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Water molecules mute the dependence of the double-
layer potential profile on ionic strength

Aditya Limaye,∗a Dylan Suvlu,∗a and Adam P. Willarda

We present the results of molecular dynamics simulations of a nanoscale electrochemical cell. The
simulations include an aqueous electrolyte solution with varying ionic strength (i.e., concentrations
ranging from 0-4M) between a pair of metallic electrodes held at constant potential difference. We
analyze these simulations by computing the electrostatic potential profile of the electric double-
layer region and find it to be nearly independent of ionic concentration, in stark contrast to the
predictions of standard continuum-based theories. We attribute this lack of concentration dependence
to the molecular influences of water molecules at the electrode-solution interface. These influences
include the molecular manifestation of water’s dielectric response, which tends to drown out the
comparatively weak screening requirement of the ions. To support our analysis, we decompose
water’s interfacial response into three primary contributions: molecular layering, intrinsic (zero-field)
orientational polarization, and the dipolar dielectric response.

1 Introduction
The interface between an electrode and an electrolyte solution
can support persistent electric fields that serve to promote var-
ious modes of chemical reactivity.1–4 These fields reflect spatial
variations in the electrostatic potential that arise due to the ac-
cumulation of charge on the electrode surface and the associ-
ated screening response of the electrolyte solution.5–11 Certain
features of the interfacial potential profile can be systematically
modified, for example by changing the applied potential or the
chemical composition of the electrolyte solution.5,7,10,12 In this
manuscript, we study the effects of changing electrolyte concen-
tration on the interfacial potential profiles, specifically comparing
the predictions of continuum-level theory and all-atom molecular
dynamics (MD) simulation. We highlight that the potential profile
derived from MD simulation exhibits little apparent dependence
on ionic strength, in stark contrast to the predictions of the stan-
dard textbook theory of Gouy and Chapman.

We demonstrate that the source of this discrepancy is that the
continuum theory does not account for the molecular effects of
the solvent and its polarization response. Our simulation data re-
veals that these effects play a dominant role in shaping the inter-
facial potential profile. By analyzing the simulations of neat liq-
uid water between charged electrodes, we attempt to deconstruct
water’s various contributions to the interfacial potential profile.
These contributions include oscillations from molecular layering,
a symmetric potential drop between each electrode and the bulk
from the inherent orientational bias of water-metal interactions,
and a modified dielectric response due to excluded volume effects
at the electrode boundary.

It has long been appreciated that the performance of electro-
chemical systems can be systematically modified by the concen-
tration of ions in the supporting electrolyte. Since catalytic elec-
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trochemical reactions often proceed through surface intermedi-
ate species that reside in the electrochemical double layer (EDL),
tuning screening behavior in the EDL (e.g. by changing the ionic
strength of the solution) can meaningfully change electrochemi-
cal reaction rates and mechanisms. In the case of reactions with
outer-sphere mechanisms described by Marcus kinetics, theoreti-
cal,13,14 and experimental,15 work has demonstrated that the re-
organization energy (and hence reaction rate) is sensitive to the
screening length-scale set by the electrolyte ionic strength. For
inner-sphere electrochemical mechanisms, the effect of changing
the ionic strength on the reaction rate can be more difficult to
model, yet there are a number of experimental studies that have
experimentally characterized the effects of changes in electrolyte
composition and ionic strength on hydrogen evolution and CO2

reduction kinetics.16,17

Establishing the boundaries of validity for standard theories
and models, and identifying the molecular origins of their fail-
ures, is vital to our ability to advance the field of electrochemistry.
Here, we utilize MD simulation to explore water’s role in mediat-
ing the screening response of the aqueous interface. We compare
our results to the predictions of standard theories, which gener-
ally treat liquid water as a dielectric continuum. Since molecular
dynamics simulations fully represent the molecular structure, e.g.,
size, shape, and orientational correlation, they are well suited for
validating the assumptions that underlie common theories and
models. The manuscript is organized as follows. In the follow-
ing section, we review double-layer theory. Then, in Sec. 3, we
present results exploring the effects of changing ionic strength on
the electrostatic potential profile of the interface. In Sec. 4 we
evaluate the specific roles that water plays in mediating these ef-
fects and in shaping the potential profile more generally. Finally,
following a brief conclusion, we describe our theoretical and sim-
ulation methodology.
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2 Theoretical descriptions of the electric
double-layer

The region of excess electrolyte concentration that builds up at
an electrode interface is commonly known as the electric double-
layer (EDL).7–9 Theoretical descriptions of EDL structure and its
role in screening phenomena have a rich history. Helmholtz and
Perrin advanced the first mathematical model for the EDL, and
assumed that the electrode surface charge was perfectly neutral-
ized by a flat plane of ions residing at the “outer Helmholtz plane”
(OHP), separated from the electrode by a distance ℓOHP.18–20 Un-
der this assumption, as illustrated in Fig. 1a, the EDL is a micro-
scopic parallel-plate capacitor, with a constant electric field be-
tween the electrode and the OHP, and no variation in the poten-
tial from the OHP onwards. This EDL theory of Helmholtz and
Perrin offers important physical insight into the role of ions in
screening fields originating from electrodes, but has significant
limitations.

The complete screening layer of Helmholtz and Perrin is en-
tropically unfavorable and therefore not stable under standard
thermal conditions. Entropic effects cause the screening layer to
spread, broadening the width of the EDL. Physically reasonable
electrostatic screening configurations therefore feature a diffuse
cloud of neutralizing ionic density. An elementary description of
potential variations in the EDL that accounts for such entropic
effects originates from the Poisson-Boltzmann equation,21,22

∇
2
ϕ =

c0 · e
ε · ε0

∑
i

qi exp [−βeqiϕ] , (1)

where ϕ is the electrostatic potential, c0 is the bulk ion concen-
tration, e is the fundamental charge, 1/β = kBT is the Boltzmann
constant times temperature, and ε and ε0 are the continuum
dielectric permittivity and the vacuum permittivity, respectively.
The summation runs over all ionic components of the solution,
indexed by i, where qi represents the charge number of the ion
(e.g. qi =+1 for a monovalent cation like Na+).

For conditions of dilute ionic configurations, this equation can
be simplified by linearizing the exponential term in Eq. (1) and
leveraging the fact that the salt formula is electroneutral (i.e.
∑i qi = 0). The resultant mathematical description predicts an ex-
ponentially decaying electrostatic potential,

ϕ(z) =Vexte−z/λD , (2)

where z is the separation from the electrode interface, Vext is the
applied potential, and λD ∝ 1/

√
cion is the Debye screening length

of the electrolyte solution.

Gouy-Chapmann (GC) theory,21,22 as described in Eq. (2), is
applied widely when considering screening phenomena in the
EDL, especially when they are of relevance to interpreting the
results of electrochemical experiments. GC theory is particu-
larly attractive because it advances the same simple physical pic-
ture as Debye-Hückel (DH) theory,23 i.e., that a single tagged
charge is surrounded by a diffuse neutralizing “cloud” of mo-
bile ionic counter-charges. A single characteristic length scale
emerges in both GC and DH, which is the so-called Debye length,

z

A B C
φ(z) φ(z) φ(z)

zzℓOHP ℓOHP

λD

Fig. 1 Schematic electrical potential profiles in the EDL predicted by
(A) Helmholtz-Perrin theory, (B) GC theory, and (C) GC theory with the
Stern correction, where the dashed section represents the linear decay in
the Stern layer.

λD. While physically intuitive, the theory for potential decay pre-
sented in Eq. (2) involves a number of strong assumptions, many
of which may be violated in electrochemically-relevant electrolyte
systems.7,8,24,25

First, GC theory assumes that the ions in the electrolyte can
be modeled as point charges that occupy no volume. Second,
GC theory assumes that the solvent environment can be accu-
rately represented by a dielectric continuum with single dielec-
tric permittivity, ε, neglecting both the finite size of solvent
molecules, as well as possible correlations between their posi-
tions and orientations.7,26 While these assumptions may be ac-
curate in some cases, they can result in qualitatively inaccurate
predictions on the length scale that characterizes the EDL. For ex-
ample, in 1M monovalent aqueous electrolyte, the Debye length
λD = 3 Å, which is comparable to the hydrated radius of a sin-
gle solvated ion; at this scale, the intuitive physical picture of
a diffuse ionic charge screening cloud of width λD becomes un-
tenable.24,26 Additionally, GC theory does not model the strong
molecular interactions between a planar electrode surface and
solvent dipoles, which have been shown to exhibit strong orien-
tational preferences within a few molecular layers of an electrode
surface.25,27,28

Some of the issues associated with the second assumption are
remedied by the so-called Stern correction, which posits that
there is a molecular layer (the “Stern layer”) of specifically ad-
sorbed ions, at the electrode surface.8,29 Including the Stern cor-
rection in the theory developed in Eq. (2) results in an electro-
static potential profile that decays linearly in the Stern layer, and
then exponentially out to the bulk. Figure 1C depicts schematic
descriptions of potential decay as described by each of the theo-
ries discussed.

3 Dependence of the interfacial potential
profile on ionic concentration

We study electrostatic screening in the EDL using molecular dy-
namics (MD) simulations of aqueous NaCl electrolytes at vari-
ous different concentrations, confined between two Pt electrodes.
Figure 2A depicts a representative snapshot of the molecular sim-
ulation cell, with the z axis oriented normal to the planar elec-
trode surface. In our simulation model, the electrodes are held
at constant potential, as if they were connected to an external
potentiostat. To accomplish this, we use the fluctuating charges
method originally developed by Siepmann and Sprik, and later
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Fig. 2 Poisson potential computations from molecular dynamics simulations. (A) Representative snapshot of a molecular dynamics simulation cell,
depicting an aqueous 1M NaCl electrolyte between two Pt electrodes. The left electrode is the cathode (held at VL =−0.5 V), and the right electrode
is the anode (held at VR = +0.5 V). By convention, the z axis runs perpendicular to the electrode surfaces. (B) Traces of the equilibrium-averaged,
plane-averaged Poisson potential ϕ(z), estimated from molecular dynamics simulations run at various electrolyte salt concentrations. (C) Traces of
ϕ(z) zoomed in on the cathode and anode, highlighting oscillatory and concentration independent short distance screening behavior.

extended by Reed and Madden.30–32 In this method, the partial
charges on the electrode atoms are adjusted between each MD
timestep in order to maintain a constant potential difference be-
tween the two electrodes. For the simulations presented in this
section, the left electrode is held at a potential of VL =−Vext and
the right electrode is held at VR = Vext, where Vext = 0.5V, thus
imposing an overall potential difference of ∆V = 1 V between the
two electrodes.

The simulation box has dimensions 3.1nm×3.1nm×9.3nm, and
is periodically replicated in the directions lateral to the electrode
surface. Previous studies have shown that the local dielectric con-
stant of water approaches the bulk value within 35 Åof an inter-
face.33 With a wall separation of 80 Åour simulation cell is large
enough to host two non-overlapping EDLs at each of the elec-
trodes, with a well-formed bulk in the central region. The number
of water molecules and ions in the simulation cell vary with elec-
trolyte concentration and are presented in Table 1 in the Methods
section. The intermolecular potential, or “force field” describing
the water molecules is the standard TIP3P force field,34 whereas
the ion and Pt atom interaction parameters are taken from stud-
ies reported in the literature35,36. These parameters were cho-
sen due to the excellent correlation of calculated and experimen-
tal ion hydration properties for this particular force field.36 Ion
solvation properties are known to play an important role in ion
distribution preferences at interfaces.10,37 The results presented
here depend on the details of the intermolecular interaction po-
tentials, but the qualitative screening structures reported should
be broadly conserved between force fields.

Our primary basis of comparison between continuum theory
and atomistic simulation is the average electrostatic potential pro-
file, i.e., the Poisson potential, ϕ. In this work, we represent this

profile as an average over an equilibrium ensemble of single snap-
shot potentials. Specifically, we define the mean Poisson potential
as,

ϕ(x,y,z) =
1
N

N

∑
i=1

ϕ̃i(x,y,z), (3)

where ϕ̃i(x,y,z) is an instantaneous representation of the Poisson
potential for the ith MD snapshot. Computing ϕ̃i(x,y,z) for a sin-
gle configuration of a point-charge species requires first defin-
ing a spatially continuous charge density profile, ρ̃i(x,y,z), on a
regular lattice. We accomplish this with a proportional charge
spreading scheme, which interpolates the charges on atomic cen-
ters to nearby points on the regular lattice. The details of this
charge-spreading scheme are described in the Methods section.
After defining ρ̃i, we compute ϕ̃i from the Poisson equation,
∇2ϕ̃i =−ρ̃i/ε0.

The averages presented below are derived from equilibrated
simulations of 10ns with snapshots taken every 100ps (i.e., N =

100). We define the one-dimensional potential profile as,

ϕ̄(z)≡ 1
Lx ·Ly

∫ Lx

0

∫ Ly

0
dxdy ϕ(x,y,z), (4)

where Lx and Ly are the length of the electrolyte region in the x
and y directions, respectively. Defining the potential in this way
enables straightforward comparison to the one-dimensional pro-
files predicted from continuum theory and admits the analysis of
microscopic potential fluctuations via the statistics of ϕ̃(x,y,z).

Figure 2B depicts traces of the plane-averaged Poisson poten-
tial for several different electrolyte ion concentrations. The thin
black lines represent the approximate planes of constant potential
imposed in the MD simulation, where the voltages are pinned at
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Fig. 3 Signatures of ionic and dipolar screening behavior. (A) Traces of the normalized screening function, S(z)/S(0) at various electrolyte concen-
trations, reflecting concentration dependent ionic screening behavior. (B) Traces of the local concentration of water molecules (solid lines) and Na+

cations (dashed lines), normalized by their respective bulk concentrations, at various electrolyte concentrations. (C) Empirical screening length, λ

derived by fitting S̄(z)/S̄(0) to a decay function exp(−(z−8)/λ ). The Gouy-Chapman prediction, where λ = λD, is plotted as a solid black line.

VL = −0.5V and VR = +0.5 V. It is apparent that the electrostatic
screening structure is well-established over the course of the sim-
ulations, with two distinct EDL regions confined within 10-15 Å of
the electrode surfaces, and a bulk region with a flat electrostatic
potential profile, thus indicating the absence of static fields from
the electrodes. Figure 2C shows zoomed-in snapshots of the EDLs
at the left and right electrodes, highlighting the electrostatic po-
tential variation in these regions. Although the plane-averaged
potential profiles exhibit electrostatic potential decay from the
electrode surface to the bulk, in line with continuum descrip-
tions of electrostatic screening, they are strikingly dissimilar from
the profiles depicted in Fig. 1. First, the profiles are markedly
non-monotonic, exhibiting relatively large oscillations in the local
electrostatic potential on the scale of Vext. Second, and perhaps
most strikingly, the electrostatic potential profiles show little vari-
ation over the entire range of ion concentrations studied here,
instead of becoming more compact at higher concentrations, as
predicted by GC theory.

The marked deviations from GC behavior in Fig. 2 raises the
question: in what manner does GC-like screening manifest in the
atomistic system, if at all? To answer this question, we attempt to
separate the contributions of ions and water molecules to inter-
facial screening. We accomplish this by analyzing the screening
profile of ions only, via the construction of the ionic screening func-
tion, which for the left EDL is defined as,

SL(z) = Q(elec)
L +

∫ zL+z

zL

dz′ρ̄ion(z
′), (5)

where zL denotes the position of the left electrode, and ρ̄ion(z) is
the xy-plane-averaged ionic charge density, obtained by restricting
the proportional spreading procedure (described in Sec. 6) only
to the atom-centered charges on the ionic species, and neglect-
ing the charges of the solvent molecules entirely. The screening
function for the right electrode is defined analogously to that of
Eq. 5 but with an integral extending from zR to zR − z. Intuitively,
the screening function S(z) tallies the amount of electrode charge
that remains unscreened by the mobile ionic charges of a given
distance into the bulk; it takes the value Q(elec) at the electrode
surface (z= 0), and levels off upon reaching the bulk region of the

simulation cell. We observe that S(z) ≈ 0 for values of z beyond
the EDL width.

Figure 3A depicts traces of the normalized ionic screening func-
tion S̄(z)≡ SL(z)/SL(0) for various different ionic concentrations.
According to GC screening theory, this normalized screening func-
tion should decay from unity to zero in an exponential manner,
with associated length scale λD, the Debye length. The profiles in
Fig. 3A show signatures of the GC screening behavior; the profiles
are more diffuse at lower salt concentrations, and analysis of the
length scale by exponential fitting, as illustrated in Fig. 3C, shows
that the decay length is roughly λD for each ion concentration.

Although the ionic statistics are in line with expectations from
GC theory, the molecular dynamics simulations provide ample
evidence that the solvent molecules play an important role in
electrostatic screening. Figure 3B shows traces of the bulk-
normalized concentration of water molecules (solid lines) and
sodium cations (dashed lines) in the simulation for the differ-
ent ionic concentrations examined. At these concentrations, the
first density peak of the water molecules appears closer to the left
electrode than the first density peak of the cations. Additionally,
the height of the peak, normalized to the bulk density of water,
is roughly independent of the ion concentration, indicating that
the water molecules are able to screen the electrode charge at
distances closer than the typical cation approaches the electrode.

4 Deconstructing water’s influence on the in-
terfacial potential profile

In continuum theories, such as those based on the seminal work
of Debye and Hückel,23 the role of solvent in determining the
electrostatic potential profile is reduced to that of a simple dielec-
tric medium.7,8 Any notable variations in the shape of the po-
tential are thus attributed to the spatial redistribution of mobile
charge carriers. The results in the previous section reveal that
water plays a more significant role than ions do in shaping the
potential profile within the EDL. To isolate this role, we consider
simulations of neat water confined between two electrodes under
varying applied potential.

The neat water simulations utilize a similar simulation size
and setup to the system presented in Sec. 3, but use the SPC/E
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force field for water and electrode atom force field parameters
for graphite rather than platinum, while still maintaining con-
stant potential in the same way. The SPC/E force field was used
because it provides a dielectric constant closer to experiment than
TIP3P. The switch to graphite was motivated by the observa-
tion that water chemisorbs onto platinum at positive potentials
as demonstrated by ab-initio simulations.38,39 Water chemisorp-
tion is expected to influence the quantitative details of the in-
terfacial potential profile, and this feature can not be captured
with classical force fields. However, water does not chemisorb
onto graphene at the potentials used in our simulations.40 There-
fore, we expect our simulations will at least qualitatively capture
the reorientation of interfacial water, which is expected to con-
tribute to the inner-layer capacitance of the interface.41 We car-
ried out simulations with the electrodes held at constant poten-
tials of Vext = 0.00,0.25,0.50, and 1.00V, imposing an overall po-
tential difference of ∆V = 0.00,0.50,1.00, and 2.00V. Additional
details are provided in the Methods section. Again, we analyze
these simulations by computing the mean Poisson potential pro-
file, ϕ(z).

The potential profile computed for unbiased conditions, i.e.,
Vext = 0, is plotted in Fig. 4A. This potential profile exhibits os-
cillations near the electrode, similar to those appearing in Fig. 2.
The bulk potential for neat water at Vext = 0 is flat with a value of
ϕbulk ≈ −0.55V. We note that this interfacial potential drop and
the oscillations are not accounted for in the treatment of water as
a simple dielectric continuum.

A potential profile computed under a 2V bias (Vext = 1V ) is plot-
ted in Fig. 4B. This profile exhibits similar features to those of the
unbiased profile with the addition of a finite slope in the bulk.
This slope implies the presence of a static electric field, thereby
indicating incomplete screening of the applied electrode potential
by water, as expected for a neutral solvent. This partial screening
is reminiscent of the effect of a uniform dielectric on the field be-
tween a parallel-plate capacitor, as we discuss further in Sec. 4.3.
However, the observed slope in the potential differs from the ex-
pectations of dielectric continuum theory.

Taken together, the potential profiles plotted in Fig. 4 reveal
three primary contributions that water makes in shaping the
interfacial potential profile. These contributions are: (1) Pro-
nounced oscillations over molecular length scales, (2) A roughly
0.5V drop in potential over the first 1nm of the interface at both
electrodes, leading to a bulk-level potential that is not at the mid-
point of the electrode potentials, (3) a reduction in the electric
field within the bulk under applied electrode potential. In the
following subsection, we discuss the molecular origins of each of
these contributions and how they relate to the dielectric proper-
ties of the water-electrode interface.

4.1 Molecular scale oscillations in the interfacial po-
tential profile

Both ab-initio and classical molecular dynamics simulations have
revealed molecular scale oscillations in the electrostatic poten-
tial profile of solid-liquid interfaces.6,27,42 These oscillations are
attributed to the consequences of molecular layering at the elec-

A

B

Fig. 4 The potential profiles for neat water with and without ap-
plied potential. (A) The Poisson potential, ϕ(z), for neat liquid wa-
ter between neutral electrodes (Vext = 0). The calculated bulk potential,
ϕbulk ≈−0.55V . (B) Poisson potential for neat water with an applied elec-
trode potential difference of 2V (Vext = 1V ). The bulk electric field, Ebulk,
is the slope of the calculated potential (black line) evaluated with the
bulk region. For reference, schematic potentials with slopes E0 = Vext/L
and E0/εw are plotted in blue and green, respectively.
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trode surface, which serves to break translational symmetry. An
increased density (relative to the bulk) of water molecules at the
contact plane of the electrode exclude the adjacent plane, result-
ing in a subsequent decrease in density. This phenomenon, which
has an analog in the oscillation of a radial distribution function,
results in the emergence of well-defined hydration layers, as illus-
trated in Fig. 5.

The oscillating water density profile leads to a similarly oscil-
lating charge density field. When subject to the Poisson equa-
tion, this oscillating charge profile naturally results in an oscil-
lating potential profile. The length scale of oscillation is deter-
mined by the molecular size and can be modeled with classical
density functional theory.43 Oscillations like this, but persisting
well beyond λD, emerge in ionic liquids.12 Since these oscilla-
tions have been previously well studied using MD simulation, we
refrain from elaborating on them further herein.

4.2 Water’s interfacial potential drop
One striking feature of the unbiased potential profile plotted in
Fig. 4 is the potential drop between the neutral electrodes and
the bulk liquid. This potential drop is also evident in the bi-
ased system plotted in Fig. 4B and in the aqueous electrolyte
systems plotted in Fig. 2. Analysis of molecular dynamics simula-
tion data reveals that this effect originates from anisotropy in the
orientations of water molecules in the first hydration layer. This
anisotropy is intrinsic to the water-electrode interactions and thus
symmetric between the left and right electrodes. The anisotropy
is apparent in the distribution of molecular orientations plotted in
Fig. 5, which reveals a preference for interfacial water molecules
to direct their hydrogens toward the electrode (away from the
bulk). This orientation prevails because it provides favorable im-
age charge interactions for the partial positive charges of the hy-
drogen atoms.

The orientational bias of interfacial water molecules leads to a
charge density wave that is net charge neutral, as illustrated in
Fig. 5. According to the Poisson equation, a neutral density wave
of this form (negative charge oriented toward increasing z) yields
a finite potential drop. At the opposite electrode, this charge den-
sity wave is mirrored leading to an equal and opposite potential
rise. The quantitative details of this effect depend sensitively on
the water-metal interactions as well as the distribution of charge
within the water molecule. The magnitude of this effect is thus
expected to depend sensitively on the choice of force field and on
the simulation conditions.

To understand this effect, we consider a simple model of dipo-
lar solvent polarization at constant potential boundaries. This
model includes a one-dimensional charge density profile extend-
ing along the z coordinate, as illustrated in Fig. 6. The charge den-
sity profile is described on a lattice with lattice spacing ℓ, repre-
senting the approximate radius of a water molecule. Under unbi-
ased conditions with neat water, both the electrodes and bulk liq-
uid have charge densities of ρ = 0. We model the charge density
wave associated with solvent polarization with a discrete charge
density wave, ρ(−L)= ρw and ρ(−L+1)=−ρw, with a symmetric
contribution at the other electrode, ρ(L)= ρw and ρ(L−1)=−ρw.

Fig. 5 (A,B) The orientational distribution function for the angle, θ ,
made between the water dipole vector and the electrode surface normal,
as illustrated schematically above. The differently shaded lines corre-
spond to populations of water molecules a given distance, ∆z, from the
electrode surface. The dashed grey line is the distribution corresponding
to bulk water. (C,D) The charge density profile is computed for the pop-
ulation of water molecules at the interface of the electrode. Blue and
red lines correspond to charge densities at Vext = 0.0V and Vext = 1.0V,
respectively. Snapshots of the interface over the same horizontal axis
scale are included to establish a sense of molecular lengths.

The potential profile that results from the lattice charge den-
sity wave is plotted in Fig. 6B. The potential profile of this lattice
charge density is sigmoidal, becoming constant at z = 2ℓ with a
bulk potential value of ϕbulk = −ρwℓ

2/ε0. Taking ℓ = 2.3, the po-
larization density required to achieve a value of ϕbulk =−0.55V is
ρw = 0.57e/nm3.

If the inherent orientation of water molecules at the interface is
inverted, i.e., with hydrogen atoms pointed away from the elec-
trode, then the resulting charge density wave results in a bulk
potential that has a higher value than that of the neutral elec-
trode.

4.3 Partial screening of external electric fields within
the bulk

A dielectric medium, such as liquid water, has the general effect
of reducing the strength of electric fields originating externally,
such as from extended charged surfaces, or internally, such as
from charge solutes. If a medium with dielectric constant ε is
exposed to an external electric field of magnitude E0, then the
field within the bulk medium is Ebulk = E0/ε. Liquid water has
a large dielectric constant, εw ≈ 80, owing to its large molecular
dipole and can thus significantly reduce the strength of external
fields.

However, when liquid water is located between parallel elec-
trodes held at constant potential, the dielectric effect simultane-
ously amplifies and reduces the fields originating from the elec-
trode. The reduction arises due to the polarization of solvent
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A

B φ(z)
0

0

ρ(z)
ρw

−ρw
2ℓ

−ρwℓ2

ϵ0

Fig. 6 A schematic model of the influence of a symmetric charge wave
on the electrostatic potential profile. (A) A piecewise representation of
a water-like interfacial charge wave localized within 2ℓ of the interface.
(B) The Poisson potential arising from the density profile in (A) has a
systematic drop in the bulk, analogous to that observed in the analysis
of atomistic simulations.

0

0.01
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Ebulk
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Fig. 7 A plot of the electric field in the bulk liquid at different values
of the applied electrode potential ∆V = 2Vext. The plot also includes an
indication of the predictions from dielectric continuum theory between
surfaces of fixed potential, E0, and fixed charge, E0/εw.

dipoles and the amplification arises due to the concomitant charg-
ing of the electrodes in order to maintain their potential. For a
uniform dielectric continuum, these effects exactly cancel, yield-
ing no net reduction in the bulk electric field. To maintain this,
the electrode charge density qel = εq0, where q0 is the charge den-
sity required to maintain potential in vacuum (ε = 1).

The electric fields in our simulations of neat water under con-
stant potential bias are lower than expectations based on con-
stant potential dielectric continuum, yet higher than expectations
based on constant charge parallel plate capacitors. This is illus-
trated in Fig. 4. Figure 7 contains a plot of Ebulk vs. applied poten-
tial, indicating that the partial screening of the external electrode
fields is a linear function of applied potential.

Analysis of our MD simulation data indicates the influence of
liquid water on the electrode charge density is similar that of a
standard dielectric medium, yet not identical to that of a homo-
geneous dielectric continuum. The presence of water results in
an amplification of electrode charge density relative to the case
where the electrodes are separated by a vacuum, and the strength

of the electric field from this amplification is significantly reduced
in the bulk relative to that of bare electrodes. However, the
strength of each of these effects implies a different value of the
dielectric constant. Furthermore, neither effect is consistent with
the dielectric constant of this model of liquid water.

The partial screening of the electric fields from the electrodes
can be quantified in terms of an effective dielectric constant, ε

(E)
eff ,

which is defined in relation to the slopes of the potential originat-
ing from the bare electrodes and the potential within bulk liquid.
Specifically, Ebulk = Eel/ε

(E)
eff , where Eel = qel/ε0 is the field origi-

nating from an infinite plate with surface charge density qel and
Ebulk is the slope of ϕ(z) within the bulk, as indicated in Fig. ??.
The values we compute for this effective dielectric constant is
ε
(E)
eff ≈ 60, and roughly independent of applied potential. Specif-

ically, ε
(E)
eff = 59.8 when ∆Vext = 0.5, ε

(E)
eff = 61.5 when ∆Vext = 1.0,

and ε
(E)
eff = 60.1 when ∆Vext = 2.0. This effective dielectric constant

is similar in magnitude to that reported in the literature for this
water model, εSPC/E = 7344.

The amplification of electrode charge due to water can be quan-
tified in terms of a different effective dielectric constant, ε

(q)
eff ,

which is defined in relation to the charge density of the electrodes
separated by liquid water and separated by vacuum. Specifically,
qel = ε

(q)
eff q0, where q0 is the charge density to maintain the poten-

tial in vacuum. The values we compute for this effective dielectric
constant is ε

(q)
eff ≈ 24, and also roughly independent of applied po-

tential. Specifically, ε
(q)
eff = 24.4 when ∆Vext = 0.5, ε

(q)
eff = 24.3 when

∆Vext = 1.0, and ε
(q)
eff = 23.4 when ∆Vext = 2.0. This effective dielec-

tric is significantly smaller than that of the liquid.

We assert that these seemingly incommensurate observations
arise from deviations from dielectric continuum theory due to
molecular effects at the water interface. As a dielectric contin-
uum, water is assumed to be spatially uniform and everywhere
charge neutral. Both of these assumptions break down at the
charged electrode-water interface. Excluded volume effects limit
the plane of closest approach for water molecules and orienta-
tional anisotropy due to the external electric field leading to nar-
row planes of charge buildup with equal magnitude and opposite
sign at either electrode. Figure 8A illustrates the concept and
Fig. 8B demonstrates that there is indeed a positive net charge
buildup at the negative electrode. There is an analogous nega-
tive buildup at the positive electrode. The position of this charge
plane is displaced from the electrode surface by a finite distance,
ℓ= 2.3, and its magnitude scales with Vext.

This physical picture implies a simple one-dimensional model
of the charge density field of an electrochemical cell with two op-
posing polar solvent-electrode interfaces, as illustrated in Fig. 9.
In this model, one electrode is located at position z =−L and held
at potential V = −Vext and the other electrode is located at posi-
tion z = L and held at potential V =+Vext. The charge density of
the electrodes are represented by Gaussian distributions centered
at z =−L and z = L:

ρel(z) =
1√

2πσ2

(
−qele

−(z+L)2/2σ 2
+qele

−(z−L)2/2σ 2
)
, (6)

and the water polarization layers are represented by similar dis-
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Fig. 8 (A) A schematic depiction of an interface between an electrode
and a neutral dipolar liquid. In the top half and bottom half of the
schematic, the net dipole orientation is rendered as arrows and partial
charges, respectively. At a negative electrode surface, the orientation of
the first hydration layer results in a narrow plane of net positive charge at
the interface, subsequent planes of alternating charge cancel out due as
the degree of molecular layering diminishes. (B) Charge density profiles
derived from simulation data of neat water at the left electrode with
potential −1V . Purple and cyan lines indicate the normalized charge
density contributions of electrode atoms ρel(z) and water molecules, ρw(z)
respectively. The blue line represents the cumulative water charge density,
ρ∗

w(z) =
∫ z

0 ρw(z)dz, illustrating that at the negative electrode, there is a
positive net charge from water. There is an equal and opposite net
positive charge at the adjacent positive electrode (not plotted). We
denote the distance, ℓ between the first peaks of ρel and ρwfirst positive
peak of the water, which contributes to the effective dielectric response
of the water-electrode interface.

A

B φ(z)

0

0

ρ(z)
δq

−qel

ℓ

−Vext

Vext

z

L−L

ℓ

Fig. 9 A model for understanding the interfacial dielectric response of
a polar liquid at constant potential boundaries. (A) A depiction of the
charge density field which combines the electrode surface charge, with
amplitude qel and the water polarization surface charge, with amplitude
δq. (B) The potential profile derived from the Poisson equation in the
limit that the Gaussian distributions narrow to delta functions. The slope
of the potential in the bulk region is that of a parallel plate capacitor with
charge density ρel −δρ.

tributions displaced into the bulk by a distance ℓ,

ρw(z) =
1√

2πσ2

(
−δqe−(x+(L−ℓ))2/2σ 2

+δqe−(x−(L−ℓ))2/2σ 2
)
, (7)

where σ is atomic in scale. The full charge density field is given
by a sum of these two contributions,

ρ(z) = ρel(z)+ρw(z), (8)

as illustrated in Fig. 9. The value of qel is determined by the
constant potential condition that ϕ(L)− ϕ(−L) = 2Vext and the
value of δq determines water’s interfacial dielectric response.

The potential differences between the electrode and the center
of the bulk can be computed directly from the Poisson equation.
In this model, by construction, ϕ(0)−ϕ(−L) = ϕ(L)−ϕ(0) =Vext.
In the limit that the Gaussian distributions are infinitely narrow,
this expression is simply,

ϕ(0)−ϕ(−L) = L′(qel −δq)+ ℓ′δq =Vext, (9)

where L′ = L/ε0 and ℓ′ = ℓ/ε0. The ℓ→ 0 limit of this expression
corresponds to the standard dielectric continuum picture. In this
limit, qel −δq =Vext/L′ = E0. Noting that E0 = q0/ε0 = ε−1qel/ε0,
we see that δq = qel(1− ε−1).

The deviations from dielectric continuum theory that we high-
lighted above (i.e. that ε

(E)
eff ≈ 60 and ε

(q)
eff ≈ 24) arise from the

case where ℓ ̸= 0. In this case, Eq. 9 can be manipulated to yield,

δq = qel

(
1+

ℓ

L− ℓ

)(
1− 1

ε
(q)
eff

)
≡ αqel, (10)

thus indicating that the degree of interfacial solvent polarization
is directly proportional to that of the electrode. The proportion-
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ality constant, α, depends on ℓ, L, and the effective dielectric
constant, ε

(q)
eff .

Equation 10 provides a basis for understanding the unexpect-
edly low value of ε

(q)
eff = 24. We note that δq is related to wa-

ter’s bulk dielectric constant via a simple parallel plate capacitor
model,

(qel −δq) =
1

εw
qel, (11)

where εw is water’s bulk dielectric constant. Substituting δq from
this expression into Eq. 9 yields,(

1− 1

ε
(q)
eff

)
=

(
1− 1

εw

)(
1− ℓ

L

)
. (12)

This expression reveals that the relationship between ε
(q)
eff and εw

is mediated by the ratio ℓ/L, with ε
(q)
eff = εw in the ℓ → 0 limit.

In our system, where L = 8nm, εw = 73, and ε
(q)
eff = 24, we find

ℓ≈ 2.3, which is consistent with the results plotted in Fig. 8.

The physical picture that this model advances is like that of
the Stern layer. Some fraction of the applied potential drops due
to water’s interfacial dielectric response in the ℓ-wide region be-
tween the electrode and the first solvent plane. The magnitude
of this drop is effectively equal to δV = ϕ(−L)−ϕ(−(L− ℓ)) ≈
qelℓ/ε0. The remaining potential drop, ∆VGC = Vext − δV , is thus
what remains to be screened by the migration of ions (e.g., fol-
lowing Gouy-Chapman theory). In a pure water system, this
quantity is,

∆VGC =Vext

(
1− ε

(q)
eff

ℓ

L

)
. (13)

This expression has the feature that for a macroscopic system, i.e.,
ℓ≪ L, ∆VGC =Vext. In other words, δV → 0 as ℓ/L → 0.

4.4 The role of ions in amplifying water’s interfacial
dielectric response

The implication of the above analysis is that the interfacial poten-
tial drop due to water (i.e., δV ) is only appreciable in nanoscale
systems. This conclusion is specific to a pure solvent system,
where there are no mobile charge carriers to participate in screen-
ing. In this case, any unscreened potential drop (e.g., ∆VGC),
must extend across the entire length of the system. Potentials
dropped over macroscopic length scales require only small elec-
trode charges. In reality, neat water contains dilute concentra-
tions of “water ion”, i.e., H3O+ and OH−, that can contribute to
attenuating potential drops to microscopic scales (λD ∼ 1µ in wa-
ter at neutral pH). When this is the case, the analysis above must
be adjusted to account for the influence of ionic screening. As-
suming the first hydration layer excludes ions (so Gouy-Chapman-
like screening occurs at the left electrode starting from z=−L+ℓ)
and that the potential is fully attenuated over the distance (ℓ+λ ),
ϕ(−(L−(ℓ+λ )))−ϕ(−L) = ϕ(L)−ϕ(L−(ℓ+λ )) =Vext, and thus
ϕ(L− (ℓ+λ ))−ϕ(−(L− (ℓ+λ ))) = 0. Equation 9 can thus be
revised as,

λ
′(qel −δq)+ ℓ′δq =Vext. (14)

where λ ′ = λ/ε0. It can be shown that with ionic screening, qel =

ε0Vext/λ , whereas without ionic screening qel = ε0Vext/(εL). With
this expression, the interfacial potential drop, δV =Vext(ℓ/(ℓ+λ ))

and likewise,

∆VGC =Vext

(
1− ℓ

(ℓ+λ )

)
, (15)

implying that the amount of potential that must be screened by
ions is a decreasing function of ionic strength (increasing function
of λ). If ℓ= 2.3, then according to this expression, ∆VGC ≈ 0.63Vext

for a 0.6M solution (λD = 3.96) and ∆VGC ≈ 0.52Vext for a 1.5M
solution (λD = 2.47).

5 Conclusions
The predictions of Gouy-Chapman theory are based on the as-
sumption that water is a homogeneous dielectric continuum. In
this manuscript, we have used all-atom molecular dynamics sim-
ulation to demonstrate that this assumption breaks down in mul-
tiple important ways. Water molecules take up physical space
which leads to the appearance of molecular layering at solid-
liquid interfaces and an associated displacement of the solvent
polarization layer away from the electrode into the bulk. In
addition, the molecular orientations of water molecules at the
interface are anisotropic, owing to the specific details of non-
spherically symmetric water-metal interactions. Together, these
effects play a dominant role in shaping the interfacial potential
profile, thus obscuring the comparatively minor effects of classi-
cal Debye-Hückel-like ionic screening.

6 Methods

6.1 Simulation details for systems with varying ionic
concentration

Simulations at varying concentrations included the number of
ions and water molecules indicated in the Table below.

Concentration [M] Nwater NNaCl

0.6 2557 28
0.8 2548 37
1.1 2536 51
1.5 2512 73
2.3 2464 113
4.1 2344 202

Table 1 Number of atoms contained in each simulation at the specified
concentrations.

6.2 Simulation details for neat water systems
The dimensions of the simulation cell were 2.8nm × 2.9nm ×
9.3nm. Water was modeled with the SPC/E water model45 and
the number of water molecules was 2042. The charges on the
electrode atoms were allowed to fluctuate to maintain constant
potential with the ELECTRODE package46 in LAMMPS 47. For
each Vext = 0.00,0.25,0.50, and 1.00 V, we generated 100 trajecto-
ries each 1 ns in length. From each of these trajectories, the last
0.8 ns were used for data analysis. This provided an aggregate
total of 80 ns of simulation data for each Vext.
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6.3 Computational Details for Poisson Potential Com-
putation

Given a molecular simulation trajectory, we would like to devise a
numerical scheme to determine the Poisson potential at any point
in the simulation volume. The Poisson potential ϕ is defined by
the Poisson equation,

∇
2
ϕ =−ρ, (16)

where ρ is the free charge density field. The geometry under
consideration has two periodic dimensions, denoted x and y, and
one closed dimension z, which is the coordinate normal to the
planar electrodes. The appropriate boundary conditions are,

ϕ(0,y,z) = ϕ(Lx,y,z) (17)

ϕ(x,0,z) = ϕ(x,Ly,z) (18)

∂xϕ(0,y,z) = ∂xϕ(Lx,y,z) (19)

∂yϕ(x,0,z) = ∂yϕ(x,Ly,z) (20)

ϕ(x,y,0) =Vleft (21)

ϕ(x,y,Lz) =Vright, (22)

where Vleft and Vright are the applied potentials on the left and
right electrodes, situated at z = 0 and z = Lz, respectively.

To start developing a numerical scheme, we can discretize Eq.
(16) on a three-dimensional rectangular grid. Given a specifica-
tion of the number of grid points N = (Nx,Ny,Nz), we can define

a vector of grid spacings ∆ ≡
(

N−1
x ,N−1

y , [Nz +1]−1
)

. Note that

the z-coordinate has a slightly different grid spacing because we
would like to impose Dirichlet boundary conditions in this coor-
dinate, requiring an extra boundary point. Now, grid points can
be indexed by an index tuple n ∈ {0, . . . ,Nx −1}×{0, . . . ,Ny −1}×
{0, . . . ,Nz}. The spatial location of a grid point with index tuple n
is simply rn = ∆ ·n. Equation (16) can be naturally discretized us-
ing a second-order Laplacian stencil. Under a row-major indexing
scheme for the coordinates, this produces a sparse representation
of the Laplacian operator.

Solving Eq. (16), discretized on a grid, is relatively straightfor-
ward if we have a way to evaluate the free charge density field,
ρ, on the grid points. However, particles in a molecular simu-
lation are, in general, not situated on a uniform grid. Hence,
we need a scheme for interpolating a non-uniform charge density
field onto a uniform grid of points. Formally, for a particle with
index k carrying charge qk localized at position rk = (xk,yk,zk), we
identify eight points bounding the voxel containing the particle.
The index tuples of these eight points can be computed using the

following equations,

nk
1 =

(
⌈xk/Lx⌉,⌊yk/Ly⌋,⌊zk/Lz⌋

)
(23)

nk
2 =

(
⌊xk/Lx⌋,⌊yk/Ly⌋,⌊zk/Lz⌋

)
(24)

nk
3 =

(
⌈xk/Lx⌉,⌈yk/Ly⌉,⌊zk/Lz⌋

)
(25)

nk
4 =

(
⌊xk/Lx⌋,⌈yk/Ly⌉,⌊zk/Lz⌋

)
(26)

nk
5 =

(
⌈xk/Lx⌉,⌊yk/Ly⌋,⌈zk/Lz⌉

)
(27)

nk
6 =

(
⌊xk/Lx⌋,⌊yk/Ly⌋,⌈zk/Lz⌉

)
(28)

nk
7 =

(
⌈xk/Lx⌉,⌈yk/Ly⌉,⌈zk/Lz⌉

)
(29)

nk
8 =

(
⌊xk/Lx⌋,⌈yk/Ly⌉,⌈zk/Lz⌉

)
, (30)

where ⌊·⌋ and ⌈·⌉ represent the integer floor and integer ceiling
functions, respectively. Along each dimension d ∈ (x,y,z), the
particle position partitions the line segment connecting two ad-
jacent grid points into two segments, one of length ℓ

(d)
↓ = r(d)k −

⌊r(d)k /Ld⌋ ·∆(d), and another of length ℓ
(d)
↑ = ⌈r(d)k /Ld⌉ ·∆(d)− r(d)k .

Note that ∆(d) = ℓ
(d)
↓ +ℓ

(d)
↑ , due to the properties of the ceiling and

floor functions. For notational convenience, define,

δ = ∏
d

∆
(d) (31)

Now, we assign each point bounding the voxel a weight,

wk
1 = δ

−1 · ℓ(x)↑ ℓ
(y)
↓ ℓ

(z)
↓ (32)

wk
2 = δ

−1 · ℓ(x)↓ ℓ
(y)
↓ ℓ

(z)
↓ (33)

wk
3 = δ

−1 · ℓ(x)↑ ℓ
(y)
↑ ℓ

(z)
↓ (34)

wk
4 = δ

−1 · ℓ(x)↓ ℓ
(y)
↑ ℓ

(z)
↓ (35)

wk
5 = δ

−1 · ℓ(x)↑ ℓ
(y)
↓ ℓ

(z)
↑ (36)

wk
6 = δ

−1 · ℓ(x)↓ ℓ
(y)
↓ ℓ

(z)
↑ (37)

wk
7 = δ

−1 · ℓ(x)↑ ℓ
(y)
↑ ℓ

(z)
↑ (38)

wk
8 = δ

−1 · ℓ(x)↓ ℓ
(y)
↑ ℓ

(z)
↑ . (39)

The charge density on all grid points is computed by incrementing
the charge density on each point i ∈ 1, . . . ,8 bounding the voxel
containing particle k by its charge weight qkwk

i , and repeating for
all particles in the simulation.

We can adapt the equations above to describe the case where
ℓ > 0. In this case, the electrode charge is separated by the the on-
set of the Poisson-Bolzmann screening layer (Eq. ??) by a distance
ℓ. The potential dropped over this distance is δV = qelℓ, leaving
the remaining potential ∆VGC to be dropped by solvent/ions. Ac-
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cording to Eq. ??, the charge in the solution will be,

δq+qion =−∆VGC/λ =−qel, (40)

where again, the second equality arises due to charge neutrality.
Now, noting that ∆VGC =Vext−δV =Vext−qelℓ, we find that, qel =

(Vext − δV )/λ = (Vext − qelℓ)/λ and thus qel = Vext/(ℓ+ λ ). With
this,

∆VGC =Vext −δV =Vext

(
1− ℓ

ℓ+λ

)
. (41)
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