

38◦58′11′′N 97◦28′08′′W 760 13.3 2019-08- 
26 

Giddings Hord Alluvium 0–1% 

Konza Prairie  

Biological Station 
(KNZ) 

Agriculture 39◦06′11′′N 96◦36′15′′W 858 12.7 2018-05- 
11 

Giddings Reading Alluvium 0–2% 

2018-11- 
08 

Genetic 
horizons 

Native 
prairie 

39◦06′19′′N 96◦36′35′′W 856 12.7 2018-05- 
11 

Giddings Reading Alluvium 1–3% 

2018-11- 
08 

Genetic 
horizons 

Jefferson  

County (JEF) 

Agriculture 39◦20′04′′N 95◦30′27′′W 964 12.8 2021-06- 
23 

Giddings Sibleyville Sandy and silty 
residuum weathered 
from sandstone and 
shale 

3–7% 

Native 
prairie 

39◦02′43′′N 95◦12′17′′W 991 12.7 2021-06- 
23 

Giddings Pawnee Till 4–8% 

Leavenworth  

County (LVN) 

Native 
prairie 

39◦15′31′′N 94◦58′42′′W 1000 12.5 2019-09- 
18 

Giddings Sharpsburg Loess 1–4% 

Ottawa, KS (EKS) Agriculture 38◦32′19′′N 95◦14′51′′W 1009 13.0 2018-05- 
17 

Giddings Woodson Silty loess and/or silty 
and clayey alluvium 

0–1% 

2019-07- 
23 

Genetic 
horizons 

Welda Prairie (EKS) Native 
prairie 

38◦10′52′′N 95◦16′20′′W 1041 13.2 2018-05- 
23 

Giddings Olpe Silty loess and/or 
ancient clayey alluvium 

3–7% 

2019-04- 
24 

Genetic 
horizons 

1MAP: Mean annual precipitation; 2MAT: Mean annual temperature; 3Natural Resources Conservation Service (NRCS) Soil Survey data (https://websoilsurvey.sc.egov. 
usda.gov/). 
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profiles. This response to EfP is a more nuanced way of examining β 
values than comparing their means across land use; indeed, β for profiles 
sampled under agriculture in Kansas are not statistically different from 
those in native prairie (p = 0.573), a result likely reflecting the high 
variability in estimating the rate of SOC decrease with depth and the 
relatively low number of pedons sampled (Fig. 6b). However, β re
sponses to EfP suggest that shifts in SOC with depth in native prairie soils 
where moisture availability is greater are less abrupt than in agricultural 
soils. The shallowing of the rooting system as native prairie is converted 
to cultivated lands (Jackson et al., 1996; DuPont et al., 2014) and the 
concurrent loss of surficial SOC (Tang et al., 2019) may limit the degree 
to which C is distributed throughout agricultural profiles. It is well 
documented that agricultural practices have led to significant losses of C 
(Guo and Gifford, 2002; Deng et al., 2016; Tang et al., 2019), an 
observation that has instigated many other studies looking into the ef
fects of different land managements on the addition, distribution, and 
decomposition of C (Six et al., 1999; Post and Kwon, 2000; Luo et al., 
2010; Deng et al., 2016). Conventional agriculture is responsible for 
larger rates of erosion than those of soil production (Montgomery, 
2007), and the disruption of surficial soils not only redistributes C across 
the landscape but also leads to soil structural changes that can promote 
SOC mineralization to CO2 (Lal, 2003; Quinton et al., 2010; Doetterl 
et al., 2016). Changes in SOC at surface will thus affect the availability of 
C to be transported to deep soils, with consequences for C stabilization 
and its overall depth distribution. The correspondence of β values esti
mated by SOC concentrations with those derived from SOC stocks 
(Fig. 4a) suggests that our inferences about the vertical distribution of 
SOC are robust regardless of which measure is used, and generates 
similar estimates of the variation in β across the EfP gradient under both 
land uses calculated from either measurement. 

Exponential fits of SOC depth distributions derived from PEDS and 
the Kansas profiles permitted calculation of zSOC, the depth at which SOC 
concentration becomes invariant. This value is considered a threshold 
for the transition from the dominance of biotic processes in a soil profile 
to mineralogical processes as the main drivers of C retention (Lawrence 
et al., 2015; Sulman et al., 2020; White et al., 2012). In a study inves
tigating the parameters of SOC depth distribution across the continental 
US using C concentrations and C stocks, Sulman et al. (2020) explored 
variation in zSOC and found that its deepest values were present in the 
Central Plains, and deeper for profiles with an Ap horizon. We observed 
the same trend of deeper zSOC estimates under agricultural compared to 
native prairie sites using PEDS profiles across the US Midwest (Fig. 5), 
though our results are generally deeper than those observed for Mollisols 
in Sulman et al. (2020). Moreover, profiles indicating zSOC values of 500 
cm likely indicate that zSOC is probably deeper than the depth interval 
we used in our predictions (see Section 2.5). Greater zSOC depth esti
mates in the current study relative to those reported in Sulman et al. 
(2020) may arise from differences in approaches for estimating zsoc, as 
we did not use a piecewise function but instead predicted SOC vertical 
distributions in 1-cm increments down to a predetermined depth. 
However, deeper thresholds between biotic and “quasi-biotic” processes 
in cultivated lands implied by data in both studies suggest greater 
coupling of shallow and deep biogeochemical cycles promoted by 
agriculture, instead of a perhaps more intuitive decoupling above and 
below the plow line. Specifically, zSOC estimates from PEDS profiles 
suggest that C-related biogeochemical cycling declines more abruptly 
with depth in cultivated lands, rather than in agricultural plots where 
the plow line might be predicted to serve as a physical threshold within 
C distribution patterns. Estimates of zSOC across Kansas further support a 
greater vertical coupling of biogeochemical cycles under agricultural 
systems and highlight the significant effect of EfP on zSOC, especially 
under native prairie soils where the fit of the model was better (Fig. 6c). 
Moreover, the increase in zSOC with greater water availability across 
Kansas is congruent with an observed decrease in carbonate content 
which, in turn, suggests that abiotic processes at zSOC may decline in 
relative dominance where moisture availability increases (Gunal and 

Ransom, 2006; Fernández-Ugalde et al., 2011). Our findings are in line 
with the interpretation that zSOC reflects the depth at which SOC has 
been relatively insulated from surficial processes and that land conver
sion may promote the decomposition of deep C with the transport of OC 
and root exudates throughout soils (Hicks Pries et al., 2017; Sulman 
et al., 2020). 

4.3. Exploring the mechanisms governing SOC depth distribution patterns 
at the pedon scale 

To further investigate the mechanisms driving variation in SOC 
depth distributions across the US Midwest, we analyzed data obtained 
from soil pits across Kansas for a more complete physical, chemical, and 
biological characterization of profiles from across the EfP gradient and 
from native prairie and agricultural lands. Perhaps most notably, we 
observed clear differences in rooting abundances between the two land 
uses along the climatic gradient (Fig. 7a, 7b), with the most evident 
differences in coarse root abundances (Fig. 8a, 8b). Reductions in 
rooting inputs deep in soil profiles are expected between perennial and 
annual systems (Canadell et al., 1996; Jackson et al., 1996; DuPont 
et al., 2014; Billings et al., 2018). Where roots are more abundant, SOC 
stocks tend to be greater because of greater inputs of solid C material, 
the greater mean residence time of root C than aboveground C (Rasse 
et al., 2005; Sokol et al., 2019), and the release of C-rich root exudates in 
the rhizosphere. Such observations are consistent with our finding of 
greater EOC concentrations in native prairie soils compared to agricul
tural soils (Fig. S3), even though normalized root investments, especially 
those of fine roots, appear similar across the EfP gradient (Fig. 7d). The 
EOC data thus hint at greater availability of SOC easily transformed into 
solute form with increased root abundance (Fig. S3). 

Two lines of evidence suggest that differences in rooting abundances 
imposed by native prairie conversion to agriculture has prompted soil 
structural changes that have consequences for transport of SOC, 
including EOC, and its protection. First, differences in root abundances 
may dictate the rate at which C such as the EOC pool can flow downward 
by changing soil porosity (Kaiser and Kalbitz, 2012; Lucas et al., 2019b; 
Lu et al., 2020). This may have occurred in the current study particularly 
given differences in coarse roots across land uses (Fig. 8a, 8b), via 
increased perforation when roots elongate or by leaving open pores after 
the decay of roots left behind upon land conversion (Fig. 8a; Lu et al., 
2020). This idea is supported by generally greater values of EOC per unit 
total root abundances in agricultural plots across Kansas in horizons 
between ~40 to ~75 cm at two drier sites, and at the deepest depth 
sampled at the wettest site (Fig. 9). This feature indicates that some 
combination of enhanced root production of EOC is occurring at depth in 
agricultural soils, or that more EOC is infiltrating to depth from shal
lower horizons in agricultural soils. We cannot know which of these 
features dominates in these soils, but radiocarbon data also provide a 
line of evidence suggesting that altered soil structure has modified the 
extent of soluble OC transport down-profile in these agricultural plots. 

Radiocarbon data suggest greater transport of fresh photosynthate 
from surface horizons deeper into the subsoil in agricultural soils, and 
greater preservation of SOC in native prairie soils in relatively deeper 
horizons (Fig. 10). Spatially replicated soil radiocarbon data are difficult 
to obtain (Schrumpf et al., 2013), but our data are consistent with the 
idea that land conversion of unplowed systems to croplands may favor 
the formation of preferential paths through which water can flow, 
perhaps as decaying coarse roots in converted systems leave behind 
empty voids (Lu et al., 2020). Flow path formation may be further 
strengthened in soils with meaningful shrink-swell capacity (Tuller and 
Or, 2003), which is the case where there are high concentrations of 
montmorillonite (Schulze, 2005) and relatively high coefficient of linear 
extensibility (COLE) values (Fig. S4). We note that radiocarbon signa
tures in relatively deep horizons indicate the greatest FM in agricultural 
soils where water availability is highest (Fig. 10), corresponding to 
depths at or below which COLE is greatest (Fig. S4). This observation in 
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tandem with EOC data per unit total root abundances (Fig. 9) hints that 
agricultural soils may experience structural changes at multiple depths 
upon conversion, promoting greater down profile transport of relatively 
fresh photosynthate. 

Radiocarbon data are also consistent with the idea that in deeper 
horizons, native prairie soils exhibit better ability to retain relatively old 
SOC (Fig. 10). This may be the case, given that differences in radio
carbon signatures between agricultural and native prairie soils were 
greater with greater EfP, and that intermediate-sized macroaggregates 
per unit of SOC were greater in native prairie soils at depth with rela
tively high EfP (Fig. 11d). There, SOC seems to promote the formation or 
preservation of relatively large water-stable aggregates, which appear 
effective at preserving SOC (Six et al., 2000; Six and Paustian, 2014). In 
contrast to intermediate-sized macroaggregates per unit SOC, the MAD 
of water-stable aggregates in agricultural soils increased with depth 
where EfP was high (Fig. 11a). This indicates that agricultural practices 
at the surface can affect aggregate formation far more deeply than the 
plow line, particularly where EfP is sufficient to promote the propaga
tion of surficial processes to the subsurface. Although we could not 
conduct statistical analyses at the pedon scale for the soil aggregate data, 
our work suggests that agriculture may promote formation of larger 
aggregates as deep as 200 cm as EfP increases (Fig. 11a). In agricultural 
plots, deep SOC promotion of aggregation appears to occur to a greater 
extent in drier systems (Fig. 11c). This is consistent with the idea of more 
variable soil moisture promoting greater flashiness of surficial SOC flows 
down-profile, resulting in greater FM signatures in agricultural systems 
compared to their native prairie counterparts (Fig. 10). Further work 
exploring this topic should focus on sampling soil profiles specifically for 
physical characterization under different land uses at depths equal or 
greater than what was done in our study with sufficient spatial replicates 
to allow for more robust statistical analyses. 

We note that the degree of clay complexation of SOC is likely an 
additional, important determinant of water-stable aggregation. The 
concept of complexed organic C (COC) is a useful tool for understanding 
drivers of soil structure (Dexter et al., 2008; Klopfenstein et al., 2015; 
Johannes et al., 2017). Estimates of complexed clay (CC) can inform us 
about soil stability in water, because non-complexed clay (NCC) is often 
well correlated to the readily-dispersible clay of a system and may also 
play a role in defining soil structural conditions (Dexter et al., 2008; 
Schjønning et al., 2012). Estimates of the total fraction of the system that 
is complexed, including both COC and CC (TCS; Appendix B), suggests 
that where SOC is more readily accessible to soil microbes (i.e., where 
SOC is less complexed; Fig. S5), SOC appears to have a greater pro
pensity to form intermediate-sized macroaggregates (Fig. 11c, 11d), 
apparently driven by older C (Fig. 10). This is in line with the argument 
that deep C exhibits a longer transit time (Rumpel and Kögel-Knabner, 
2011; Sierra et al., 2017) and that the controls of SOM stabilization are 
physical protection (Six et al., 2004; Fontaine et al., 2007) and perhaps 
O2 availability (Keiluweit et al., 2017). Moreover, these older C signa
tures may also reflect the fewer inputs of fresh photosynthate to the 
subsurface, which has been found to increase the longevity of the C 
storage (Fontaine et al., 2007; Fig. 10). In these Kansans soils, the 
greater carbonate contents where water availability is limiting (Gunal 
and Ransom, 2006) is probably another important driver of C protec
tion. Higher Ca2+ concentrations can promote greater microaggregate 
stability via the formation of pedogenic carbonates that act as a pro
tective coating (Fernández-Ugalde et al., 2011), consistent with the 
smaller aggregate size observed under drier systems, especially at depths 
below the plow line (Fig. 11a, 11b). 

Our work thus demonstrates that land management indirectly in
fluences the degree to which SOC can promote or maintain soil aggre
gate structure across depth (Fig. 11c, 11d). We emphasize the 
importance of understanding the combined effects of land use and 
climate on the ecosystem features driving SOC depth distribution. These 
changes may affect soil structure at depths greater than the plow line, 
echoing the need to dig deeper to understand changes in rates of 

pedological processes in the Anthropocene (Richter, 2020). As a result, 
soil structure may now be altered on timescales relevant for human 
lifetimes, far shorter than the geological time periods across which these 
processes are typically assumed to occur, as has been recently suggested 
(Hirmas et al., 2018; Sullivan et al., 2022). Rapid soil structural changes 
have important consequences for understanding and predicting the 
drivers of C cycling and storage under climate change. We present this 
study as a starting point from which to generate new hypothesis about 
how changes to interacting ecosystem features in the Anthropocene, 
such as rooting depth distributions and soil structure, may control hy
drological flow paths and biogeochemical fluxes and transformations in 
significant ways for the functioning of the Earth’s critical zone. 

5. Conclusions 

Our work investigates the degree to which ecosystem features like 
effective precipitation and land use conversion interact to govern SOC 
depth distributions across a climatic gradient in the US Midwest. We 
found that the vertical distribution of SOC under native prairie soils is 
more coupled across surficial and deeper horizons where water avail
ability increases. Upon grassland conversion to agriculture, that trend 
falters. In line with our hypothesis, our work suggests that this shift is 
the result of changes in rooting abundances and, further, that reduced 
rooting abundance influences soil structure in ways that can promote 
vertical flows of water and the transport of C down-profile, which 
contributes to aggregate stability and SOC protection. Our study high
lights the importance of investigating ecosystem features that drive C 
inputs and depth distributions in tandem with the depth to which land 
conversion propagates and the timescales over which soil structural 
changes can occur. 
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Complexed organic matter controls soil physical properties. Geoderma 144 (3–4), 
620–627. https://doi.org/10.1016/j.geoderma.2008.01.022. 

Dickson, E.L., Rasiah, V., Groenevelt, P.H., 1991. Comparison of four prewetting 
techniques in wet aggregate stability determination. Can. J. Soil Sci. 71 (1), 67–72. 
https://doi.org/10.4141/cjss91-006. 

Doetterl, S., Berhe, A.A., Nadeu, E., Wang, Z., Sommer, M., Fiener, P., 2016. Erosion, 
deposition and soil carbon: A review of process-level controls, experimental tools 
and models to address C cycling in dynamic landscapes. Earth-Sci. Rev. 154, 
102–122. https://doi.org/10.1016/j.earscirev.2015.12.005. 

DuPont, S.T., Beniston, J., Glover, J.D., Hodson, A., Culman, S.W., Lal, R., Ferris, H., 
2014. Root traits and soil properties in harvested perennial grassland, annual wheat, 
and never-tilled annual wheat. Plant Soil 381 (1–2), 405–420. https://doi.org/ 
10.1007/s11104-014-2145-2. 

Fan, J., McConkey, B., Wang, H., Janzen, H., 2016. Root distribution by depth for 
temperate agricultural crops. Field Crops Res. 189, 68–74. https://doi.org/10.1016/ 
j.fcr.2016.02.013. 

Fatichi, S., Or, D., Walko, R., Vereecken, H., Young, M.H., Ghezzehei, T.A., Hengl, T., 
Kollet, S., Agam, N., Avissar, R., 2020. Soil structure is an important omission in 
Earth System Models. Nat. Commun. 11 (1), 522. https://doi.org/10.1038/s41467- 
020-14411-z. 
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Rumpel, C., Kögel-Knabner, I., 2011. Deep soil organic matter—a key but poorly 
understood component of terrestrial C cycle. Plant Soil 338 (1–2), 143–158. https:// 
doi.org/10.1007/s11104-010-0391-5. 

L.F.T. Souza et al.                                                                                                                                                                                                                              

https://doi.org/10.1007/BF00333714
https://doi.org/10.1890/1051-0761(2000)010[0470:BCOVCA]2.0.CO;2
https://doi.org/10.1146/annurev-ecolsys-112414-054234
https://doi.org/10.1146/annurev-ecolsys-112414-054234
https://doi.org/10.1016/j.soilbio.2009.11.008
https://doi.org/10.1016/j.soilbio.2009.11.008
https://doi.org/10.1016/j.geoderma.2017.04.021
https://doi.org/10.1016/j.geoderma.2017.04.021
https://doi.org/10.1016/j.soilbio.2012.04.002
https://doi.org/10.1002/jpln.200700043
https://doi.org/10.1002/jpln.200700043
https://doi.org/10.1017/S1742170513000549
https://doi.org/10.1017/S1742170513000549
https://doi.org/10.1038/s41467-017-01406-6
https://doi.org/10.1660/062.119.0104
https://doi.org/10.1029/98GL00034
https://doi.org/10.1016/j.catena.2015.04.015
https://doi.org/10.1016/j.catena.2015.04.015
https://doi.org/10.1016/j.geoderma.2019.113898
https://doi.org/10.1016/j.geoderma.2019.113898
https://doi.org/10.1016/S0160-4120(02)00192-7
https://doi.org/10.1016/j.geoderma.2004.01.032
https://doi.org/10.1016/j.geoderma.2015.02.005
https://doi.org/10.1016/j.geoderma.2015.02.005
https://doi.org/10.1007/s11104-017-3423-6
https://doi.org/10.1002/2016WR018935
https://doi.org/10.1002/wat2.1495
https://doi.org/10.1002/wat2.1495
https://doi.org/10.1016/S0065-2113(05)88002-2
https://doi.org/10.1016/S0167-1987(02)00139-3
https://doi.org/10.1016/S0167-1987(02)00139-3
https://doi.org/10.1016/j.jhydrol.2020.125203
https://doi.org/10.1016/j.jhydrol.2020.125203
https://doi.org/10.1038/s41598-019-52665-w
https://doi.org/10.1016/j.geoderma.2019.04.041
https://doi.org/10.1016/j.geoderma.2019.04.041
https://doi.org/10.1016/j.agee.2010.08.006
https://doi.org/10.1016/j.agwat.2016.02.024
https://doi.org/10.1007/s10533-013-9949-7
https://doi.org/10.1007/s10533-013-9949-7
http://refhub.elsevier.com/S0016-7061(23)00246-X/h0415
http://refhub.elsevier.com/S0016-7061(23)00246-X/h0415
http://refhub.elsevier.com/S0016-7061(23)00246-X/h0415
https://doi.org/10.5194/bg-17-5025-2020
https://doi.org/10.1111/ejss.12475
https://doi.org/10.1071/SR05136
https://doi.org/10.2136/sssaj2007.0410
https://doi.org/10.2136/sssaj2007.0410
https://doi.org/10.1016/j.geoderma.2019.113945
https://doi.org/10.1073/pnas.0611508104
https://doi.org/10.1002/jgrg.20025
https://doi.org/10.1093/comjnl/7.4.308
http://refhub.elsevier.com/S0016-7061(23)00246-X/h0470
http://refhub.elsevier.com/S0016-7061(23)00246-X/h0470
http://refhub.elsevier.com/S0016-7061(23)00246-X/h0470
https://doi.org/10.1111/j.1365-2389.2009.01126.x
https://doi.org/10.1111/j.1365-2389.2009.01126.x
https://doi.org/10.1111/gcb.13850
https://doi.org/10.5194/bg-18-4755-2021
https://doi.org/10.1046/j.1365-2486.2000.00308.x
https://doi.org/10.1046/j.1365-2486.2000.00308.x
https://doi.org/10.1111/j.1469-8137.2011.04039.x
https://doi.org/10.1038/ngeo838
https://doi.org/10.1038/ngeo838
http://refhub.elsevier.com/S0016-7061(23)00246-X/h0515
http://refhub.elsevier.com/S0016-7061(23)00246-X/h0515
http://refhub.elsevier.com/S0016-7061(23)00246-X/h0515
https://doi.org/10.1002/joc.5858
https://doi.org/10.4141/cjss10066
https://doi.org/10.1007/s11104-004-0907-y
https://doi.org/10.1007/s11104-004-0907-y
https://doi.org/10.1016/S0016-7061(03)00094-6
https://doi.org/10.1016/S0016-7061(03)00094-6
https://doi.org/10.1002/jpln.201900320
https://doi.org/10.1002/jpln.201900320
https://doi.org/10.2136/sssaj2007.0149
https://doi.org/10.2136/sssaj2007.0149
https://doi.org/10.1007/s11104-010-0391-5
https://doi.org/10.1007/s11104-010-0391-5


Geoderma 437 (2023) 116569

19

Saxton, K.E., Rawls, W.J., 2006. Soil water characteristic estimates by texture and 
organic matter for hydrologic solutions. Soil Sci. Soc. Am. J. 70 (5), 1569–1578. 
https://doi.org/10.2136/sssaj2005.0117. 

Saxton, K.E., Rawls, W.J., Romberger, J.S., Papendick, R.I., 1986. Estimating generalized 
soil-water characteristics from texture. Soil Sci. Soc. Am. J. 50 (4), 1031–1036. 
https://doi.org/10.2136/sssaj1986.03615995005000040039x. 

Schenk, H.J., Jackson, R.B., 2002. Rooting depths, lateral root spreads and below- 
ground/above-ground allometries of plants in water-limited ecosystems. J. Ecol. 90 
(3), 480–494. https://doi.org/10.1046/j.1365-2745.2002.00682.x. 

Schjønning, P., de Jonge, L.W., Munkholm, L.J., Moldrup, P., Christensen, B.T., Olesen, J. 
E., 2012. Clay dispersibility and soil friability-testing the soil clay-to-carbon 
saturation concept. Vadose Zone J. 11 (1) https://doi.org/10.2136/vzj2011.0067. 

Schrumpf, M., Kaiser, K., Guggenberger, G., Persson, T., Kögel-Knabner, I., Schulze, E.- 
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