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Abstract—We propose a distributed Quantum State
Tomography (QST) protocol, named Local Stochastic
Factored Gradient Descent (Local SFGD), to learn the low-
rank factor of a density matrix over a set of local machines.
QST is the canonical procedure to characterize the state
of a quantum system, which we formulate as a stochas-
tic non-convex smooth optimization problem. Physically,
the estimation of a low-rank density matrix helps char-
acterizing the amount of noise introduced by quantum
computation. Theoretically, we prove the local convergence
of Local SFGD for a general class of restricted strongly con-
vex/smooth loss functions. Local SFGD converges locally
to a small neighborhood of the global optimum at a linear
rate with a constant step size, while it locally converges
exactly at a sub-linear rate with diminishing step sizes.
With a proper initialization, local convergence results imply
global convergence. We validate our theoretical findings
with numerical simulations of QST on the Greenberger-
Horne-Zeilinger (GHZ) state.

Index Terms—Distributed optimization, matrix factoriza-
tion, non-convex optimization, quantum state tomography.

|. INTRODUCTION

FULLY-FUNCTIONAL fault-tolerant quantum computer

faces many technical hurdles. For instance, using super-
conducting materials technology, quantum computers must
remain cooled at a very low temperature—almost absolute
zero—to preserve coherence [1]. Moreover, environmental
noise from the electronics controlling the quantum system
can disrupt the coherence of its qubits. Thus, the behavior
of current quantum computer implementations needs to be
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characterized, verified, and certified, before their widespread
commercial use [2].

Quantum State Tomography (QST) is the canonical
procedure to characterize the state of a quantum system
at various steps of a given computation [3]. In particu-
lar, experimental quantum physicists design quantum circuits
that in theory lead to a specific target pure state; then,
they compare the prepared (input) state and the recon-
structed (output) state. To do so, measurements are taken
on independently prepared copies of the state of a quantum
system, and then used to estimate the unknown state by post-
processing the data [3]. However, the description complexity
of a quantum state grows exponentially with the number of
qubits, leading to challenging data acquisition, processing,
and storage. Therefore, as the number of qubits and quan-
tum gates increases, so does the need for efficient, robust, and
experimentally-accessible protocols to benchmark quantum
information processors.

A quantum state can be represented by a density matrix
o which is a complex, positive semi-definite (PSD) matrix
with unit trace. The goal of QST is to design protocols that
estimate p. For an n-qubit mixed state! W € (Czn, its den-
sity matrix can be written as a mixture of r pure states:
0=y pk\IJk\Il e C¥'*2" where (-)' denotes the complex
conjugate operator. Here, py is the probability of finding p in
the pure state W. Given these definitions, QST can be formu-
lated as the estimation of a low-rank density matrix p* € C?*4
on an n-qubit Hilbert space with dimension d = 2", through
the following ¢,-norm optimization problem:

-l

p?é?xd F(p) = 5, IA(p)

subject to p > 0, rank(p) <r, (1)

where A : C?'*?" — R™ is the linear sensing map such that
A(p)r = Tr(Arp), for k = 1, ..., m. The sensing map used
in QST has a particular structure: it is the Kronecker product
of Pauli matrices Ay, and is closely related to how quantum
computers take measurements in practice [4].

The exponential dependency on the number of qubits
implies that p has more than a trillion entries for a 20-qubit
system. Storing this matrix demands tens of terabytes of
memory, which is only available as distributed memory in
sizable clusters. Analogously, a quantum system with more

1A mixed state is the most general way to express a quantum state.
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than 30 qubits would demand 100x more memory than the
one present in the world’s fastest supercomputer.

To alleviate these challenges, we study the following dis-
tributed optimization problem to be jointly solved over a set
of M machines:

min

1 M
min ifoo = ,-zzlﬁ(x)}
subject to X > 0, rank(X) <r. 2)

In (2), i(X) = E;p,[f X1, and f/(X) is the loss function
evaluated at the j-th observation of the locally stored dataset
of machine i, which follows the distribution D;.2 The function
fi : R¥*4 5 R is a (restricted) strongly convex/smooth differ-
entiable function, and X > 0 is the set of positive semi-definite
matrices with rank(X) < r.3

To solve (2), we introduce the Local Stochastic Factored
Gradient Descent (Local SFGD) algorithm, and prove its
convergence. To the best of our knowledge, this is the first
work that studies Local SGD in the non-convex factorized
objective, and provides convergence in terms of the distance
to the optimal model parameter. Our contributions can be
summarized as:

« We introduce a distributed problem setup for QST as an
instance of (2).

o We propose Local SFGD, a distributed algorithm that uses
matrix factorization and utilizes local stochastic gradient
steps for the minimization of a non-convex function.

« We provide local convergence guarantees for Local SFGD
for restricted strongly convex/smooth losses, which is of
independent interest, and subsumes the QST problem as
a special case.

o We corroborate our theoretical findings with numerical
simulations of QST for the Greenberger-Horne-Zeilinger
(GHZ) state.

This letter is organized as follows. Section II reviews the QST
protocol, and sets up the non-convex distributed objective.
Section III introduces the Local SFGD algorithm, followed
by Section IV where we provide the main theoretical results
along with the proofs. Lastly, in Section V, we use Local
SFGD for the reconstruction of the GHZ state.

[I. PRELIMINARIES

Classically, the sample complexity m for reconstructing
p* € C¥ is O(d?), where d itself grows exponen-
tially with n. To address such large sample complexity
requirements, we use low-rankness as prior, as many lab-
constructed density matrices have low-rank structure, includ-
ing the maximally-entangled Greenberger-Horne-Zeilinger
(GHZ) state [6]. While the low-rank constraint is non-convex,
it provides a significant reduction in the sample complexity.
Under appropriate assumptions, a rank-r density matrix can
be reconstructed with m = O(r-d-poly log(d)) measurements,
instead of m = 0(d?) [7)].

*

2We assume the homogeneous data case where D; = D for all i.
3We provide theory for the real case; extensions to complex domains can
be obtained with complex conversions and Wirtinger derivatives [5].

We propose to solve a factorized version of (1) to efficiently
handle its low-rank constraint, following [8], [9]:
min  G(U) = F(UU") = .- |AWUU") —yI3.  (3)
UeCdxr
In (3), we parametrize the low-rank density matrix p by its
factor U € C?*". By rewriting p = UU", both the PSD and
the low-rank constraints are automatically satisfied, leading to
the unconstrained non-convex formulation in (3). Moreover,
working in the factored space improves time and space com-
plexities [8]-[10]. However, even with the reduced sample
complexity m = O(r - d - polylog(d)), linear dependency on
d = 2" makes computation infeasible, e.g., for n = 20 and
rank r = 100, the reduced sample complexity still reaches
2.02 x 1010,

To handle this explosion of data, we consider the setting
where the measurements y € R” and the sensing matrices
A : €94 — R™ from a central quantum computer are locally
stored across M different classical machines. These classi-
cal machines perform some local operations based on their
local data, and communicate back and forth with the central
quantum server to reconstruct a density matrix.

The distributed QST problem can be written as:

min

1 M
U = — i U )
min_ {g( ) Mi;g( )}
where gi(U) = E;p, |l A/(UUT) = yI13, (4)

with j being a random variable that follows a distribution D;
for machine i. In the next section, we introduce our approach
to solve (4), which can be more generally applied to (2).

IIl. ALGORITHMS

We now introduce the Local Stochastic Factored Gradient
Descent (Local SFGD) algorithm. We review the Factored
Gradient Descent (FGD) algorithm [8]-[10] and its stochastic
variant [11], on which the Local SFGD is based.

¢ Factored Gradient Descent (FGD). A common
approach to solve the factorized non-convex objective in (3)
in centralized settings is to use gradient descent on the
factor U:

Uiy = U — n,VG(U;) = U, — n,VF(U,U) - U,
m
= Ui - %(Z{Tr(AkutUJ ) —yk}Ak> U )

k=1

where 7, > 0 is the step size. From (5), we can see that
a pass over full data is required to compute the gradient on
every iteration. This can be computationally challenging or
even infeasible when m is large, which is almost always the
case for QST, even for moderate number of qubits n.

¢ Stochastic Factored Gradient Descent (SFGD). A sim-
ple and effective way to mitigate this burden is to use the
Stochastic Factored Gradient Descent (SFGD), which replaces
the true gradient VG with an unbiased estimator H. For
instance, one can use the following SFGD update:

U1 =U —n - H(U;)

b
= U — %(;{TF(AkUtUtT ) — yk}Ak> U, (6)
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which simply uses b measurements instead of m > b to
approximate VG, where the hyperparameter b is the batch size.
In [11], the convergence of SFGD was shown for (restricted)
strongly convex/smooth functions.

From (6), one can see that SFGD is amenable to paral-
lelization, simply by replacing H(U;) with an average of the
stochastic gradients that are computed independently from the
local machines. This scheme is often the state-of-the-art in
distributed learning problems [12], [13]. However, it exhibits
a major drawback: on every iteration, each machine has to
send the local (stochastic) gradient to the server, and receive
back the aggregated model parameter. Such communication
is much more expensive than—typically about 3 orders of
magnitude—the local computations that each machine has to
perform [14].

¢ Our approach: Local SFGD. There are two main
approaches to resolve the aforementioned communication
overhead. One is to reduce the number of transmitted bits
via gradient compression schemes, such as quantization [15]
or sparsification [16]. The other is to increase the amount of
local iterations performed on each machine, in order to reduce
the total communication rounds. The latter approach is called
Local SGD, and was shown to outperform (parallel) SGD in
some settings [17]-[20].

In this letter, we introduce the Local SFGD to estimate
the low-rank factor of a density matrix over a set of local
machines. Although our main application is to solve the dis-
tributed QST objective in (4), Local SFGD is more generally
applicable to the distributed objective in (2); see Section IV
for details. Local SFGD is summarized in Algorithm 1. While
there are non-convex results on Local SGD [21], [22], they
consider a different problem setting, and only provide conver-
gence in terms of the norm of the gradient. To the best of our
knowledge, this is the first work that studies Local SGD in the
non-convex factorized objective, and provides convergence in
terms of the distance to the optimal model parameters.

Local SFGD produces M sequences in parallel, where M is
the number of machines. If a synchronization step happens at
time ¢, i.e., t = 1, for some p € N, then the local parameters at
each machine U! are sent to the central server, and their aver-
age is computed (line 6). Otherwise, each machine performs
(possibly many iterations of) SFGD without communicating
with the central server (line 8). An important metric to con-
sider for Local SFGD is the maximum time interval between
two synchronization time steps: max, |f, — f,+1|, which we
assume is bounded by & > 1; see also Theorems 1 and 2. If
communication happens on every iteration, i.e., & = 1, then
Algorithm 1 reduces to the (parallel) SFGD in (6).

IV. THE CONVERGENCE OF LoCcAL SFGD

We now provide the local convergence guarantees of Local
SFGD in Algorithm 1 for restricted -strongly convex/L-
smooth objectives. Similarly to (3), as we parametrize
X = UUT, Problem (2) becomes non-convex:

1 M
{g(U) = l_:Z]giw)}, (8)

which now is unconstrained, as both the PSD and the low-rank
constraints are automatically satisfied.

min
UeRdxr

Algorithm 1 Local SFGD

1: Set number of iterations T > 0, synchronization time steps #1, f2, ..., and
initialize Upy = Uy as below:
) M
Uh = svp( = Y VA(O) vie Ml )
i=1

where SVD denotes the singular value decomposition.

2: for eachround r =0, ...7T do

3 for in parallel for i € [M] do

4: Sample j; uniformly at random from [m;].
5: if t =1, for some p € N then

6 Ul =30 Sy (U = neve) ()

7 else ) o

8: Ul = Ul — Ve (U))

9: end if

10: end for

11: end for

: f 1N M i
12: return Uryg: = Wi Zi:l UIT+1‘

We assume f; is a symmetric function: £;(X) = f;(X ). Then,
the gradient of g;(U) = f;(UUT) simplifies to:*

Vgi(U) = (Vﬁ(UUT) + Vf,-(UUT)T)U = 2Vf(UU)U.

We now state the key assumptions used in our main results.

Assumption 1: The function f; is u-restricted strongly con-
vex and L-restricted smooth. That is, VX, Y > 0 and Vi € [M],
it holds that

fi(¥) = fiX) + (VAX), Y=X) + 41X — Y|},
IVAi(X) = VEX)|IF < LIX = Y.

(I-a)

and (I-b)

Assumption 2: The stochastic gradient Vgi is unbiased, has
a bounded variance, and is bounded in expectation, Vi € [M].
That is,

E/[ng(U)] = Vgi(U), (II-a)
IEj[IIVgi-'(U) - Vgi(U)II%] <o% and (II-b)
E[Ive@)}] = 62 (I1-c)

where j follows a uniform distribution.

Assumptions (I-a) and (I-b) respectively state that p-strong
convexity and L-smoothness hold when we restrict the space
of d x d matrices to the set of PSD matrices. Such assump-
tions have become standard in optimization analysis, and are
significantly weaker than assuming global strong convexity.
Importantly, note that we only assume f;(X) to have such
structures—the transformed function g;(U) in (8) typically
does not satisfy restricted strong convexity/smoothness [23].

Assumptions (II-a) and (II-b) respectively imply that
the stochastic gradient is unbiased and has a bounded
variance, and both are standard assumptions in stochastic
optimization [24]. Assumption (II-c) states that the stochastic
gradient has a bounded norm, in expectation. This assump-
tion may seem strong when the objective is (unconstrained)
strongly convex [25]; however, note that Assumption (I-a) is
restricted to PSD matrices, and the original Problem (2) is
constrained.

Apart from (8) being non-convex, another difficulty that
arises by the parametrization X = UU is that the solution

4Without loss of generality, we absorb 2 into 7; to use Vg;(U) and
Vfi(UUT)U interchangeably.
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can become non-unique.> We can remove this ambiguity by
defining the following rotation invariant distance metric.

Definition 1 [10, eq. 3.1]: For any U,V € RI*" et
D(U,V) = mingeo |U — VR||p, where O C R"™" is the
set of orthonormal matrices such that RTR = I,

Remark 1: Definition 1 regards all U, V € R*" to be in the
same distance such that D(U, VR) = D(UR,V) = D(U, V).
Hence, it defines the equivalence classes {UR : RTR = I,,}
and {VR : RTR = L.,} [23].

A crucial component for our convergence analysis is the
following lemma, which replaces the role of (strong) convexity
in classical convergence analysis of gradient descent:

Lemma 1 [26, Lemma [4]: Let Assumption 1 hold.
Assume that DZ(Ué, U*) < #{%, where oy (X*) is the
k-th singular value of X*0 and k = e Then, the following
inequality holds:

(U} — U*R*, Vgi(U))
> 2|V UDIIF + S50 (X - DU U, (9)

Remark 2: The initialization scheme (7) in Algorithm 1 is
modified from [26, Th. 11] to distributed version, and satisfies
the initialization condition of Lemma 1 for small enough «;
for the QST problem, the Pauli sensing matrices Ay satisfy the
Restricted Isometry Property (RIP) [4], [27], implying « ~
}—J_”g, where § € (0, 1) is the RIP constant. Hence, by using
the right prior information (e.g., low-rankness), we can apply
compressed sensing results, implying that X* is unique and
can be recovered exactly [28].

We are now ready to present the main theoretical results. We
first show in Theorem 1 that the Local SFGD converges locally
at a linear rate to a small neighborhood of the global optimum
with a constant step size. Then, in Theorem 2, we show the
exact local convergence by using appropriately diminishing
step sizes, at the expense of reducing the convergence rate to
a sub-linear rate. We first state the following auxiliary lemma
that we use in the proof of Theorems 1 and 2.

Lemma 2: Let Assumptions 1 and (II-c) hold. Then, the
output of Algorithm 1 with max,, [t,41 — ,| < h satisfies:

M
S B0 - U] = - 1026 o)
i=1
where t, is the synchronization step immediately before ¢.
The proof follows the same arguments as [17, Lemma 3.3],
and hence is omitted.

Theorem 1 (Local Linear Convergence With Constant Step
Size): Let Assumptions 1, 2, and the initialization condition
of Lemma 1 hold. Moreover, let n, = n < é for r € [0 : T
and max,, |t, — 41| < h. Then, the output of Algorithm 1 has
the following property:

E[D?(Urs1. U] = (1 = e D2 (Do, U")

272 2
+o(A=DE L 2 an
where X* is the optimum of f over the set of PSD matrices
such that rank(X*) = r, U* is such that X* = U*U*", and
o= 31—6‘0,(X*) is a global constant.

5 Consider reconstructing X* = |} ﬂ

[1 117 and U* = —[1 117 satisty U*U*T = O*0*T = x*
SWithout loss of generality, singular values are sorted in descending order.

It can be seen that both U* =

Remark 3: In (11), the expectation is with respect to the
previous iterates, { IAJI}ITZO. We make a few remarks about
Theorem 1. First, notice the last variance term I‘JI—Z, which
disappears in the noiseless case, is reduced by the number of
machines M. Second, we assume single-batch is used in the
proof; by using batch size b > 1, this term can be further
divided by b. Last, by plugging in 4 = 1 (i.e., synchronization
happens on every iteration), the first variance term disappears,
exhibiting similar local linear convergence to SFGD [11].

Proof: Throughout the proof, we use the notations:

U, =U —ng and Uy =U — g,
where U, = 3 Zl lU’ i.e., the average across different

machines at time . We denote the stochastic gradient of
machine i at time ¢ with gl = VA (UIUITU! = Vg!(U),
and the average of stochastic gradients across machines with
= L >"¥ ¢l Finally, we denote E[gt] =32.
We first decompose the distance of D? (Ul+ 1, U):

D* (U141, U") = min 1Ur41—U*RIE < | U1 —U*R* |13

= U, — UR* — ni&illF + 0}z — &7
+ 2n(U; — U*R* — 018t 8 — &1)- (12)
The first term in (12) can be further decomposed to:
10 — UR*E + nf 1317 — 2n:(0 — UR*, &) (13)

We bound the second and the third terms in (13) separately.
For the second term, by Jensen’s inequality, we have:

M M
123 = |4 D" Ve < & Y IVeiUhI3.

(14)
i=1 i=1
For the third term, we decompose further to have:
(O—UR*. & Z VeaiU)) = 5 Z Uy, Vei(Up)
i=1 i=1
M
+ 4 > (U= U*R*, Vgi(UD)). (15)
i=1

We again bound the two terms in (15) separately. Using
(A, B) > —3||Al% — 25B||%, the first term admits:

M A
W 20

i=1

M
> 5 3 (<310, — Ul — K IVawI})
i=1

Ul Vgi(Uh)

By Lemma 1, the second term in (15) admits:

M
w2 U
i=1

— U*R*, Vgi(U)))

M
2 i 3o (X* i
AV UDIF+ 5 Y 2 DAL, UY)
=1

>

Ms

L
M

I’
-

2 . . ” * A
2| Vg (U |2 + 22X p2 (0, U,

M=

v

L
-M

I
MR

i

where we used the convexity of D?(-, -) in the last inequality.
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Combining above two bounds into (15), we have

(U, — U'R*, &)

Mz

> Y (4100 Ul - FIVew)i)

1

M
+ 3 2 AIVsUDIG + 252D DL UM, (16)

=

—_

Substituting (14) and (16) into (13), we have
10, — U*R* — mgzn%
< (1= For ) 10; - URIE

M
) [("_ ~ E) IV UIE + s — U]
=4
=M~ ) | O~ U R |3
M
+ [l — 111+ 410, - U]
i=1

M
< (1= n@)lU—UR |7 + 3 Y 110: = UlIF,
i=1

a7)

where in the equality we defined « = 31—’56r(X*), and in the
last inequality we used that % — % < 0.

Substituting (17) into (12) and taking expectations condi-
tional on the previous iterates, and using E[g,] = g, we
get

E[D*(Us1, UN] = U= U*R* ~1,3/11% + n?Ell|g—g: 1 7]

(1 .
= (I =ne)||Ur —

M
+ % SB[ — U] + n?E[ Iz — glF]
i=1

UR* I

19 2 * o 12
= (I =na)|U; = U'R |

+ 49202 (h— DG + n?Ell|g; — gll7],

Where the last inequality is by Lemma 2 with the fact that
n, <y? nt for some constant y, which holds for proper choice

of {"1}t=o We further have:

M
B S . (II-b) »
Ellg: — &ll7] < 1= Y ElIVe/ (UD) = VeiUDIF] < .
i=1

where we used Var(Zf:':l Xpn) = an/[:
dent random variables.
We now arrive at the iteration invariant bound:

1 Var(X,,) for indepen-

E[D?(Ury1, U]
< (L= ne)D* (0, UM + 0} (42 = 1°G? + 7). (18)

Lastly, unfolding (18) for T iterations, and using y = 1 for
the constant step size’ n, = n fort € [0 : T] as well as

7TFor the decreasing step sizes in Theorem 2, it holds that y < %

the fact that Y/ (1 — na)’ < YX0(1 — na)’ = ,,% we
obtain:

E[D?*(Ur41, UM < (1 — na)" ™' D*(Uy, U*)
22
+ n(4(h )26 "‘AUTi)

which completes the proof. |

Theorem 2 (Local  Sub-Linear  Convergence With
Diminishing Step Sizes): Let Assumptions 1, 2, and the
initialization condition of Lemma 1 hold. Moreover, let
n = ﬁ for t € [0 : T] and max, |t, — tp41] < h. Then,
the output of Algorithm 1 has the following property:

I:D (UT+]a U ):I = Ol(;gr?))’
where X* is the optimum such that rank(X*) = r, U
is such that X* = U*U*", and a« = ar(X*) and
C=(h—-D2h+2)32G*+ "Mz are global constants.

Proof: We claim the following, and prove by induction:

(20)

19)

207 4C . _ 2
D*(U;, U*) < prrPE with 7, = PR

We start from the iteration invariant bound in (18):
E[DX(Ur1, U] = (1 = me) D2 (@, U + 7 - C.
For the base case t = 0, we have
E[D?(01. UM | = (1 = e D (Do, U) + 15 - €
- (1 -~ .a)D2(Uo, v+ 5 =5 <49

Now, we proceed to the inductive step. Assuming (20) holds
for the time step ¢, we want to prove the same holds for the
time step ¢ 4 1. Starting from (18) again, we have:

E[DZ(U,H, U*)] < (1= D0, U + 12 - €

(20 2 4c 4c 141 1
= (1 B ,+—2) ‘e T @er =40 a2

<4c. 2. 1L _ _4cC

a?2(t+3) 2 T «a?2(1+3)°
where in the last inequality we used the fact that ’ié < iig
This completes the proof. |

V. NUMERICAL RESULTS

We use the Local SFGD to reconstruct the Greenberger-
Horne-Zeilinger (GHZ) state, using simulated measurement
data from Qiskit. GHZ state is known as maximally entan-
gled quantum state [6], meaning that it exhibits the maximal
inter-particle correlation, which does not exist in the classical
mechanics. We are interested in: (i) how the number of local
steps affect the accuracy defined as ¢ = ||IAJ[lA/,—r — p;hZH s
where pghz = U*U*" is the true density matrix for the GHZ
state; and (ii) the scalability of the distributed setup for various
number of classical machines M.

In Fig. 1 (Top), we first fix the number of machines M = 10
and the number of total synchronization steps to be 100, and
vary the number of local iterations between two synchroniza-
tion steps, i.e., h € {1, 10, 25, 50, 100, 200}. We use constant
step size n = 1 for all A. Increasing h, i.e., each distributed
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GHZ state reconstruction: n =6, M = 10

h=1
h =10
h=25
h =50
h =100
h =200

10 4

10,07 — U*U*T||2

0 20 40 60 80 100
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Fig. 1. Top: Convergence speed as a function of number of synchro-
nization steps tp for various number of local iterations. Bottom: number
of synchronization steps to reach ¢ < 0.05 as a function of number of
workers M. The batch size b = 50 is used for all cases.

machine performing more local iterations, leads to faster con-
vergence in terms of the synchronization steps. Notably, the
speed up gets marginal: e.g., there is not much difference
between 4 = 100 and & = 200, indicating there is an “optimal”
h that leads to the biggest reduction in the number of synchro-
nization steps. Further, one can notice that higher 4 leads to
slightly worse final accuracy—this is consistent with (11) in
Theorem 1, where the first variance term that depends on G?
disappears with & = 1. Finally, note that ¢ does not decrease
below certain level due to the inherent finite sampling error of
quantum measurements [29].

In Fig. 1 (Bottom), we plot the number of synchronization
steps to reach ¢ < 0.05, while fixing & = 20. We vary the
number of workers M € {5, 10, 15, 20}, where each machine
gets 200 measurements. There is a significant speed up from
M = 5to M = 15, while for M = 20, it took one more
synchronization step compared to M = 15, which is likely
due to the stochasticity of SFGD within each machine.

VI. CONCLUSION AND FUTURE WORK

In this letter, we introduced a distributed problem set up
for QST as an instance of a general distributed optimization
problem with PSD/low-rank constraints. We proposed the
Local SFGD, a distributed non-convex algorithm that utilizes
local steps at each distributed worker to estimate the low-rank
factor of a density matrix. We proved the local convergence of
Local SFGD for restricted strongly convex/smooth objectives,
which can be of independent interest. For future work, exten-
sion to the heterogeneous data case as well as the decentralized
case with various topologies can be investigated.
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