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Abstract: Limestone calcined clay cement (LC3) is a sustainable alternative to ordinary Portland ce-
ment, capable of reducing the binder’s carbon footprint by 40% while satisfying all key performance 
metrics. The inherent compositional heterogeneity in select components of LC3, combined with their 
convoluted chemical interactions, poses challenges to conventional analytical models when predict-
ing mechanical properties. Although some studies have employed machine learning (ML) to predict 
the mechanical properties of LC3, many have overlooked the pivotal role of feature selection. Proper 
feature selection not only refines and simplifies the structure of ML models but also enhances these 
models’ prediction performance and interpretability. This research harnesses the power of the ran-
dom forest (RF) model to predict the compressive strength of LC3. Three feature reduction meth-
ods—Pearson correlation, SHapley Additive exPlanations, and variable importance—are employed 
to analyze the influence of LC3 components and mixture design on compressive strength. Practical 
guidelines for utilizing these methods on cementitious materials are elucidated. Through the rigor-
ous screening of insignificant variables from the database, the RF model conserves computational 
resources while also producing high-fidelity predictions. Additionally, a feature enhancement 
method is utilized, consolidating numerous input variables into a singular feature while feeding the 
RF model with richer information, resulting in a substantial improvement in prediction accuracy. 
Overall, this study provides a novel pathway to apply ML to LC3, emphasizing the need to tailor 
ML models to cement chemistry rather than employing them generically. 

Keywords: limestone calcined clay cement; compressive strength; feature reduction; feature  
enhancement; machine learning 
 

1. Introduction  
Concrete stands as the most widely used human-made material in the world, an es-

sential ingredient for construction. As urbanization continues across the globe, driven by 
ever-increasing population growth and ambitious infrastructure projects, the global de-
mand for concrete is projected to rise by an additional 10% by the year 2050 [1]. However, 
the environmental toll of this new infrastructure is staggering: the production of Ordinary 
Portland Cement (OPC), the main component of concrete, contributes to ~8% of the world-
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wide carbon footprint [2,3]. In the face of this environmental conundrum, various strate-
gies have been proposed to mitigate the detrimental impact of cement production, pri-
marily focusing on emission reductions, energy optimization, and the efficient use of ma-
terials. One of the most promising of these is using supplementary cementitious materials 
to partially replace clinkers. This approach holds particular significance for two primary 
reasons: (1) the energy efficiency of contemporary cement kilns has already been fine-
tuned to near-maximum levels, meaning that there is limited scope for further reducing 
carbon emissions through clean energy solutions alone, and (2) the decomposition of lime-
stone contributes to 60% of CO2 emissions [4], which cannot be avoided during the OPC 
manufacturing process. Hence, any meaningful reduction in carbon emissions must di-
rectly address the OPC clinker itself. In recent years, researchers have formulated a new 
type of ternary-blended cement known as limestone calcined clay cement (LC3). This in-
novative blend leverages calcined clay and limestone to significantly reduce the clinker 
content, allowing for formulations of binders with as li�le as 50% OPC. Preliminary stud-
ies indicate that LC3 can meet or even exceed the performance metrics of OPC in various 
aspects, including strength, durability, and workability [5–8]. The emergence of LC3, 
therefore, represents a promising milestone in the development of sustainable cementi-
tious materials without compromising mechanical performance and durability. 

LC3 is formulated with a maximum of 30% calcined clay, 15% limestone, and 5% gyp-
sum, thereby allowing the clinker content to be potentially reduced to as low as 50% [9]. 
Clay is typically calcined at 700–900 °C so as to convert crystalline aluminosilicate phases 
into amorphous ones. This is significantly lower than the manufacturing temperature 
(~1450 °C) compared with OPC. As a result, the LC3 production process can achieve a 
remarkable 35%–40% reduction in both energy consumption and CO2 emissions [10]. Ex-
cept from an energy-saving perspective, LC3 also benefits from unique chemical synergies 
between its components. The primary chemical reaction involves the hydration of OPC, 
forming calcium silicate hydrate (C-S-H), portlandite, and other hydration products. Cal-
cined clay, serving as a pozzolanic material, predominantly reacts with free portlandite to 
form additional C-S-H [11]. The reactivity of the clay is highly sensitive to the calcination 
temperature: insufficient heating fails to remove water and form amorphous phases, while 
temperatures exceeding 900 °C diminish reactivity because of recrystallization into spinel, 
mullite, or cristobalite [12]. Prior research [13] suggests that clay reactivity is influenced 
not just by the molecular structure but also by the alite and belite content in OPC. Lime-
stone also plays a crucial role by providing additional surfaces for the nucleation of hy-
drates, thereby boosting OPC hydration kinetics, especially at early ages. Limestone can 
also react with alumina in clay (and OPC) to form carboaluminate hydrates [11]. All afore-
said hydrates are favorable because they can fill pores, serve as binding agents, and pro-
vide strength. 

Compressive strength is a critical indicator of concrete quality, and a significant body 
of research has investigated the mechanical performance of LC3. While a majority of stud-
ies conclude that the 28-day compressive strength of LC3 is comparable to OPC, variations 
have been noted at other ages [6]. Dhandapani et al. [5] found that the 3-day strength of 
LC3 and its associated concretes are slightly lower than OPC. By 7 days, however, the 
strength of LC3 reportedly matches or even surpasses that of OPC [6]. Though indispen-
sable, laboratory experiments aimed at understanding compressive strength are both la-
bor-intensive and expensive. As a result, there is an urgent need for reliable numerical 
models to estimate compressive strength. Many numerical models have been developed 
to predict the compressive strength of cementitious systems [14–18]. These models effec-
tively quantify the impact of various factors, such as the water-to-cement ratio, the degree 
of hydration, and curing ages, on the compressive strength of plain OPC pastes. However, 
these existing models fall short when applied to LC3 for several reasons. Firstly, the data 
domains for these models differ from those of LC3, thereby requiring the recalibration of 
coefficients. Secondly, while these models capture the chemical reactions in OPC, they fail 
to account for the complex mutual interactions between calcined clay, limestone, and OPC 
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in LC3. Lastly, assuming numerical models that encompass all these interactions are not 
only impractical but also dauntingly complex, such models would potentially require an 
extensive number of coefficients, making them cumbersome—almost impractical—to use. 
Moreover, the underlying mechanisms affecting LC3 strength have yet to be fully under-
stood, adding another layer of complexity to the development of comprehensive models. 

Machine learning is a promising solution to predicting the properties of multi-com-
ponent materials. Although many studies have employed ML models to predict the prop-
erties of cementitious materials [19–21], only a few studies [22–24] have applied ML to 
LC3. Thus, there is a technological gap associated with the limited development and use 
of ML applications in LC3 systems, at least compared with other cementitious materials 
(e.g., OPC and alkali-activated cement). One major shortcoming in the current application 
of ML to cementitious materials is that researchers generally adopt ML models as is rather 
than customizing them to align with the unique features of cement chemistry, particularly 
during feature selection. Many studies [25–29] solely present Pearson correlation and 
SHapley Additive exPlanations (SHAP) to evaluate the influences of input variables on 
cement properties without deeper interpretation or without utilizing these metrics to re-
fine input variables effectively. Feature refinement includes weeding out less significant 
variables to enhance prediction performance, forming a crucial juncture where data sci-
ence intersects with cement chemistry. Since generic ML models are designed to be data-
driven (rather than by theory) and applicable to a wide range of applications, certain fea-
tures might contradict the foundational principles of cement chemistry. By investigating 
feature selection parameters, researchers can gain a more comprehensive understanding 
of the intricate relationships between mixture designs and properties, especially when in-
troducing new materials to the cement system. Further, comparing the influences of input 
variables with established literature correlations can ensure that ML models adhere to 
core material principles. If contradictions are observed, researchers can gain insights into 
how to fix their models, rather than being left in the dark by the model’s opaque nature.  

This research harnesses the power of the random forest (RF) model to predict the 
compressive strength of LC3 systems. To tailor the RF model to LC3, three feature reduc-
tion methods—Pearson correlation, SHAP, and variable importance—are employed to an-
alyze the influence of LC3 components and mixture design on compressive strength. Di-
rect comparison between methods and practical guidelines for utilizing these methods on 
cementitious materials are elucidated. Additionally, a feature enhancement method (i.e., 
topological constraint theory) is utilized, consolidating numerous input variables related 
to calcinated clay into a singular feature (number of constraints) while feeding the RF model 
with richer information, which includes not only the chemical composition but also reac-
tivity. By evaluating the performance of feature reduction and feature enhancement meth-
ods, predictions with these two methods are compared with an outcome from the 
standalone model. While the methods proposed in this study are designed for LC3, they 
provide potential applicability across a wide range of properties of various cementitious 
materials.  

2. Modeling Methods 
2.1. Database Collection 

A compressive strength database for LC3 was compiled from the existing literature 
[11,30–45], comprising 430 distinct data records, each with 18 inputs and a single output. 
Through the random selection of data records, this database is split into two subsets: a 
training dataset and a testing dataset. The training dataset containing 75% of the data rec-
ords trains the RF model, while the testing dataset containing the remaining 25% of the 
data records is employed to assess the model’s performance. The evaluation process uti-
lizes five key statistical metrics: coefficient of determination (R2), Pearson correlation co-
efficient (R), mean absolute error (MAE), root mean squared error (RMSE), and mean ab-
solute percentage error (MAPE). The input variables of the database are as follows: clay 
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content (%mass of LC3); SiO2 in clay (%mass of clay); Al2O3 in clay (%mass of clay); CaO in clay (%mass 
of clay); calcination temperature (°C); calcination time (hour); limestone content (%mass of LC3); 
CaO in limestone (%mass of limestone); OPC content (%mass of LC3); SO3 in OPC (%mass of OPC); CaO 
in OPC (%mass of OPC); SiO2 in OPC (%mass of OPC); Al2O3 in OPC (%mass of OPC); Fe2O3 in OPC 
(%mass of OPC); water-to-binder ratio (unitless); age (day); curing temperature (°C); and rela-
tive humidity during curing (%). The output is compressive strength (MPa). Though pre-
vious studies have provided other oxide compositions in clay, these were deliberately 
omi�ed from this database, as their contribution to strength is minimal. When integrating 
experimental results into a database, it is vital to apply expert knowledge to filter out ir-
relevant features. This narrows the degree of freedom of the database, simplifies the pre-
diction process of machine learning models, and helps to avert overfi�ing on irrelevant 
information. Next, limestone can provide carbonate ions to react with calcined clay. The 
required number of carbonate ions allowing for an effective reaction depends on OPC and 
clay compositions [13]. The database includes low-quality limestones (CaO < 50%), and 
the impact of quality on the compressive strength remains ambiguous. Consequently, the 
CaO content in limestone was included in the database to shed light on this aspect. The 
statistical parameters pertaining to input and output variables are shown in Table 1, which 
exhibits the data domain and data distribution.  

Table 1. Statistical parameters interpreting the data domain for 18 inputs and 1 output (bold) for the 
LC3 compressive strength database. 

Attribute Unit Min. Max. Mean Std. Dev. 
Clay Content %mass of LC3 10 60 25.29 9.66 
SiO2 in Clay %mass of clay 34.10 79.63 55.98 10.52 

Al2O3 in Clay %mass of clay 10.55 46.99 31.57 10.33 
CaO in Clay %mass of clay 0 5.89 0.53 0.85 

Calcination Temperature °C 550 925 762.01 77.39 
Calcination Time hour 0.20 3 1.27 0.71 

Limestone Content %mass of LC3 0 31.13 8.53 7.67 
CaO in Limestone %mass of limestone 29.05 100 70.70 24.90 

OPC Content %mass of LC3 25 90 65.93 13.35 
SO3 in OPC %mass of OPC 0.67 9.49 3.26 1.21 
CaO in OPC %mass of OPC 16.37 34.07 20.86 3.22 
SiO2 in OPC %mass of OPC 1.52 7.35 5.11 1.07 

Al2O3 in OPC %mass of OPC 52.17 68.48 62.39 3.49 
Fe2O3 in OPC %mass of OPC 0.20 7.69 3.01 1.06 

Water-to-Binder Ratio unitless 0.10 0.90 0.47 0.08 
Age day 1 270 28.75 37.93 

Curing Temperature °C 5 50 22.53 5.38 
Relative Humidity % 80 100 92.95 4.94 

Compressive Strength MPa 4.60 75 36.66 16.11 

Figure 1 illustrates the feature selection methods adopted in this study. Those meth-
ods are used to refine the input variables used in the LC3 database and enhance the per-
formance of the RF model. It is important to recognize the value of domain knowledge in 
simplifying the database for LC3 and similar cementitious databases. These databases usu-
ally contain complex mixture design and processing parameters, but some input features 
are irrelevant to some properties. Using domain knowledge can identify and eliminate 
irrelevant features to reduce the degree of freedom of the database. Moreover, drawing 
upon the perspective of data science, it is noteworthy that, while certain input features 
may appear to mathematically correlate with specific properties, this might be a result of 
a data domain limitation. Contrarily, from a cement chemistry viewpoint, these features 
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might not genuinely correlate with target properties. The inclusion of such illusory corre-
lations can lead to the overfi�ing of ML models, thereby compromising their generaliza-
bility. Section 2.3 will delve into three feature reduction methods (i.e., Pearson correlation, 
SHAP value, and variable importance). The core objective of these methods is to rank in-
put variables based on their influences on target properties. Post-ranking, the less signifi-
cant variables are removed from subsequent analyses. This judicious reduction ensures 
that the ML models reduce the processing time without scarifying prediction accuracy, 
and in many instances, the accuracy is bolstered. Section 2.4 introduces the feature en-
hancement technique. A key advantage of this approach is its ability to merge multiple 
input variables into a singular, more informative feature. Therefore, ML models can learn 
more useful correlations from a reduced number of inputs while consuming fewer com-
putational resources. This not only enhances the models’ learning capability but also sub-
stantially curtails computational complexity (and, thus, the time required to train the 
models). Furthermore, this method saves computational power, paving the way for im-
proved prediction performance.  

 
Figure 1. Schematic representation of feature selection method proposed in this study. Researchers 
utilize their knowledge to pre-filter irrelevant input variables while consolidating the database. The 
feature reduction method can be used to further reduce the degree of freedom of the database. The 
feature enhancement method can use a new singular input variable to represent information per-
formed by several input variables. 

2.2. Random Forest (RF) 
The RF model builds upon the conventional classification-and-regression tree 

(CART) model to deliver more accurate and robust predictions. Unlike CART, RF incor-
porates the bagging algorithm [46,47] and a two-step randomization [47,48] process to 
create a forest consisting of independent decision trees. During training, RF constructs 
hundreds of these trees, each grown from a randomly selected subset of the parent train-
ing dataset, with repeated selection permi�ed. The unselected data records are defined as 
an out-of-bag (OOB) sample. Notably, the sub-dataset for training each tree must equal 
the size of the parent training dataset, preserving diversity. While the CART model eval-
uates all input variables at each node, RF introduces further randomness by selecting only 
a certain number of input variables to determine the optimal split. Trees in RF grow until 
the homogeneity of the last tree node cannot be further improved by spli�ing, ensuring 
diversity within the forest. Unlike CART, pruning and smoothing algorithms are not ap-
plied in RF, allowing each tree to grow as deeply as possible. At the testing stage, RF lev-
erages the bagging algorithm to collect and average the outputs from individual trees, 
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producing the final prediction. This combination of bagging and two-step randomization 
effectively reduces both variance and bias errors, enhancing the model’s reliability [49,50]. 
To avoid overfi�ing and underfi�ing, the hyperparameters of RF are optimized via the 
10-fold cross-validation (CV) [51,52] and grid-search methods [51,53].  

Tree-based models provide a unique feature: they can rank the importance of varia-
bles without an additional algorithm. This ranking capability allows researchers to filter 
out insignificant or irrelevant input variables, enhancing models’ computational efficiency 
and performance. When the RF model processes numerical data, variable importance [54–
57] can be detailed as follows. For each individual tree, t, within the forest, there is a cor-
responding OOB sample, OOBt. The OOBt sample comprises data points that are not in-
cluded in the bootstrap sample used to grow the tree, t. When tree, t, produces predictions 
about OOBt, the error (mean absolute error) is denoted as errOOBt. To calculate the im-
portance of a variable, the values of the target input variables of OOBt are randomly per-
muted to obtain a new sample, denoted OOBtj. Then, the model evaluates the prediction 
performance (errOOBtj) of the OOBtj sample. The variable importance is defined as  �������� ���������� =  1����� �(�������� − �������)�  (1)

where ntree represents the number of trees, t, in the forest. In the end, the RF model ranks 
input variables based on their importance. Researchers can use it as a guideline to remove 
insignificant variables and reduce the complexity of the tree structure.  

2.3. Feature Reduction Methods 
This section presents three feature reduction techniques, emphasizing their capacity 

to prioritize input variables based on their impact on the output. By harnessing this 
knowledge, insignificant input variables can be systematically removed, thereby reducing 
the dimensionality of the LC3 database. While the descriptions of Pearson correlations and 
SHAP values are demonstrated herein, the variable importance is detailed in the previous 
section.  

The Pearson correlation coefficient [58], often represented as R, is a statistical measure 
used to quantify the linear relationship between two variables. Its value can range from 
−1 to 1. A value of 1 signifies a perfect positive linear relationship, indicating that as one 
variable increases, the other does as well in a directly proportional manner. Conversely, a 
value of −1 implies a perfect negative linear relationship, meaning that as one variable 
increases, the other decreases in a directly inverse proportion. A coefficient of 0 suggests 
no linear correlation between the variables. The calculation for this coefficient is derived 
from the following formula: � = ∑ (�� − �̅)(�� − ��)�����∑ (�� − �̅)����� �∑ (�� − ��)�����  (2)

where x and y represent individual data points, and �̅ and �� are the means of the respec-
tive datasets. It is crucial to understand that the Pearson correlation coefficient strictly 
measures linear relationships. Hence, nonlinear relationships might not be effectively cap-
tured by R. Additionally, a correlation value of 0 does not necessarily indicate the varia-
bles are independent; it simply denotes the absence of a linear relationship. Furthermore, 
it is pivotal to remember that this coefficient does not equate to causation. A high correla-
tion between two variables does not inherently suggest that changes in one cause changes 
in the other; other factors or underlying variables could influence the observed relation-
ship. In summary, while the Pearson correlation coefficient offers valuable insight into the 
linear dependence between two variables, its interpretation demands careful considera-
tion and often warrants further analysis. 

SHapley Additive exPlanations (SHAP) is a method developed by Lundberg and Lee 
[59] to reveal the importance and effects of input features. It is built on the concept of the 



Minerals 2023, 13, 1261 7 of 20 
 

 

Shapley value by unifying the additive feature a�ribution method, game theory, and local 
explanations. Using principles from cooperative game theory, SHAP calculates the Shap-
ley value for each feature, representing the average marginal contribution of that feature 
across all possible combinations of features. To be specific, in a database with the input 
variables x = (x1, x2, …, xn), where n is the number of input variables, SHAP creates simpli-
fied inputs, �� , which map into x through � = ℎ�(��)  . Based on the �� , the original 
model, f(x), can be approximated with a linear function:  

�(�) = �(��) = �� + � ������
���  (3)

M represents the number of input features; �� is the constant when all inputs are 
missing; �� is the feature a�ribution value expressed by �� = � |��|! (� − |��| − 1)!�! [��(��) − ��(��\�)]��∈��  (4)

��(��) = ��ℎ���(��)� = �[�(�)|���] (5)|��|  represents the number of non-zero entries in �� , and ��  is the SHAP value. 
Given these structures, the SHAP value inherits the properties of additivity, local accu-
racy, missingness, and consistency [60,61]. 

The two unique advantages of the SHAP value are its dual levels of interpretability—
both global and local. Unlike many traditional feature importance metrics in machine 
learning, SHAP not only discerns the significance of each input feature but also ascertains 
its positive or negative influence. While global interpretability provides an overarching 
view of the model, highlighting general feature influences on predictions, local interpret-
ability delves deeper, examining individual instances. Moreover, the SHAP value en-
hances the interpretability of ML models by consistently explaining interaction effects be-
tween features for individual predictions. 

2.4. Feature Enhancement Method  
This section introduces a feature enhancement method that consolidates multiple in-

put variables into a single parameter that embodies extensive information. For clay, calci-
nation removes water from clay and transforms crystalline structures into amorphous 
ones, enhancing their reactivity [6]. Yang et al. [62] found that the reactivity of amorphous 
calcium aluminosilicate materials can be envaulted by a singular parameter—number of 
constraints—which can be calculated with topological constraint theory [63,64]. Our pre-
ceding research [65–67] further validated how this parameter can reliably estimate the 
reactivity of various families of aluminosilicate-rich cementitious materials. Additionally, 
our studies highlighted the potential of the number of constraints to replace various input 
variables used in ML and enhance prediction accuracy. The benefit of using this parameter 
is twofold: it simplifies the dataset for machine learning models and encapsulates vital 
information on the molecular structure and aqueous reactivity of aluminosilicate-based 
cementitious materials. Consequently, the number of constraints is utilized in this study to 
replace the chemical composition and processing parameters of clays. Most clays in our 
database underwent calcination at temperatures exceeding 600 °C for over an hour, en-
suring their largely amorphous nature. 

The fundamental constituents of the clay framework are SiO₂, CaO, and Al₂O₃, disre-
garding any minor components. The normalized chemical composition is represented as 
(Cao)x(Al₂O₃)y(SiO₂)1-x-y, where x and y denote the molar fractions. Two chemical con-
straints found in amorphous calcium aluminosilicate materials are angular bond-bending 
(BB) and radial bonding–stretching (BS) constraints [62,68,69]. Si/Al tetrahedrons contrib-
ute 4 BS and 5 BB constraints. While O atoms linked to Si/Al tetrahedrons add 1 BB con-
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straint, those connected to Ca atoms provide 1 BS constraint [62,69–72]. Calcium alumino-
silicate materials can be categorized into three groups based on their chemical composi-
tions: 

Depolymerized regime (y − x ≤ −2/3): Dominated by Ca atoms, leading to the isolation 
of Si and Al tetrahedrons due to non-bridging oxygens (NBOs). NBOs promote aqueous 
reactivity. 

Partially depolymerized regime (−2/3 ≤ y − x ≤ 0): Dominated by Si atoms. Contains 
both bridging oxygen (BOs) atoms and NBOs, leading to increased crystallinity and re-
duced reactivity. 

Fully polymerized regime (0 ≤ y − x): Dominated by Al atoms, resulting in a rigid 
structure with minimal reactivity due to scarce NBOs. 

In this research, all examined clays fall within the fully polymerized regime, which 
demonstrates the least reactivity. The formula to determine the number of constraints is 
presented in Equation (6). �� = 11 + 13� − 13�3 − 2� + 2�  (6)

3. Results and Discussion  
The LC3 database was partitioned into training and testing datasets, with the former 

encompassing 75% of the primary database and the la�er constituting the remaining 25%. 
Figure 2 shows the predictions of compressive strength as yielded by the RF model, com-
pared with the measurements from the testing dataset. The statistical parameters repre-
senting the accuracy of the predictions—i.e., prediction performance—are itemized in Ta-
ble 2. A cursory glance at both the figure and the table reveals impressive reliability in the 
compressive strength predictions, underscored by an R-value of 0.94 and an RMSE of 5.64 
MPa. The experimental measurement error for compressive strength for cementitious ma-
terials stands at approximately 5 MPa [73]. Remarkably, the deviation in our prediction 
closely mirrors this experimental error. This implies that the RF model can yield highly 
accurate predictions of the compressive strength of LC3. Such excellent performance holds 
significant promise for cement scientists, empowering them to rapidly identify promising 
mixture designs and evaluate their compressive strength rather than experimenting with 
an expansive array of mixture designs. It is hardly surprising that the RF model exhibits 
such excellent performance. A retrospective look at our past research [65–67,74,75] 
demonstrates that the RF model consistently produces reliable predictions of compressive 
strength for various cementitious materials. These publications also elucidate the reasons 
that the RF model—when contrasted with analytical models or other ML models—can 
achieve such excellent performance with cementitious materials.  

 
Figure 2. The prediction performance of the compressive strength of LC3 on the testing dataset as 
produced by the RF model with original input variables. The mean absolute error (MAE) for overall 
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predictions is shown in the legend. The solid lines show 10% error bounds, and the dashed line is 
the ideal prediction. 

Table 2. Prediction accuracy (represented by five statistical parameters) of compressive strength of 
LC3 as produced by the RF model with original inputs, feature reduction, and feature enhancement 
methods. 

ML Model R R2 MAE MAPE RMSE 
 Unitless Unitless MPa % MPa 

Original 0.9453 0.8936 5.641 16.56 5.641 
Feature Re-

duction 
0.9421 0.8875 4.243 15.52 5.548 

Feature En-
hancement 

0.9588 0.9194 3.431 11.30 4.608 

After evaluating the performance of the RF model in predicting the compressive 
strength of LC3, the study now shifts its focus to understanding feature selection tech-
niques. Figure 3 illustrates the Pearson correlation coefficient between input and output 
variables for the LC3 compressive strength database. Such techniques are commonly em-
ployed during data pre-processing to identify and eliminate irrelevant variables, thereby 
reducing the dimensionality of the dataset. In terms of coefficient R, a value close to 1 
indicates a strong positive correlation; while one variable increases, the other does too. 
Conversely, a value close to −1 implies a strong negative correlation; while one variable 
increases, the other decreases. A value near 0 indicates that no linear correlation is found 
between the two variables. However, this does not necessarily mean the variables are in-
dependent; nonlinear correlations might still exist. 

An analysis of Figure 3 reveals that the absolute value of R between most input vari-
ables remains below 0.5, suggesting that these variables are relatively independent. In 
some cement studies, variables such as water content, cement content, and the water-to-
binder ratio are included. The absolute value of R among these three variables may be 
high. Consequently, researchers might contemplate excluding one of these to prevent po-
tential overfi�ing in ML models. This caution arises because high correlations may assign 
additional weights to certain parameters. However, the removal of any variable should be 
approached judiciously. Some variables may exhibit strong mathematical correlations—
for instance, an R-value of 0.47 between OPC content and calcination time—but they are 
independent in real experiments. Such discrepancies can be a�ributed to the data distri-
bution in the sampled database. Incorporating a larger and more diverse database might 
drive such correlation coefficients closer to 0. Considering the R-values between OPC con-
tent, clay content, and limestone content in LC3, these variables are negatively correlated. 
This is anticipated, as their measurements are in the %mass of LC3; an increase in one implies 
a decrease in the others. Some researchers may remove one of these three input variables 
owing to their strong correlations. However, it is imperative to retain all three variables in 
the database since they significantly influence the compressive strength. ML models, by 
their nature, do not understand these three parameters collectively, accounting for 100%. 
Without applying constraints, the model could establish incorrect correlations and fail to 
optimize the mixture design of the new LC3.  

After interpreting Pearson correlations between input variables, we shift our a�en-
tion to the relationships between inputs and output. The underlying assumption is that 
input variables should exhibit a discernible relationship with the output. If certain input 
variables demonstrate li�le-to-no correlation, they might be pruned from the database. 
However, this principle is not universal. To further elaborate this concept, the chemical 
compositions of clay, limestone, and OPC do not manifest direct linear correlations with 
compressive strength. These chemical parameters fundamentally define these three raw 
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materials. The relationship between chemical composition and compressive strength be-
comes clearer when considered in tandem with raw material content. When researchers 
review experimental results from prior research, they will find that certain correlations 
between LC3 parameters and compressive strength are already established. By comparing 
these known experimental correlations with Pearson correlations, discrepancies may be 
identified. If Pearson correlations appear to contradict experimental findings, it could lead 
to doubts regarding the database’s reliability and its data diversity. Figure 3 reveals the 
robust positive correlation between age and compressive strength. This observation aligns 
with prior findings showing that compressive strength tends to increase monotonically 
with age. However, an unexpected insight is the negligible correlation observed between 
the water-to-binder ratio, curing conditions, and compressive strength. Conventionally, 
lower water content is associated with higher compressive strength. However, exceed-
ingly low water levels can hamper the hydration reaction, thereby undermining the com-
pressive strength. Moreover, optimal curing conditions, like elevated temperatures and 
high-humidity environments, are known to accelerate hydration and enhance compres-
sive strength. This divergence between the database and experimental findings is at-
tributed to the fact that the majority of LC3 samples share similar water content and curing 
conditions, which dilutes their influences on compressive strength. Although Pearson cor-
relation presents some limitations in feature selection, it provides invaluable insights into 
data selection when introducing new materials and complex materials (e.g., fly ash) to LC3 
systems. Given that the interactions between these novel materials and LC3 are not exten-
sively studied, Pearson correlation offers an initial framework to elucidate potential rela-
tionships. Compared with other feature section techniques, Pearson correlation is easy to 
apply to any database without the need for in-depth machine learning or programming 
expertise. This approach, therefore, can be a powerful tool in efficiently filtering out insig-
nificant variables. 

 
Figure 3. Pearson correlation coefficients between LC3 components, processing parameters, and 
compressive strength. The dark color represents positive correlations, and the lighter color repre-
sents negative correlations. 
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Figure 4 demonstrates SHAP values corresponding to each input variable for indi-
vidual predictions. This visualization aids in understanding the relative influence of each 
variable on the RF model’s predictions. The variables are arranged hierarchically, with the 
most influential ones positioned at the top. The color-coding—red and blue—is indicative 
of the magnitude of the input values. Specifically, a red dot represents high input values, 
while blue signifies lower values. The positioning of these colors relative to the zero base-
line provides insights into their impact on the output. For instance, when most red dots 
are situated on the positive side, it denotes that the higher values of that input variable 
tend to increase the output. Conversely, if more red dots are on the negative side, it signi-
fies that higher values lead to a decrease in the output properties. Blue dots are interpreted 
similarly but with the opposite value behavior in mind. Compared with Pearson correla-
tions, the SHAP value method has several advantages. While Pearson correlation primar-
ily provides global relationships between variables, SHAP values provide additional in-
formation for interpreting the influences of input variables. They not only highlight the 
significance of each variable for specific predictions but also elucidate the quantitative in-
fluence an input variable has on the output. This presents a detailed picture beyond just a 
generalized correlation coefficient. SHAP values can also be instrumental in developing 
analytical models, which allow end-users to predict properties without the need for ad-
vanced programming expertise. The magnitude of both positive and negative correlations 
between inputs and outputs provides valuable insights into determining weight assign-
ments within these models. By se�ing these weights appropriately, coefficients can be fit-
ted in refined ranges, leading to accurate prediction performance. Nonetheless, it is essen-
tial to recognize that SHAP values only evaluate the correlations between inputs and out-
puts. As a result, SHAP values do not effectively determine whether or not a given input 
variable has the potential to cause overfi�ing.  

Figure 4 reveals that age is the most significant variable, exerting a positive influence 
on the compressive strength of LC3. This observation aligns with foundational principles 
in cement chemistry, wherein longer hydration periods translate into greater compressive 
strengths [6,76,77]. Such correlations can be used to debug ML models. For instance, a 
SHAP analysis indicates a diminishing compressive strength with increasing age, while 
Pearson correlation suggests the contrary (which means that the database is error-free). 
The monotonous, directly proportional relationship between the age and compressive 
strength of LC3 is well known. Such a discrepancy suggests that the ML model may have 
learned an incorrect correlation. In such cases, the solution might involve adjusting the 
model’s hyperparameters and re-training or even embedding certain constraints to guide 
the model in establishing accurate correlations. The content of OPC demonstrates a pro-
nounced positive correlation with compressive strength. This is anticipated, given that 
OPC serves as the primary constituent responsible for providing strength. Meanwhile, the 
SO3 content in OPC is placed in the third rank, displaying an inverse relationship with 
compressive strength. Earlier research showed that even a small amount of gypsum can 
substantially delay the hydration reaction, leading to a notable dip in compressive 
strength during the initial 3-day period [65,78–80]. Compounds such as e�ringite and 
monosulfoaluminate, which form from SO3, contribute minimally to compressive 
strength. Given the vast range of SO3 content variations, the RF model can sufficiently 
learn the influences of SO3 on compressive strength. Further down the rankings, SiO2 in 
clay exhibits a strong negative correlation. Higher SiO2 levels imply a more rigid clay mo-
lecular structure, resulting in a reduced dissolution rate and reactivity. Interestingly, other 
components of OPC compositions and relative humidity seem to exert minimal influence. 
This could be a�ributed to narrow ranges and the limited variability of these input varia-
bles. Such unforeseen outcomes also highlight the potential limitations of SHAP values. 
Although a SHAP value can be utilized to evaluate the influence of input variables across 
diverse ML models, it might be inefficient when the model assigns less weight to an input. 
This is because SHAP values primarily assess the shifts in predicted values prompted by 
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incremental changes in specific input variables. When a variable holds minimal weight, it 
corresponds to only slight variations in prediction, potentially obscuring its true impact. 

 
Figure 4. SHAP values of LC3 components and processing parameters for each prediction of com-
pressive strength. The most influential variable is ranked at the top. The red color represents positive 
correlations, and the blue color represents negative correlations. 

Figure 5 presents the variable importance derived from the RF model for each input 
variable. These variables are systematically arranged: the variables exerting the most-to-
least influence are positioned from left to right. It is noteworthy that the ranking of varia-
bles may differ between the SHAP value and variable importance; this discrepancy arises 
from the distinct mechanisms underlying each method. The SHAP value calculates pre-
dictions that fluctuate when a specific variable is altered. Essentially, it aggregates local 
data to quantify the global influence of an input variable. The performance is heavily re-
liant on the dataset in use, which means that a wide range of highly varied input variables 
could have strong influences. Conversely, variable importance is determined by shuffling 
a particular input variable and then measuring its impact on the overall prediction per-
formance, making this method more contingent on the model’s features and structures 
than the database. Given its direct correlation with prediction performance, variable im-
portance is especially adept at pinpointing and tailoring inconsequential variables. Mean-
while, the variable importance provides critical knowledge to develop analytical models. 
Our previous studies [53,65,67,74,81–83] successfully harnessed this tool to craft user-
friendly, closed-form analytical models for different materials.  

Figure 5 illustrates that the composition of OPC exerts great influence on compressive 
strength, a finding that seems contradictory to the results derived from the SHAP analysis. 
This discrepancy is understandable. While the variability and data range for OPC compo-
sitions might be narrow, they undeniably play a pivotal role in shaping the prediction 
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accuracy of the RF model. CaO in clay, the calcination temperature, and CaO in limestone 
show minimum impacts on compressive strength. One might consider omi�ing these 
from the database to decrease its complexity. Nevertheless, any decision to remove them 
must be grounded in cement chemistry insights. Past research has illuminated that, alt-
hough only a minor fraction of limestone reacts with the alumina phases in cement and 
clay, forming the carboaluminate phase, most of it persists as an inert filler [5,6,34]. Given 
its minimal chemical influence on hydration product formation, the variable related to 
limestone quality can be discarded. Furthermore, as clay is typically calcined between 
700–800 °C [9], kaolinite begins its decomposition, transitioning into amorphous struc-
tures at temperatures as low as 500 °C [84]. Therefore, the calcination temperature might 
also be deemed redundant, especially since all clays in the database underwent calcination 
at temperatures exceeding 500 °C. However, caution must be exercised when considering 
the removal of CaO from clay. CaO is one of the key factors that determines reactivity. 
While our study predominantly features clays with low CaO content, in practical scenar-
ios, some clays might exhibit higher CaO content. To ensure the generalization, this vari-
able ought to be retained. 

 
Figure 5. Quantitative evaluation of impacts of LC3 components and processing parameters on com-
pressive strength. The most influential variable is ranked on the left. 

By excluding two variables, the RF model discovers underlying correlations for LC3 
with only sixteen input variables. Figure 6 illustrates the RF model’s predictions of the 
compressive strength of LC3, now optimized through feature reduction. A detailed ac-
count of prediction errors from testing datasets is presented in Table 2.  

An examination of both Figure 7 and Table 2 demonstrates reliable predictions of 
compressive strength, especially when fine-tuned using the feature reduction method. 
From a quantitative standpoint, the predictions have an R of 0.94, coupled with an RMSE 
of 4.54 MPa. Training the model with these 16 variables trims the training time by nearly 
10% in comparison with the 18 input variables, and yet, the predictive accuracy is supe-
rior. This reinforces the efficiency of the variable importance method in not only reducing 
the complexity of the database but also maintaining robust prediction reliability. While 
the SHAP value method was explored to prune input variables, it led to a noticeable slash 
in prediction accuracy. Given this outcome, its results have been omi�ed from this study. 
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Figure 6. The prediction performance of the compressive strength of LC3 based on the testing da-
taset produced by the RF model while the feature reduction method is applied. The mean absolute 
error (MAE) for the overall predictions is shown in the legend. The solid lines show 10% error 
bounds, and the dashed line is the ideal prediction. 

After applying the feature reduction method, the feature enhancement method is uti-
lized to replace the chemical composition and processing parameters of the clay with the 
number of constraints. As a result of implementing both methodologies, the RF model only 
needs to learn input–output correlations from 13 input variables. This simplification no-
tably reduces both computational memory usage and the time required for training and 
testing. Figure 7 illustrates the RF model’s predictions of the compressive strength of LC3 
when informed by feature reduction and enhancement techniques. A detailed account of 
prediction errors from the testing datasets is presented in Table 2.   

Observing both Figure 7 and Table 2, it is evident that the RF model, when aug-
mented with the aforementioned methods, yields accurate predictions of compressive 
strength. Quantitatively, the R and RMSE values for the predictions stand at 0.95 and 4.61 
MPa, respectively. This figure demonstrates the superiority of predictions implemented 
with a combination of feature reduction and enhancement over those generated solely by 
the RF model or just with feature reduction. This can be a�ributed to the enhanced scope 
of information that the RF model receives. Unlike the standalone model, which is solely 
informed by the chemical composition and processing parameters of clay, the number of 
constraints provides the RF model with insights into the chemostructural properties of 
clay. This includes details like the quantities of various chemical bonds. Such data act as 
an effective proxy for representing the reactivity of clay—a facet not directly discernible 
from just the chemical composition. Clay with high reactivity readily interacts with free 
portlandite, water, and sulfate, leading to the formation of C-A-S-H, e�ringite, and mono-
sulfoaluminate [85,86]. These compounds play a pivotal role in reducing the binder’s po-
rosity, thereby enhancing compressive strength. In essence, such information obtained 
from the number of constraints empowers the RF model to robustly discover correct under-
lying input–output correlations for LC3. 
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Figure 7. The prediction performance of the compressive strength of LC3 based on the testing da-
taset as produced by the RF model while both the feature reduction and feature enhancement meth-
ods are applied. The mean absolute error (MAE) for overall predictions is shown in the legend. The 
solid lines show 10% error bounds, and the dashed line is the ideal prediction. 

In conclusion, the feature reduction and feature enhancement methods have demon-
strated their robust potential in trimming down the degree of freedom within the LC3 
database and enhancing the prediction performance. The abovementioned guidelines not 
only apply to LC3 but can also be extrapolated to encompass other cementitious materials. 
Such tailored approaches are pivotal, as they demonstrate the importance of fine-tuning 
ML models to be�er fit the principles of cement chemistry rather than employing these 
models generically. Furthermore, the feature reduction methodologies serve a dual pur-
pose. Firstly, they enhance the interpretability of ML models. This heightened transpar-
ency aids researchers in diagnosing potential issues within ML models and, if necessary, 
incorporating new features to refine predictions. Secondly, these methods pave the way 
for more informed decisions in the realm of cementitious material experiments. By dis-
cerning which components considerably influence a particular property, manufacturers 
and researchers can adjust formulations more precisely, ensuring optimal performance 
and efficiency in the resulting product. 

4. Conclusions and Perspectives 
Reducing its carbon footprint has placed the cement industry at the forefront of re-

search initiatives. LC3 emerges as a promising alternative to OPC, with a significantly re-
duced carbon footprint. The inherent compositional heterogeneity in select components 
of LC3, combined with their convoluted chemical interactions, poses challenges to conven-
tional analytical models when predicting mechanical properties. ML provides a promis-
ing solution for predicting the properties of multicomponent materials (e.g., LC3). How-
ever, the generic applications of ML on cementitious materials may violate some laws of 
cement chemistry. This underscores a need for deeper explorations into tailoring ML mod-
els that can seamlessly integrate with cement chemistry’s intricacies. This highlights the 
ongoing need for further research to fully understand ML models and integrate 
knowledge of cement chemistry into them. 

In this study, an RF model was employed to predict the compressive strength of LC3 
in a high-fidelity manner. The database comprises over 400 data records, marking it siza-
ble in comparison with most cement databases. Nevertheless, from a broader data science 
perspective, this scale would still be classified as relatively small. Most data science data-
bases contain thousands to billions of data records, allowing for a richer understanding of 
input–output correlations. Gathering such vast amounts of data is not practical in cement 
research given the extensive costs and prolonged durations associated with data collec-
tion, especially for properties like long-term strength and durability. The solution lies in 
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fostering a culture of collaborative data sharing within the cement research community. 
Such collaboration is commonplace in data science, where numerous repositories exist for 
researchers to share and access databases. Regre�ably, the cement community currently 
lacks a dedicated platform for data communication. The development of an open-source 
repository for cement research is urgently required. Such a platform would not only en-
courage researchers to share data and ML algorithms but also ensure standardized data 
quality through the implementation of specific sharing protocols. With the inception of 
such a repository, the evolution of ML techniques in cement research would experience a 
significant boost. Concurrently, it would empower scientists to innovatively design new 
cement formulas more efficiently and at reduced costs. 

Furthermore, three data reduction (i.e., Pearson correlations, SHAP value, and vari-
able importance) and one data enhancement (i.e., topological constraint) methods were 
explored in this study. To aid in their application, this research provides an in-depth 
breakdown and step-by-step guidelines on how to leverage these data reduction methods 
to analyze and understand the intricate relationships between inputs and output. Each 
technique has a unique set of strengths and potential pitfalls. For this reason, a robust data 
analysis strategy would be be�er anchored on a combination of these methods rather than 
overly depending on just one. For instance, while one method might be good at identify-
ing weaker correlations, another might be adept at understanding nonlinear relationships. 
After identifying insignificant variables, it is crucial to overlay this understanding with 
domain knowledge regarding cement chemistry. This ensures a rational decision-making 
process on whether to retain or discard a given input variable. Venturing into data en-
hancement, the method amalgamates multiple input variables into a more enriched and 
informative single entity. Such an approach not only reduces the complexity of the data-
base but also presents ML with more potent correlations to analyze and learn from. 

Both the data reduction and enhancement strategies signify a pivotal shift from a 
broad, one-size-fits-all approach to ML to more tailored, cement-chemistry-based ML. 
Looking to the future, there is an evident trajectory toward further refining this symbiosis 
between ML and cement chemistry, starting with science-informed ML, where input var-
iables are rooted in established scientific principles, and then, a transition toward ML 
models constrained and guided by material laws can occur, where these models would 
be adept at learning specific trends across diverse scenarios. The zenith of this evolution 
would be the development of ML models highly integrated with thermodynamic or ki-
netic frameworks. Such models would encapsulate material laws at every juncture of pre-
diction, magnifying the reliability of their outputs. 

To conclude, it is undeniable that ML has revolutionized research related to cement 
science, ushering in the conceptualization and development of innovative cementitious 
materials. While this paper merely scratches the surface of the potential intersections be-
tween ML and cement chemistry, but it ignites a robust dialog focused on customizing 
ML to cement science. The rapid evolution of AI has brought forth the emergence of gen-
erative AI as a cu�ing-edge field of exploration. Currently, its applications span a myriad 
of domains, from content creation in writing and image generation to advanced video 
synthesis. However, the potential of integrating generative AI with cement chemistry re-
mains largely untapped. Imagine a scenario where generative AI is harnessed to learn 
from cement databases. This AI model could then extrapolate and design novel cementi-
tious formulas that not only diverge from known databases but also amalgamate insights 
across them. Such an approach could inspire researchers to explore unthought realms. 
Generative AI could be profound, potentially fast-tracking the development of sustainable 
cement toward a future of carbon neutrality.  
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