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A B S T R A C T   

The exquisite sensitivity of the NMR chemical shift to local environment makes it an ideal probe to assess atomic 
level perturbations in proteins of all sizes and structural compositions. Recent advances in solution and solid- 
state NMR spectroscopy of biomolecules have leveraged the chemical shift to report on short- and long-range 
couplings between individual amino acids to establish “networks” of residues that form the basis of allosteric 
pathways that transmit chemical signals through the protein matrix to induce functional responses. The simple 
premise that thermodynamically and functionally coupled regions of a protein (i.e. active and allosteric sites) 
should be reciprocally sensitive to structural or dynamic perturbations has enabled NMR spectroscopy, the 
premier method for molecular resolution of protein structural fluctuations, to occupy a place at the forefront of 
investigations into protein allostery. Here, we detail several key methods of NMR chemical shift analysis to 
extract mechanistic information about long-range chemical signaling in a protein, focusing on practical meth
odological aspects and the circumstances under which a given approach would be relevant. We also detail some 
of the experimental considerations that should be made when applying these methods to specific protein systems.   

1. Introduction 

Allostery is a ubiquitous regulatory process that functionally couples 
spatially distinct sites within a protein. In the past decade, significant 
efforts have been made to map the routes by which proteins transmit 
biological signals (“allosteric pathways”) due to the enhanced spatio
temporal control afforded by modulation of this crosstalk. [1,2] 
Concurrently, modern experimental and theoretical investigations of 
allostery have demonstrated that the ability of apo proteins to adopt 
active conformations is an intrinsic property of a dynamic equilibrium 
that is then further biased by allosteric activators or inhibitors. [3–7] In 
effect, these findings suggest that protein structural fluctuations play a 
large role in allosteric signal propagation. This interpretation, in some 
ways, diverges from classical paradigms, necessitating the visualization 
of subtle structural and dynamic changes that modulate protein en
sembles to establish mechanisms and leverage allosteric pathways in 
drug discovery. [8] Of the modern structural methods available to probe 
allostery, solution nuclear magnetic resonance (NMR) is best suited to 
report on simultaneous changes in protein structure and multi-timescale 
dynamics at the atomic level. [9] The beauty of NMR for this application 
lies in the simplicity of the readout – the chemical shift, which is highly 

sensitive to local chemical environment and can report on protein 
folding, dynamics, and structural populations. 

A major advantage of employing NMR chemical shift analysis in 
studies of allostery is that, at the most basic level, residues that are 
functionally linked within a protein should be structurally sensitive to 
each other. That is, allosteric couplings should display signatures of 
reciprocal perturbation in response to mutations, ligands, or protein 
activation/inhibition. [10–14] Changes in chemical shift frequency can 
be detected by eye as a reporter of structural perturbation, and when 
combined with analyses of NMR resonance intensities (reporters of dy
namic change), provide a simple molecular readout for a complex 
biochemical process. A number of formalized methods have been re
ported to leverage NMR chemical shift information to elucidate and 
characterize residues that confer functional control of a protein via long- 
range signaling. Here, we provide a roadmap to implement and adapt 
these methods based on the system of interest. We explain the optimal 
circumstances for use and the practical considerations required for 
several methods, with a focus on expanding usage of simple NMR 
readouts for specialists and non-specialists alike. 
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2. Mapping allosteric activation on fast timescales 

Proteins often undergo conformational transitions that mediate their 
interactions and functional output. [15] Long-range communication 
between distal residues (i.e., allosteric signaling) has been shown to play 
a pivotal role in controlling conformational equilibria that underlie 
protein function. [16–18] NMR can detect subtle structural and dynamic 
changes associated with fast-exchanging conformational equilibria, 
where chemical shifts are population-weighted averages of the confor
mational states. [19–20] Thus, in the presence of perturbations that 
modulate the conformational equilibrium, correlated chemical shifts 
can be leveraged to identify networks of allosteric residues associated 
with the functional activation of a protein. [21]. 

A well-established method for characterizing allosteric networks 
associated with conformational equilibria, such as the transition from an 
inactive to an active state, is chemical shift covariance analysis 
(CHESCA). [21–34] Developed and optimized by Melacini and co
workers, CHESCA relies on a set of ligands or mutations that perturb the 
conformational equilibrium and collectively sample the inactive-to- 
active conformational spectrum. [21] The basis of CHESCA is to iden
tify residues that exhibit a concerted, linear response to perturbations 
via their chemical shifts, indicative of sites within a common allosteric 
network. The implementation of agglomerative clustering and singular 
value decomposition detects and functionally classifies clusters of resi
dues with highly correlated chemical shifts. 

2.1. Implementing chemical shift covariance analysis (CHESCA) 

The use of CHESCA to search for novel allosteric sites coupled to 
activation is optimal for systems with a two-state conformational equi
librium that occurs in the fast-exchange regime (kex ≫ Δω). [21] 
Additionally, a set of perturbations (≥5 perturbations recommended) 
must be previously established to sample the conformational equilib
rium of activation, including the inactive, intermediate, and active 
states. These perturbations can include ligand effectors or mutations, as 
has been demonstrated previously. [21,31,35] Ideally, the perturbations 
should be spatially localized within a well-defined region of the struc
ture to minimize the perturbation-induced effects to nearby residues, 
which can introduce nearest-neighbor ‘noise’ into the analysis and cloud 
the identification of allosterically-relevant chemical shifts. Melacini and 
coworkers have reported several iterations of CHESCA to reduce false 
positives and negatives, and to identify core allosteric residues for 
further study. [21–22,32] Herein, we highlight complete-linkage 
CHESCA (CL-CHESCA) as an effective starting point for identifying 
networks of allosteric residues. [22]. 

CL-CHESCA begins with the collection of 1H-15N heteronuclear 

single quantum coherence (HSQC) spectra for all perturbation condi
tions (fully saturated if using ligands; Fig. 1A). [21–22] Once the 1H and 
15N chemical shifts have been assigned for all possible residues, the 
subsequent analyses can be completed and visualized via the CHESCA- 
SPARKY plugin in NMRFAM-SPARKY. [28] CHESCA-SPARKY provides 
a streamlined start-to-finish workflow for all of the analyses that 
comprise CL-CHESCA, and the semi-automated process simplifies the 
analyses for researchers who may be unfamiliar with the clustering and 
dimensionality reduction techniques described below. 1H and 15N 
chemical shifts (δH and δN, respectively) for every residue are calculated 
as a combined chemical shift by δNH = δH + 0.2 δN for the set of per
turbations. Pearson correlation coefficients are then computed for all 

residue pairs X and Y via =
∑n

i=1
(δXi−δX)(δYi−δY )

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n
i=1

(δXi−δX)
2∑n

i=1
(δYi−δY)

2
√ , where δXi and δYi 

are the combined chemical shifts (δNH) from the set of perturbation 
conditions for residues X and Y, respectively, δX and δY are the averages 
of δX and δY, and n is the number of perturbation conditions tested 
(Fig. 1A). A chemical shift covariance matrix can subsequently be 
compiled for residue pairs to highlight residues and regions of the pro
tein with tightly coupled chemical shifts (Fig. 1B). 

To identify clusters of residues with correlated chemical shifts, CL- 
CHESCA employs complete-linkage agglomerative clustering (AC), a 
hierarchical clustering method. [36] The basis for complete-linkage AC 
is that residues within a cluster must be correlated with all other resi
dues above a given correlation threshold (|r| ≥ 0.98 recommended). The 
resulting clusters represent networks of residues with highly correlated 
chemical shifts for a set of perturbations. When the chosen perturbations 
are ligand effectors, it is important to differentiate between clusters of 
correlated chemical shifts derived from a common allosteric role to 
those that are due to ligand binding effects. To accomplish this func
tional delineation, singular value decomposition (SVD) is implemented. 
[37] SVD can be used as a dimensionality reduction technique to iden
tify principal components from the chemical shift data. The application 
of SVD to NMR chemical shifts relies on the chemical shifts being 
calculated relative to a reference state. Given that the chosen ligand 
effectors modulate the conformational equilibrium that controls acti
vation, and an antagonist will bind the protein without activating it, 
selecting an antagonist as the reference state will differentiate binding 
effects (apo vs antagonist-bound) from allosteric activation (agonist- 
bound vs antagonist-bound). The resulting principal components iden
tified by SVD, and subsequently the AC-derived clusters, can then be 
assigned a function through analysis of “loading” and “score” plots for 
the principal components that account for the majority of the total 
variance (Fig. 1C). The loading plot will indicate which perturbation 
conditions are the major contributors to the principal components. For 
example, if the apo-antagonist chemical shifts significantly contribute to 

Fig. 1. Chemical shift covariance analysis (CHESCA). (A) Chemical shift correlation for residues from example data consisting of the apo protein and four 
perturbation conditions (P1–P4) that sample the inactive-to-active conformational equilibrium. (B) Chemical shift covariance matrix derived from pairwise chemical 
shift correlations, where residue pairs with |r| ≥ 0.98 are highlighted in teal. (C) Loading and score plots for PC1 and PC2 from SVD analysis for sample data. Blue 
and green circles denote scores for residues in AC-derived clusters I and II, respectively, and black squares represent loadings (perturbations). (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 

E. Skeens and G.P. Lisi                                                                                                                                                                                                                        



Methods 209 (2023) 40–47

42

PC1, then PC1 indicates binding effects. Conversely, if the ago
nist–antagonist chemical shifts are the major contributor to PC2, then 
PC2 quantifies allosteric activation. The score plot is comprised of scores 
calculated for every residue that inform the contribution that each res
idue has on the principal components and their respective functions. In 
conjunction with the clusters identified through agglomerative clus
tering, networks of residues can be functionally assigned as contributing 
to allosteric activation or binding effects depending on the principal 
component to which the clusters align. 

2.2. Experimental considerations for CHESCA 

It is recommended that the perturbation-induced chemical shifts for 
a given residue have a frequency spread of at least 10 Hz for 1H and 5 Hz 
for 15N to account for any systematic errors due to referencing or 
nonspecific binding issues; if it does not meet either of these cutoffs, the 
residue should be discarded from future analysis. It should also be noted 
that residues proximal to the sites of perturbation, including ligand 
binding sites and sites of mutation, should similarly be excluded from 
analysis due to localized effects caused by the perturbations. The rec
ommended correlation threshold (|r| ≥ 0.98) can be modified given the 
system of interest, though several thresholds should be tested to ensure 
that poorly correlated residue pairs that may give rise to false positives 
are not included in subsequent analyses. The implementation of a suite 
of CHESCA-based methods, such as T-CHESCA and CLASS-CHESCA, can 
be helpful for identifying key allosteric residues while reducing the in
clusion of false positives and negatives. [32] CHESCA can also be 
applied to a three-state conformational equilibrium as detailed by Sel
varatnam et al. [21]. 

It should be noted that the CHESCA-SPARKY plugin is written for the 
analysis of 1H-15N HSQC spectra. However, the plugin allows for 
modification of the combined chemical shift scaling factor (“N-to-H” 
parameter, defined here as 0.2 for 15N shifts in the calculation of δNH ) 
and cutoffs that can be tailored to 13C chemical shifts, as has been 
demonstrated previously for the analysis of methyl spectra. [38–39] 
Alternatively, complete-linkage AC, AC-derived dendrograms, and SVD 
can be performed and generated via Cluster 3.0, [40] JAVA TreeView, 
[41] and Octave, [42] respectively. [22]. 

In addition to chemical shifts, CHESCA can also be broadly applied to 
other NMR observables given they satisfy-three important criteria: (1) 
the observables are linear averages, (2) the linear coefficients are 
perturbation-dependent, and (3) the observables can be measured at 
high resolution on a per-residue basis. For instance, a CHESCA-like 
analysis has been applied to transverse relaxation and dark-state ex
change saturation transfer (DEST) rates to identify correlative trends. 
[43–44]. 

3. Quantifying shifts in allosteric activation 

Conformational transitions that underlie the functional activation of 
proteins are allosterically-driven processes that can be modulated by 
ligands or mutations through the alteration of long-range signaling. In 
addition to using chemical shift correlations to detect networks of 
allosteric residues associated with conformational equilibria via 
CHESCA, as detailed in section 2, chemical shifts can also report on the 
direction and extent to which perturbations shift allosteric conforma
tional equilibria to impact activation. [45] These characterizations are 
important for understanding the impacts of ligand- and mutation- 
induced perturbations on function, and provide insight into the allo
steric mechanisms that control conformational activation. 

Quantifying shifts in conformational equilibria can be achieved 
through chemical shift projection analysis (CHESPA), a method 
formalized by Melacini and coworkers and demonstrated on a number of 
different systems. [23,27,28,31,34,38,45–47] CHESPA involves the 
analysis of chemical shifts from three states, including inactive and 
active states as references, and the perturbation state being interrogated. 

For a two-state conformational equilibrium in the fast-exchange regime, 
the magnitude and angle of the chemical shifts observed for the 
perturbation state relative to the reference states provides a measure of 
activation or inactivation induced by the perturbation. CHESPA can be 
implemented to identify sets of ligand effectors or mutations that alter 
conformational equilibria for analysis of allosteric activation via 
CHESCA, and detect false positives in CHESCA-derived clusters. 
CHESPA can also identify deviations from a two-state equilibrium, thus 
providing insight into new conformational states. 

3.1. Implementing chemical shift projection analysis (CHESPA) 

CHESPA is ideal for allosteric systems that populate multiple con
formations related to activation. [45] Specifically, the analysis assumes 
a two-state conformational equilibrium in the fast-exchange regime. 
Experimental conditions that induce the inactive and active conforma
tions must be identified through structural and functional analyses for 
use as reference states. These reference conditions, as well as the 
perturbation of interest, can include a combination of mutations and 
ligands, such as small molecule effectors, interacting proteins, and 
nucleic acids. A CHESPA-SPARKY plugin is available on NMRFAM- 
SPARKY to facilitate the analysis of the activation- and perturbation- 
induced chemical shifts as described below. [28]. 

Chemical shift projection analysis requires three 1H-15N HSQC 
spectra comprising the following states: a conformationally inactive 
reference state, such as the apo wild-type protein, an active reference 
state, such as when bound to an endogenous ligand, and the perturba
tion state of interest, such as in the presence of a mutation or ligand 
effector. The three spectra are then overlaid for analysis of resonances 
with observed chemical shifts (Fig. 2A). Compounded chemical shifts 

are calculated as Δδ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(ΔδH)
2

+ (0.2ΔδN)
2

√

between the inactive and 

active states, defining the reference/activation vector ( R→), and between 
the perturbation state and the inactive or active states, defining the 
perturbation vector ( P→). The perturbation vector originating from the 
inactive state will provide a measure of activation, while conversely, the 
perturbation vector originating from the active state will provide a 
measure of inactivation. 

Once the vectors have been defined, two important parameters can 
be calculated to characterize the impact of the perturbation on confor
mational activation (Fig. 2). Projection of the perturbation vector onto 
the reference vector quantifies the magnitude of the shift in the 
conformational equilibrium (i.e., the fractional shift). The fractional 

shift (X) is calculated as X =
| P→|

| R
→

|
cos(θ), where θ is the angle between the 

vectors (Fig. 2A and 2B). Cos(θ) informs on the linearity of the reference 
and perturbation vectors, where vectors for residues that follow a two- 
state conformational equilibrium are expected to be co-linear such 
that |cos(θ)| ≅ 1. Deviations from linearity may be due to localized ef
fects caused by proximity to the perturbation site unrelated to confor
mational activation, or due to altered dynamics induced by the 

perturbation. Cos(θ), defined as cos(θ) = P→× R→

| P→|×| R→|

, therefore determines 

the direction of the shift in the conformational equilibrium (Fig. 2A and 
2C). When the perturbation vector originates from the inactive state, a 
positive fractional shift is observed for perturbations that shift the 
equilibrium to the active state while a negative fractional shift is 
observed when the equilibrium is shifted towards the inactive state. The 
reverse is true for a perturbation vector originating from the active state. 
Residues that exhibit shifts related to a common conformational tran
sition should have similar fractional shift and cos(θ) values. Identifica
tion of residue clusters with distinct fractional shift values can indicate 
the sampling of a third conformational state caused by the perturbation. 
CHESPA therefore provides information on residues that are allosteri
cally coupled to activation, as well as per-residue effects of allosteric 
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perturbations. 

3.2. Experimental considerations for CHESPA 

To account for experimental errors, a chemical shift minimum should 
be established to ensure that the projection analyses are completed on 
shifts that reliably inform on conformational changes at a given residue. 
A minimum of 0.05 ppm is recommended for chemical shifts calculated 
for the reference and perturbation vectors (|R|, |P| greater than 0.05 
ppm). [45] For the assessment of linearity, a threshold should be 
established to exclude residues with cos(θ) values that deviate from that 
expected for a two-state conformational equilibrium (|cos(θ)| ≅ 1). 
Melacini and coworkers recommend a threshold of |cos(θ)| ≥ 0.90–0.95. 
However, these thresholds can be tailored to the system of interest 
through testing of different cutoff values to limit false positives and 
negatives due to a variety of system-specific factors. As in CHESCA- 
SPARKY, the CHESPA-SPARKY plugin is written for 1H-15N chemical 
shifts, though the scaling factor (“N-to-H”) for calculating compounded 
chemical shifts (Δδ) can be modified by the user to analyze other nuclei 
of interest. Alternatively, Δδ, cos(θ), and X can be calculated using the 
equations detailed in section 2.1 and Fig. 2A, with the scaling factor 
modified for Δδ. 

4. Mapping allosteric coupling on slow timescales 

NMR is an established tool for detecting protein–ligand interactions, 
where chemical shifts are used to map ligand binding sites and quantify 
binding affinities. [48–49] Given its sensitivity, NMR can also detect 
residues distal to a binding site that exhibit ligand-induced chemical 
shift perturbations via long-range allosteric communication. [50] In 
some cases, protein function is regulated by the allosteric coupling of 
two ligand binding events, where the binding of one ligand promotes or 
precludes binding of a second ligand to spatially and temporally control 
downstream responses. [51] Elucidation of the residues responsible for 
propagating the allosteric signals between ligand binding sites is critical 
for dissecting the mechanisms of distinct, yet coupled, binding events. 
These allosteric sites can further be leveraged for the design of ligand 
effectors for experimental and therapeutic purposes. 

McDermott and coworkers recently reported a method for identi
fying allosteric residues involved in the coupling of two ligand binding 

sites, called chemical shift detection for allostery participants (CAP). 
[51] CAP relies on systems where conformational changes associated 
with binding are in slow exchange (kex ≪ Δω), allowing for visualization 
of all possible binding states, including apo, ligand A bound, ligand B 
bound, and ligands A and B bound, via unique chemical shift behavior 
(Fig. 3A). The goal of CAP is to identify residues that exhibit distinct 
chemical shift changes when both ligands are bound that are not 
observed for the apo protein or when one ligand is bound. This is a 
strong indicator that the residues are coupled to a conformational 
change that is dependent on the occupation of the two ligand binding 
sites and likely plays a role in mediating the allosteric cooperativity 
between the binding event (i.e., allostery participants). Chemical shift 
correlations of population changes are then used to identify networks of 
residues that are allosterically coupled to a common binding event. 

4.1. Implementing chemical shift detection of allostery participants (CAP) 

Chemical shift detection of allostery via CAP is ideal for systems with 
two distal binding sites occupied by distinct ligands that are known to be 
functionally and allosterically coupled. Additionally, the conforma
tional changes associated with ligand binding should occur via slow 
exchange to allow for detection and quantitation of chemical shifts that 
report on the bound and unbound states, where changes in resonance 
intensity or volume (i.e., the population of each state) are indicative of 
ligand-dependent conformational states. [51]. 

The first phase of CAP involves determining which residues respond 
to the binding of one ligand, two ligands, or are insensitive to either 
ligand. To begin, four two-dimensional NMR spectra consisting of the 
apo protein, ligand A-bound, ligand B-bound, and ligands A- and B- 
bound are collected under limiting ligand concentrations, as necessary, 
and resonances are assigned. CAP assumes that when a residue is sen
sitive to a conformational change associated with a single ligand binding 
event, there will be two chemical shifts observed for that residue in slow 
exchange under limiting conditions, which represent the bound and 
unbound states. As ligand concentrations are increased, the resonance 
corresponding to the ligand-bound state will increase in intensity while 
the opposite trend is observed for the unbound resonance, denoting a 
population change dependent on ligand concentration. Therefore, peak 
intensities serve as a reporter of ligand occupancy. These residues can be 
readily identified through comparative analysis of the apo and ligand- 

Fig. 2. Chemical shift projection analysis (CHESPA) for quantifying conformational activation of a perturbation state. (A) A sample resonance detailing the pa
rameters necessary for the analysis of chemical shifts related to conformational activation. R→ and P→ represent the reference and perturbation vectors between the 
inactive-to-active state chemical shifts and the inactive-to-perturbation state chemical shifts, respectively. X is the fractional shift of P→ projected onto R→, providing a 
measure of the perturbation-induced shift in the conformational equilibrium. θ is the angle between R→ and P→, where cos(θ) determines the direction of the shift in 
the conformational equilibrium. Per-residue plots of X and cos(θ) for the reference and perturbation vectors are shown in (B) and (C). Here, consistent with the 
analysis shown in (A), the positive X values indicate that the perturbation causes a shift in the conformational equilibrium toward the active state. 
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bound spectra (Fig. 3A). Residues distal from the binding sites that 
exhibit ligand-induced chemical shifts are suggested to play an allosteric 
role in the respective binding event. Conversely, when two ligands are 
bound, residues that are coupled to both binding events will exhibit 
chemical shift behaviors that diverge from what is observed when a 
single ligand is bound. Xu et al. demonstrated that these multistate 
chemical shift behaviors can present as more than two chemical shifts, 
indicative of a distinct conformation that requires both ligands to be 
bound, or NMR line broadening, revealing altered dynamics that may 
contribute to the propagation of signals between binding sites. Residues 
exhibiting multistate behaviors in the presence of two ligands are likely 
participants in the allosteric coupling of the binding events. Collectively, 
these analyses will identify residues that are allosterically responsive to 
one or two ligand binding events. 

The second phase of CAP is identifying residues that exhibit corre
lated chemical shift perturbations in the presence of one or two ligands, 
suggestive of a coordinated allosteric role in the binding events. 
Although conceptually similar to the covariance analysis of CHESCA, 
CAP leverages population changes of the slow exchange chemical shifts 
to elucidate correlated responses to ligand binding. To accomplish this, 
spectra are collected at varying ligand concentrations, where population 
changes of the chemical shifts identified in the first phase of CAP are 
quantified through peak integration and denote the percentage of ligand 
bound (Fig. 3B). Pearson correlation coefficients can then be determined 
for the population shifts of residue pairs X and Y by r =

∑n
i=1

(Xi−X)(Yi−Y)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n

i=1
(Xi−X)

2∑n
i=1

(Yi−Y)
2

√ , where Xi and Yi represent population percent

ages of the ligand-bound state of residues X and Y, respectively, for each 
ligand concentration tested, X and Y are the average population per
centages, and n is the number of ligand concentrations tested. Analysis 
of the covariance matrices of population shifts in the presence of one or 
two ligands highlights residue pairs that exhibit a concerted response to 
ligand binding through correlated population changes established across 
varied ligand concentrations (Fig. 3B). Importantly, resonances that 
exhibit correlated population changes in the presence of two ligands can 
pinpoint residues that may contribute to the route of allosteric 
communication between binding sites to regulate function. 

4.2. Experimental considerations for CAP 

For some systems with coupled binding events, the binding of one 
ligand may promote or attenuate binding of the other ligand. Conse
quently, residues that are allosterically coupled to one ligand binding 
event may appear to exhibit a response to the other ligand when ligand- 
induced binding or release occurs, thus clouding efforts to identify res
idues that participate in the allosteric process. Therefore, it may be 
necessary to identify conditions where ligand binding can be more 
tightly controlled to avoid such ambiguity, such as modulating pH, 
ligand concentration, etc. [51] If the ligand-bound conformations of a 
system with coupled binding events are occurring in fast exchange, such 
that peaks indicative of both conformations are not visible for quanti
fying population changes, the CAP method is still relevant to elucidate 
residues involved in a single binding event versus two binding events. 
However, the principles of CAP must be applied in conjunction with a 
method that relies on fast exchanging conformations in the analysis, 
such as CHESCA. [21]. 

5. Allosteric reciprocity 

Since allostery describes the exchange of chemical information be
tween spatially distinct sites, an inherent property of allostery is the 
reciprocity of signals that propagate from one site to another. This 
bidirectional transfer of information (i.e. crosstalk) implies that a 
perturbation at a one site will impact the other. Thus, the reciprocal 
nature of allostery can be leveraged to experimentally elucidate novel 
allosteric sites, employing the sensitivity of NMR to detect bidirectional 
chemical shift changes in response to perturbations. [52]. 

As demonstrated by Loria and coworkers, the reciprocity of allosteric 
signaling can be experimentally tested through mutational analysis of a 
known active site (Fig. 4). [52] When residues at the active site are 
mutated, chemical shift perturbations observed for residues distal to the 
active site suggests the existence of allosteric coupling. Therefore, if 
allosteric signals are being propagated between them, mutations made 
at the distal residues should now result in chemical shift perturbations at 
the active site, thus exhibiting a bidirectional response. This method can 
be extended to other functionally relevant sites in a protein as well, such 

Fig. 3. Chemical shift detection of allostery participants (CAP). (A) A 1H-15N spectral overlay of selected resonances from a test protein in the apo (gray), ligand A- 
bound (red), ligand B-bound (blue), and ligands A- and B-bound (yellow) states. Slow-exchanging minor peaks (i.e., ligand bound conformation) are indicated with 
an arrow. The spectral overlay highlights residues insensitive to the ligands, residues coupled to ligand A or ligand B binding events, and residues that are allosteric 
participants in the coupled ligand A/ligand B binding events and exhibit a multistate response only when ligands A and B are present. (B) Chemical shift correlation 
for two residues, where the percent bound is determined by quantifying population shifts over a ligand titration. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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as a generic ligand binding site. 

5.1. Implementing reciprocal chemical shift perturbations via mutational 
analysis 

Identification of allosteric sites through analysis of reciprocal 
chemical shift perturbations is ideal for proteins with one known func
tional site, such as an enzyme active site or ligand binding site. An 
advantage of this method is that it requires very little prior knowledge of 
the system beyond the residues that compose the functional site. How
ever, a biochemical assay for the site in question is useful for subsequent 
characterizations of the newly identified allosteric residues to under
stand their role in modulating protein function. 

The method requires engineering single-point mutations at some, or 
all, residues that comprise the functional (active) site (Fig. 4A). 1H-15N 
HSQC spectra are then collected on the wild-type protein and the set of 
functional site variants. Chemical shift perturbations are calculated from 

composite chemical shifts via Δδ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
2 (δ2

H +
δ2

N
25)

√

, where δH and δN are 
changes in the amide proton and nitrogen chemical shifts, respectively, 
relative to the wild-type spectrum. A significance cutoff, for example 
two standard deviations (2σ) above the mean of the data, is used to 
identify residues that exhibit the largest chemical shift perturbations due 
to the mutations. The frequency at which a residue is deemed signifi
cantly perturbed for the set of functional site mutations can then be 
quantified and visualized in a histogram (Fig. 4B). Residues that 
frequently exhibit significant chemical shift perturbations due to mu
tations, but are distal to the functional site, likely experience long-range 
crosstalk and thus become candidates for further analysis. 

To determine whether the communication between the functional 
and distal sites follows the inherent reciprocity that defines allostery, the 
distal residues identified by the frequency histogram are similarly 
mutated (Fig. 4C). HSQC spectra are then collected, with composite 
chemical shift perturbations calculated as described above. Analysis of 
chemical shift behavior is now focused on residues at the functional site. 
Distal residues that cause reciprocal chemical shift perturbations at the 
functional site confirm a bidirectional response to perturbation at the 
spatially distinct sites. The distal site variants can then be assessed 
through biochemical assays to determine the functional impact of the 
potential allosteric site. 

5.2. Experimental considerations for allosteric reciprocity 

The set of functional site mutations tested should be large enough to 
elucidate residues that exhibit the strongest coupling to the functional 

site based on a high frequency of observed chemical shift perturbations. 
For instance, Cui et al. tested 13 active site mutations, though the 
number is dependent on the system, and functional site, being studied. 
[52] While not explicitly confined to any exchange regime, this method 
works best in the fast chemical-exchange regime, with defined changes 
in chemical shifts quantified for the analysis. However, line broadening 
or the presence of slow-exchanging major and minor peaks could be 
taken into consideration as an observable change in chemical shift 
behavior, indicative of altered structural or dynamic properties of a 
given residue caused by mutations at the functional site. The cutoff for 
determining significant chemical shifts to be included in the frequency 
histogram can also be modified given the system. 

6. General experimental considerations for allosteric 
characterizations via chemical shift analysis 

An important consideration for the study of allostery by NMR is the 
molecular weight of the system of interest. As a general metric, proteins 
with molecular weights greater than 25 kDa tend to exhibit diminished 
signal and spectral crowding that can complicate or preclude analysis. 
There are several techniques to mitigate these issues for larger systems, 
including the use of high and ultra-high field magnets, deuterium 
incorporation, transverse relaxation optimized spectroscopy (TROSY) 
pulse sequences, sparse isotopic labeling, and high-resolution magic 
angle spinning (HR-MAS) NMR. [53] However, some systems may 
remain intractable to NMR studies due to molecular weight limitations. 
Additionally, a chemical shift standard, such as sodium trimethylsilyl
propanesulfonate (DSS) or 15N-acetylglycine, should be used to ensure 
the accurate and consistent measurement of chemical shifts for all 
samples. [21] For systems where mutations are used in the analysis to 
probe conformational activation or allosteric reciprocity, initial assess
ments of protein stability and conformation should be conducted to limit 
significant mutation-induced changes to structure and dynamics that 
may cloud comparative analyses of chemical shifts. 

The methods described above rely on straightforward two- 
dimensional NMR spectra for analysis of chemical shifts. Though 
many focus on the use of 1H-15N HSQC spectra, other two-dimensional 
NMR methods can be similarly applied as well, with combined and 
composite chemical shift equations modified to the nuclei of interest as 
necessary. For example, implementation of CHESPA and CHESCA with 
1H-13CH3 heteronuclear multiple quantum coherence (HMQC) spectra 
has been demonstrated by Liptak et al. and Latham and coworkers, 
respectively, for allosteric characterizations of methyl labeled systems, 
[35,38] while Xu et al. used 13C–13C dipolar-assisted rotation resonance 
(DARR) solid-state NMR experiments to study ligand binding of a large 

Fig. 4. Reciprocal chemical shift perturbations via mutational analysis. (A) Single-point mutations of residues that comprise a functional site are used to detect 
residues that may be allosterically coupled to the functional site through analysis of NMR chemical shift perturbations. (B) The frequency at which a given residue 
exhibits a chemical shift perturbation above a significance threshold is plotted on a histogram to identify residues distal from the functional site that are consistently 
perturbed across the set of mutations. (C) Distal site residues identified in (B) are then mutated to determine if chemical shift perturbations are reciprocally observed 
at the functional site, thus leveraging the inherent reciprocity of allosteric communication between spatially distinct sites. 

E. Skeens and G.P. Lisi                                                                                                                                                                                                                        



Methods 209 (2023) 40–47

46

transmembrane protein in proteoliposomes via CAP. [51]. 

7. Conclusions 

The ubiquitous use and inherent simplicity of the NMR chemical shift 
as a metric of protein structure makes it an ideal probe of allosterically 
controlled systems. While not discussed in detail here, it should be noted 
that NMR spin relaxation experiments focusing on changes in resonance 
intensity, and indirectly reporting on chemical shift differences, are also 
well-suited for resolving allosteric networks under many of the same 
conditions described above. [19–20,23,27] Thus, NMR data of either 
type, in conjunction with crystallographic, biophysical, or molecular 
dynamics-based studies, are tremendously powerful for the visualization 
of biological mechanisms driven by conformational equilibria. 
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