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When dealing with very high-dimensional and functional data, rank deficiency of
sample covariance matrix often complicates the tests for population mean. To alleviate
this rank deficiency problem, Munk et al. (J Multivar Anal 99:815–833, 2008) proposed
neighborhood hypothesis testing procedure that tests whether the population mean is
within a small, pre-specified neighborhood of a known quantity, M . How could we
objectively specify a reasonable neighborhood, particularly when the sample space is
unbounded?What should be the size of the neighborhood? In this article, we develop the
modified neighborhood hypothesis testing framework to answer these two questions. We
define the neighborhood as a proportion of the total amount of variation present in the
population of functions under study and proceed to derive the asymptotic null distribution
of the appropriate test statistic. Power analyses suggest that our approach is appropriate
when sample space is unbounded and is robust against error structures with nonzero
mean. We then apply this framework to assess whether the near-default sigmoidal spec-
ification of dose-response curves is adequate for widely used CCLE database. Results
suggest that our methodology could be used as a pre-processing step before using con-
ventional efficacy metrics, obtained from sigmoid models (for example: IC50 or AUC),
as downstream predictive targets.

Key Words: Neighborhood hypothesis test; Rank deficiency; Dose-response curves;
Cancer cell line encyclopedia.

1. INTRODUCTION

Advancement in instrumentation and growth of computing power over past few decades
have brought about a proliferation of very high-dimensional and functional data that
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needs to be analyzed. It has been well-documented that traditional approaches for work-
ing with multivariate, but low-dimensional, data often do not scale to these very high-
dimensional/functional situations (see, for example, Ramsay and Silverman 2005; Wain-
wright Wainwright 2019 and references therein). This is true even for the classical problem
of testing hypotheses about a population mean of the form H0 : μ = M because traditional
procedures for doing so face mathematical complications due to the rank deficiency of the
sample covariancematrix when either the dimension of the data is larger than the sample size
in the multivariate setting or, in general, for functional data. Even when Hotelling T 2-style
statistics are altered to accommodate this deficiency, the asymptotic results are often only
applicable with prohibitively large sample sizes (See Xu 2014; Kuelbs and Vidyashankar
2010). To alleviate these problems, Munk et al. (2008) proposed an alternative procedure,
they referred to as a neighborhood hypothesis test, that avoids the rank deficiency prob-
lem by first redefining the null hypothesis to be that μ is within a small, pre-specified
neighborhood of M . The specification of neighborhood was motivated by the fact that, for
high-dimensional and functional data, it becomes impractical to expect for a mean to exactly
follow a prescribed form.

This type of imprecise specification of null hypothesis could be traced back to the works
of Hodges and Lehmann (1954) who described how some categories of frequentist statistical
tests could be modified to account for hypotheses in which the null parameter space is not
a single point. Berger and Delampady (1987) formalized the relationships between tests of
null hypotheses of equality and what we now refer to as neighborhood hypotheses within the
scope of Bayesian inference. About a decade later, Dette andMunk (1998), Dette (2003) uti-
lized this idea as a model validation technique in nonparametric regression settings. Finally,
Munk et al. (2008) formally developed neighborhood hypothesis tests for functional data for
applications in projective shape analysis. Ellingson et al. (2013) then further generalized this
neighborhood hypothesis test framework for testing hypothesis on means of random objects
lying on Hilbert manifolds. We note that the principle focus of all research following from
Dette and Munk (1998), Dette (2003) was to bolster the theoretical foundation of neighbor-
hood hypothesis tests. None of these works were aimed at illustrating practical performance
of this inferential framework—which turns out to be important because, in its original form,
this methodology required precise specification of neighborhood a priori—which restricted
its application to some unique settings (for example, similarity shape analysis considered in
Ellingson et al. (2013)) where the parameter space for the mean is compact and, as such, the
size of the neighborhood could be naturally interpreted with respect to the maximum possi-
ble distance between points in the space. In general, however, the disadvantage associated
with precise specification of neighborhood becomes pronounced when the sample space
is unbounded, as is often the case for both high-dimensional and functional data. In these
situations objective specification of the neighborhood is typically not feasible and often not
interpretable from a scientific perspective.

Our goal here is to develop a theoretically sound technique that could bring more objec-
tivity in the neighborhood specification thereby making this testing procedure applicable
to a wide variety of fields. To that end, we propose a novel modified neighborhood test
that defines a neighborhood as a proportion of the total amount of variation present in the
population of functions under study. In essence, our approach can also be viewed as shifting
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the hypothesis to be about an effect size rather than purely about the mean itself- thereby
increasing the interpretability of the conclusion. In addition to proposing the modified ver-
sion of the neighborhood test, we study the properties of our posited methodology using
both asymptotic analyses and simulations. We then implement our method to assess the
adequacy of a model assumption commonly imposed on dose-response data obtained from
the Cancer Cell Line Encyclopedia (CCLE) database.

Broadly speaking, CCLE provides experimentally observed dose-response curves for 24
anti-cancer drugs administered on479 representative cancer cell-lines (Barretina et al. 2012).
This data has been widely used for generating predictive models for drug efficacy (Ma et al.
2021; De Niz et al. 2016;Wan and Pal 2014). Several of these studies had utilized customary
drug efficacy metrics (for example: AUC, EC50, IC50 etc.) as predictive targets. These
metrics were obtained by fitting a parametric sigmoid curve to the observed dose-response
data. However, if the foregoing sigmoidal formulation is itself an inadequate model for the
dose-response data, utilizing this model output for downstream modeling, without explicit
accounting for misspecification error induced by sigmoidal model, can adversely impact
the predictive reliability of drug efficacy. We demonstrate that our modified neighborhood
hypothesis test offers a screening procedure to assess the adequacy of sigmoidal specification
over a population of drug-specific dose-response curves. Our procedure does not require
researchers to test the goodness-of-fit for each dose-response curve. Rather, given the drug-
specific curves, observed over a set of cell-lines, our procedure conducts a single hypothesis
test whether the population mean of the observed set of curves is within an objectively
chosen, interpretable, neighborhood of the posited parametric sigmoidal curve. Failure to
reject the neighborhood hypothesis would indicate lack of statistical evidence in support
of misspecifcation error thereby allowing researchers to utilize the foregoing model-based
drug efficacy metrics with greater confidence. Rejection of neighborhood hypothesis, on the
other hand, would alert the researchers about existence of potential misspecifcation errors
in drug efficacy metrics that must be taken into account for any downstream modeling and
inference.

The remainder of the paper is organized as follows. In Sect. 2, we describe the core
methodology for the neighborhood hypothesis test of Munk et al. (2008), highlight how it
avoids the rank deficiency problem faced by classical procedures and provide commentary
about some practical considerations. Then, in Sect. 3, we present our modifications to that
methodology and the asymptotic results for the newprocedure. In Sect. 4,we offer simulation
studies to assess the power of our testing procedure, including cases where the sample
size is not considerably larger than the dimension of the data. Section5 deals with an
illustrative application of our method on dose-response data extracted from CCLE database.
We conclude with Sect. 6, giving a brief summary and discussion of future work.

2. THE PREVIOUS NEIGHBORHOOD HYPOTHESIS TEST

Let X1, . . . , Xn be independent and identically distributed random elements in a Hilbert
space H with population mean μ ∈ H and covariance operator � : H → H that satisfy the
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condition that E
(||X ||4) < ∞. Estimators of μ and � are, respectively,

X = 1

n

n∑

i=1

Xi , S = 1

n

n∑

i=1

(Xi − X) ⊗ (Xi − X) (1)

If we wish to test only whether the population mean is approximately equal to a hypoth-
esized quantity rather than exactly equal to it, we can express this mathematically as testing
whether μ is within a small neighborhood of M . Munk et al. (2008) stated this formally as:

H0 : ρ2(μ, M) ≤ δ2 versus H1 : ρ2(μ, M) > δ2, (2)

where ρ2(x, y) = ‖x − y‖2 is the squared distance between any x, y ∈ H and δ > 0.
Munk et al. (2008) showed that, under the null hypothesis, if ϕM (X) = ρ2(X, M), then

√
n(ϕM (X) − ϕM (μ)) →d N (0, τ 2), as n → ∞, (3)

where

τ 2 = 4 〈μ − M, � (μ − M)〉 .

If we have exact equality of μ and M , then τ 2 = 0, which results in a degenerate
distribution with a point mass at 0. In practice τ 2 is an unknown parameter and must be
estimated in order to construct a valid test statistic. A consistent estimator of τ 2 is given by

τ̂ 2 = 4
〈
X − M, S (X − M)

〉
.

As such, this procedure replaces the singularity problem faced in the Hotelling T 2 test
whenever S is not of full rank to the single point X = M , which results in τ̂ 2 equaling
0. Fortunately, though, this point is a set of measure 0, so it does not cause problems in
practice. Consequently, it can be proved that

√
n(ϕM (X) − ϕM (μ))

τ̂
→d N (0, 1), as n → ∞. (4)

This asymptotic null distribution obtained in (4) leads to the test statistic

T0 =
√
n(ϕM (X) − δ2)

τ̂
(5)

For 0 < α < 1, if we let zα denote the 100(1 − α)-th percentile of the standard normal
distribution, then H0 is rejected at asymptotic level α if T0 > zα (Munk et al. 2008). As a
further practical consideration, even if X → M , in which case the null hypothesis would be
true, the term ϕM (X) in the numerator converges to 0 faster than τ̂ does in the denominator,
so the test statistic will approach −∞. Thus, the null hypothesis would not be rejected, as
desired in that case.
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Note that, we need to define δ a priori to apply the above testing procedure. However,
in most practical situations it is difficult to define δ, especially when the sample space is
unbounded.When the support is compact, the radius of this space can provide a natural upper
bound for δ, but, even then, the possibly abstract distances may be difficult to distill into
an easily interpretable neighborhood. One may attempt to elicit information about δ from
domain experts, but there does not exist, to our knowledge, an objective way to choose δ.
Hence, we propose a modified version of the original neighborhood hypothesis that relaxes
our dependence on a completely subjective choice for δ.

3. THE MODIFIED NEIGHBORHOOD HYPOTHESIS TEST

We begin by modifying the original neighborhood hypotheses as follows:

H0 : ρ2(μ, M) ≤ γ vF and H1 : ρ2(μ, M) > γ vF , (6)

where γ ∈ (0, 1) is user specified and vF = E(ρ2(X, μ)) = ∫
ρ2(X, μ)dQ is the total

Fréchet variation, where Q is a probability measure defined on the sample space.When ρ2 is
as defined as in the previous section, we have the further result that vF = Tr(�). As such, the
null hypothesis nowmakes a statement about how farμ is from the functionM with respect to
a proportion (γ ) of the total amount of variation present in the population of curves.While, in
principle, other summaries of the variation in the population, such as the generalized variance
|�|, could instead be used to define the size of the neighborhood, the total Fréchet variation is
a natural choice for two immediate reasons. First, as presented in Patrangenaru andEllingson
(2015), the nonparametric definition of the mean is μ = argminc∈HE(ρ2(X, c)) and vF , as
defined above, is minc∈H E(ρ2(X, c)), so the two quantities are inherently linked together
through the use of the distance ρ. Secondly, given this perspective, the null hypothesis can
be restated as ρ2(μ, M) ≤ γ E(ρ2(X, μ)), making both sides of the inequality statements
about squared distances toμ, which will not typically be the case for other scalar descriptors
of the variation. Further details about the interpretation and practical selection of γ can be
found in Sect. 6.

In an ideal situation, we can simply replace δ2 in T0 (5) with γ vF to get a test statistic of
the form

T1 =
√
n

(
ϕM (X) − γ vF

)

τ̂
, (7)

but, in practice, the unknown parameter vF needs to be estimated. A reasonable choice is
the consistent estimator v̂F = Tr(S). If we simply replace vF in T1 with this estimate,
Slutsky’s Theorem cannot be directly applied to (7) to derive the asymptotic distribution of
the resultant quantity

√
n

(
ϕM (X) − γ v̂F

)

τ
.



D. Bandara et al.

However, asymptotic results for v̂F described in Patrangenaru and Ellingson (2015) allow
us to obtain the asymptotic distribution of the above quantity. Hence, we posit the following
lemmas that lead us to the ultimate test statistic derived in Theorem 3.1. Proofs of Lemma
3.1, Lemma 3.2 and Theorem 3.1, which utilize the aforementioned results, are relegated to
the appendix.

Lemma 3.1. If X1, . . . , Xn are independent and identically distributed random ele-
ments in a Hilbert space H with population mean μ ∈ H and covariance operator
� : H → H such that E

(||X ||4) < ∞, then

σ 2
1 = Var

(√
n

(
ϕM (X) − γ v̂F

)

τ

)

= 1 − 2γ n

τ 2
Cov

(
ϕM (X), v̂F

)

+γ 2

τ 2

[
E[ρ4(μ, X)] − vF

2
]
. (8)

From this, we arrive at the asymptotic distribution of
√
n
(
ϕM (X)−γ v̂F

)

τ
.

Lemma 3.2. Under the conditions of Lemma 3.1, then

√
n

(
ϕM (X) − γ v̂F

)

τ
→d N

(
0, 1 − 2γ n

τ 2
Cov

(
ϕM (X), v̂F

)

+γ 2

τ 2

[
E[ρ4(μ, X)] − vF

2
])

(9)

However, this asymptotic result cannot be applied immediately in practice since there are a
number of unknown parameters in the asymptotic variance. Instead, though, we can use the
following plug-in estimator for σ 2

1 :

σ̂ 2
1 = 1 − 2γ n

τ̂ 2
Ĉov

(
ϕM (X), v̂F

) + γ 2

τ̂ 2

[
1

n

n∑

i=1

ρ4(X , Xi ) − v̂2F

]

, (10)

where the estimate for Ĉov
(
ϕM (X), v̂F

)
can be obtained via nonparametric bootstrap. From

this result, we can now arrive at our test statistic for the modified neighborhood hypotheses.

Theorem 3.1. Under the conditions of Lemma 3.1 and themild assumption that σ̂ 2
1 > 0,

we arrive at the following asymptotic result:

T2 =
√
n

(
ϕM (X) − γ v̂F

)

τ̂ σ̂1
→d N (0, 1). (11)

As a result, we reject H0 at asymptotic level α when T2 > zα.
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4. SIMULATION EXAMPLES

We perform three simulation studies to assess how well our testing procedure can detect
departure from hypothesized mean. In the first example, we simulate functions from a stan-
dard Gaussian Process (GP). In the second example, we simulate from a kernel convolution
of scales χ2 noises. In the final simulation study, we illustrate how our methodology can be
used to assess adequacy of parametric models assumed for functional data.

4.1. SIMULATION 1

We simulate functions using the model

X (t) = μ(t) + ε1(t) (12)

where μ(t) = 0.5t − 0.5t2 + 1.9t3 − 2.2 sin(t) and ε1(t) is a zero-mean GP with squared
exponential covariance function given by C(t, t ′) = σ 2 exp(− (t−t ′)2

2θ2
). We fix σ 2 = 2 and

θ = 1. Instead of specifying M exactly as described in (12), we simulate 2000 observations
from the above simulation model and fix their sample mean as M . As a result, we are testing
whether the population mean is in the neighborhood of the Monte Carlo approximation of
the true mean.

To assess the power associated with our test, we fix α = 0.05, γ = 0.01 and simulate
n = 30, 100, 500, and 1000 observations. Due to the dimensionality of the data, it would
be impossible to exhaustively evaluate the power function over an extended neighborhood
around M . Instead, we evaluate the power function along the first principal component of
M . We then calculate the test’s power over a fine grid of points along this line and plot the
resulting power functions in Fig. 1.

On each plot, we denote the boundaries of the hypothesized neighborhood using vertical
lines to illustrate the null and alternative parameter spaces. The interval between the vertical
lines is the projection of the null parameter space along the set of M considered. The area
in between two cutoffs is equivalent to the null parameter space. The scale for the x-axis
is the distance each candidate mean function is along the specified line from M . A better
understanding of the size of the neighborhood can be obtained by looking at Fig. 2. It shows
the population mean and the functions M corresponding to the cutoffs represented by the
vertical lines in Fig. 1 that denote the two boundaries of the neighborhood in positive and
negative directions along the first principal component. This plot clearly shows that the
functions at the boundaries of the neighborhood are nearly visually indistinguishable from
μ, which suggests that the choice of the radius of the neighborhood was not too large to
substantially differ from the traditional null hypothesis of exact equality.

The power curves consistently remain below the significance level for all values of M we
evaluated along the specified line that are in the null parameter space. Empirically, it appears
that our modified neighborhood testing procedure maintains the desired level of significance
even with relatively small sample sizes and has the desirable property of increased power
outside the acceptance region with increase in sample size.



D. Bandara et al.

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Po
w

er
Power simulation of functions from standard Gaussian Process 

n=30

-4 -3 -2 -1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Po
w

er

Power simulation of functions from standard Gaussian Process 
n=100

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Po
w

er

Power simulation of functions from standard Gaussian Process 
n=500

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Po
w

er

Power simulation of functions from standard Gaussian Process 
n=1000

Figure 1. Power simulation of functions sampled from (12) with γ = 0.01 and T = 1000 where T represents
the number of replications.
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Figure 3. Power simulation of functions samples from (13) case with γ = 0.01 and T = 1000 where T represents
the number of replications.

4.2. SIMULATION 2

In this example we investigate the power of our asymptotic test when the functions are
sampled from a non-Gaussian process. We generate the functions using the model

X (t) = μ(t) + ε2(t) (13)

where μ(t) remains same as describe in Sect. 4.1. We define ε2(t) as a discrete convolution
of iid scaledχ2 random variates, i.e. we choose t1, t2, . . . tm as specific set of locations
in the domain of X (t) and define ε2(t) = ∑m

i=1 k(ti − t)η2(ti ), where k(t) is smoothing
kernel (we fix k(t) as Normal(0, 0.1) density) and η(ti ) are iid Normal(0,1). Clearly, the
true population mean is no longer μ(t) and the noise process in (13) is highly skewed. Once
again, we specify M as the Monte Carlo approximation of μ(t), fix α = 0.05, simulate
n = 30, 100, 500, 1000 observations from (13) and plot the power functions in Fig. 3.

According to Fig. 3, the power curve is higher than the significance level for most of the
values of M in the null parameter space for the small sample sizes like n = 30. Also, for the
same sample size, the monotonicity of the power is violated in outside of acceptance region.
However, the power curve tends to adhere to the significance level in the acceptance region
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and monotonicity in outside of it as the sample size increases. In addition, the time taken by
the power curve to converge once it is outside the acceptance region is less for large sample
sizes.

4.3. SIMULATION 3

In the first two simulations, we had tested whether the Monte Carlo approximation of
population mean is in the neighborhood of true population mean. Consequently, we did not
explicitly estimate the parameters of mean function from the set of random curves. In this
simulation, however, we tackle the adequacy of a hypothesized mean functionmore directly.
Consider a set of random functions generated from the model Xi (t) = f (t, δ)+ εi (t), , i =
1, 2, . . . , n, over a grid of eight equi-spaced epochs, i.e., t ∈ {1, 2, 3, 4, 5, 6, 7, 8} with

f (t, δ) = [1 + exp (−t1+δ)]−1, (14)

εi ∼ N8(08, �), and afixed value for the decay parameter δ. Instead of a covariance function,
we assume the following form of �

� =

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

1 .7 .4 .1 0 0 0 0
.7 1 .7 .4 .1 0 0 0
.4 .7 1 .7 .4 .1 0 0
.1 .4 .7 1 .7 .4 .1 0
0 .1 .4 .7 1 .7 .4 .1
0 0 .1 .4 .7 1 .7 .4
0 0 0 .1 .4 .7 1 .7
0 0 0 0 .1 .4 .7 1

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

,

Suppose we wished to test whether the population mean curve is given by f (t, 0). One
option was to fit the model (14) for each i and test H0 : δ = 0. However, instead of
performing n tests, our methodology could be used as an initial screen to assess whether
f (t, 0) adequately captured the population mean of X (t) curves. But what should M be?
Of course, we could resort to Monte Carlo to extract M—as was done in the first two sim-
ulations. Instead, we followed a more direct—differential equation approach—that offered
an alternative way to extract M (Ramsey & Silverman, 2nd ed, pp. 7 ).

Consider applying linear differential operator on the responses of the form LXi (t) =
dXi (t)/dt − Xi (t)(1− Xi (t)). Observe that, under the hypothesis that the population mean
curve is given by f (t, 0), we have f ′(t, 0) − f (t, 0)[1 − f (t, 0)] = 0. Thus, if the mean
function was indeed, f (t, 0), then LX ≈ 0 for any function of form (14). Defining Yi (t) =
LXi (t), we would expect that the population mean of Yi (μY , say) should be approximately
be equal to the zero function. Hence, the null hypothesis, for our modified neighborhood
test, could bewritten as H0 : ρ2(μY , 0) < γ vF . Now that we have an explicit formulation of
H0 in terms of population mean curve and an hypothesized value of the same, our modified
neighborhood hypothesis testing framework could be deployed to assess the adequacy of
f (t, 0) specification using a single test. We therefore proceed to assess the power of our test
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to detect departure from f (t, 0) by simulating X (t) curves over a grid of δ values using the
procedure described below.

First, observe that, despite the assumption of continuity of X (t), the observations were
sampled at finite number of functional epochs. To offset this sparse sampling over t , we
linearly interpolated the observed Xi s over a dense grid of t resulting in a more densely
sampled equi-spaced piecewise linear functions that were conducible to application of the
foregoing differential operator L . Subsequently, Y curves were computed as follows:

Yi (t) = Xi (t) − Xi (t − h)

h
− Xi (t)(1 − Xi (t)).

The test statistic (11) was computed using the sample mean of the Y curves and γ was
determined empirically via simulating large number of observations under the foregoing
H0.

The power curves shown in Fig. 4 were obtained by repeating the above process by
varying the decay parameter δ from −0.05 to 0.05 with an increment of 0.001. For each
value of δ, we computed the power curves for sample sizes n = {10, 100, 500, 1000}. In
each case, the power decreases when δ is close to 0 and shows an increasing trend when δ is
further from 0 in both the negative and positive directions. While monotonicity of the power
curve is violated for small sample sizes, such as n = 10, the power curve is monotonic in
each direction for larger sample sizes, as is desired.

We do note that the conventional approach would have been to test whether residuals
have a mean of zero, but that would require an assumption whether the noise is driven by a
smooth stochastic process or iid. We recommend the differential operator approach because
it does not require such assumption and directly test the mean specification.

5. APPLICATION TO CCLE DATASET

In the era of precisionmedicine, it is essential to generate genomics informedpersonalized
therapeutic regimes with higher efficacy. Accurate prediction of sensitivity of an individ-
ual tumor to a drug is fundamental in designing highly precise cancer therapy treatments.
Large-scale pharmacogenomics studies are conducted in order to identify in-vitro effect of
several drugs on specific cancers against panels of molecularly characterized cancer cell
lines (Safikhani et al. 2017). Cancer Cell Line Encyclopedia (CCLE) (Barretina et al. 2012)
is one such publicly available pharmacogenomic database which provides in-vitro exper-
imental pharmacological sensitivities of 24 drug compounds across 479 cancer cell-lines.
The data consists of an 8-point drug concentration scale that ranged from 2.5 to 8μM and
relative cell growth rate measured after 72–84h from the application of the drug compound.
This yielded an 8-point dose-response assay for each cell line. Additionally, Barretina et al.
(2012) fitted 4-parameter Hill curves to each of the aforementioned dose-response curves
to estimate maximal effect level and concentration at half maximal effect of the drug. More
precisely, the following parametric curves were fitted:



D. Bandara et al.

-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05
Delta

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Po

w
er

Power simulation with n=10

-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05
Delta

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Po
w

er

Power simulation with n=100

-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05
Delta

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Po
w

er

Power simulation with n=500

-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05
Delta

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Po
w

er

Power simulation with n=1000

Figure 4. Power simulation from the differential equation approach (14) with estimated γ = 0.008 and T = 1000
where T represents the number of replications.

Xi (t) = β1,i + β2,i − β1,i

1 + ( t
β3,i

)β4,i
(15)

where Xi (t) denotes the observed pharmacological sensitivity of a compound at dose level t
for cell-line i . The parameters could be interpreted as follows: β1,i and β2,i are, respectively,
the lower and upper asymptotes of the dose-response curve for the i th cell-line. β3,i is the
point on the sigmoidal curve halfway between β1,i and β2,i . The Hill slope, i.e., the slope
at the steepest point of the sigmoidal curve is given by β4,i .

An obvious way to ascertain if the parametric form (15) is an adequate model for X (t)
would be to fit (15) to every dose-response curve and perform a goodness-of-fit test for each
curve. We, on the other hand, deployed our modified neighborhood hypothesis to perform
an omnibus test to assess whether the population mean of X (t) curves was within a specified
neighborhood of (15). Rejection of the null hypothesis associated with out procedure would
necessitate measuring the goodness-of-fit for each curve.

Following the arguments developed in Simulation 3, we defined Xi (t) = fHill(t,β i ) +
εi (t), where β = (β1, β2, β3, β4), fHill(t,β)was the RHS of (15) and ε(t)was a zero-mean
stochastic process. Next, we defined a linear differential operator of the form
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L f (t) = f ′(t) − c1t
c2( f (t) − c3)

2 (16)

where c1, c2, c3 were, potentially unknown, constants. Define f ′
Hill(t,β) = δ

δt fHill(t,β).

Since, f ′
Hill(t,β) − β4tβ4−1

(β2−β1)β
β4
3

( fHill(t,β) − β1)
2 = 0, if the population mean was

indeed fHill(t, .) then we posited that LX (t) ≈ 0. Therefore, setting U (t) = δX (t)
δt −

β4xβ4−1

(β2−β1)β
β4
3

(X (t) − β1)
2, we can formally state our null hypothesis H0 : ρ(μU , 0) < γ vF .

However, unlike Simulation 3, values of β remained unspecified in the above H0. So, to
obtain theU (t) curves from our observed sample of X (t) curves, we proceeded as follows:

• We fitted the sigmoidal model (15) to every observed dose-response curve in our
sample using nonlinear least squares and obtained the estimates β̂ i , i = 1, 2, . . . , n.

• We then defined U

Ûi (t) = Xi (t) − Xi (t − h)

h
− β̂4,i t β̂4,i−1

(β̂2,i − β̂1,i )β̂
β̂4,i
3,i

(Xi (t) − β̂1,i )
2

• If X curves were sparsely sampled, we followed the linear interpolation technique
outlined in Simulation 3 to augment the sampling density of X (t).U curves were then
computed from the interpolated X curves.

As an illustrative example of application of our methodology, we considered the drug
’Nutlin-3’ - experimentally shown to increase radio-sensitivity of laryngeal squamous cell
carcinoma (Arya et al. 2010)—in CCLE database. Since CCLE contained dose-response
information on 240 cell-lines for Nutlin-3, we anticipated that the large sample size would
justify our asymptotic inferential scheme. Figure5 shows the cell viability scores for one
randomly selected cell-linemeasured at 8-point log(dose) scale. Given the sampling sparsity
of observed dose-response curves (X (t)), we first perform the aforesaid linear interpolation
and then generate the Û (t) curves. Figure6 illustrates the two functions to be compared in
the test H0 : ρ(μU , 0) < γ vF .

Using γ = 0.05, the value of the test statistics T2 ≈ −3.1280. We, therefore, failed
to reject the null hypothesis and concluded that at the 5% level of significance, there was
no evidence to suggest that a sigmoidal model (15) for the population mean of the dose-
response curves, associated with the drug ’Nutlin-3’ reported in the CCLE database, was
not adequate. Quite obviously, since we failed to reject the null hypothesis of our omnibus
test, we do not need to proceed to test the goodness-of-fit of each Xi (t), i = 1, 2, . . . , n.

In the simulation studies, we were able to choose the value for γ via Monte Carlo
simulation so that the asymptotic power of the test was exactly equal to α on the boundary of
the neighborhood.Here, though,we cannot do the same sincewe are notmaking assumptions
about the distribution or covariance structure of the εi (t). As such, a completely objective
selection of δ is not possible without making more assumptions. Therefore, we chose the
value of γ with respect to the interpretation of it as the percentage of total variation present
in the population. We chose γ to be larger than it was in our simulation studies in order
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Figure 5. Cell viability calculated over 8 log(Dose) levels.
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Figure 6. A plot the sample mean of Û and the hypothesized mean M across log(Dose) levels.

to accommodate the extra uncertainty involved with estimating the parameters of the Hill
curves that was not present in those studies.

6. DISCUSSION

The neighborhood hypothesis testing methodology, as defined in Munk et al. (2008),
provided a solid theoretical foundation for testing hypotheses for themean of functional data
where sample covariance matrix suffer from rank deficiency. Rather than try to regularize
the covariance matrix or project the data to a lower dimensional space, their method made
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a clever alteration to the hypothesis itself that allowed for a near avoidance of the rank
deficiency altogether. However, one drawback of their proposed procedure was that the
radius δ of the neighborhood remained difficult to define objectively a priori and interpret
that parameter in a meaningful way since the sample space for functional data is typically
modeled as a non-compact Hilbert space. As such, it remained an open problem to determine
a way to state the null hypothesis developed in Munk et al. (2008) with greater objectivity.

In this paper,we addressed this issue theoretically and offered a practical and interpretable
way of selecting δ. First, since the Fréchet total variance, vF , is a fixed quantity, wemodified
the null hypothesis to define the neighborhood in terms of a proportion γ of vF . This allows
for a clearer interpretation of the neighborhood and makes it easier to define its radius in
a more objective manner. The revised hypothesis required the test statistic to be modified,
as well, since vF is a nuisance parameter. We proved that our modified test statistic is
asymptotically normally distributed, in agreement with the asymptotic distribution of the
test statistic associated with the original version of neighborhood hypothesis test.

Although we have utilized the above interpretation of γ throughout the manuscript—
since that is how it arose from the decomposition of δ2 and how it appeared in the calculation
of the test statistic—we note that there exists another, equally appealing, interpretation of
γ . Rewriting the modified hypotheses as

H0 : ρ2(μ, M)

vF
≤ γ and H1 : ρ2(μ, M)

vF
> γ, (17)

we observed that ρ2(μ,M)
vF

could be interpreted as the square of a one-population analogue of
Cohen’s d measure of effect size (Cohen 1988) in terms of Euclidean distances between vec-
tors. Consequently, Sawilowsky (2009) guidelines for interpreting magnitudes of Cohen’s
d might provide reasonable guides for selecting

√
γ and, thus, γ . With this in mind, our

modified neighborhood hypotheses, with a pre-specified γ = 0.01, could be interpreted as
testing claims about whether the effect size for the deviation between the population mean
μ and claimed mean M was, using Sawilowsky’s definition, “very small”.

Turning to application of our framework, our simulation studies highlighted the perfor-
mance of our test, in practice, for densely sampled functional data. The simulated power
functions in Figs. 1 and 3 showed that the Type I error rate at the boundary of the projected
null parameter space was approximately the same as the asymptotic significance level of
the test even when n was comparable to the number p of sampling points used to specify
the function. In the illustrative example, we applied our methodology on a widely used
publicly available pharmacogenomic database and demonstrated that a four-parameter sig-
moidal model can adequately capture the population level dose-response relationship for
a drug Nutlin-3. Instead of performing a goodness-of-fit test for each dose-response curve
(since each curve admitted individual-level parameters), our testing procedure offered an
omnibus screening test evenwhen population parameters remained unspecified. At a broader
level, several researchers have used EC50, AUC values obtained by fitting the foregoing
sigmoidal model to the CCLE data for downstream modeling and inference purposes (Ma
et al. 2021; De Niz et al. 2016; Wan and Pal 2014). Statistical evidence of a mis-specified
sigmoidalmodel could potentially negatively impact any downstream estimation and predic-
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tion. Consequently, we submit that, before utilizing estimated EC50, AUC , etc. for down-
stream modeling, our screening test procedure could be used right at the outset to assess the
empirical validity of these drug efficacy measures.

On the limitation side of our procedure, we note the presence of singularity when M
approaches μ. The test statistic is not well defined when M = μ, and its null distribution
is degenerate. In essence, then, it can be said that this test reduces the singularities formed
when p > n to the single point where μ is exactly equal to the hypothesized mean. It was
unclear from the theoretical results whether the test would performwell near this singularity.
However, limited investigation (Figs. 1 and 3) indicate that the power function does not blow
up as the distance betweenM andμ approaches 0.We are actively investigating a robust way
to handle this singularity. Future work will offer more detailed guidelines on how to modify
our testing frameworkwhenM is arbitrarily close toμ. Developing amodified neighborhood
ANOVA procedure is also an exciting future research direction. Additionally, adapting this
procedure in non-Euclidean settingwould not only be of theoretical importance butwill have
many practical applications. Since similarity shape data are often non-Euclidean, developing
a modified neighborhood hypothesis test for data on manifolds would allow us to compare
planar shapes from different populations. To that end, we are currently investing modifying
the non-Euclidean version of the hypothesis developed in Ellingson et al. (2013) to get more
interpretable neighborhood.
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A PROOFS FOR SECTION 3 THE MODIFIED NEIGHBORHOOD
HYPOTHESIS TEST

Lemma 3.1. If X1, . . . , Xn are independent and identically distributed random ele-
ments in a Hilbert space H with population mean μ ∈ H and covariance operator
� : H → H such that E

(||X ||4) < ∞, then

σ 2
1 = Var

(√
n

(
ϕM (X) − γ v̂F

)

τ

)

= 1 − 2γ n

τ 2
Cov

(
ϕM (X), v̂F

)

+γ 2

τ 2

[
E[ρ4(μ, X)] − vF

2
]
. (8)

Proof. The test statistic T1 can be decomposed as follows:

T1 =
√
n

(
ϕM (X) − γ v̂F + γ v̂F − γ vF

)

τ
=

√
n

(
ϕM (X) − γ v̂F

)

τ
+ γ

√
n

(
v̂F − vF

)

τ
.

(18)
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From Patrangenaru and Ellingson (2015, pg. 179), we also know that

√
n(v̂F − vF ) →d N

(
0, E

[
ρ4(μ, X)

]
− vF

2
)

.

As such,

σ 2
2 = Var

(γ

τ

√
n(v̂F − vF )

)
= γ 2

τ 2

(
E

[
ρ4(μ, X)

]
− vF

2
)

(19)

From Sect. 2, we know that Var(T1) = 1. Combining this with the above results yields

1 = Var(T1) = σ 2
1 + σ 2

2 + 2Cov

(√
n

(
ϕM (X) − γ v̂F

)

τ
,
γ

τ

√
n(v̂F − vF )

)

= σ 2
1 + σ 2

2 + 2γ n

τ 2
Cov

(
ϕM (X) − γ v̂F , v̂F − vF

)

= σ 2
1 + σ 2

2 + 2γ n

τ 2

[
Cov

(
ϕM (X), v̂F

) − Cov
(
ϕM (X), vF

)

−γCov
(
v̂F , v̂F

) + γCov
(
v̂F , vF

)]

= σ 2
1 + σ 2

2 + 2γ n

τ 2

[
Cov

(
ϕM (X), v̂F

) − γ Var
(
v̂F

)]

= σ 2
1 + σ 2

2 + 2γ n

τ 2

[
Cov

(
ϕM (X), v̂F

) − γ
τ 2

γ 2n
σ 2
2

]

= σ 2
1 + σ 2

2 + 2γ n

τ 2
Cov

(
ϕM (X), v̂F

) − 2γ n

τ 2

τ 2

γ n
σ 2
2

= σ 2
1 − σ 2

2 + 2γ n

τ 2
Cov

(
ϕM (X), v̂F

)
(20)

Solving for σ 2
1 combined with (19) yields

σ 2
1 = 1 − 2γ n

τ 2
Cov

(
ϕM (X), v̂F

) + γ 2

τ 2

[
E[ρ4(μ, X)] − vF

2
]
. (21)

��
Lemma 3.2. Under the conditions of Lemma 3.1, then

√
n

(
ϕM (X) − γ v̂F

)

τ
→d N

(
0, 1 − 2γ n

τ 2
Cov

(
ϕM (X), v̂F

)

+γ 2

τ 2

[
E[ρ4(μ, X)] − vF

2
])

(9)

Proof. This follows immediately from (18) to (21). ��
Theorem 3.1. Under the conditions of Lemma 3.1 and themild assumption that σ̂ 2

1 > 0,
we arrive at the following asymptotic result:

T2 =
√
n

(
ϕM (X) − γ v̂F

)

τ̂ σ̂1
→d N (0, 1). (11)
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Proof. From the proof of Lemma 3.1 and results from nonparametric bootstrap theory,
then if σ̂ 2

1 > 0, then it is a consistent estimator of σ 2
1 . We can then apply Slutsky’s Theorem

to the result of Lemma 3.2, yielding this result. ��
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