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Abstract: Limestone calcined clay cement (LC?) is a sustainable alternative to ordinary Portland ce-
ment, capable of reducing the binder’s carbon footprint by 40% while satisfying all key performance
metrics. The inherent compositional heterogeneity in select components of LC?, combined with their
convoluted chemical interactions, poses challenges to conventional analytical models when predict-
ing mechanical properties. Although some studies have employed machine learning (ML) to predict
the mechanical properties of LC?, many have overlooked the pivotal role of feature selection. Proper
feature selection not only refines and simplifies the structure of ML models but also enhances these
models’ prediction performance and interpretability. This research harnesses the power of the ran-
dom forest (RF) model to predict the compressive strength of LC?. Three feature reduction meth-
ods—Pearson correlation, SHapley Additive exPlanations, and variable importance —are employed
to analyze the influence of LC? components and mixture design on compressive strength. Practical
guidelines for utilizing these methods on cementitious materials are elucidated. Through the rigor-
ous screening of insignificant variables from the database, the RF model conserves computational
resources while also producing high-fidelity predictions. Additionally, a feature enhancement
method is utilized, consolidating numerous input variables into a singular feature while feeding the
RF model with richer information, resulting in a substantial improvement in prediction accuracy.
Overall, this study provides a novel pathway to apply ML to LC? emphasizing the need to tailor
ML models to cement chemistry rather than employing them generically.

Keywords: limestone calcined clay cement; compressive strength; feature reduction; feature
enhancement; machine learning

1. Introduction

Concrete stands as the most widely used human-made material in the world, an es-
sential ingredient for construction. As urbanization continues across the globe, driven by
ever-increasing population growth and ambitious infrastructure projects, the global de-
mand for concrete is projected to rise by an additional 10% by the year 2050 [1]. However,
the environmental toll of this new infrastructure is staggering: the production of Ordinary
Portland Cement (OPC), the main component of concrete, contributes to ~8% of the world-
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wide carbon footprint [2,3]. In the face of this environmental conundrum, various strate-
gies have been proposed to mitigate the detrimental impact of cement production, pri-
marily focusing on emission reductions, energy optimization, and the efficient use of ma-
terials. One of the most promising of these is using supplementary cementitious materials
to partially replace clinkers. This approach holds particular significance for two primary
reasons: (1) the energy efficiency of contemporary cement kilns has already been fine-
tuned to near-maximum levels, meaning that there is limited scope for further reducing
carbon emissions through clean energy solutions alone, and (2) the decomposition of lime-
stone contributes to 60% of CO: emissions [4], which cannot be avoided during the OPC
manufacturing process. Hence, any meaningful reduction in carbon emissions must di-
rectly address the OPC clinker itself. In recent years, researchers have formulated a new
type of ternary-blended cement known as limestone calcined clay cement (LC?). This in-
novative blend leverages calcined clay and limestone to significantly reduce the clinker
content, allowing for formulations of binders with as little as 50% OPC. Preliminary stud-
ies indicate that LC? can meet or even exceed the performance metrics of OPC in various
aspects, including strength, durability, and workability [5-8]. The emergence of LC3,
therefore, represents a promising milestone in the development of sustainable cementi-
tious materials without compromising mechanical performance and durability.

LC3is formulated with a maximum of 30% calcined clay, 15% limestone, and 5% gyp-
sum, thereby allowing the clinker content to be potentially reduced to as low as 50% [9].
Clay is typically calcined at 700-900 °C so as to convert crystalline aluminosilicate phases
into amorphous ones. This is significantly lower than the manufacturing temperature
(~1450 °C) compared with OPC. As a result, the LC? production process can achieve a
remarkable 35%—40% reduction in both energy consumption and CO:z emissions [10]. Ex-
cept from an energy-saving perspective, LC? also benefits from unique chemical synergies
between its components. The primary chemical reaction involves the hydration of OPC,
forming calcium silicate hydrate (C-S-H), portlandite, and other hydration products. Cal-
cined clay, serving as a pozzolanic material, predominantly reacts with free portlandite to
form additional C-S-H [11]. The reactivity of the clay is highly sensitive to the calcination
temperature: insufficient heating fails to remove water and form amorphous phases, while
temperatures exceeding 900 °C diminish reactivity because of recrystallization into spinel,
mullite, or cristobalite [12]. Prior research [13] suggests that clay reactivity is influenced
not just by the molecular structure but also by the alite and belite content in OPC. Lime-
stone also plays a crucial role by providing additional surfaces for the nucleation of hy-
drates, thereby boosting OPC hydration kinetics, especially at early ages. Limestone can
also react with alumina in clay (and OPC) to form carboaluminate hydrates [11]. All afore-
said hydrates are favorable because they can fill pores, serve as binding agents, and pro-
vide strength.

Compressive strength is a critical indicator of concrete quality, and a significant body
of research has investigated the mechanical performance of LC3. While a majority of stud-
ies conclude that the 28-day compressive strength of LC? is comparable to OPC, variations
have been noted at other ages [6]. Dhandapani et al. [5] found that the 3-day strength of
LC? and its associated concretes are slightly lower than OPC. By 7 days, however, the
strength of LC? reportedly matches or even surpasses that of OPC [6]. Though indispen-
sable, laboratory experiments aimed at understanding compressive strength are both la-
bor-intensive and expensive. As a result, there is an urgent need for reliable numerical
models to estimate compressive strength. Many numerical models have been developed
to predict the compressive strength of cementitious systems [14-18]. These models effec-
tively quantify the impact of various factors, such as the water-to-cement ratio, the degree
of hydration, and curing ages, on the compressive strength of plain OPC pastes. However,
these existing models fall short when applied to LC? for several reasons. Firstly, the data
domains for these models differ from those of LC3, thereby requiring the recalibration of
coefficients. Secondly, while these models capture the chemical reactions in OPC, they fail
to account for the complex mutual interactions between calcined clay, limestone, and OPC
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in LC3. Lastly, assuming numerical models that encompass all these interactions are not
only impractical but also dauntingly complex, such models would potentially require an
extensive number of coefficients, making them cumbersome —almost impractical —to use.
Moreover, the underlying mechanisms affecting LC? strength have yet to be fully under-
stood, adding another layer of complexity to the development of comprehensive models.

Machine learning is a promising solution to predicting the properties of multi-com-
ponent materials. Although many studies have employed ML models to predict the prop-
erties of cementitious materials [19-21], only a few studies [22-24] have applied ML to
LC3. Thus, there is a technological gap associated with the limited development and use
of ML applications in LC3 systems, at least compared with other cementitious materials
(e.g., OPC and alkali-activated cement). One major shortcoming in the current application
of ML to cementitious materials is that researchers generally adopt ML models as is rather
than customizing them to align with the unique features of cement chemistry, particularly
during feature selection. Many studies [25-29] solely present Pearson correlation and
SHapley Additive exPlanations (SHAP) to evaluate the influences of input variables on
cement properties without deeper interpretation or without utilizing these metrics to re-
fine input variables effectively. Feature refinement includes weeding out less significant
variables to enhance prediction performance, forming a crucial juncture where data sci-
ence intersects with cement chemistry. Since generic ML models are designed to be data-
driven (rather than by theory) and applicable to a wide range of applications, certain fea-
tures might contradict the foundational principles of cement chemistry. By investigating
feature selection parameters, researchers can gain a more comprehensive understanding
of the intricate relationships between mixture designs and properties, especially when in-
troducing new materials to the cement system. Further, comparing the influences of input
variables with established literature correlations can ensure that ML models adhere to
core material principles. If contradictions are observed, researchers can gain insights into
how to fix their models, rather than being left in the dark by the model’s opaque nature.

This research harnesses the power of the random forest (RF) model to predict the
compressive strength of LC? systems. To tailor the RF model to LC3, three feature reduc-
tion methods—Pearson correlation, SHAP, and variable importance —are employed to an-
alyze the influence of LC? components and mixture design on compressive strength. Di-
rect comparison between methods and practical guidelines for utilizing these methods on
cementitious materials are elucidated. Additionally, a feature enhancement method (i.e.,
topological constraint theory) is utilized, consolidating numerous input variables related
to calcinated clay into a singular feature (number of constraints) while feeding the RF model
with richer information, which includes not only the chemical composition but also reac-
tivity. By evaluating the performance of feature reduction and feature enhancement meth-
ods, predictions with these two methods are compared with an outcome from the
standalone model. While the methods proposed in this study are designed for LC?, they
provide potential applicability across a wide range of properties of various cementitious
materials.

2. Modeling Methods
2.1. Database Collection

A compressive strength database for LC? was compiled from the existing literature
[11,30-45], comprising 430 distinct data records, each with 18 inputs and a single output.
Through the random selection of data records, this database is split into two subsets: a
training dataset and a testing dataset. The training dataset containing 75% of the data rec-
ords trains the RF model, while the testing dataset containing the remaining 25% of the
data records is employed to assess the model’s performance. The evaluation process uti-
lizes five key statistical metrics: coefficient of determination (R?), Pearson correlation co-
efficient (R), mean absolute error (MAE), root mean squared error (RMSE), and mean ab-
solute percentage error (MAPE). The input variables of the database are as follows: clay
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content (Yomass of Lc3); SiO2 in clay (Yomass of day); Al203 in clay (Yomass of cay); CaO in clay (Yomass
of day); calcination temperature (°C); calcination time (hour); limestone content (%mass of LC3);
CaO in limestone (Yomass of limestone); OPC content (Yomass of Lc3); SO3 in OPC (Yomass of orc); CaO
in OPC (Y%mass of orc); SiO2 in OPC (Ymass of orc); Al20s in OPC (Yomass of orc); Fe20s in OPC
(Yomass of opc); Water-to-binder ratio (unitless); age (day); curing temperature (°C); and rela-
tive humidity during curing (%). The output is compressive strength (MPa). Though pre-
vious studies have provided other oxide compositions in clay, these were deliberately
omitted from this database, as their contribution to strength is minimal. When integrating
experimental results into a database, it is vital to apply expert knowledge to filter out ir-
relevant features. This narrows the degree of freedom of the database, simplifies the pre-
diction process of machine learning models, and helps to avert overfitting on irrelevant
information. Next, limestone can provide carbonate ions to react with calcined clay. The
required number of carbonate ions allowing for an effective reaction depends on OPC and
clay compositions [13]. The database includes low-quality limestones (CaO < 50%), and
the impact of quality on the compressive strength remains ambiguous. Consequently, the
CaO content in limestone was included in the database to shed light on this aspect. The
statistical parameters pertaining to input and output variables are shown in Table 1, which
exhibits the data domain and data distribution.

Table 1. Statistical parameters interpreting the data domain for 18 inputs and 1 output (bold) for the
LC3 compressive strength database.

Attribute Unit Min. Max. Mean Std. Dev.
Clay Content Yomass of LC3 10 60 25.29 9.66
SiOz in Clay Yomass of clay 34.10 79.63 55.98 10.52
AlOs in Clay Yomass of clay 10.55 46.99 31.57 10.33
CaO in Clay Yomass of clay 0 5.89 0.53 0.85
Calcination Temperature °C 550 925 762.01 77.39
Calcination Time hour 0.20 3 1.27 0.71
Limestone Content Yomass of LC3 0 31.13 8.53 7.67
CaO in Limestone Yomass of limestone 29.05 100 70.70 24.90
OPC Content Yomass of LC3 25 90 65.93 13.35
SOs in OPC Yomass of OPC 0.67 9.49 3.26 121
CaO in OPC Yomass of OPC 16.37 34.07 20.86 3.22
Si0z2in OPC Yomass of OPC 1.52 7.35 511 1.07
ALOs in OPC Yomass of OPC 52.17 68.48 62.39 3.49
Fe20s in OPC Yomass of OPC 0.20 7.69 3.01 1.06
Water-to-Binder Ratio unitless 0.10 0.90 0.47 0.08
Age day 1 270 28.75 37.93
Curing Temperature °C 5 50 22.53 5.38
Relative Humidity % 80 100 92.95 4.94
Compressive Strength MPa 4.60 75 36.66 16.11

Figure 1 illustrates the feature selection methods adopted in this study. Those meth-
ods are used to refine the input variables used in the LC? database and enhance the per-
formance of the RF model. It is important to recognize the value of domain knowledge in
simplifying the database for LC® and similar cementitious databases. These databases usu-
ally contain complex mixture design and processing parameters, but some input features
are irrelevant to some properties. Using domain knowledge can identify and eliminate
irrelevant features to reduce the degree of freedom of the database. Moreover, drawing
upon the perspective of data science, it is noteworthy that, while certain input features
may appear to mathematically correlate with specific properties, this might be a result of
a data domain limitation. Contrarily, from a cement chemistry viewpoint, these features



Minerals 2023, 13, 1261

5 of 20

might not genuinely correlate with target properties. The inclusion of such illusory corre-
lations can lead to the overfitting of ML models, thereby compromising their generaliza-
bility. Section 2.3 will delve into three feature reduction methods (i.e., Pearson correlation,
SHAP value, and variable importance). The core objective of these methods is to rank in-
put variables based on their influences on target properties. Post-ranking, the less signifi-
cant variables are removed from subsequent analyses. This judicious reduction ensures
that the ML models reduce the processing time without scarifying prediction accuracy,
and in many instances, the accuracy is bolstered. Section 2.4 introduces the feature en-
hancement technique. A key advantage of this approach is its ability to merge multiple
input variables into a singular, more informative feature. Therefore, ML models can learn
more useful correlations from a reduced number of inputs while consuming fewer com-
putational resources. This not only enhances the models’ learning capability but also sub-
stantially curtails computational complexity (and, thus, the time required to train the
models). Furthermore, this method saves computational power, paving the way for im-
proved prediction performance.

| MixID | Inputs | Properties
) — xioxp Y,
n Xy Y,

Experimental Domain Original Database
Data Knowledge

v v

X
mmm Xl XM= xl xm2 — = X!, X% X3, X4->Z
Reduce the Number of Features Consolidate Several Inputs into
Feature Empirical Single Input
Analysis Model
Feature Reduction Feature Enhancement

Figure 1. Schematic representation of feature selection method proposed in this study. Researchers
utilize their knowledge to pre-filter irrelevant input variables while consolidating the database. The
feature reduction method can be used to further reduce the degree of freedom of the database. The
feature enhancement method can use a new singular input variable to represent information per-
formed by several input variables.

2.2. Random Forest (RF)

The RF model builds upon the conventional classification-and-regression tree
(CART) model to deliver more accurate and robust predictions. Unlike CART, RF incor-
porates the bagging algorithm [46,47] and a two-step randomization [47,48] process to
create a forest consisting of independent decision trees. During training, RF constructs
hundreds of these trees, each grown from a randomly selected subset of the parent train-
ing dataset, with repeated selection permitted. The unselected data records are defined as
an out-of-bag (OOB) sample. Notably, the sub-dataset for training each tree must equal
the size of the parent training dataset, preserving diversity. While the CART model eval-
uates all input variables at each node, RF introduces further randomness by selecting only
a certain number of input variables to determine the optimal split. Trees in RF grow until
the homogeneity of the last tree node cannot be further improved by splitting, ensuring
diversity within the forest. Unlike CART, pruning and smoothing algorithms are not ap-
plied in RF, allowing each tree to grow as deeply as possible. At the testing stage, RF lev-
erages the bagging algorithm to collect and average the outputs from individual trees,
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producing the final prediction. This combination of bagging and two-step randomization
effectively reduces both variance and bias errors, enhancing the model’s reliability [49,50].
To avoid overfitting and underfitting, the hyperparameters of RF are optimized via the
10-fold cross-validation (CV) [51,52] and grid-search methods [51,53].

Tree-based models provide a unique feature: they can rank the importance of varia-
bles without an additional algorithm. This ranking capability allows researchers to filter
out insignificant or irrelevant input variables, enhancing models’ computational efficiency
and performance. When the RF model processes numerical data, variable importance [54—
57] can be detailed as follows. For each individual tree, ¢, within the forest, there is a cor-
responding OOB sample, OOB:. The OOB: sample comprises data points that are not in-
cluded in the bootstrap sample used to grow the tree, t. When tree, t, produces predictions
about OOB;, the error (mean absolute error) is denoted as errOOB:. To calculate the im-
portance of a variable, the values of the target input variables of OOB: are randomly per-
muted to obtain a new sample, denoted OOBy/. Then, the model evaluates the prediction
performance (errOOBy) of the OOB# sample. The variable importance is defined as

1
ntree

Variable Importance = Z(errOOBtj — errO0B,) (1)
t

where ntree represents the number of trees, ¢, in the forest. In the end, the RF model ranks

input variables based on their importance. Researchers can use it as a guideline to remove

insignificant variables and reduce the complexity of the tree structure.

2.3. Feature Reduction Methods

This section presents three feature reduction techniques, emphasizing their capacity
to prioritize input variables based on their impact on the output. By harnessing this
knowledge, insignificant input variables can be systematically removed, thereby reducing
the dimensionality of the LC? database. While the descriptions of Pearson correlations and
SHAP values are demonstrated herein, the variable importance is detailed in the previous
section.

The Pearson correlation coefficient [58], often represented as R, is a statistical measure
used to quantify the linear relationship between two variables. Its value can range from
-1 to 1. A value of 1 signifies a perfect positive linear relationship, indicating that as one
variable increases, the other does as well in a directly proportional manner. Conversely, a
value of -1 implies a perfect negative linear relationship, meaning that as one variable
increases, the other decreases in a directly inverse proportion. A coefficient of 0 suggests
no linear correlation between the variables. The calculation for this coefficient is derived
from the following formula:

R Lisa( =0 =) )

VI G0 = 22 V2L 0 — )

where x and y represent individual data points, and ¥ and y are the means of the respec-
tive datasets. It is crucial to understand that the Pearson correlation coefficient strictly
measures linear relationships. Hence, nonlinear relationships might not be effectively cap-
tured by R. Additionally, a correlation value of 0 does not necessarily indicate the varia-
bles are independent; it simply denotes the absence of a linear relationship. Furthermore,
it is pivotal to remember that this coefficient does not equate to causation. A high correla-
tion between two variables does not inherently suggest that changes in one cause changes
in the other; other factors or underlying variables could influence the observed relation-
ship. In summary, while the Pearson correlation coefficient offers valuable insight into the
linear dependence between two variables, its interpretation demands careful considera-
tion and often warrants further analysis.

SHapley Additive exPlanations (SHAP) is a method developed by Lundberg and Lee
[59] to reveal the importance and effects of input features. It is built on the concept of the
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Shapley value by unifying the additive feature attribution method, game theory, and local
explanations. Using principles from cooperative game theory, SHAP calculates the Shap-
ley value for each feature, representing the average marginal contribution of that feature
across all possible combinations of features. To be specific, in a database with the input
variables x = (x1, x2, ..., xn), where n is the number of input variables, SHAP creates simpli-
fied inputs, x', which map into x through x = h,(x") . Based on the x’, the original
model, f(x), can be approximated with a linear function:

M
) =9GN =00+ ) oix] ®)

it1
M represents the number of input features; ¢, is the constant when all inputs are
missing; ¢; is the feature attribution value expressed by

1M = |2'] — 1)!
po= Y PRI D - ) @
fu(2) = f(h" () = EIf ()1, ©)

|z'| represents the number of non-zero entries in x’, and ¢; is the SHAP value.
Given these structures, the SHAP value inherits the properties of additivity, local accu-
racy, missingness, and consistency [60,61].

The two unique advantages of the SHAP value are its dual levels of interpretability —
both global and local. Unlike many traditional feature importance metrics in machine
learning, SHAP not only discerns the significance of each input feature but also ascertains
its positive or negative influence. While global interpretability provides an overarching
view of the model, highlighting general feature influences on predictions, local interpret-
ability delves deeper, examining individual instances. Moreover, the SHAP value en-
hances the interpretability of ML models by consistently explaining interaction effects be-
tween features for individual predictions.

2.4. Feature Enhancement Method

This section introduces a feature enhancement method that consolidates multiple in-
put variables into a single parameter that embodies extensive information. For clay, calci-
nation removes water from clay and transforms crystalline structures into amorphous
ones, enhancing their reactivity [6]. Yang et al. [62] found that the reactivity of amorphous
calcium aluminosilicate materials can be envaulted by a singular parameter—number of
constraints—which can be calculated with topological constraint theory [63,64]. Our pre-
ceding research [65-67] further validated how this parameter can reliably estimate the
reactivity of various families of aluminosilicate-rich cementitious materials. Additionally,
our studies highlighted the potential of the number of constraints to replace various input
variables used in ML and enhance prediction accuracy. The benefit of using this parameter
is twofold: it simplifies the dataset for machine learning models and encapsulates vital
information on the molecular structure and aqueous reactivity of aluminosilicate-based
cementitious materials. Consequently, the number of constraints is utilized in this study to
replace the chemical composition and processing parameters of clays. Most clays in our
database underwent calcination at temperatures exceeding 600 °C for over an hour, en-
suring their largely amorphous nature.

The fundamental constituents of the clay framework are SiO,, CaO, and AL,Oj3, disre-
garding any minor components. The normalized chemical composition is represented as
(Cao0)x(Al203)y(SiOz)1-xy, where x and y denote the molar fractions. Two chemical con-
straints found in amorphous calcium aluminosilicate materials are angular bond-bending
(BB) and radial bonding-stretching (BS) constraints [62,68,69]. Si/Al tetrahedrons contrib-
ute 4 BS and 5 BB constraints. While O atoms linked to Si/Al tetrahedrons add 1 BB con-
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straint, those connected to Ca atoms provide 1 BS constraint [62,69-72]. Calcium alumino-
silicate materials can be categorized into three groups based on their chemical composi-
tions:

Depolymerized regime (y — x <-2/3): Dominated by Ca atoms, leading to the isolation
of Si and Al tetrahedrons due to non-bridging oxygens (NBOs). NBOs promote aqueous
reactivity.

Partially depolymerized regime (-2/3 <y — x < 0): Dominated by Si atoms. Contains
both bridging oxygen (BOs) atoms and NBOs, leading to increased crystallinity and re-
duced reactivity.

Fully polymerized regime (0 < y — x): Dominated by Al atoms, resulting in a rigid
structure with minimal reactivity due to scarce NBOs.

In this research, all examined clays fall within the fully polymerized regime, which
demonstrates the least reactivity. The formula to determine the number of constraints is
presented in Equation (6).

11413y —13x

T3 T ox 2y ©

3. Results and Discussion

The LC? database was partitioned into training and testing datasets, with the former
encompassing 75% of the primary database and the latter constituting the remaining 25%.
Figure 2 shows the predictions of compressive strength as yielded by the RF model, com-
pared with the measurements from the testing dataset. The statistical parameters repre-
senting the accuracy of the predictions—i.e., prediction performance —are itemized in Ta-
ble 2. A cursory glance at both the figure and the table reveals impressive reliability in the
compressive strength predictions, underscored by an R-value of 0.94 and an RMSE of 5.64
MPa. The experimental measurement error for compressive strength for cementitious ma-
terials stands at approximately 5 MPa [73]. Remarkably, the deviation in our prediction
closely mirrors this experimental error. This implies that the RF model can yield highly
accurate predictions of the compressive strength of LC3. Such excellent performance holds
significant promise for cement scientists, empowering them to rapidly identify promising
mixture designs and evaluate their compressive strength rather than experimenting with
an expansive array of mixture designs. It is hardly surprising that the RF model exhibits
such excellent performance. A retrospective look at our past research [65-67,74,75]
demonstrates that the RF model consistently produces reliable predictions of compressive
strength for various cementitious materials. These publications also elucidate the reasons
that the RF model—when contrasted with analytical models or other ML models—can
achieve such excellent performance with cementitious materials.
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Figure 2. The prediction performance of the compressive strength of LC3 on the testing dataset as
produced by the RF model with original input variables. The mean absolute error (MAE) for overall
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predictions is shown in the legend. The solid lines show 10% error bounds, and the dashed line is
the ideal prediction.

Table 2. Prediction accuracy (represented by five statistical parameters) of compressive strength of
LC3 as produced by the RF model with original inputs, feature reduction, and feature enhancement
methods.

ML Model R R?2 MAE MAPE RMSE
Unitless Unitless MPa % MPa
Original 0.9453 0.8936 5.641 16.56 5.641
Featur-e Re- 0.9421 0.8875 4.243 15.52 5.548
duction
Feature En-
0.9588 0.9194 3.431 11.30 4.608
hancement

After evaluating the performance of the RF model in predicting the compressive
strength of LC3, the study now shifts its focus to understanding feature selection tech-
niques. Figure 3 illustrates the Pearson correlation coefficient between input and output
variables for the LC? compressive strength database. Such techniques are commonly em-
ployed during data pre-processing to identify and eliminate irrelevant variables, thereby
reducing the dimensionality of the dataset. In terms of coefficient R, a value close to 1
indicates a strong positive correlation; while one variable increases, the other does too.
Conversely, a value close to -1 implies a strong negative correlation; while one variable
increases, the other decreases. A value near 0 indicates that no linear correlation is found
between the two variables. However, this does not necessarily mean the variables are in-
dependent; nonlinear correlations might still exist.

An analysis of Figure 3 reveals that the absolute value of R between most input vari-
ables remains below 0.5, suggesting that these variables are relatively independent. In
some cement studies, variables such as water content, cement content, and the water-to-
binder ratio are included. The absolute value of R among these three variables may be
high. Consequently, researchers might contemplate excluding one of these to prevent po-
tential overfitting in ML models. This caution arises because high correlations may assign
additional weights to certain parameters. However, the removal of any variable should be
approached judiciously. Some variables may exhibit strong mathematical correlations—
for instance, an R-value of 0.47 between OPC content and calcination time—but they are
independent in real experiments. Such discrepancies can be attributed to the data distri-
bution in the sampled database. Incorporating a larger and more diverse database might
drive such correlation coefficients closer to 0. Considering the R-values between OPC con-
tent, clay content, and limestone content in LC?, these variables are negatively correlated.
This is anticipated, as their measurements are in the %mass of Lc3; an increase in one implies
a decrease in the others. Some researchers may remove one of these three input variables
owing to their strong correlations. However, it is imperative to retain all three variables in
the database since they significantly influence the compressive strength. ML models, by
their nature, do not understand these three parameters collectively, accounting for 100%.
Without applying constraints, the model could establish incorrect correlations and fail to
optimize the mixture design of the new L.

After interpreting Pearson correlations between input variables, we shift our atten-
tion to the relationships between inputs and output. The underlying assumption is that
input variables should exhibit a discernible relationship with the output. If certain input
variables demonstrate little-to-no correlation, they might be pruned from the database.
However, this principle is not universal. To further elaborate this concept, the chemical
compositions of clay, limestone, and OPC do not manifest direct linear correlations with
compressive strength. These chemical parameters fundamentally define these three raw
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materials. The relationship between chemical composition and compressive strength be-
comes clearer when considered in tandem with raw material content. When researchers
review experimental results from prior research, they will find that certain correlations
between LC? parameters and compressive strength are already established. By comparing
these known experimental correlations with Pearson correlations, discrepancies may be
identified. If Pearson correlations appear to contradict experimental findings, it could lead
to doubts regarding the database’s reliability and its data diversity. Figure 3 reveals the
robust positive correlation between age and compressive strength. This observation aligns
with prior findings showing that compressive strength tends to increase monotonically
with age. However, an unexpected insight is the negligible correlation observed between
the water-to-binder ratio, curing conditions, and compressive strength. Conventionally,
lower water content is associated with higher compressive strength. However, exceed-
ingly low water levels can hamper the hydration reaction, thereby undermining the com-
pressive strength. Moreover, optimal curing conditions, like elevated temperatures and
high-humidity environments, are known to accelerate hydration and enhance compres-
sive strength. This divergence between the database and experimental findings is at-
tributed to the fact that the majority of LC? samples share similar water content and curing
conditions, which dilutes their influences on compressive strength. Although Pearson cor-
relation presents some limitations in feature selection, it provides invaluable insights into
data selection when introducing new materials and complex materials (e.g., fly ash) to LC?
systems. Given that the interactions between these novel materials and LC? are not exten-
sively studied, Pearson correlation offers an initial framework to elucidate potential rela-
tionships. Compared with other feature section techniques, Pearson correlation is easy to
apply to any database without the need for in-depth machine learning or programming
expertise. This approach, therefore, can be a powerful tool in efficiently filtering out insig-
nificant variables.
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Figure 3. Pearson correlation coefficients between LC3 components, processing parameters, and
compressive strength. The dark color represents positive correlations, and the lighter color repre-
sents negative correlations.
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Figure 4 demonstrates SHAP values corresponding to each input variable for indi-
vidual predictions. This visualization aids in understanding the relative influence of each
variable on the RF model’s predictions. The variables are arranged hierarchically, with the
most influential ones positioned at the top. The color-coding —red and blue—is indicative
of the magnitude of the input values. Specifically, a red dot represents high input values,
while blue signifies lower values. The positioning of these colors relative to the zero base-
line provides insights into their impact on the output. For instance, when most red dots
are situated on the positive side, it denotes that the higher values of that input variable
tend to increase the output. Conversely, if more red dots are on the negative side, it signi-
fies that higher values lead to a decrease in the output properties. Blue dots are interpreted
similarly but with the opposite value behavior in mind. Compared with Pearson correla-
tions, the SHAP value method has several advantages. While Pearson correlation primar-
ily provides global relationships between variables, SHAP values provide additional in-
formation for interpreting the influences of input variables. They not only highlight the
significance of each variable for specific predictions but also elucidate the quantitative in-
fluence an input variable has on the output. This presents a detailed picture beyond just a
generalized correlation coefficient. SHAP values can also be instrumental in developing
analytical models, which allow end-users to predict properties without the need for ad-
vanced programming expertise. The magnitude of both positive and negative correlations
between inputs and outputs provides valuable insights into determining weight assign-
ments within these models. By setting these weights appropriately, coefficients can be fit-
ted in refined ranges, leading to accurate prediction performance. Nonetheless, it is essen-
tial to recognize that SHAP values only evaluate the correlations between inputs and out-
puts. As a result, SHAP values do not effectively determine whether or not a given input
variable has the potential to cause overfitting.

Figure 4 reveals that age is the most significant variable, exerting a positive influence
on the compressive strength of LC3. This observation aligns with foundational principles
in cement chemistry, wherein longer hydration periods translate into greater compressive
strengths [6,76,77]. Such correlations can be used to debug ML models. For instance, a
SHAP analysis indicates a diminishing compressive strength with increasing age, while
Pearson correlation suggests the contrary (which means that the database is error-free).
The monotonous, directly proportional relationship between the age and compressive
strength of LC? is well known. Such a discrepancy suggests that the ML model may have
learned an incorrect correlation. In such cases, the solution might involve adjusting the
model’s hyperparameters and re-training or even embedding certain constraints to guide
the model in establishing accurate correlations. The content of OPC demonstrates a pro-
nounced positive correlation with compressive strength. This is anticipated, given that
OPC serves as the primary constituent responsible for providing strength. Meanwhile, the
SOs content in OPC is placed in the third rank, displaying an inverse relationship with
compressive strength. Earlier research showed that even a small amount of gypsum can
substantially delay the hydration reaction, leading to a notable dip in compressive
strength during the initial 3-day period [65,78-80]. Compounds such as ettringite and
monosulfoaluminate, which form from SOs, contribute minimally to compressive
strength. Given the vast range of SOs content variations, the RF model can sufficiently
learn the influences of SOs on compressive strength. Further down the rankings, SiO2 in
clay exhibits a strong negative correlation. Higher S5iO2 levels imply a more rigid clay mo-
lecular structure, resulting in a reduced dissolution rate and reactivity. Interestingly, other
components of OPC compositions and relative humidity seem to exert minimal influence.
This could be attributed to narrow ranges and the limited variability of these input varia-
bles. Such unforeseen outcomes also highlight the potential limitations of SHAP values.
Although a SHAP value can be utilized to evaluate the influence of input variables across
diverse ML models, it might be inefficient when the model assigns less weight to an input.
This is because SHAP values primarily assess the shifts in predicted values prompted by
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incremental changes in specific input variables. When a variable holds minimal weight, it
corresponds to only slight variations in prediction, potentially obscuring its true impact.
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Figure 4. SHAP values of LC3 components and processing parameters for each prediction of com-
pressive strength. The most influential variable is ranked at the top. The red color represents positive
correlations, and the blue color represents negative correlations.

Figure 5 presents the variable importance derived from the RF model for each input
variable. These variables are systematically arranged: the variables exerting the most-to-
least influence are positioned from left to right. It is noteworthy that the ranking of varia-
bles may differ between the SHAP value and variable importance; this discrepancy arises
from the distinct mechanisms underlying each method. The SHAP value calculates pre-
dictions that fluctuate when a specific variable is altered. Essentially, it aggregates local
data to quantify the global influence of an input variable. The performance is heavily re-
liant on the dataset in use, which means that a wide range of highly varied input variables
could have strong influences. Conversely, variable importance is determined by shuffling
a particular input variable and then measuring its impact on the overall prediction per-
formance, making this method more contingent on the model’s features and structures
than the database. Given its direct correlation with prediction performance, variable im-
portance is especially adept at pinpointing and tailoring inconsequential variables. Mean-
while, the variable importance provides critical knowledge to develop analytical models.
Our previous studies [53,65,67,74,81-83] successfully harnessed this tool to craft user-
friendly, closed-form analytical models for different materials.

Figure 5 illustrates that the composition of OPC exerts great influence on compressive
strength, a finding that seems contradictory to the results derived from the SHAP analysis.
This discrepancy is understandable. While the variability and data range for OPC compo-
sitions might be narrow, they undeniably play a pivotal role in shaping the prediction
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accuracy of the RF model. CaO in clay, the calcination temperature, and CaO in limestone
show minimum impacts on compressive strength. One might consider omitting these
from the database to decrease its complexity. Nevertheless, any decision to remove them
must be grounded in cement chemistry insights. Past research has illuminated that, alt-
hough only a minor fraction of limestone reacts with the alumina phases in cement and
clay, forming the carboaluminate phase, most of it persists as an inert filler [5,6,34]. Given
its minimal chemical influence on hydration product formation, the variable related to
limestone quality can be discarded. Furthermore, as clay is typically calcined between
700-800 °C [9], kaolinite begins its decomposition, transitioning into amorphous struc-
tures at temperatures as low as 500 °C [84]. Therefore, the calcination temperature might
also be deemed redundant, especially since all clays in the database underwent calcination
at temperatures exceeding 500 °C. However, caution must be exercised when considering
the removal of CaO from clay. CaO is one of the key factors that determines reactivity.
While our study predominantly features clays with low CaO content, in practical scenar-
ios, some clays might exhibit higher CaO content. To ensure the generalization, this vari-
able ought to be retained.
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Figure 5. Quantitative evaluation of impacts of LC3 components and processing parameters on com-
pressive strength. The most influential variable is ranked on the left.

By excluding two variables, the RF model discovers underlying correlations for LC3
with only sixteen input variables. Figure 6 illustrates the RF model’s predictions of the
compressive strength of LC3 now optimized through feature reduction. A detailed ac-
count of prediction errors from testing datasets is presented in Table 2.

An examination of both Figure 7 and Table 2 demonstrates reliable predictions of
compressive strength, especially when fine-tuned using the feature reduction method.
From a quantitative standpoint, the predictions have an R of 0.94, coupled with an RMSE
of 4.54 MPa. Training the model with these 16 variables trims the training time by nearly
10% in comparison with the 18 input variables, and yet, the predictive accuracy is supe-
rior. This reinforces the efficiency of the variable importance method in not only reducing
the complexity of the database but also maintaining robust prediction reliability. While
the SHAP value method was explored to prune input variables, it led to a noticeable slash
in prediction accuracy. Given this outcome, its results have been omitted from this study.
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Figure 6. The prediction performance of the compressive strength of LC3 based on the testing da-
taset produced by the RF model while the feature reduction method is applied. The mean absolute
error (MAE) for the overall predictions is shown in the legend. The solid lines show 10% error
bounds, and the dashed line is the ideal prediction.

After applying the feature reduction method, the feature enhancement method is uti-
lized to replace the chemical composition and processing parameters of the clay with the
number of constraints. As a result of implementing both methodologies, the RF model only
needs to learn input-output correlations from 13 input variables. This simplification no-
tably reduces both computational memory usage and the time required for training and
testing. Figure 7 illustrates the RF model’s predictions of the compressive strength of LC3
when informed by feature reduction and enhancement techniques. A detailed account of
prediction errors from the testing datasets is presented in Table 2.

Observing both Figure 7 and Table 2, it is evident that the RF model, when aug-
mented with the aforementioned methods, yields accurate predictions of compressive
strength. Quantitatively, the R and RMSE values for the predictions stand at 0.95 and 4.61
MPa, respectively. This figure demonstrates the superiority of predictions implemented
with a combination of feature reduction and enhancement over those generated solely by
the RF model or just with feature reduction. This can be attributed to the enhanced scope
of information that the RF model receives. Unlike the standalone model, which is solely
informed by the chemical composition and processing parameters of clay, the number of
constraints provides the RF model with insights into the chemostructural properties of
clay. This includes details like the quantities of various chemical bonds. Such data act as
an effective proxy for representing the reactivity of clay —a facet not directly discernible
from just the chemical composition. Clay with high reactivity readily interacts with free
portlandite, water, and sulfate, leading to the formation of C-A-S-H, ettringite, and mono-
sulfoaluminate [85,86]. These compounds play a pivotal role in reducing the binder’s po-
rosity, thereby enhancing compressive strength. In essence, such information obtained
from the number of constraints empowers the RF model to robustly discover correct under-
lying input-output correlations for LC3.



Minerals 2023, 13, 1261

15 of 20

80 .
% Feature Enhancement
=~ ] MAE = 3.43 MPa -
5 90
g 60 - 0 -
£ (o)
(7. X L
2 0O
&40 O —
e
5 | ® I
g odl$ o
O 50 O =
520 )
2
L2 -
k-]
<
& 0 L] I L] I L] I L]

0 20 40 60 80

Measured Compressive Strength (MPa)

Figure 7. The prediction performance of the compressive strength of LC3 based on the testing da-
taset as produced by the RF model while both the feature reduction and feature enhancement meth-
ods are applied. The mean absolute error (MAE) for overall predictions is shown in the legend. The
solid lines show 10% error bounds, and the dashed line is the ideal prediction.

In conclusion, the feature reduction and feature enhancement methods have demon-
strated their robust potential in trimming down the degree of freedom within the LC3
database and enhancing the prediction performance. The abovementioned guidelines not
only apply to LC? but can also be extrapolated to encompass other cementitious materials.
Such tailored approaches are pivotal, as they demonstrate the importance of fine-tuning
ML models to better fit the principles of cement chemistry rather than employing these
models generically. Furthermore, the feature reduction methodologies serve a dual pur-
pose. Firstly, they enhance the interpretability of ML models. This heightened transpar-
ency aids researchers in diagnosing potential issues within ML models and, if necessary,
incorporating new features to refine predictions. Secondly, these methods pave the way
for more informed decisions in the realm of cementitious material experiments. By dis-
cerning which components considerably influence a particular property, manufacturers
and researchers can adjust formulations more precisely, ensuring optimal performance
and efficiency in the resulting product.

4. Conclusions and Perspectives

Reducing its carbon footprint has placed the cement industry at the forefront of re-
search initiatives. LC? emerges as a promising alternative to OPC, with a significantly re-
duced carbon footprint. The inherent compositional heterogeneity in select components
of LC?, combined with their convoluted chemical interactions, poses challenges to conven-
tional analytical models when predicting mechanical properties. ML provides a promis-
ing solution for predicting the properties of multicomponent materials (e.g., LC3). How-
ever, the generic applications of ML on cementitious materials may violate some laws of
cement chemistry. This underscores a need for deeper explorations into tailoring ML mod-
els that can seamlessly integrate with cement chemistry’s intricacies. This highlights the
ongoing need for further research to fully understand ML models and integrate
knowledge of cement chemistry into them.

In this study, an RF model was employed to predict the compressive strength of LC3
in a high-fidelity manner. The database comprises over 400 data records, marking it siza-
ble in comparison with most cement databases. Nevertheless, from a broader data science
perspective, this scale would still be classified as relatively small. Most data science data-
bases contain thousands to billions of data records, allowing for a richer understanding of
input-output correlations. Gathering such vast amounts of data is not practical in cement
research given the extensive costs and prolonged durations associated with data collec-
tion, especially for properties like long-term strength and durability. The solution lies in
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fostering a culture of collaborative data sharing within the cement research community.
Such collaboration is commonplace in data science, where numerous repositories exist for
researchers to share and access databases. Regrettably, the cement community currently
lacks a dedicated platform for data communication. The development of an open-source
repository for cement research is urgently required. Such a platform would not only en-
courage researchers to share data and ML algorithms but also ensure standardized data
quality through the implementation of specific sharing protocols. With the inception of
such a repository, the evolution of ML techniques in cement research would experience a
significant boost. Concurrently, it would empower scientists to innovatively design new
cement formulas more efficiently and at reduced costs.

Furthermore, three data reduction (i.e., Pearson correlations, SHAP value, and vari-
able importance) and one data enhancement (i.e., topological constraint) methods were
explored in this study. To aid in their application, this research provides an in-depth
breakdown and step-by-step guidelines on how to leverage these data reduction methods
to analyze and understand the intricate relationships between inputs and output. Each
technique has a unique set of strengths and potential pitfalls. For this reason, a robust data
analysis strategy would be better anchored on a combination of these methods rather than
overly depending on just one. For instance, while one method might be good at identify-
ing weaker correlations, another might be adept at understanding nonlinear relationships.
After identifying insignificant variables, it is crucial to overlay this understanding with
domain knowledge regarding cement chemistry. This ensures a rational decision-making
process on whether to retain or discard a given input variable. Venturing into data en-
hancement, the method amalgamates multiple input variables into a more enriched and
informative single entity. Such an approach not only reduces the complexity of the data-
base but also presents ML with more potent correlations to analyze and learn from.

Both the data reduction and enhancement strategies signify a pivotal shift from a
broad, one-size-fits-all approach to ML to more tailored, cement-chemistry-based ML.
Looking to the future, there is an evident trajectory toward further refining this symbiosis
between ML and cement chemistry, starting with science-informed ML, where input var-
iables are rooted in established scientific principles, and then, a transition toward ML
models constrained and guided by material laws can occur, where these models would
be adept at learning specific trends across diverse scenarios. The zenith of this evolution
would be the development of ML models highly integrated with thermodynamic or ki-
netic frameworks. Such models would encapsulate material laws at every juncture of pre-
diction, magnifying the reliability of their outputs.

To conclude, it is undeniable that ML has revolutionized research related to cement
science, ushering in the conceptualization and development of innovative cementitious
materials. While this paper merely scratches the surface of the potential intersections be-
tween ML and cement chemistry, but it ignites a robust dialog focused on customizing
ML to cement science. The rapid evolution of Al has brought forth the emergence of gen-
erative Al as a cutting-edge field of exploration. Currently, its applications span a myriad
of domains, from content creation in writing and image generation to advanced video
synthesis. However, the potential of integrating generative Al with cement chemistry re-
mains largely untapped. Imagine a scenario where generative Al is harnessed to learn
from cement databases. This AI model could then extrapolate and design novel cementi-
tious formulas that not only diverge from known databases but also amalgamate insights
across them. Such an approach could inspire researchers to explore unthought realms.
Generative Al could be profound, potentially fast-tracking the development of sustainable
cement toward a future of carbon neutrality.
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