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ARTICLE INFO ABSTRACT

Keywords: The exquisite sensitivity of the NMR chemical shift to local environment makes it an ideal probe to assess atomic

Allostery level perturbations in proteins of all sizes and structural compositions. Recent advances in solution and solid-

;he_mlcal. shifts state NMR spectroscopy of biomolecules have leveraged the chemical shift to report on short- and long-range
eciprocity

couplings between individual amino acids to establish “networks” of residues that form the basis of allosteric
pathways that transmit chemical signals through the protein matrix to induce functional responses. The simple
premise that thermodynamically and functionally coupled regions of a protein (i.e. active and allosteric sites)
should be reciprocally sensitive to structural or dynamic perturbations has enabled NMR spectroscopy, the
premier method for molecular resolution of protein structural fluctuations, to occupy a place at the forefront of
investigations into protein allostery. Here, we detail several key methods of NMR chemical shift analysis to
extract mechanistic information about long-range chemical signaling in a protein, focusing on practical meth-
odological aspects and the circumstances under which a given approach would be relevant. We also detail some
of the experimental considerations that should be made when applying these methods to specific protein systems.

1. Introduction

Allostery is a ubiquitous regulatory process that functionally couples
spatially distinct sites within a protein. In the past decade, significant
efforts have been made to map the routes by which proteins transmit
biological signals (“allosteric pathways”) due to the enhanced spatio-
temporal control afforded by modulation of this crosstalk. [1,2]
Concurrently, modern experimental and theoretical investigations of
allostery have demonstrated that the ability of apo proteins to adopt
active conformations is an intrinsic property of a dynamic equilibrium
that is then further biased by allosteric activators or inhibitors. [3-7] In
effect, these findings suggest that protein structural fluctuations play a
large role in allosteric signal propagation. This interpretation, in some
ways, diverges from classical paradigms, necessitating the visualization
of subtle structural and dynamic changes that modulate protein en-
sembles to establish mechanisms and leverage allosteric pathways in
drug discovery. [8] Of the modern structural methods available to probe
allostery, solution nuclear magnetic resonance (NMR) is best suited to
report on simultaneous changes in protein structure and multi-timescale
dynamics at the atomic level. [9] The beauty of NMR for this application
lies in the simplicity of the readout — the chemical shift, which is highly
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sensitive to local chemical environment and can report on protein
folding, dynamics, and structural populations.

A major advantage of employing NMR chemical shift analysis in
studies of allostery is that, at the most basic level, residues that are
functionally linked within a protein should be structurally sensitive to
each other. That is, allosteric couplings should display signatures of
reciprocal perturbation in response to mutations, ligands, or protein
activation/inhibition. [10-14] Changes in chemical shift frequency can
be detected by eye as a reporter of structural perturbation, and when
combined with analyses of NMR resonance intensities (reporters of dy-
namic change), provide a simple molecular readout for a complex
biochemical process. A number of formalized methods have been re-
ported to leverage NMR chemical shift information to elucidate and
characterize residues that confer functional control of a protein via long-
range signaling. Here, we provide a roadmap to implement and adapt
these methods based on the system of interest. We explain the optimal
circumstances for use and the practical considerations required for
several methods, with a focus on expanding usage of simple NMR
readouts for specialists and non-specialists alike.
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2. Mapping allosteric activation on fast timescales

Proteins often undergo conformational transitions that mediate their
interactions and functional output. [15] Long-range communication
between distal residues (i.e., allosteric signaling) has been shown to play
a pivotal role in controlling conformational equilibria that underlie
protein function. [16-18] NMR can detect subtle structural and dynamic
changes associated with fast-exchanging conformational equilibria,
where chemical shifts are population-weighted averages of the confor-
mational states. [19-20] Thus, in the presence of perturbations that
modulate the conformational equilibrium, correlated chemical shifts
can be leveraged to identify networks of allosteric residues associated
with the functional activation of a protein. [21].

A well-established method for characterizing allosteric networks
associated with conformational equilibria, such as the transition from an
inactive to an active state, is chemical shift covariance analysis
(CHESCA). [21-34] Developed and optimized by Melacini and co-
workers, CHESCA relies on a set of ligands or mutations that perturb the
conformational equilibrium and collectively sample the inactive-to-
active conformational spectrum. [21] The basis of CHESCA is to iden-
tify residues that exhibit a concerted, linear response to perturbations
via their chemical shifts, indicative of sites within a common allosteric
network. The implementation of agglomerative clustering and singular
value decomposition detects and functionally classifies clusters of resi-
dues with highly correlated chemical shifts.

2.1. Implementing chemical shift covariance analysis (CHESCA)

The use of CHESCA to search for novel allosteric sites coupled to
activation is optimal for systems with a two-state conformational equi-
librium that occurs in the fast-exchange regime (kex > Aw). [21]
Additionally, a set of perturbations (>5 perturbations recommended)
must be previously established to sample the conformational equilib-
rium of activation, including the inactive, intermediate, and active
states. These perturbations can include ligand effectors or mutations, as
has been demonstrated previously. [21,31,35] Ideally, the perturbations
should be spatially localized within a well-defined region of the struc-
ture to minimize the perturbation-induced effects to nearby residues,
which can introduce nearest-neighbor ‘noise’ into the analysis and cloud
the identification of allosterically-relevant chemical shifts. Melacini and
coworkers have reported several iterations of CHESCA to reduce false
positives and negatives, and to identify core allosteric residues for
further study. [21-22,32] Herein, we highlight complete-linkage
CHESCA (CL-CHESCA) as an effective starting point for identifying
networks of allosteric residues. [22].

CL-CHESCA begins with the collection of 'H-'>N heteronuclear
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single quantum coherence (HSQC) spectra for all perturbation condi-
tions (fully saturated if using ligands; Fig. 1A). [21-22] Once the 'H and
15N chemical shifts have been assigned for all possible residues, the
subsequent analyses can be completed and visualized via the CHESCA-
SPARKY plugin in NMRFAM-SPARKY. [28] CHESCA-SPARKY provides
a streamlined start-to-finish workflow for all of the analyses that
comprise CL-CHESCA, and the semi-automated process simplifies the
analyses for researchers who may be unfamiliar with the clustering and
dimensionality reduction techniques described below. 'H and !°N
chemical shifts (8 and 8y, respectively) for every residue are calculated
as a combined chemical shift by 6xug = 8y + 0.2 8y for the set of per-
turbations. Pearson correlation coefficients are then computed for all
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are the combined chemical shifts (8yy) from the set of perturbation
conditions for residues X and Y, respectively, 5x and 8y are the averages
of 8x and 8y, and n is the number of perturbation conditions tested
(Fig. 1A). A chemical shift covariance matrix can subsequently be
compiled for residue pairs to highlight residues and regions of the pro-
tein with tightly coupled chemical shifts (Fig. 1B).

To identify clusters of residues with correlated chemical shifts, CL-
CHESCA employs complete-linkage agglomerative clustering (AC), a
hierarchical clustering method. [36] The basis for complete-linkage AC
is that residues within a cluster must be correlated with all other resi-
dues above a given correlation threshold (|r| > 0.98 recommended). The
resulting clusters represent networks of residues with highly correlated
chemical shifts for a set of perturbations. When the chosen perturbations
are ligand effectors, it is important to differentiate between clusters of
correlated chemical shifts derived from a common allosteric role to
those that are due to ligand binding effects. To accomplish this func-
tional delineation, singular value decomposition (SVD) is implemented.
[37] SVD can be used as a dimensionality reduction technique to iden-
tify principal components from the chemical shift data. The application
of SVD to NMR chemical shifts relies on the chemical shifts being
calculated relative to a reference state. Given that the chosen ligand
effectors modulate the conformational equilibrium that controls acti-
vation, and an antagonist will bind the protein without activating it,
selecting an antagonist as the reference state will differentiate binding
effects (apo vs antagonist-bound) from allosteric activation (agonist-
bound vs antagonist-bound). The resulting principal components iden-
tified by SVD, and subsequently the AC-derived clusters, can then be
assigned a function through analysis of “loading” and “score” plots for
the principal components that account for the majority of the total
variance (Fig. 1C). The loading plot will indicate which perturbation
conditions are the major contributors to the principal components. For
example, if the apo-antagonist chemical shifts significantly contribute to
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Fig. 1. Chemical shift covariance analysis (CHESCA). (A) Chemical shift correlation for residues from example data consisting of the apo protein and four
perturbation conditions (P1-P4) that sample the inactive-to-active conformational equilibrium. (B) Chemical shift covariance matrix derived from pairwise chemical
shift correlations, where residue pairs with |r| > 0.98 are highlighted in teal. (C) Loading and score plots for PC1 and PC2 from SVD analysis for sample data. Blue
and green circles denote scores for residues in AC-derived clusters I and II, respectively, and black squares represent loadings (perturbations). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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PC1, then PC1 indicates binding effects. Conversely, if the ago-
nist-antagonist chemical shifts are the major contributor to PC2, then
PC2 quantifies allosteric activation. The score plot is comprised of scores
calculated for every residue that inform the contribution that each res-
idue has on the principal components and their respective functions. In
conjunction with the clusters identified through agglomerative clus-
tering, networks of residues can be functionally assigned as contributing
to allosteric activation or binding effects depending on the principal
component to which the clusters align.

2.2. Experimental considerations for CHESCA

It is recommended that the perturbation-induced chemical shifts for
a given residue have a frequency spread of at least 10 Hz for 'H and 5 Hz
for >N to account for any systematic errors due to referencing or
nonspecific binding issues; if it does not meet either of these cutoffs, the
residue should be discarded from future analysis. It should also be noted
that residues proximal to the sites of perturbation, including ligand
binding sites and sites of mutation, should similarly be excluded from
analysis due to localized effects caused by the perturbations. The rec-
ommended correlation threshold (|r| > 0.98) can be modified given the
system of interest, though several thresholds should be tested to ensure
that poorly correlated residue pairs that may give rise to false positives
are not included in subsequent analyses. The implementation of a suite
of CHESCA-based methods, such as T-CHESCA and CLASS-CHESCA, can
be helpful for identifying key allosteric residues while reducing the in-
clusion of false positives and negatives. [32] CHESCA can also be
applied to a three-state conformational equilibrium as detailed by Sel-
varatnam et al. [21].

It should be noted that the CHESCA-SPARKY plugin is written for the
analysis of 'H-1°>N HSQC spectra. However, the plugin allows for
modification of the combined chemical shift scaling factor (“N-to-H”
parameter, defined here as 0.2 for I5N shifts in the calculation of Snu )
and cutoffs that can be tailored to '3C chemical shifts, as has been
demonstrated previously for the analysis of methyl spectra. [38-39]
Alternatively, complete-linkage AC, AC-derived dendrograms, and SVD
can be performed and generated via Cluster 3.0, [40] JAVA TreeView,
[41] and Octave, [42] respectively. [22].

In addition to chemical shifts, CHESCA can also be broadly applied to
other NMR observables given they satisfy-three important criteria: (1)
the observables are linear averages, (2) the linear coefficients are
perturbation-dependent, and (3) the observables can be measured at
high resolution on a per-residue basis. For instance, a CHESCA-like
analysis has been applied to transverse relaxation and dark-state ex-
change saturation transfer (DEST) rates to identify correlative trends.
[43-44].

3. Quantifying shifts in allosteric activation

Conformational transitions that underlie the functional activation of
proteins are allosterically-driven processes that can be modulated by
ligands or mutations through the alteration of long-range signaling. In
addition to using chemical shift correlations to detect networks of
allosteric residues associated with conformational equilibria via
CHESCA, as detailed in section 2, chemical shifts can also report on the
direction and extent to which perturbations shift allosteric conforma-
tional equilibria to impact activation. [45] These characterizations are
important for understanding the impacts of ligand- and mutation-
induced perturbations on function, and provide insight into the allo-
steric mechanisms that control conformational activation.

Quantifying shifts in conformational equilibria can be achieved
through chemical shift projection analysis (CHESPA), a method
formalized by Melacini and coworkers and demonstrated on a number of
different systems. [23,27,28,31,34,38,45-47] CHESPA involves the
analysis of chemical shifts from three states, including inactive and
active states as references, and the perturbation state being interrogated.

42
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For a two-state conformational equilibrium in the fast-exchange regime,
the magnitude and angle of the chemical shifts observed for the
perturbation state relative to the reference states provides a measure of
activation or inactivation induced by the perturbation. CHESPA can be
implemented to identify sets of ligand effectors or mutations that alter
conformational equilibria for analysis of allosteric activation via
CHESCA, and detect false positives in CHESCA-derived clusters.
CHESPA can also identify deviations from a two-state equilibrium, thus
providing insight into new conformational states.

3.1. Implementing chemical shift projection analysis (CHESPA)

CHESPA is ideal for allosteric systems that populate multiple con-
formations related to activation. [45] Specifically, the analysis assumes
a two-state conformational equilibrium in the fast-exchange regime.
Experimental conditions that induce the inactive and active conforma-
tions must be identified through structural and functional analyses for
use as reference states. These reference conditions, as well as the
perturbation of interest, can include a combination of mutations and
ligands, such as small molecule effectors, interacting proteins, and
nucleic acids. A CHESPA-SPARKY plugin is available on NMRFAM-
SPARKY to facilitate the analysis of the activation- and perturbation-
induced chemical shifts as described below. [28].

Chemical shift projection analysis requires three 'H-1°N HSQC
spectra comprising the following states: a conformationally inactive
reference state, such as the apo wild-type protein, an active reference
state, such as when bound to an endogenous ligand, and the perturba-
tion state of interest, such as in the presence of a mutation or ligand
effector. The three spectra are then overlaid for analysis of resonances
with observed chemical shifts (Fig. 2A). Compounded chemical shifts

are calculated as A5 = 4/(A8g)? + (0.2A6y)* between the inactive and

_
active states, defining the reference/activation vector (R ), and between
the perturbation state and the inactive or active states, defining the

perturbation vector (?). The perturbation vector originating from the
inactive state will provide a measure of activation, while conversely, the
perturbation vector originating from the active state will provide a
measure of inactivation.

Once the vectors have been defined, two important parameters can
be calculated to characterize the impact of the perturbation on confor-
mational activation (Fig. 2). Projection of the perturbation vector onto
the reference vector quantifies the magnitude of the shift in the
conformational equilibrium (i.e., the fractional shift). The fractional

—
%cos(@), where 0 is the angle between the
vectors (Fig. 2A and 2B). Cos(0) informs on the linearity of the reference
and perturbation vectors, where vectors for residues that follow a two-
state conformational equilibrium are expected to be co-linear such
that |cos(0)| = 1. Deviations from linearity may be due to localized ef-
fects caused by proximity to the perturbation site unrelated to confor-
mational activation, or due to altered dynamics induced by the
PR
|P|x|R|
the direction of the shift in the conformational equilibrium (Fig. 2A and
2C). When the perturbation vector originates from the inactive state, a
positive fractional shift is observed for perturbations that shift the
equilibrium to the active state while a negative fractional shift is
observed when the equilibrium is shifted towards the inactive state. The
reverse is true for a perturbation vector originating from the active state.
Residues that exhibit shifts related to a common conformational tran-
sition should have similar fractional shift and cos(0) values. Identifica-
tion of residue clusters with distinct fractional shift values can indicate
the sampling of a third conformational state caused by the perturbation.
CHESPA therefore provides information on residues that are allosteri-
cally coupled to activation, as well as per-residue effects of allosteric

shift (X) is calculated as X =

perturbation. Cos(6), defined as cos(6) = , therefore determines



E. Skeens and G.P. Lisi

Methods 209 (2023) 40-47

A 120

P, R=./(46,)%+(0.245,)?
P

4 X="—cos(0)

IR

Perturbation

>N (ppm)

Active

B 1.0
0.5+

-0.5+

— — —
50 75 100
Residue

0 25

H (ppm)

™T T

-1.0 —r r r [ 1 r T LEN B B T
50 75 100
Residue

Fig. 2. Chemical shift projection analysis (CHESPA) for quantifying conformational activation of a perturbation state. (A) A sample resonance detailing the pa-
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rameters necessary for the analysis of chemical shifts related to conformational activation. R and P represent the reference and perturbation vectors between the

inactive-to-active state chemical shifts and the inactive-to-perturbation state chemical shifts, respectively. X is the fractional shift of P projected onto ﬁ, providing a

measure of the perturbation-induced shift in the conformational equilibrium. 0 is the angle between R and P, where cos(0) determines the direction of the shift in
the conformational equilibrium. Per-residue plots of X and cos(6) for the reference and perturbation vectors are shown in (B) and (C). Here, consistent with the
analysis shown in (A), the positive X values indicate that the perturbation causes a shift in the conformational equilibrium toward the active state.

perturbations.

3.2. Experimental considerations for CHESPA

To account for experimental errors, a chemical shift minimum should
be established to ensure that the projection analyses are completed on
shifts that reliably inform on conformational changes at a given residue.
A minimum of 0.05 ppm is recommended for chemical shifts calculated
for the reference and perturbation vectors (|R|, |P| greater than 0.05
ppm). [45] For the assessment of linearity, a threshold should be
established to exclude residues with cos(0) values that deviate from that
expected for a two-state conformational equilibrium (|cos(0)| = 1).
Melacini and coworkers recommend a threshold of |cos(8)| > 0.90-0.95.
However, these thresholds can be tailored to the system of interest
through testing of different cutoff values to limit false positives and
negatives due to a variety of system-specific factors. As in CHESCA-
SPARKY, the CHESPA-SPARKY plugin is written for 'H-'°N chemical
shifts, though the scaling factor (“N-to-H”) for calculating compounded
chemical shifts (A5) can be modified by the user to analyze other nuclei
of interest. Alternatively, A§, cos(6), and X can be calculated using the
equations detailed in section 2.1 and Fig. 2A, with the scaling factor
modified for AS.

4. Mapping allosteric coupling on slow timescales

NMR is an established tool for detecting protein-ligand interactions,
where chemical shifts are used to map ligand binding sites and quantify
binding affinities. [48-49] Given its sensitivity, NMR can also detect
residues distal to a binding site that exhibit ligand-induced chemical
shift perturbations via long-range allosteric communication. [50] In
some cases, protein function is regulated by the allosteric coupling of
two ligand binding events, where the binding of one ligand promotes or
precludes binding of a second ligand to spatially and temporally control
downstream responses. [51] Elucidation of the residues responsible for
propagating the allosteric signals between ligand binding sites is critical
for dissecting the mechanisms of distinct, yet coupled, binding events.
These allosteric sites can further be leveraged for the design of ligand
effectors for experimental and therapeutic purposes.

McDermott and coworkers recently reported a method for identi-
fying allosteric residues involved in the coupling of two ligand binding
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sites, called chemical shift detection for allostery participants (CAP).
[51] CAP relies on systems where conformational changes associated
with binding are in slow exchange (kex < A®), allowing for visualization
of all possible binding states, including apo, ligand A bound, ligand B
bound, and ligands A and B bound, via unique chemical shift behavior
(Fig. 3A). The goal of CAP is to identify residues that exhibit distinct
chemical shift changes when both ligands are bound that are not
observed for the apo protein or when one ligand is bound. This is a
strong indicator that the residues are coupled to a conformational
change that is dependent on the occupation of the two ligand binding
sites and likely plays a role in mediating the allosteric cooperativity
between the binding event (i.e., allostery participants). Chemical shift
correlations of population changes are then used to identify networks of
residues that are allosterically coupled to a common binding event.

4.1. Implementing chemical shift detection of allostery participants (CAP)

Chemical shift detection of allostery via CAP is ideal for systems with
two distal binding sites occupied by distinct ligands that are known to be
functionally and allosterically coupled. Additionally, the conforma-
tional changes associated with ligand binding should occur via slow
exchange to allow for detection and quantitation of chemical shifts that
report on the bound and unbound states, where changes in resonance
intensity or volume (i.e., the population of each state) are indicative of
ligand-dependent conformational states. [51].

The first phase of CAP involves determining which residues respond
to the binding of one ligand, two ligands, or are insensitive to either
ligand. To begin, four two-dimensional NMR spectra consisting of the
apo protein, ligand A-bound, ligand B-bound, and ligands A- and B-
bound are collected under limiting ligand concentrations, as necessary,
and resonances are assigned. CAP assumes that when a residue is sen-
sitive to a conformational change associated with a single ligand binding
event, there will be two chemical shifts observed for that residue in slow
exchange under limiting conditions, which represent the bound and
unbound states. As ligand concentrations are increased, the resonance
corresponding to the ligand-bound state will increase in intensity while
the opposite trend is observed for the unbound resonance, denoting a
population change dependent on ligand concentration. Therefore, peak
intensities serve as a reporter of ligand occupancy. These residues can be
readily identified through comparative analysis of the apo and ligand-
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Fig. 3. Chemical shift detection of allostery participants (CAP). (A) A 'H-'°N spectral overlay of selected resonances from a test protein in the apo (gray), ligand A-
bound (red), ligand B-bound (blue), and ligands A- and B-bound (yellow) states. Slow-exchanging minor peaks (i.e., ligand bound conformation) are indicated with
an arrow. The spectral overlay highlights residues insensitive to the ligands, residues coupled to ligand A or ligand B binding events, and residues that are allosteric
participants in the coupled ligand A/ligand B binding events and exhibit a multistate response only when ligands A and B are present. (B) Chemical shift correlation
for two residues, where the percent bound is determined by quantifying population shifts over a ligand titration. (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)

bound spectra (Fig. 3A). Residues distal from the binding sites that
exhibit ligand-induced chemical shifts are suggested to play an allosteric
role in the respective binding event. Conversely, when two ligands are
bound, residues that are coupled to both binding events will exhibit
chemical shift behaviors that diverge from what is observed when a
single ligand is bound. Xu et al. demonstrated that these multistate
chemical shift behaviors can present as more than two chemical shifts,
indicative of a distinct conformation that requires both ligands to be
bound, or NMR line broadening, revealing altered dynamics that may
contribute to the propagation of signals between binding sites. Residues
exhibiting multistate behaviors in the presence of two ligands are likely
participants in the allosteric coupling of the binding events. Collectively,
these analyses will identify residues that are allosterically responsive to
one or two ligand binding events.

The second phase of CAP is identifying residues that exhibit corre-
lated chemical shift perturbations in the presence of one or two ligands,
suggestive of a coordinated allosteric role in the binding events.
Although conceptually similar to the covariance analysis of CHESCA,
CAP leverages population changes of the slow exchange chemical shifts
to elucidate correlated responses to ligand binding. To accomplish this,
spectra are collected at varying ligand concentrations, where population
changes of the chemical shifts identified in the first phase of CAP are
quantified through peak integration and denote the percentage of ligand
bound (Fig. 3B). Pearson correlation coefficients can then be determined
for the population shifts of residue pairs X and Y by r =

;?ﬂ (X':X)(Y,:fy) —, where X; and Y; represent population percent-
\/Zpl(X’*XfZi,l(Y"*Y)z
ages of the ligand-bound state of residues X and Y, respectively, for each
ligand concentration tested, X and Y are the average population per-
centages, and n is the number of ligand concentrations tested. Analysis
of the covariance matrices of population shifts in the presence of one or
two ligands highlights residue pairs that exhibit a concerted response to
ligand binding through correlated population changes established across
varied ligand concentrations (Fig. 3B). Importantly, resonances that
exhibit correlated population changes in the presence of two ligands can
pinpoint residues that may contribute to the route of allosteric
communication between binding sites to regulate function.
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4.2. Experimental considerations for CAP

For some systems with coupled binding events, the binding of one
ligand may promote or attenuate binding of the other ligand. Conse-
quently, residues that are allosterically coupled to one ligand binding
event may appear to exhibit a response to the other ligand when ligand-
induced binding or release occurs, thus clouding efforts to identify res-
idues that participate in the allosteric process. Therefore, it may be
necessary to identify conditions where ligand binding can be more
tightly controlled to avoid such ambiguity, such as modulating pH,
ligand concentration, etc. [51] If the ligand-bound conformations of a
system with coupled binding events are occurring in fast exchange, such
that peaks indicative of both conformations are not visible for quanti-
fying population changes, the CAP method is still relevant to elucidate
residues involved in a single binding event versus two binding events.
However, the principles of CAP must be applied in conjunction with a
method that relies on fast exchanging conformations in the analysis,
such as CHESCA. [21].

5. Allosteric reciprocity

Since allostery describes the exchange of chemical information be-
tween spatially distinct sites, an inherent property of allostery is the
reciprocity of signals that propagate from one site to another. This
bidirectional transfer of information (i.e. crosstalk) implies that a
perturbation at a one site will impact the other. Thus, the reciprocal
nature of allostery can be leveraged to experimentally elucidate novel
allosteric sites, employing the sensitivity of NMR to detect bidirectional
chemical shift changes in response to perturbations. [52].

As demonstrated by Loria and coworkers, the reciprocity of allosteric
signaling can be experimentally tested through mutational analysis of a
known active site (Fig. 4). [52] When residues at the active site are
mutated, chemical shift perturbations observed for residues distal to the
active site suggests the existence of allosteric coupling. Therefore, if
allosteric signals are being propagated between them, mutations made
at the distal residues should now result in chemical shift perturbations at
the active site, thus exhibiting a bidirectional response. This method can
be extended to other functionally relevant sites in a protein as well, such
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Fig. 4. Reciprocal chemical shift perturbations via mutational analysis. (A) Single-point mutations of residues that comprise a functional site are used to detect
residues that may be allosterically coupled to the functional site through analysis of NMR chemical shift perturbations. (B) The frequency at which a given residue
exhibits a chemical shift perturbation above a significance threshold is plotted on a histogram to identify residues distal from the functional site that are consistently
perturbed across the set of mutations. (C) Distal site residues identified in (B) are then mutated to determine if chemical shift perturbations are reciprocally observed
at the functional site, thus leveraging the inherent reciprocity of allosteric communication between spatially distinct sites.

as a generic ligand binding site.

5.1. Implementing reciprocal chemical shift perturbations via mutational
analysis

Identification of allosteric sites through analysis of reciprocal
chemical shift perturbations is ideal for proteins with one known func-
tional site, such as an enzyme active site or ligand binding site. An
advantage of this method is that it requires very little prior knowledge of
the system beyond the residues that compose the functional site. How-
ever, a biochemical assay for the site in question is useful for subsequent
characterizations of the newly identified allosteric residues to under-
stand their role in modulating protein function.

The method requires engineering single-point mutations at some, or
all, residues that comprise the functional (active) site (Fig. 4A). 115N
HSQC spectra are then collected on the wild-type protein and the set of
functional site variants. Chemical shift perturbations are calculated from

composite chemical shifts via A5 = /3 (6% + %)7 where 8y and &y are
changes in the amide proton and nitrogen chemical shifts, respectively,
relative to the wild-type spectrum. A significance cutoff, for example
two standard deviations (20) above the mean of the data, is used to
identify residues that exhibit the largest chemical shift perturbations due
to the mutations. The frequency at which a residue is deemed signifi-
cantly perturbed for the set of functional site mutations can then be
quantified and visualized in a histogram (Fig. 4B). Residues that
frequently exhibit significant chemical shift perturbations due to mu-
tations, but are distal to the functional site, likely experience long-range
crosstalk and thus become candidates for further analysis.

To determine whether the communication between the functional
and distal sites follows the inherent reciprocity that defines allostery, the
distal residues identified by the frequency histogram are similarly
mutated (Fig. 4C). HSQC spectra are then collected, with composite
chemical shift perturbations calculated as described above. Analysis of
chemical shift behavior is now focused on residues at the functional site.
Distal residues that cause reciprocal chemical shift perturbations at the
functional site confirm a bidirectional response to perturbation at the
spatially distinct sites. The distal site variants can then be assessed
through biochemical assays to determine the functional impact of the
potential allosteric site.

5.2. Experimental considerations for allosteric reciprocity

The set of functional site mutations tested should be large enough to
elucidate residues that exhibit the strongest coupling to the functional
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site based on a high frequency of observed chemical shift perturbations.
For instance, Cui et al. tested 13 active site mutations, though the
number is dependent on the system, and functional site, being studied.
[52] While not explicitly confined to any exchange regime, this method
works best in the fast chemical-exchange regime, with defined changes
in chemical shifts quantified for the analysis. However, line broadening
or the presence of slow-exchanging major and minor peaks could be
taken into consideration as an observable change in chemical shift
behavior, indicative of altered structural or dynamic properties of a
given residue caused by mutations at the functional site. The cutoff for
determining significant chemical shifts to be included in the frequency
histogram can also be modified given the system.

6. General experimental considerations for allosteric
characterizations via chemical shift analysis

An important consideration for the study of allostery by NMR is the
molecular weight of the system of interest. As a general metric, proteins
with molecular weights greater than 25 kDa tend to exhibit diminished
signal and spectral crowding that can complicate or preclude analysis.
There are several techniques to mitigate these issues for larger systems,
including the use of high and ultra-high field magnets, deuterium
incorporation, transverse relaxation optimized spectroscopy (TROSY)
pulse sequences, sparse isotopic labeling, and high-resolution magic
angle spinning (HR-MAS) NMR. [53] However, some systems may
remain intractable to NMR studies due to molecular weight limitations.
Additionally, a chemical shift standard, such as sodium trimethylsilyl-
propanesulfonate (DSS) or '°N-acetylglycine, should be used to ensure
the accurate and consistent measurement of chemical shifts for all
samples. [21] For systems where mutations are used in the analysis to
probe conformational activation or allosteric reciprocity, initial assess-
ments of protein stability and conformation should be conducted to limit
significant mutation-induced changes to structure and dynamics that
may cloud comparative analyses of chemical shifts.

The methods described above rely on straightforward two-
dimensional NMR spectra for analysis of chemical shifts. Though
many focus on the use of 'H-'°N HSQC spectra, other two-dimensional
NMR methods can be similarly applied as well, with combined and
composite chemical shift equations modified to the nuclei of interest as
necessary. For example, implementation of CHESPA and CHESCA with
'H-13CH; heteronuclear multiple quantum coherence (HMQC) spectra
has been demonstrated by Liptak et al. and Latham and coworkers,
respectively, for allosteric characterizations of methyl labeled systems,
[35,38] while Xu et al. used Bc 3¢ dipolar-assisted rotation resonance
(DARR) solid-state NMR experiments to study ligand binding of a large
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transmembrane protein in proteoliposomes via CAP. [51].

7. Conclusions

The ubiquitous use and inherent simplicity of the NMR chemical shift
as a metric of protein structure makes it an ideal probe of allosterically
controlled systems. While not discussed in detail here, it should be noted
that NMR spin relaxation experiments focusing on changes in resonance
intensity, and indirectly reporting on chemical shift differences, are also
well-suited for resolving allosteric networks under many of the same
conditions described above. [19-20,23,27] Thus, NMR data of either
type, in conjunction with crystallographic, biophysical, or molecular
dynamics-based studies, are tremendously powerful for the visualization
of biological mechanisms driven by conformational equilibria.

Funding

This work was supported by NSF grant MCB 2143760 and NIH grant
RO1 GM144451 to GPL.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

No data was used for the research described in the article.

References
[1] G.P. Lisi, J.P. Loria, Allostery in enzyme catalysis, Curr. Opin. Struct. Biol. 47

(2017) 123-130.

K.W. East, E. Skeens, J.Y. Cui, H.B. Belato, B. Mitchell, R. Hsu, V.S. Batista,

G. Palermo, G.P. Lisi, NMR and computational methods for molecular resolution of

allosteric pathways in enzyme complexes, Biophys. Rev. 12 (2020) 155-174.

S. Boulton, G. Melacini, Advances in NMR methods to map allosteric sites: from

models to translation, Chem. Rev. 116 (11) (2016) 6267-6304.

D. Ming, M.E. Wall, Allostery in a coarse-grained model of protein dynamics, Phys.

Rev. Lett. 95 (19) (2005) 198103-198106, https://doi.org/10.1103/

PhysRevLett.95.198103.

A.L. Lee, Contrasting roles of dynamics in protein allostery: NMR and structural

studies of CheY and the third PDZ domain from PSD-95, Biophys. Rev. 7 (2015)

217-226.

N. Popovych, S. Sun, R.H. Ebright, C.G. Kalodimos, Dynamically driven protein

allostery, Nat. Struct. Mol. Biol. 13 (9) (2006) 831-838, https://doi.org/10.1038/

nsmb1132.

H.N. Motlagh, J.O. Wrabl, J. Li, V.J. Hilser, The ensemble nature of allostery,

Nature 508 (7496) (2014) 331-339, https://doi.org/10.1038/nature13001.

R. Nussinov, C.J. Tsai, Allostery in disease and in drug discovery, Cell 153

(293-305) (2013) 293-305, https://doi.org/10.1016/j.cell.2013.03.034.

G.P. Lisi, J.P. Loria, Solution NMR spectroscopy for the study of enzyme allostery,

Chem. Rev. 116 (11) (2016) 6323-6369, https://doi.org/10.1021 /acs.

chemrev.5b00541.

J.-P. Changeux, 50 Years of allosteric interactions: the twists and turns of the

models, Nat. Rev. Mol. Cell Biol. 14 (12) (2013) 819-829, https://doi.org/

10.1038/nrm3695.

J.-P. Changeux, S.J. Edelstein, Allosteric mechanisms of signal transduction,

Science 308 (5727) (2005) 1424-1428, https://doi.org/10.1126/science.1108595.

G.P. Lisi, K.W. East, V.S. Batista, J.P. Loria, Altering the allosteric pathway in IGPS

suppresses millisecond motions and catalytic activity, PNAS 114 (2017)

E3414-E3423.

A. Velyvis, H.K. Schachman, L.E. Kay, Application of methyl-TROSY NMR to test

allosteric models describing effects of nucleotide binding to aspartate

transcarbamoylase, J. Mol. Biol. 387 (3) (2009) 540-547, https://doi.org/

10.1016/j.jmb.2009.01.066.

S.R. Tzeng, C.G. Kalodimos, Dynamic activation of an allosteric regulatory protein,

Nature 462 (7271) (2009) 368-372, https://doi.org/10.1038/nature08560.

B.J. Grant, A.A. Gorfe, J.A. McCammon, Large conformational changes in proteins:

signaling and other functions, Curr. Opin. Struct. Biol. 20 (2) (2010) 142-147,

https://doi.org/10.1016/j.sbi.2009.12.004. From NLM Medline.

J. Guo, H.X. Zhou, Protein allostery and conformational dynamics, Chem. Rev. 116

(11) (2016) 6503-6515, https://doi.org/10.1021/acs.chemrev.5b00590. From

NLM Medline.

[2]

[3]

[4]

[5]

[6]

[71
[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

46

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Methods 209 (2023) 40-47

D. Kern, E.R. Zuiderweg, The role of dynamics in allosteric regulation, Curr. Opin.
Struct. Biol. 13 (6) (2003) 748-757, https://doi.org/10.1016/j.sbi.2003.10.008.
From NLM Medline.

K.W. East, E. Skeens, J.Y. Cui, H.B. Belato, B. Mitchell, R. Hsu, V.S. Batista,

G. Palermo, G.P. Lisi, NMR and computational methods for molecular resolution of
allosteric pathways in enzyme complexes, Biophys. Rev. 12 (1) (2020) 155-174,
https://doi.org/10.1007/512551-019-00609-z.

R. Selvaratnam, S. Chowdhury, B. VanSchouwen, G. Melacini, Mapping allostery
through the covariance analysis of NMR chemical shifts, Proc. Natl. Acad. Sci. U.S.
A. 108 (15) (2011) 6133-6138, https://doi.org/10.1073/pnas.1017311108. From
NLM Medline.

S. Boulton, M. Akimoto, R. Selvaratnam, A. Bashiri, G. Melacini, A tool set to map
allosteric networks through the NMR chemical shift covariance analysis, Sci. Rep. 4
(2014) 7306, https://doi.org/10.1038/srep07306. From NLM Medline.

B. VanSchouwen, R. Ahmed, J. Milojevic, G. Melacini, Functional dynamics in
cyclic nucleotide signaling and amyloid inhibition, Biochim. Biophys. Acta (BBA) —
Proteins Proteomics 1865 (11) (2017) 1529-1543.

H. Chen, W.M. Marsiglia, M.K. Cho, Z. Huang, J. Deng, S.P. Blais, W. Gai,

S. Bhattacharya, T.A. Neubert, N.J. Traaseth, et al., Elucidation of a four-site
allosteric network in fibroblast growth factor receptor tyrosine kinases, Elife 6
(2017), https://doi.org/10.7554/eLife.21137. From NLM Medline.

S. Boulton, R. Selvaratnam, R. Ahmed, G. Melacini, Implementation of the NMR
CHEmical shift covariance analysis (CHESCA): a chemical biologist’s approach to
allostery, Methods Mol. Biol. 1688 (2018) 391-405, https://doi.org/10.1007/978-
1-4939-7386-6_18. From NLM Medline.

J.A. Byun, G. Melacini, NMR methods to dissect the molecular mechanisms of
disease-related mutations (DRMs): Understanding how DRMs remodel functional
free energy landscapes, Methods 148 (2018) 19-27, https://doi.org/10.1016/j.
ymeth.2018.05.018. From NLM Medline.

H. Shao, S. Boulton, C. Olivieri, H. Mohamed, M. Akimoto, M.V. Subrahmanian,
G. Veglia, J.L. Markley, G. Melacini, W. Lee, P. Yann, CHESPA/CHESCA-SPARKY:
automated NMR data analysis plugins for SPARKY to map protein allostery,
Bioinformatics 37 (8) (2021) 1176-1177.

D.K. Weber, U.V. Reddy, S. Wang, E.K. Larsen, T. Gopinath, M.B. Gustavsson, R.
L. Cornea, D.D. Thomas, A. De Simone, G. Veglia, Structural basis for allosteric
control of the SERCA-Phospholamban membrane complex by Ca(2+) and
phosphorylation, Elife (2021) 10, https://doi.org/10.7554/eLife.66226. From
NLM Medline.

J.M. Axe, E.M. Yezdimer, K.F. O’'Rourke, N.E. Kerstetter, W. You, C.E. Chang, D.
D. Boehr, Amino acid networks in a (beta/alpha)(8) barrel enzyme change during
catalytic turnover, J. Am. Chem. Soc. 136 (19) (2014) 6818-6821, https://doi.org/
10.1021/ja501602t. From NLM Medline.

J.M. Axe, D.D. Boehr, Long-range interactions in the alpha subunit of tryptophan
synthase help to coordinate ligand binding, catalysis, and substrate channeling,
J. Mol. Biol. 425 (9) (2013) 1527-1545, https://doi.org/10.1016/j.
jmb.2013.01.030. From NLM Medline.

H. Mohamed, U. Baryar, A. Bashiri, R. Selvaratnam, B. VanSchouwen, G. Melacini,
Identification of core allosteric sites through temperature- and nucleus-invariant
chemical shift covariance, Biophys. J . 121 (11) (2022) 2035-2045, https://doi.
org/10.1016/j.bpj.2022.05.004. From NLM Medline.

R. Selvaratnam, M. Akimoto, B. VanSchouwen, G. Melacini, cAMP-dependent
allostery and dynamics in Epac: an NMR view, Biochem. Soc. Trans. 40 (1) (2012)
219-223, https://doi.org/10.1042/BST20110628. From NLM Medline.

R. Selvaratnam, M.T. Mazhab-Jafari, R. Das, G. Melacini, A. Hofmann, The auto-
inhibitory role of the EPAC hinge helix as mapped by NMR, PLoS One 7 (11)
(2012), https://doi.org/10.1371/journal.pone.0048707. From NLM Medline
e48707.

S. Rahman, M. Beikzadeh, M.P. Latham, Biochemical and structural
characterization of analogs of MRE11 breast cancer-associated mutant F237C, Sci.
Rep. 11 (1) (2021) 7089, https://doi.org/10.1038/s41598-021-86552-0. From
NLM Medline.

E.K. Tokuda, C.H. Comin, L.D. Costa, Revisiting agglomerative clustering, Phys. A
(2022) 585, https://doi.org/10.1016/j.physa.2021.126433.

M.B. Eisen, P.T. Spellman, P.O. Brown, D. Botstein, Cluster analysis and display of
genome-wide expression patterns, PNAS 95 (25) (1998) 14863-14868, https://doi.
org/10.1073/pnas.95.25.14863. From NLM Medline.

C. Liptak, M.M. Mahmoud, B.E. Eckenroth, M.V. Moreno, K. East, K.S. Alnajjar,
J. Huang, J.B. Towle-Weicksel, S. Doublie, J.P. Loria, et al., 1260Q DNA polymerase
beta highlights precatalytic conformational rearrangements critical for fidelity,
Nucleic Acids Res. 46 (20) (2018) 10740-10756, https://doi.org/10.1093/nar/
gky825. From NLM Medline.

M.P. Williamson, Using chemical shift perturbation to characterise ligand binding,
Prog. Nucl. Magn. Reson. Spectrosc. 73 (2013) 1-16, https://doi.org/10.1016/j.
pnmrs.2013.02.001. From NLM Medline.

M.J. de Hoon, S. Imoto, J. Nolan, S. Miyano, Open source clustering software,
Bioinformatics 20 (9) (2004) 1453-1454, https://doi.org/10.1093/
bioinformatics/bth078. From NLM Medline.

A.J. Saldanha, Java Treeview—extensible visualization of microarray data,
Bioinformatics 20 (17) (2004) 3246-3248, https://doi.org/10.1093/
bioinformatics/bth349. From NLM Medline.

John W. Eaton, D. B., Sgren Hauberg, Rik Wehbring. GNU Octave version 7.3.0
manual: a high-level interactive language for numerical computations; 2019.

R. Ahmed, J. Huang, M. Akimoto, T. Shi, G. Melacini, Atomic resolution map of
hierarchical self-assembly for an amyloidogenic protein probed through thermal
(15)N-R(2) correlation matrices, J. Am. Chem. Soc. 143 (12) (2021) 4668-4679,
https://doi.org/10.1021/jacs.0c13289. From NLM Medline.


http://refhub.elsevier.com/S1046-2023(22)00247-X/h0005
http://refhub.elsevier.com/S1046-2023(22)00247-X/h0005
http://refhub.elsevier.com/S1046-2023(22)00247-X/h0010
http://refhub.elsevier.com/S1046-2023(22)00247-X/h0010
http://refhub.elsevier.com/S1046-2023(22)00247-X/h0010
http://refhub.elsevier.com/S1046-2023(22)00247-X/h0015
http://refhub.elsevier.com/S1046-2023(22)00247-X/h0015
https://doi.org/10.1103/PhysRevLett.95.198103
https://doi.org/10.1103/PhysRevLett.95.198103
http://refhub.elsevier.com/S1046-2023(22)00247-X/h0025
http://refhub.elsevier.com/S1046-2023(22)00247-X/h0025
http://refhub.elsevier.com/S1046-2023(22)00247-X/h0025
https://doi.org/10.1038/nsmb1132
https://doi.org/10.1038/nsmb1132
https://doi.org/10.1038/nature13001
https://doi.org/10.1016/j.cell.2013.03.034
https://doi.org/10.1021/acs.chemrev.5b00541
https://doi.org/10.1021/acs.chemrev.5b00541
https://doi.org/10.1038/nrm3695
https://doi.org/10.1038/nrm3695
https://doi.org/10.1126/science.1108595
http://refhub.elsevier.com/S1046-2023(22)00247-X/h0060
http://refhub.elsevier.com/S1046-2023(22)00247-X/h0060
http://refhub.elsevier.com/S1046-2023(22)00247-X/h0060
https://doi.org/10.1016/j.jmb.2009.01.066
https://doi.org/10.1016/j.jmb.2009.01.066
https://doi.org/10.1038/nature08560
https://doi.org/10.1016/j.sbi.2009.12.004
https://doi.org/10.1021/acs.chemrev.5b00590
https://doi.org/10.1016/j.sbi.2003.10.008
https://doi.org/10.1007/s12551-019-00609-z
https://doi.org/10.1073/pnas.1017311108
https://doi.org/10.1038/srep07306
http://refhub.elsevier.com/S1046-2023(22)00247-X/h0105
http://refhub.elsevier.com/S1046-2023(22)00247-X/h0105
http://refhub.elsevier.com/S1046-2023(22)00247-X/h0105
https://doi.org/10.7554/eLife.21137
https://doi.org/10.1007/978-1-4939-7386-6_18
https://doi.org/10.1007/978-1-4939-7386-6_18
https://doi.org/10.1016/j.ymeth.2018.05.018
https://doi.org/10.1016/j.ymeth.2018.05.018
http://refhub.elsevier.com/S1046-2023(22)00247-X/h0125
http://refhub.elsevier.com/S1046-2023(22)00247-X/h0125
http://refhub.elsevier.com/S1046-2023(22)00247-X/h0125
http://refhub.elsevier.com/S1046-2023(22)00247-X/h0125
https://doi.org/10.7554/eLife.66226
https://doi.org/10.1021/ja501602t
https://doi.org/10.1021/ja501602t
https://doi.org/10.1016/j.jmb.2013.01.030
https://doi.org/10.1016/j.jmb.2013.01.030
https://doi.org/10.1016/j.bpj.2022.05.004
https://doi.org/10.1016/j.bpj.2022.05.004
https://doi.org/10.1042/BST20110628
https://doi.org/10.1371/journal.pone.0048707
https://doi.org/10.1038/s41598-021-86552-0
https://doi.org/10.1016/j.physa.2021.126433
https://doi.org/10.1073/pnas.95.25.14863
https://doi.org/10.1073/pnas.95.25.14863
https://doi.org/10.1093/nar/gky825
https://doi.org/10.1093/nar/gky825
https://doi.org/10.1016/j.pnmrs.2013.02.001
https://doi.org/10.1016/j.pnmrs.2013.02.001
https://doi.org/10.1093/bioinformatics/bth078
https://doi.org/10.1093/bioinformatics/bth078
https://doi.org/10.1093/bioinformatics/bth349
https://doi.org/10.1093/bioinformatics/bth349
https://doi.org/10.1021/jacs.0c13289

E. Skeens and G.P. Lisi

[41]

[42]

[43]

[44]

[45]

[46]

[47]

R. Ahmed, M. Akcan, A. Khondker, M.C. Rheinstadter, J.C. Bozelli, R.M. Epand,
V. Huynh, R.G. Wylie, S. Boulton, J. Huang, C.P. Verschoor, G. Melacini, Atomic
resolution map of the soluble amyloid beta assembly toxic surfaces, Chem. Sci. 10
(24) (2019) 6072-6082.

R. Selvaratnam, B. VanSchouwen, F. Fogolari, M.T. Mazhab-Jafari, R. Das,

G. Melacini, The projection analysis of NMR chemical shifts reveals extended EPAC
autoinhibition determinants, Biophys. J. 102 (3) (2012) 630-639, https://doi.org/
10.1016/j.bpj.2011.12.030. From NLM Medline.

D. Gagne, C. Narayanan, N. Doucet, Network of long-range concerted chemical
shift displacements upon ligand binding to human angiogenin, Protein Sci. 24 (4)
(2015) 525-533, https://doi.org/10.1002/pro.2613. From NLM Medline.

C. Narayanan, D.N. Bernard, K. Bafna, D. Gagne, P.K. Agarwal, N. Doucet, Ligand-
induced variations in structural and dynamical properties within an enzyme
superfamily, Front. Mol. Biosci. 5 (2018) 54, https://doi.org/10.3389/
fmolb.2018.00054. From NLM PubMed-not-MEDLINE.

M. Arai, J.C. Ferreon, P.E. Wright, Quantitative analysis of multisite protein-ligand
interactions by NMR: binding of intrinsically disordered p53 transactivation
subdomains with the TAZ2 domain of CBP, J. Am. Chem. Soc. 134 (8) (2012)
3792-3803, https://doi.org/10.1021/ja209936u. From NLM Medline.

M. Goldflam, T. Tarrago, M. Gairi, E. Giralt, NMR studies of protein-ligand
interactions, Methods Mol. Biol. 831 (2012) 233-259, https://doi.org/10.1007/
978-1-61779-480-3_14. From NLM Medline.

G. Manley, J.P. Loria, NMR insights into protein allostery, Arch. Biochem. Biophys.
519 (2) (2012) 223-231, https://doi.org/10.1016/j.abb.2011.10.023. From NLM
Medline.

47

[48]

[49]

[50]

[51]

[52]

[53]

Methods 209 (2023) 40-47

Y. Xu, D. Zhang, R. Rogawski, C.M. Nimigean, A.E. McDermott, Identifying coupled
clusters of allostery participants through chemical shift perturbations, PNAS 116
(6) (2019) 2078-2085, https://doi.org/10.1073/pnas.1811168116. From NLM
Medline.

D.S. Cui, V. Beaumont, P.S. Ginther, J.M. Lipchock, J.P. Loria, Leveraging
reciprocity to identify and characterize unknown allosteric sites in protein tyrosine
phosphatases, J. Mol. Biol. 429 (15) (2017) 2360-2372, https://doi.org/10.1016/
j.jmb.2017.06.009.

R. Puthenveetil, O. Vinogradova, Solution NMR: A powerful tool for structural and
functional studies of membrane proteins in reconstituted environments, J. Biol.
Chem. 294 (44) (2019) 15914-15931, https://doi.org/10.1074/jbc.
REV119.009178. From NLM Medline.

F. Ziarelli, L. Peng, C.C. Zhang, S. Viel, High resolution magic angle spinning NMR
to investigate ligand-receptor binding events for mass-limited samples in liquids,
J. Pharm. Biomed. Anal. 59 (2012) 13-17, https://doi.org/10.1016/j.
jpba.2011.10.006. From NLM Medline.

D.S. Wishart, C.G. Bigam, J. Yao, F. Abildgaard, H.J. Dyson, E. Oldfield, J.

L. Markley, B.D. Sykes, 1H, 13C and 15N chemical shift referencing in
biomolecular NMR, J. Biomol. NMR 6 (2) (1995) 135-140, https://doi.org/
10.1007/BF00211777. From NLM Medline.

Z.K. Boswell, S. Rahman, M.D. Canny, M.P. Latham, A dynamic allosteric pathway
underlies Rad50 ABC ATPase function in DNA repair, Sci. Rep. 8 (1) (2018) 1639,
https://doi.org/10.1038/541598-018-19908-8. From NLM Medline.


http://refhub.elsevier.com/S1046-2023(22)00247-X/h0205
http://refhub.elsevier.com/S1046-2023(22)00247-X/h0205
http://refhub.elsevier.com/S1046-2023(22)00247-X/h0205
http://refhub.elsevier.com/S1046-2023(22)00247-X/h0205
https://doi.org/10.1016/j.bpj.2011.12.030
https://doi.org/10.1016/j.bpj.2011.12.030
https://doi.org/10.1002/pro.2613
https://doi.org/10.3389/fmolb.2018.00054
https://doi.org/10.3389/fmolb.2018.00054
https://doi.org/10.1021/ja209936u
https://doi.org/10.1007/978-1-61779-480-3_14
https://doi.org/10.1007/978-1-61779-480-3_14
https://doi.org/10.1016/j.abb.2011.10.023
https://doi.org/10.1073/pnas.1811168116
https://doi.org/10.1016/j.jmb.2017.06.009
https://doi.org/10.1016/j.jmb.2017.06.009
https://doi.org/10.1074/jbc.REV119.009178
https://doi.org/10.1074/jbc.REV119.009178
https://doi.org/10.1016/j.jpba.2011.10.006
https://doi.org/10.1016/j.jpba.2011.10.006
https://doi.org/10.1007/BF00211777
https://doi.org/10.1007/BF00211777
https://doi.org/10.1038/s41598-018-19908-8

	Analysis of coordinated NMR chemical shifts to map allosteric regulatory networks in proteins
	1 Introduction
	2 Mapping allosteric activation on fast timescales
	2.1 Implementing chemical shift covariance analysis (CHESCA)
	2.2 Experimental considerations for CHESCA

	3 Quantifying shifts in allosteric activation
	3.1 Implementing chemical shift projection analysis (CHESPA)
	3.2 Experimental considerations for CHESPA

	4 Mapping allosteric coupling on slow timescales
	4.1 Implementing chemical shift detection of allostery participants (CAP)
	4.2 Experimental considerations for CAP

	5 Allosteric reciprocity
	5.1 Implementing reciprocal chemical shift perturbations via mutational analysis
	5.2 Experimental considerations for allosteric reciprocity

	6 General experimental considerations for allosteric characterizations via chemical shift analysis
	7 Conclusions
	Funding
	Declaration of Competing Interest
	Data availability
	References


