
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uasa20

Journal of the American Statistical Association

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uasa20

LESA: Longitudinal Elastic Shape Analysis of Brain
Subcortical Structures

Zhengwu Zhang, Yuexuan Wu, Di Xiong, Joseph G. Ibrahim, Anuj Srivastava &
Hongtu Zhu

To cite this article: Zhengwu Zhang, Yuexuan Wu, Di Xiong, Joseph G. Ibrahim, Anuj
Srivastava & Hongtu Zhu (2023) LESA: Longitudinal Elastic Shape Analysis of Brain
Subcortical Structures, Journal of the American Statistical Association, 118:541, 3-17, DOI:
10.1080/01621459.2022.2102984

To link to this article:  https://doi.org/10.1080/01621459.2022.2102984

View supplementary material 

Published online: 20 Sep 2022.

Submit your article to this journal 

Article views: 1413

View related articles 

View Crossmark data

Citing articles: 3 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=uasa20
https://www.tandfonline.com/loi/uasa20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/01621459.2022.2102984
https://doi.org/10.1080/01621459.2022.2102984
https://www.tandfonline.com/doi/suppl/10.1080/01621459.2022.2102984
https://www.tandfonline.com/doi/suppl/10.1080/01621459.2022.2102984
https://www.tandfonline.com/action/authorSubmission?journalCode=uasa20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uasa20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/01621459.2022.2102984
https://www.tandfonline.com/doi/mlt/10.1080/01621459.2022.2102984
http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2022.2102984&domain=pdf&date_stamp=20 Sep 2022
http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2022.2102984&domain=pdf&date_stamp=20 Sep 2022
https://www.tandfonline.com/doi/citedby/10.1080/01621459.2022.2102984#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/01621459.2022.2102984#tabModule


JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
2023, VOL. 118, NO. 541, 3–17: Applications and Case Studies Discussion
https://doi.org/10.1080/01621459.2022.2102984

LESA: Longitudinal Elastic Shape Analysis of Brain Subcortical Structures

Zhengwu Zhanga, Yuexuan Wub, Di Xiongc, Joseph G. Ibrahimc, Anuj Srivastava∗b, and Hongtu Zhu∗a,c,d,e,f

aDepartment of Statistics and Operations Research, University of North Carolina at Chapel, Hill Chapel Hill, NC; bDepartment of Statistics, Florida State
University, Tallahassee, FL; cDepartments of Biostatistics, University ofNorthCarolina at ChapelHill ChapelHill, NC; dGenetics, University ofNorthCarolina
at Chapel Hill Chapel Hill, NC; eComputer Science, University of North Carolina at Chapel Hill Chapel Hill, NC; fBiomedical Research Imaging Center,
University of North Carolina at Chapel Hill Chapel Hill, NC

ABSTRACT
Over the past 30 years, magnetic resonance imaging has become a ubiquitous tool for accurately visualizing
the change and development of the brain’s subcortical structures (e.g., hippocampus). Although subcortical
structures act as information hubs of the nervous system, their quantification is still in its infancy due
to many challenges in shape extraction, representation, and modeling. Here, we develop a simple and
efficient framework of longitudinal elastic shape analysis (LESA) for subcortical structures. Integrating ideas
from elastic shape analysis of static surfaces and statistical modeling of sparse longitudinal data, LESA
provides a set of tools for systematically quantifying changes of longitudinal subcortical surface shapes
from raw structure MRI data. The key novelties of LESA include: (i) it can efficiently represent complex
subcortical structures using a small number of basis functions and (ii) it can accurately delineate the
spatiotemporal shape changes of the human subcortical structures. We applied LESA to analyze three
longitudinal neuroimaging datasets and showcase its wide applications in estimating continuous shape
trajectories, building life-span growth patterns, and comparing shape differences among different groups.
In particular, with the Alzheimer’s Disease Neuroimaging Initiative (ADNI) data, we found that Alzheimer’s
Disease (AD) can significantly speed the shape change of the lateral ventricle and the hippocampus from 60
to 75 years olds compared with normal aging. Supplementary materials for this article are available online.
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1. Introduction

The present study is motivated by using magnetic resonance
imaging (MRI) data in longitudinal neuroimaging studies, such
as the baby connectome project (Howell et al. 2019) and the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Weiner
et al. 2017), to accurately delineate the change and development
of the brain subcortical structures (e.g., hippocampus) across
time and/or groups. Subcortical structures include the dien-
cephalon, pituitary gland, limbic structures and the basal gan-
glia, forming a group of diverse neural formations deep within
the brain. These structures are not only involved in complex
activities, such as memory, emotion, pleasure and hormone
production, but also act as information hubs of the nervous
system since they relay and modulate information passing to
different areas of the brain. As an illustration, Figure 1 shows
two extracted subcortical regions, the lateral ventricle and hip-
pocampus, from one randomly selected ADNI subject across
four time points. After segmenting lateral ventricle and hip-
pocampus across subjects, onemay be interested in investigating
the quantitative changes of their volumes, three-dimensional
(3D) surface shapes, and surface areas over time and the effect
of some predictors of interest (e.g., disease status) on the shape
change. The primary goal of this article is to develop advanced
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image processing and statistical tools for characterizing the
dynamic change of shapes of subcortical brain regions in the
longitudinal setting.

Compared with cross-sectional shape analysis (Styner et al.
2006; Qiu and Miller 2008; Kurtek et al. 2010), a distinctive
feature of longitudinal shape data is that it has a dense spatial
dimension, but a sparse temporal dimension (Hyun et al. 2016).
Imaging measurements of the same individual often exhibit
positive correlation temporally and the strength of the temporal
correlation decreases with the time separation. Moreover, due
to the inherent biological structure of the human brain, neu-
roimaging data are spatially correlated in nature and contain
spatially contiguous regions. Efficiently dealingwith such spatial
and temporal dimensions raises at least three challenges. First,
since each subject is only measured at a few time points in a typ-
ical longitudinal neuroimaging study, it is difficult to accurately
reconstruct the longitudinal profile of subcortical structures at
the individual level. Second, most shape representations are
in nonlinear manifolds (or rather than their quotient spaces),
ruling out the direct application of standard longitudinal data
models developed for Euclidean data. Third, the variability
in individual growth patterns across subjects is subtle and
can be easily overwhelmed by measurement and preprocessing
errors.

© 2022 American Statistical Association
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Figure 1. An example of three different representations of lateral ventricle and hippocampus across four time points for a randomly selected subject. The first row shows
the repeated MRI data with segmented lateral ventricle and hippocampus and the second and third rows show their 3D volumes and 3D surface shapes across time,
respectively.

There are three major types of shape analysis methods in
the literature depending on how shapes are represented. The
first type of method uses a set of pre-determined shape features
to quantify shape difference (Thompson et al. 2004; Morra
et al. 2009; Wang et al. 2010; Madsen et al. 2015; Shi et al.
2015). Some examples include radiomics (van Timmeren et al.
2020) and topological data analysis (Amézquita et al. 2020). A
potential issue is that such shape feature vectors only represent
partial information about the original structures and thus, it
is difficult to map them back to their corresponding shapes.
The second type of method is based on the large deformation
diffeomorphic metric mapping (LDDMM) technique (Miller,
Trouvé, and Younes 2002, 2006), which has been applied to
longitudinal shapes (Tang et al. 2015; Tward et al. 2017; Lee et al.
2020). In LDDMM, a diffeomorphism is a smooth and bijective
infinite-dimensional transformation where an inverse is used to
map one shape to another and the size of the diffeomorphism
provides a metric, called a diffeomorphometry, to quantify
shape differences. Such diffeomorphometry is more natural for
quantifying pairwise shape changes than modeling the longi-
tudinal shape trajectories (Tang et al. 2015). The third one is
based on recent developments of longitudinal data modeling
onmanifolds (Muralidharan and Fletcher 2012; Zhang, Klassen,
and Srivastava 2018a; Zhang et al. 2018b; Dai and Müller 2018;
Dai, Lin, and Müller 2020). However, since these methods were
developed for relatively simple Riemannian manifolds, such as
S
2, it is nontrivial to extend them to the shape space of surfaces.

Therefore, one needs a computationally simple but statistically
powerful framework for the analysis of longitudinal subcortical
shapes.

This article aims to develop a Longitudinal Elastic Shape
Analysis (LESA) framework. Our LESA can efficiently extract
and represent shape data from raw MRIs, while addressing
the aforementioned statistical challenges in longitudinal shape
analysis. We make three important contributions. First, we
use a single parameterization-invariant, elastic Riemannian
metric to minimize registration variability, while accounting
for large shape variability. In contrast, most shape analysis
methods use different metrics (or cost functions) for regis-
tration and comparisons (Pizer et al. 2003; Zhao et al. 2014).

Second, the use of the elastic Riemannian metric leads to
an effective low-dimensional Euclidean representation of sub-
cortical shape by using principal component analysis (PCA)
in tangent spaces of the shape space. Our numerical data
analyses demonstrate that the shape PCA in LESA has bet-
ter representation power than popular approaches based on
spherical harmonics representation (Shen, Farid, and McPeek
2009) and sampling points on surfaces (Styner et al. 2006).
Moreover, trajectories of longitudinal shapes reduce to those
of scalar numbers in Euclidean space, facilitating the use of
advanced statistical methods for studying longitudinal shapes
(Yao, Müller, and Wang 2005; Wood 2012; Fan and Gijbels
2018). Our LESA integrates the developmental patterns of all
subjects together, so it avoids large estimation errors caused
by the standard two-stage approaches, including the estimation
of individual temporal trajectories of shapes and the integra-
tion of all estimated shape trajectories (Singh, Vialard, and
Niethammer 2015; Fletcher 2013). Third, the analysis exam-
ples and code for LESA along with its documentation are
freely accessible from our websites at https://wuyx5.github.
io/LESA/ and https://github.com/BIG-S2/Longitudinal-Elastic-
Shape-Analysis-of-Brain-Subcortical-Structures.

The remainder of this article is structured as follows. Sec-
tion 2 introduces three motivating datasets and their related
scientific questions. Section 3 presents all major components of
the LESA framework. Section 4 presents the data analysis results
for the three motivating datasets. Section 5 concludes the article
with some discussion.

2. Motivating Datasets and Scientific Questions

Understanding the growth pattern of subcortical structures and
the effects of disease on such patterns is extremely important for
aging and neuropsychiatric and neurodegenerative disorders.
We consider MRIs obtained from three different longitudinal
neuroimaging studies: the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) (Petersen et al. 2010;Weiner et al. 2013; Basaia
et al. 2019), the Human Connectome Project (Glasser et al.
2016), and the OpenPain (Vachon-Presseau et al. 2016).

https://wuyx5.github.io/LESA/
https://wuyx5.github.io/LESA/
https://github.com/BIG-S2/Longitudinal-Elastic-Shape-Analysis-of-Brain-Subcortical-Structures
https://github.com/BIG-S2/Longitudinal-Elastic-Shape-Analysis-of-Brain-Subcortical-Structures
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ADNI dataset: We extracted the MRI dataset from the ADNI
database (adni.loni.usc.edu). The initial goal of ADNI was
to test whether MRI, positron emission tomography (PET),
other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of
mild cognitive impairment (MCI) and early Alzheimer’s disease
(AD). The ADNI has four phases, including ADNI, ADNI-GO,
ADNI2, and ADNI3, among which all subjects in ADNI-GO,
ADNI2, and ADNI3 were scanned on 3T scanners.We included
subjects with T1 MRI images in ADNI-GO and ADNI2 aged
between 60 and 90 years old. These MRI T1 images were
acquired using MPRAGE sequence with a resolution around
1 × 1 × 1.2 mm3. After the data processing (refer to Sec-
tions 3.1 and 3.2), we conducted a careful quality control and
removed outlying surfaces. Specifically, we first computed the
sampled Karcher mean and then calculated the geodesic dis-
tance between each surface with the template. Next, we used
a 95% confidence interval to detect potential outlying surfaces.
We then visualized the potential outlying surfaces to manually
remove the abnormal ones. Finally, we obtained a dataset, called
ADNIGO2, containing 1045 subjects with 3443 scans for the
left lateral ventricle and 974 subjects with 3044 scans for the left
hippocampus.
Human Connectome Project (HCP) test-retest dataset: The
Human Connectome Project (https://db.humanconnectome.
org/) contains high-quality MRI data from around 1200 healthy
young adults aged from 22 to 37. The T1 MRI images were
acquired on a 3T Siemens Prisma scanner using multi-band
sequence with a resolution of 0.7× 0.7× 0.7 mm3. We included
all the HCP young-adult subjects. Most of them just have one
visit, while a small subset of subjects have two visits, result-
ing in longitudinal data with two time points. Similar to the
ADNIGO2 dataset, we applied the same data processing and
quality control protocol. We obtained 1113 subjects with 1158
scans for the left lateral ventricle and 1082 subjects with 1125
scans for the left hippocampus.
OpenPain dataset: The OpenPain study (http://www.openpain.
org/) is a five-year longitudinal study of the transition to chronic
back pain. It contains 122 subjects aged from 21 to 69. MRI
scans were collected across four visits (two weeks, threemonths,
six months, one year, and 2–3 years later). OpenPain’s T1 MRI
images were acquired on a 3T Siemens Trio whole-body scanner
using theMPRAGE sequencewith a resolution of 1×1×1mm3.
Similar data processing and quality control were applied, andwe
ended up with 429 lateral ventricle and hippocampus surfaces
from 117 subjects.

Table 1 shows more detailed statistics on the two subcortical
regions studied and Figure 2 shows the age distribution of the
three datasets. The three datasets together cover a lifespan age

ranging from 20 to 90, allowing us to study the lifespan growth
pattern during [20, 90] for the lateral ventricle and hippocam-
pus. We are particularly interested in the following scientific
questions:

• (Q1) How tomeasure developmental changes in the shape of
subcortical regions?

• (Q2) How to quantify the effect of disease or other covariates
on subcortical shape changes?

To address (Q1) and (Q2), we need to develop an advanced
longitudinal shape analysis pipeline below.

3. Methodology

In this section, we formally introduce LESA. Figure 3 presents
a schematic overview of LESA, consisting of four key compo-
nents: (i) surface extraction and parameterization; (ii) elastic
shape analysis of surfaces; (iii) Euclidean representation of sur-
face trajectories; and (iv) trajectory fitting and regression anal-
ysis. In the following sections, we introduce each component in
detail.

3.1. Subcortical Surface Extraction and Parameterization

To analyze longitudinal subcortical shapes quantitatively, LESA
represents each subcortical shape as a parameterized function
given by f : S

2 → R
3. This representation brings more

convenience in analyzing the shape of subcortical structure,
while removing shape confounding transformations, such as
translation, rotation, and rescaling.Our proposed LESA can also
handle the parameterization variability, which controls the reg-
istration between surfaces; see Section 3.2 for details. Figure 4
illustrates our three-step pipeline to extract a parameterized
subcortical shape. The first step is to segment the subcortical
region, create a three-dimensional (3D) volume, and fill any
holes inside the volume. This step is performed by using the
FIRST tool inside the FMRIB Software Library (FSL) (Patenaude
et al. 2011). It is done for each MRI T1 image at an individual
level without registering them to a template. The second step
is to build a surface mesh from the volume and use an area-
preserving, distortion minimizing spherical mapping (Jermyn
et al. 2017) to map vertices on the mesh to a unit sphere for
spherical parameterization. The third step is to refine our shape
representation by improving the sample grid on S

2 through
using a uniformly sampled grid along the polar and azimuthal
angles and fitting the corresponding function values in R

3.
Finally, we obtain a parameterized surface as a mapping from
S
2 to R3 as shown in the third column of Figure 4.

Table 1. Summary characteristics of the three datasets included in our study.

Regions Dataset name Subject number Scan number Age range (median) (years) Gender ratio (M/F)

Lateral ventricle ADNIGO2 1045 3443 [60, 90](74.5) 547/498
HCP 1113 1158 [22, 37](29) 503/610

OpenPain 117 429 (21, 69)(44.1288) 65/52
Hippocampus ADNIGO2 974 3044 [60, 90](74.2) 491/483

HCP 1082 1125 [22, 37](29) 486/596
OpenPain 117 429 (21, 69)(44.1288) 65/52

https://db.humanconnectome.org/
https://db.humanconnectome.org/
http://www.openpain.org/
http://www.openpain.org/
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Figure 2. Panel (a) shows the age distributions of the ADNIGO2, HCP, and OpenPain datasets. Panels (b), (c), and (d) show the temporal information on scans for each
subject in the HCP, OpenPain, and ADNIGO2 datasets, respectively.

Figure 3. A schematic overview of LESA consisting of four key components: 1. surface extraction, 2. elastic shape analysis of surfaces, 3. Euclidean representation of shapes,
and shape trajectory fitting and regression analysis.

3.2. Elastic Shape Analysis of Surfaces

For a given subcortical region, we observe longitudinal surface
data fij for subject i at time point (or age) tij for i = 1, . . . , n
and j = 1, . . . ,mi. We use an elastic Riemannian metric
to compare all surfaces {fij} under a Riemannian framework,
called elastic shape analysis. Such an elastic shape analysis refers
to a set of comparison methods of shapes of surfaces in a
manner that is invariant to rigid motions, global scaling, and
re-parameterization. These methods solve for dense, optimal
registrations of points across surfaces, while comparing their
shapes andnot as a pre-processing step. Therefore, the registered
surfaces reserve the shape heterogeneity, but they minimize

the cross-sectional variance. Examples of elastic shape analysis
of 3D objects include Younes (2010) and Bauer and Bruveris
(2011). In this article, we take the approach introduced in
Jermyn et al. (2012) that uses a specific square-root represen-
tation to transform complicated, but important invariant Rie-
mannian metrics into standard Euclidean metrics.

Let F be the set of surfaces consisting of all smoothed maps
f : S

2 → R
3 with a finite L2 norm, and � be the set of all

orientation-preserving diffeomorphisms of S2. For any surface
f ∈ F and γ ∈ �, the composition f ◦ γ is simply a re-
parameterization of f and has the same shape as f . We consider
any two surfaces, f1 and f2 such that f1(s) is registered to f2(s)
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Figure 4. An illustration on how to extract a parameterized subcortical shape in LESA.

for all s ∈ S
2. If we re-parameterize f2 by a γ ∈ �, then f1(s) is

now registered to f2(γ (s)). Thus, γ here controls the correspon-
dence or registration among points between surfaces. In order to
compare shapes of surfaces, we need ametric that can invariantly
compare surfaces with arbitrary re-parameterizations, motivat-
ing the following normal vector field representation of surfaces.

For s ∈ S
2, the vector nf (s) = ∂f

∂u (s) × ∂f
∂v (s) denotes the

normal to f at the point f (s), where (u, v) ≡ s are the local
coordinates on S

2. Then, the square-root normal field (SRNF)
of f is defined to be the normal vector field q : S2 → R

3 by
q(s) = nf (s)/

√|nf (s)|, where | · | denotes the vector norm. As
described in Jermyn et al. (2012), the L

2-metric under SRNF
the representation has some critical invariant properties and can
be used to compare shapes of surfaces. The essential advan-
tage of using such a representation is that it is easy to remove
shape-preserving transformations (reparameterizations) from
this representation. The SRNF of a surface is already invariant to
its translation. Scaling can be separated by rescaling all surfaces
to have unit area: f (s) = f (s)/√αf , where αf = ∫

S2 |nf (s)|ds is
the surface area of f . However, the size of subcortical regions
is an important feature, so it will be preserved and analyzed
separately.

After appropriately removing scaling and translation, we
handle rotation and re-parameterization as follows. Let SO(3)
be the rotation group (the set of all 3 × 3 rotation matrices).
Applying a rotation O ∈ SO(3) and a re-parameterization γ ∈
� to a surface f is given byO(f ◦γ ). Thus, the SRNF representa-
tion ofO(f ◦γ ) becomesO(q�γ ) ≡ O

√
Jγ (q◦γ ), where Jγ is the

determinant of the Jacobian of γ . The removal of rotation and
re-parameterization leads to the following registration problem:

(O∗, γ ∗) = argminO∈SO(3),γ∈�‖q1 − O(q2 � γ )‖, (1)
where q1 and q2 are the SRNFs of normalized and centered f1
and f2, respectively. The optimalO∗ is solved by using Procrustes
Analysis, and the optimal γ ∗ is solved by using a gradient-based
optimization over � (Kurtek et al. 2010; Jermyn et al. 2012).
The minimum value of the objective function, call it ds, forms
the elastic shape metric between f1 and f2, and γ ∗ represents the
optimal registration of points across the two surfaces.

3.3. PCA-based Dimension Reduction

The goal of this step is to jointly align all surfaces and then
perform principal component analysis (PCA) to obtain their
finite-dimensional representations. It allows us to transform the
complex shape trajectory into a trajectory in R

r , leading to a
simple downstream analysis.

Let {fij} be a set of normalized surfaces (after removing
translation and scaling). The group alignment of {fij} involves
(i) the computation of a template shape and (ii) the pair-wise
alignment of every fij to the template. Specifically, we use the
Karcher mean under our elastic shape metric as the template,
which is defined as fμ = argminf

∑n
i=1

∑mi
j=1 ds(f , fij)2, where

ds(·, ·) denotes the shape metric. We approximate the optimum
using an iterative approach. In each iteration, we register the
given surfaces to the current estimate of the mean, and then
we update this estimate by a mean of the current registered
shapes. In the process of calculating Karcher mean, we also
have all fijs aligned to the Karcher mean. Denote the aligned
surface as f ∗ij , and f ∗ij = O∗(fij ◦ γ ∗), where (O∗, γ ∗) =
argminO∈SO(3),γ∈�‖qμ − O(qij � γ )‖, in which qμ is the SRNF
of fμ.

With the Karchermean fμ and aligned shapes f ∗ij , we perform
dimension reduction in the tangent space at fμ. Specifically, we
compute the shooting vectors or deformations, that take the
mean shape fμ to individual surfaces f ∗ij s as follows. Although
there is an elaborate procedure for computing these deforma-
tions using the geometry of the shape space as described in
Kurtek et al. (2010), we approximate these deformations by tak-
ing simple differences according to vij = f ∗ij − fμ for simplicity.
This Euclideanmetric is different from theL2 metric in (1) used
for aligning surface shapes. The metric in (1) provides optimal
registrations between surfaces, but the subsequent analysis can
get computationally expensive. If the underlying variability is
small, the results from the two approaches are not that different,
motivating us to use the simple Euclidean metric for down-
stream analyses. Next, we use the Gram-Schmidt procedure
to generate an orthogonal basis for the set {vij}. Let {v′

k} be the
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neworthogonal basis resulting from theGram-Schmidt process.
Thus, each original shooting vector vij can be projected onto the
basis {v′

k} and is represented as a vector of coefficients cij with its
kth element cijk = 〈〈

vij, v′
k
〉〉
. The original aligned surface f ∗ij can

be recovered by f ∗ij = fμ + ∑
k=1 cijkv′

k. In this step, there is no
loss of information since {v′

k} is just a new orthogonal basis for
the subspace spanned by the shooting vectors {vij} at the tangent
space of fμ.

These coefficients {cij} denote Euclidean representations
of original shapes, and we perform PCA in the coefficient
space. We calculate the sample covariance matrix as K =∑n

i=1
∑mi

j=1 cijcTij /(
∑n

i=1mi−1) and its spectral decomposition
K = U�UT , where � = diag(λ1, λ2, . . .) is a diagonal matrix
formed from the eigenvalues ofK and the columns ofU form the
eigenvectors of K. Let uj be the jth column of U corresponding
to the jth largest eigenvalue of K. Thus, the Euclidean repre-
sentation of f ∗ij can now be approximated using the projection:
c̃ij = UT

r cij, where Ur = [u1, ...,ur] is the first r columns of
U, and c̃ij ∈ R

r . The k-th element in c̃ij is denoted as c̃ijk,
representing the k-th principal component (PC) score for the
shape surface f ∗ij , and its corresponding PC direction is given as
ṽk = ∑

i=1 ukiv′
i, where uki is the i-th elements in uk.

Figure 5(a) shows the Karcher mean of all 3443 left ventricles
in the ADNIGO2 dataset discussed in Section 2. Figure 5(b)
shows the cumulative percentage of variance explained by the
number of principal components. As shown here, the use of 32
PCs can represent the 95% variation of all surfaces. Figure 5(c)
shows the first PC direction in the shape space by reconstructing
the principal geodesic as fμ + t

√
λ1 ∗PC1, where PC1 represents

the first principal direction, that is, ṽ1. The PC1mainly describes
the shape change of anterior and posterior ends of the ventricle.
In the following ADNI data analysis, significant differences can
be observed in these regions between normal controls and AD
people.We then bring the temporal labels back (the time of each

observation) and plot the area trajectories for 1045 subjects in
Figure 5(d) and PC1 score trajectories in Figure 5(e).

3.4. Dense Trajectory Fitting and Longitudinal Data
Analysis

The goal of this step is to estimate continuous trajectories of
shapes for all subjects and conduct a longitudinal data analy-
sis based on the outputs of Sections 3.1–3.3, including a sur-
face area trajectory [αi1, . . . ,αimi ] and PC score trajectories
[̃ci1, . . . , c̃imi ] for each subcortial region from subject i. There
are two challenges. The first challenge is that we only have sparse
observations per subject in longitudinal neuroimaging studies,
that is, each mi is a small integer. The second challenge is the
nonuniform spacing of time points, that is, the surfaces are
observed at different times for different subjects. Due to these
challenges, the independent fitting of sparse longitudinal points
to trajectories does not work (James, Hastie, and Sugar 2000).

We develop two approaches for estimating continuous curves
by borrowing information from all trajectories in the dataset.
The first approach is a semi-parametric mixed-effects model
and the second approach is functional data analysis of sparse
longitudinal data.

Mixed Effects Model. We first use a semi-parametric mixed
effects model tomodel the kth PC (or area) trajectory as follows:

c̃i·k(t) = μk + φk(t) + P(t)Tηi + εi(t)
for i = 1, . . . , n, (2)

where k is the PC index, c̃i·k(tij) = c̃ijk, φk(t) is an unknown
fixed function of t, P(t) represents the polynomial vector
(1, t, . . . , tp)T , and εi(t) is a random noise process with mean
zero and variance σ 2. Moreover, ηi is a (p+1)×1 vector of ran-
dom effects. We approximate the fixed effect function φk(t) by
using penalized regression splines. The covariance component

Figure 5. The PCA results of the ADNIGO2’s left ventricle surfaces: (a) the Karcher mean of all left ventricle surfaces; (b) the cumulative percentage of variance explained
by the number of PCs; (c) the first dominant PC direction reconstructed as fμ + t

√
λ1PC1, in which the five shapes in the front view from left to right correspond to

t = {−1,−0.5, 0, 0.5, 1} and the color denotes the relative shape change; (d) surface area trajectories, and (e) PC1 score trajectories.
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associated with ηi is estimated using restricted maximum likeli-
hood. Moreover, the fixed effect μk + φk(t) models the mean
trajectory for the population and the random effects P(t)Tηi
allow for individual variation. The Akaike information criterion
is used to select the number of spline basis functions (i.e., p). To
fit model (2), we use the gamm function provided in publicly
available packagemgcv (Wood 2012).

The proposed mixed-effects model has many advantages
when compared with an independent fit of each trajectory.
The model estimates the continuous trajectory c̃i·k(t) using all
observed data rather than just those from subject i. Therefore,
when there is insufficient data for subject i, we can borrow
information from all other subjects and still have a reasonable
estimate at the individual level. From a theoretical perspective,
the maximum likelihood method that is used to estimate the
unknown parameters in the model allows different weights to
different observations, resulting in estimators with asymptotic
optimality properties.

To estimate the covariance component for ηi, we must esti-
mate (p + 1)(p + 2)/2 different parameters. Given the sparse
data (sometimes, we only have one to two observations for some
individuals), these estimates can be highly variable, and the
estimation algorithm may be trapped in local maxima. A pos-
sible solution is to employ a more adaptive and representative
basis to fit each trajectory. This motivates the use of functional
principal component analysis (fPCA) andprincipal components
analysis through conditional expectation (PACE) (Yao, Müller,
and Wang 2005).
PACE. The PACE model assumes

c̃i·k(t) = μk(t) +
∞∑
p=1

ξikpφp(t) + εi(t), (3)

where μk(t) describes the population mean for the kth PC
trajectory, εi(t) is randomnoisewithmean zero and varianceσ 2,
and

∑∞
p=1 ξikpφp(t) models the individual trajectory’s deviance

from the population mean. Moreover, {φp(t)} is the set of basis
functions, {ξikp} is the vector of corresponding coefficients, and
τi·k = μk + ∑∞

p=1 ξikpφp denotes the unobserved true kth PC
score trajectory for subject i. The goal of PACE is to estimate τi·k.

Assume that {τi·k} for i = 1, . . . , n are realizations of a
stochastic process with mean function μk and covariance func-
tionCk(·, ·). Let Ck(t1, t2) = ∑∞

p=1 ρpφp(t1)φp(t2) be the eigen-
decomposition of Ck(·, ·). By the Karhunen-Loéve theorem,
with probability one we have τi·k(t) = μk(t) + ∑∞

p=1 ξipφp(t),
indicating that any realization of this stochastic process can
be represented as a linear combination of {φp(·)} and coeffi-
cients. The basis {φp(·)} derived from the eigen-decomposition
of Ck(·, ·) also facilitates a parsimonious representation of τi·k
using the first P basis functions (eigenfunctions) in terms of
minimum expected mean integrated squared error. That is, if
{ep}∞p=1 is a complete orthogonal basis system for represent-

ing any τi·k, then E[‖τi·k − μk −
P∑

p=1
〈τi·k − μk, ep〉ep‖2] is

minimized by taking ep = φp for p = 1, 2, . . . ,P. PACE
uses this important theoretical result by estimating an empirical
Ĉk from the given sparse data and using its first P eigenfunc-
tions φ̂p to replace the φp in (3). Both the empirical pop-
ulation mean μ̂k and covariance function Ĉk are estimated

using local linear smoothers (Yao, Müller, and Wang 2005; Fan
and Gijbels 2018). To obtain a good estimate of {ξikp}, PACE
assumes that ξikp and εi(t) are jointly Gaussian. Let c̃ik =
(̃ci1k, . . . , c̃imik)

T , μ̂ik = (μ̂k(t1), . . . , μ̂k(tmi))
T , and φ̂ip =

(φ̂p(t1), . . . , φ̂p(tmi))
T . Under Gaussian assumptions, the best

estimate of ξikp is given by the conditional expectation ξ̂ikp =
E(ξikp |̃cik) = ρ̂pφ̂

T
ip�

−1
c̃ik (̃cik − μ̂ik), where the (a, b)th element

of �−1
c̃ik is Ĉk(ta, tb) + σ̂ 2δab with δab = 1 if a = b and 0 if

a 
= b. The final estimated trajectory for the kth PC score for
subject i is given as τ̂i·k(t) = μ̂k(t) + ∑P

p=1 ξ̂ikpφ̂p(t). The P is
selected using the cross-validation method introduced in Yao,
Müller, and Wang (2005). Note that ξ̂ikp is the best estimator
under Gaussian assumptions and best linear prediction of ξikp
given the information from the ith subject irrespective of the
Gaussian assumptions.

Using either the mixed effects model or the PACEmodel, we
can estimate smooth and continuous shape trajectories f ∗i (t) =
α̂i(t)∗(fμ+∑r

k=1 τ̂i·k(t)̃vk), where α̂i(t) and τ̂i·k are, respectively,
the recovered surface area trajectory and the kth shape PC
trajectory for the ith subject.

Longitudinal Data Analysis. Assuming that there is a set of
covariates xi ∈ R

K from each subject (e.g., gender and disease
status), we are interested in learning the effects of xi on longi-
tudinal surface trajectories. We refer to this analysis as shape-
trajectory-on-scalar regression. Let f ∗i (t, s), in which t indexes
time and s indexes the location on the surface, for example,
s ∈ S

2, be the shape trajectory. It is assumed that the mean of
f ∗i (t, s) is a function of scalar predictive variables, given by

E(f ∗i (t, s)|xi) = μ(t, s) +
K∑
j=1

xijψj(t, s), (4)

where μ(t, ·) is a 3D shape and
∑K

j=1 xijψj(t, ·) deforms μ(t, ·)
to the mean of f ∗i (t, ·). With PACE, each sparsely observed
shape trajectory {f ∗i (t1, ·), ..., f ∗i (tmi , ·)} is represented as a rP×1
vector yi = [̂ξi11, . . . , ξ̂i1P, · · · , ξ̂ir1, . . . , ξ̂irP]T ∈ R

rP, where
[̂ξik1, . . . , ξ̂ikP]T comes from the kth PC score trajectory after
applying PACE (or the mixed effects model). The elements in
yi are obtained by two layers of PC analysis, and therefore, they
are independent of each other. This nice property significantly
reduces the complexity of our regression problem in (4)—we
can conduct a simple regression for each element in yi, sepa-
rately. With the fitted models, for a given new xi, we can easily
predict yi, the corresponding PC score trajectories, and the
shape trajectory.

4. Longitudinal Shape Data Analysis Results

In this section, we carry out a comprehensive data analysis of the
three datasets introduced in Section 2 in order to address (Q1)
and (Q2).

4.1. Efficient Representation of Surface Shapes in LESA

We compare LESA with a spherical harmonic-based point dis-
tribution model (SPHARM-PDM) (Styner et al. 2006) in terms
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Figure 6. Comparison of the representation efficiency of the SRNF framework in LESA to that of SPHARM-PDM using left lateral ventricle surfaces from ADNIGO2. (a)
Individual surface reconstruction error versus the number of PCs. (b) Total reconstruction error of all surfaces versus the number of PCs, and (c) percentage of performance
improvement of our SRNF method over the SPHARM-PDM in Styner et al. (2006).

of terseness and efficiency of representation. The SPHARM-
PDM is a widespread technique used in medical shape analysis.
The efficiency of a representation is quantified using the number
of PCA coefficients needed for representing shapes up to a fixed
reconstruction error. Let f be a surface and f̂r be the recon-
structed surfaces with r PCs. We also define the reconstruction
error as ‖f −̂fr‖ =

√∫ 2
S

‖f (s) − f̂r(s)‖2ds. For a fix r, themethod
that leads to smaller reconstruction error is more efficient in
shape representation. Figure 6 presents the obtained results for
left lateral ventricle surfaces in the ADNIGO2 dataset. Similar
results are found for other subcortical regions and datasets.
Figure 6(a) presents the reconstruction errors of all individual
surfaces versus r for the SRNF representation in LESA (blue
lines) and SPHARM-PDM (red lines). Figure 6(b) shows the
total distances of all reconstructed surfaces to their original
surfaces under different r, showing that SRNF outperforms
SPHARM-PDM in representation efficiency. Figure 6(c) quan-
tifies the percentage of improvement, indicating that our SRNF
framework has much better performance in the sparse cases
when only a few PC scores are used to represent the shape.

4.2. FromDiscrete to Continuous—Fitting Shape
Trajectory

We compare PACE with the mixed-effects model (denoted as
MGCV from here) in LESA by using them to fit continuous
shape trajectories based on the observed discrete data for the
left ventricle and hippocampus in ADNIGO2. Figure 7 shows
the observed sparse data and the fitted smooth trajectories
(with PACE and MGCV) for the surface area (the first row)
and PC1 score (the second row). The solid lines in different
colors present individual trajectories, whereas the black dashed

lines present the mean trajectories. We observe that the mean
trajectories fitted by PACE and MGCV follow very similar
trajectories, but some individual trajectories fitted by MGCV
diverge from the range of observed data significantly, which
is probably caused by the high variability of the estimated
parameters in MGCV. The third row of Figure 7 illustrates the
surface trajectories reconstructed based on fi(t) = α̂i(t) ∗ (fμ +∑r

k=1 τ̂i·k(t)̃vk), with t ∈ [60, 90] and r = 32 for left ventricle
and 64 for left hippocampus, respectively. The surface trajecto-
ries built under PACE and MGCV have some agreements with
the aging process. Specifically, the left ventricle surface tends
to enlarge and its shape mainly deforms at the anterior and
posterior ends. The left hippocampus surface tends to shrink
and its shape mostly changes in both anterior and posterior
ends.

Figure 8 presents trajectory fitting results of three randomly
selected individual subjects. Inspecting Figure 8(a) and (b)
reveals that both approaches can capture the patterns of original
trajectories andmake reasonable predictions. The reconstructed
dense individual surface trajectories in panel (c) are also consis-
tent with the raw observations.

Let MSPEα = n−1 ∑n
i=1

√
m−1

i
∑mi

j=1{αi(tij) − α̂i(tij)}2
be the mean square-root prediction error (MSPE) of sur-
face area trajectories. Moreover, we also define MSPEτk =
n−1 ∑n

i=1

√
m−1

i
∑mi

j=1 {̂τi·k(tij) − c̃i·k(tij)}2 to be the MSPE of
PC score trajectories. To compare trajectory fitting methods, we
compute MSPEα and MSPEτk , in which we set n = 1045 for
the left ventricle and n = 974 for the left hippocampus. Table 2
shows that results are consistent across the two brain regions:
PACE results in better prediction accuracy on the area and PC
trajectories. Therefore, in the following data analysis, wewill use
only the PACE method for trajectory fitting.
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Figure 7. Trajectory fitting results of LESA from the observed sparse data in ADNIGO2. In the first two rows, the first column shows observed sparse trajectories (for area
and PC1 score), and the second and third columns show the continuous trajectories fitted by PACE and MGCV, respectively. In the third and fourth rows, we show the
reconstructed mean surface trajectories fitted by PACE and MGCV, respectively, in which color indicates the shape deformation compared with the first shape and we use
abbreviations, including A—anterior and P—posterior.

Figure 8. Individual surface trajectories fittedwith LESA in ADNIGO2. Panels (a) and (b) show the raw and fitted trajectories for the surface area and PC1 score, respectively.
Panel (c) illustrates the reconstructed surface trajectories based on the fitted surface area and PC score trajectories.

4.3. Life-Span Shape Change

To address (Q1) for the left ventricle and left hippocampus, we
integrate the ADNIGO2, HCP test-retest, and the OpenPain
datasets into a single dataset and then apply LESA to it. Fig-
ure 9 shows the observed sparse area trajectories (from all three

datasets used in this article) and their mean trajectories fitted
by PACE. The area of the left ventricle keeps increasing after
the age of approximately 30 years old. The speed of change is
relatively slow before 60 years old, but after 60 years old, the
enlargement of the ventricle speeds up. In contrast, the size
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Table 2. Mean square-root prediction errors (MSPEs) of PACE and MGCV in ADNIGO2.

PACE MGCV

Area 59.7086 70.5375
PC1 0.0357 0.0424
PC2 0.0248 0.0256
PC3 0.0448 0.0526
PC4 0.0208 0.0225
PC5 0.0531 0.0580
... ... ...
PC Average 0.0383 0.0400

Left ventricle

PACE MGCV

Area 17.7408 22.7865
PC1 0.0238 0.0239
PC2 0.0462 0.0474
PC3 0.0316 0.0383
PC4 0.0695 0.0852
PC5 0.0272 0.0293
... ... ...
PC Average 0.0350 0.0359

Left hippocampus

Figure 9. The life-span growth trajectories from 22 to 90 years old for the left ventricle and left hippocampus. Panels (a) and (b) show the observed sparse data and fitted
mean trajectories (black solid line), respectively; and panel (c) shows the reconstructed life-span mean surface trajectories. Color on each surface indicates the surface’s
deformation size compared with the surface at age 22 years old.

of the hippocampus reduces with age, while the speed of the
shrinking increases after around 60 years old. Figure 9 (c) shows
the mean surface trajectories for the two brain regions from the
age of 22–90 years old. In addition to size change, we observe the
changes in shapes due to aging. Specifically, for the left ventricle,
the anterior end becomes smoother and fatter with aging, while
the posterior end enlarges the most among the whole surface.
The whole left hippocampus surface gets thinner with aging,
while the anterior and posterior ends atrophy the most.

4.4. Longitudinal Analysis of Shape Trajectories

LESA facilitates simple but effective longitudinal analysis of sur-
face trajectories.We use LESA to analyze the ADNIGO2 dataset
in order to address questions similar to Q2 by (i) identifying
group differences in longitudinal shape data and (ii) quantifying
the contributions of the covariate(s) to the longitudinal shape
change.

Group Difference Analysis: In the ADNIGO2 dataset, we have
three diagnosis groups: AD, mild cognitive impairment (MCI),

and normal control (NC). To delineate the group difference,
we computed mean trajectories for each of the three groups.
Figure 10(i) and (ii) presents the mean trajectories of the three
groups for the left ventricle and those for the left hippocampus.
Within each panel, panel (a) shows the surface area trajec-
tory, panel (b) shows the area changing rate, defined as 100 ×
{α(ti+1) − α(ti)}/α(ti), as a description of shape deforming
speed with positive numbers representing enlarging and neg-
ative numbers representing shrinking, and panel (c) shows the
reconstructed shape trajectory. The shape trajectory is recovered
as (fμ + ∑r

k=1 τ̂i·k(t)̃vk), which is different from the previous
surface trajectory that incorporates the area information. From
Figure 10(i), we observe the following patterns for the left ven-
tricle:

• The AD group has the largest surface area from 60 to 90 years
old, followed by the MCI and NC groups.

• The surface area increases with age for all groups, but at
different speeds (see Figure 10 panel (b)). Between 60 and
75 years old, the AD group has the largest enlarging speed.
TheMCI group also enlarges faster than the NC group, but is
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Figure 10. Comparisons of shape change patterns among AD, MCI and NC using ADNIGO2 data. (a) Mean surface area trajectories of the three groups (blue: AD; red: MCI;
yellow: NC); (b) Changing rate of the area trajectories-calculated as 100 ∗ (α(ti+1) − α(ti))/α(ti); and (c) reconstructed mean shape trajectories (fμ + ∑r

k=1 τ̂i·k(t)̃vk ).
Color on the surface represents shape difference compared with the NC surface at the corresponding time point.

slower than the AD group. The enlarging speeds of different
groups converge at around the age of 75 years old. After 85
years old, due to smaller sample sizes and potential sampling
bias, our estimation might have larger variation, and so we
do not try to interpret it to avoid over-interpretation.

• Most of the shape differences between theADandNCgroups
are visible in the anterior and posterior ends. The AD group
has the fattest ends, and the NC group has a similar trend in
turning fatter with aging but at a much slower pace than the
AD group.

From Figure 10(ii), for the left hippocampus, we observe the
following patterns:

• The AD group has the smallest mean surface area all the time
from 60 to 90 years old, followed by the MCI group;

• The surface area tends to shrink with age most of the time
for all three groups. Between 65 and 80 years old, the AD
group shrinks the fastest. The shrinkage speeds of different
groups converge at around 82 years old. Given the significant
acceleration of the AD group’s shrinkage speed from 60 to
around 70 years old, it seems that the hippocampal atrophy
happens much more rapidly for the AD group.

• The atrophy or shrinking happens mainly at the posterior
end for all three groups. The posterior end contains amixture
of several essential sub-fields, including CA1, CA1, CA2, and
CA4 (DeKraker et al. 2020). The AD group has the sharpest
posterior end (most severe atrophies), and the NC group
deforms the least with aging.

Overall, normal aging, MCI, and AD have a similar effect on
the subcortical structure. At 60 years old, the AD group already
has a significant shape difference in hippocampi compared with
normal controls. However, most subjects were diagnosed with
AD after 60 years old, indicating that subcortical brain atro-
phy may happen long before clinical diagnosis (Coupé et al.
2019).

Shape-trajectory-on-scalar Regression Analysis:
We are interested in understanding the effects of some pre-

dictors of interest on the variability in subcortical shape trajec-
tories by using the ADNIGO2 dataset for both the left ventricle
and left hippocampus. We included gender, marriage status,
education years, diagnostic status (NC, MCI, AD), and ApoE4
type (type 0: e3/e3, type 1: e3/e4, type 2: e4/e4) as covariates
of interest. The entire data were split into training (80%) and
testing (20%). The training data were used to fit continuous
surface trajectories and perform the shape-trajectory-on-scalar
regression. We then conducted two sets of analyses: (i) shape
prediction accuracy evaluation using the test data; and (ii)
controlling for other covariates, only change one covariate to
explore its effect on the surface trajectory.

Figure 11 shows the result for the first set of analyses. After
training the regression model, we used the covariates in the
testing data to predict surface trajectories. To evaluate the pre-
diction accuracy, we defined a metric named average prediction
error (APE): APEi = (1/mi)

∑mi
j=1 ‖(fi(tij) − f̂i(tij))‖, where

fi(tij) is the observed surface at time point tij for subject i, and
f̂i(tij) is the predicted surface using the regression model. Note
that the regression model only predicts ξijk, we need to use
these ξijks’ to recover the PC score trajectories, and then the
surface trajectories. We compared the regression model with
a baseline model that uses the mean trajectory fμ to predict
every subject’s surface trajectory f̂i. Figure 11(a) presents the
percentage of APE improvement compared with the baseline
model. Figure 11(b) presents some examples of fi(tij) (original
surface), f̂i(tij) (reconstructed surface based on the regression
model), and fμ(tij) (mean surface). The results clearly indicate
that the regression model explains part of the variation in the
surface trajectories and gives better prediction than the baseline
model.

Next, we explore how some covariates of interest would affect
the shape trajectory of either the left ventricle or hippocampus.
Figure 12(i) presents some results for the left ventricle. In the
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Figure 11. Evaluation of the shape-trajectory-on-scalar regression in the ADNIGO2 data. Panels (i) and (ii) show results for the left ventricle and the left hippocampus,
respectively. Each sub-panel (a) shows the histogram of the percentage of improvement in prediction error when comparing the shape-trajectory-on-scalar regression
with the baseline model. Each sub-panel (b) shows some examples of original sparse surface, surface reconstructed by the regression’s prediction, and the global mean
surface. The color on the reconstructed and mean surfaces indicates their difference to the original surface.

sub-panel (a), we show the predicted area trajectories and PC1
score trajectories by letting gender = female (0), marriage sta-
tus = married (1), education years = 16, and ApoE type = 1
(e3/e4), and varying the diagnosis status to be AD, MCI, and
NC. Comparing the AD groupwith theMCI andNC groups, we
can see that in the AD group the left ventricle tends to be larger
and moves along the positive direction of the first shape PC. A
similar analysis is performed in the sub-panel (b) by varying the
ApoE4 types. We observe that type 2 (with two e4 alleles) has
quite a different effect than types 0 and 1. Specifically, subjects
having two e4 alleles tend to have larger left ventricle and more
deformation along the first shape PC direction. The sub-panel
(c) shows the reconstructed shape trajectories for varying the
diagnosis status to be AD, MCI, and NC. We observe that the
AD status has more effect on the left ventricle shape trajectory
compared with the MCI, and the AD is making the ventricle
fatter. Figure 5(c) presents how an increasing PC1 score changes
the ventricle shape.

Figure 12(ii) shows a similar set of analyses for the left
hippocampus. The sub-panel (a) shows how diagnosis status
changes the predicted area and PC1 score trajectories. We see
that ADmakes the hippocampus smaller and changes the shape
mainly along the positive PC1 direction. The sub-panel (b)
shows how ApoE4 type changes the predicted area and PC1
score trajectories. We observe that the double e4 alleles have a
shrinking effect on the hippocampus’s size and change the shape
along the positive PC1 direction. Existing studies also found
that double e4 alleles have a significant effect to the volume
and shape change in aging (Striepens et al. 2011; O’Dwyer et al.
2012; Li et al. 2016). The sub-panel (c) shows the predicted

shape trajectories by varying the diagnosis status, and we see
that compared with NC, the AD status contributes to the shape
change at the posterior end. Moreover, the difference between
NC and MCI is much less the difference between NC and AD.

5. Discussion

This article introduces a comprehensive LESA framework for
statistically analyzing longitudinal brain subcortical regions.
LESA contains five major components, including subcortical
surface extraction, elastic shape analysis, principal components
analysis (PCA) of shapes, continuous shape trajectory fitting,
and shape-trajectory-on-scalar regression. We then applied
LESA to study theADNIGO2,HCP, andOpenPain datasetswith
subjects ranging from 20 to 90 years old and demonstrated sev-
eral key properties and applications of LESA. First, we illustrated
that the elastic shape analysis and PCA in LESA are efficient in
creating low-dimensional representations of each shape surface,
making statistical modeling much more straightforward. Next,
we solved the challenge of estimating a continuous shape tra-
jectory from super sparse longitudinal observations using two
advanced functional data analysis techniques—mixed-effects
model and PACE. The PACE outperforms the mixed-effects
model in the three datasets due to its flexibility and parsimo-
nious representation of the longitudinal data. Another advan-
tage of LESA is that each shape trajectory is eventually rep-
resented as a low-dimensional vector with uncorrelated ele-
ments (under the PACE model). Consequently, a simple shape-
trajectory-on-scalar regression can be developed and applied
to study the shape change in ADNI data. The results clearly
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Figure 12. Exploration of the covariates’ effect to the surface trajectory in the ADNIGO2 dataset. In each sub-panel (a), we fixed gender, marriage status, education years
and ApoE4 type and varied the diagnosis status. In each sub-panel (b), we fixed the others and varied the ApoE4 type. Each sub-panel (c) shows the reconstructed shape
trajectory by only varying the diagnosis status. Color on each surface represents shape deformation compared with the NC surface at the same age.

show that AD has strong adversarial effects on the ventricle and
hippocampus.

Applying LESA to the three datasets (totally, 2275 subjects
and 9628 shape surfaces), we studied the developmental shape
trajectories of the left ventricle and left hippocampus in the life-
span from 20 to 90 years old. We found that shape change (the

atrophy) of these subcortial regions starts very early (∼30 years
old) and speeds up after 60 years old. Moreover, the AD further
speeds up the atrophy compared with normal aging between 60
and 70 years old. The use of LESAallows us to accurately identify
the location of the shape change on the subcortical surfaces.
For the left hippocampus (see Figure 10), the atrophy mainly
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happens at the posterior end, which includes several essential
sub-fields, including CA1, CA1, CA2, and CA4 (DeKraker et al.
2020). Moreover, the regression component of LESA estimates
the covariates’ effect to the surface trajectory. Applying LESA
reveals that the AD status and genetic risk (two ApoE4 alleles)
all contribute to more severe atrophy of subcortical regions in
the aging process.

Although we focus the analysis results on the left ventricle
and hippocampus, those for the right ventricle can be found
in the supplementary materials (Supplementary Figures 5–9).
These results are similar to those of left surfaces. In conclusion,
LESA is an easy but powerful tool for analyzing longitudinal
subcortical surfaces. Implementation of LESA and detailed doc-
umentation can be found at https://wuyx5.github.io/LESA/.

Supplementary Materials

The supplementary materials mainly contain results for subcortical struc-
tures on the right side of the brain, for example, right ventricle and
hippocampus, and some additional results for the left ventricle and
hippocampus.
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