Check for
Updates

ITyFuzz: Snapshot-Based Fuzzer for Smart Contract

Chaofan Shou Shangyin Tan Koushik Sen
shou@berkeley.edu shangyin@berkeley.edu ksen@berkeley.edu
UC Berkeley UC Berkeley UC Berkeley
Berkeley, CA, USA Berkeley, CA, USA Berkeley, CA, USA
ABSTRACT smart contract. Each transaction serves as an input and can modify

Smart contracts are critical financial instruments, and their security
is of utmost importance. However, smart contract programs are
difficult to fuzz due to the persistent blockchain state behind all
transactions. Mutating sequences of transactions are complex and
often lead to a suboptimal exploration for both input and program
spaces. In this paper, we introduce a novel snapshot-based fuzzer
ITyFuzz for testing smart contracts. In ITYFuzz, instead of storing
sequences of transactions and mutating from them, we snapshot
states and singleton transactions. To explore interesting states,
ITyFuzz introduces a dataflow waypoint mechanism to identify
states with more potential momentum. ITyFuzz also incorporates
comparison waypoints to prune the space of states. By maintaining
snapshots of the states, ITYFuzz can synthesize concrete exploits
like reentrancy attacks quickly. Because ITYFuzz has second-level
response time to test a smart contract, it can be used for on-chain
testing, which has many benefits compared to local development
testing. Finally, we evaluate ITYFuzz on real-world smart contracts
and some hacked on-chain DeFi projects. ITYFuzz outperforms
existing fuzzers in terms of instructional coverage and can find and
generate realistic exploits for on-chain projects quickly.

CCS CONCEPTS
« Software and its engineering — Software testing and debug-

ging.
KEYWORDS

fuzzing, on-chain testing, smart contract, blockchain, DeFi security

ACM Reference Format:

Chaofan Shou, Shangyin Tan, and Koushik Sen. 2023. ITyFuzz: Snapshot-
Based Fuzzer for Smart Contract. In Proceedings of the 32nd ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA 23), July
17-21, 2023, Seattle, WA, USA. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3597926.3598059

1 INTRODUCTION

Smart contract auditing has become a billion-dollar industry with
the increasing adoption of Web 3.0 technology and the growing
number of attacks. Smart contracts are programs deployed on the
blockchain and can accept transactions from any party. Transac-
tions are calls to public functions or token transfers to the deployed

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0221-1/23/07.
https://doi.org/10.1145/3597926.3598059

322

the smart contract’s state. Auditing means ensuring a smart con-
tract has no vulnerabilities to losing assets stored inside it. Smart
contracts can be audited by automated fuzzing tools, but all fuzzing
tools for smart contracts only support testing in the local deploy-
ment, not on the blockchain. Fuzzing on the blockchain requires
high exploration speed for a given state, because (1) the state of
the blockchain is constantly changing, and (2) attacker exploits can
happen at any time. Current smart contract fuzzers are not efficient
enough to fetch the states from the blockchain and finish the au-
diting quickly. However, on-chain auditing, or directly performing
fuzz testing with the states fetched from the blockchain continu-
ously, is critical in the following scenarios. First, when certain code
locations are only reachable from specific on-chain states, local or
development setting fuzzing is useless. Second, modern smart con-
tracts often leverage external contracts as sources of information.
With on-chain auditing, we can pull these data from the blockchain
dynamically in real-time.

Despite all the benefits, on-chain auditing becomes useless when
the fuzzers can not provide a real-time response, as the ultimate goal
is to pause the contract before the attackers identify or conduct the
attack. Existing fuzzers are mostly under-optimized for response
time. For achieving full coverage of smart contracts, existing fuzzers
have to spend a significant period (hours or days) while on-chain
auditing needs second-level response time. In this paper, we propose
anew snapshot-based fuzzing technique and develop a fuzzer called
ITyFuzz. ITYFuzz can achieve high coverage over code and states
of smart contracts in just a few seconds and thus support on-chain
auditing on many smart contracts.

Although the amount of source code of most smart contracts is
trivial compared to complex software like browsers and operating
systems, they are stateful and have complex dependencies with
other smart contracts, which makes them hard to fuzz. Aiming to
tackle the stateful nature of smart contracts, some previous works
start from a fresh state for each fuzz run with a sequence of trans-
actions as input. During the mutation phase, parts of this sequence
are mutated. This way, existing tools have high overhead on re-
executing transactions to return to a previous state. For exploring
programs with a deeper state, which needs to be built up with
several transactions, re-execution cost grows linearly. Additionally,
existing tools only have feedback mechanisms for transactions but
not for states, yet states and transactions have different exploration
difficulties. We argue that the interestingness of states is equally
important as transactions for stateful fuzzing, and such feedback
mechnisms to choose interesting states to explore is non-existent
in current stateful fuzzing tools.

Instead of re-executing inputs to build up previous states, we
propose snapshot-based fuzzing. Snapshots are essentially repli-
cas of intermediate states built from some transactions. By storing

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3597926.3598059
https://doi.org/10.1145/3597926.3598059
https://doi.org/10.1145/3597926.3598059
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597926.3598059&domain=pdf&date_stamp=2023-07-13

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

all interesting snapshots into a state corpus, ITYFuzz can “time
travel” to previous states with constant complexity (O(1)). Time
traveling allows for efficient exploration for search space of both
transactions and states. To support fast snapshotting, we refactor an
existing Ethereum Virtual Machine (EVM) implementation. How-
ever, storing all snapshots into the corpus is still not practical due to
limited runtime memory resources, while the number of snapshots
increases linearly with the total execution time. The size of the
stored snapshots could grow to several gigabytes in a few seconds.
To resolve this issue and prioritize explorations of the most interest-
ing states, we design two feedback mechanisms (i.e., waypoints) to
classify interesting states and a corpus pruning technique to reduce
the number of interesting states when necessary.

By reducing overhead from re-execution and improving the feed-
back mechanism, we can reduce fuzzer time significantly so that
most vulnerabilities can be uncovered instantly. Thus, ITYFuzz can
support the on-chain auditing goal, which requires fast response
time to front run the attackers.

Although ITYFuzz focuses on smart contract fuzzing, the snap-
shot fuzzing idea we developed can be applied to other domains
as well. For example, modern hardware designs are highly stateful
programs, where some bugs are only reachable through specific
sequences of input signals. Traditional software fuzzing does not
work well when the bug-triggering signal sequence becomes longer,
but snapshot-based fuzzing can discover the more interesting state
spaces that potentially lead to the desired bug. The only require-
ments for our current snapshot fuzzing algorithm are an efficient
representation of the program state and the ability to observe the
state during program execution.

Contributions. In summary, we make the following contributions:

e We present a novel snapshot-based fuzzing algorithm to re-
duce re-execution overhead for stateful smart contract fuzzing
(Section 4.2).

e We create new waypoint mechanisms optimized for prioritizing
the exploration of interesting snapshot states, allowing efficient
program exploration:

(1) Dataflow waypoint (Section 4.3) evaluates the interestingness
of states based on “future” memory load.

(2) Comparison waypoint (Section 4.4) compresses the state cor-
pus by probabilistic sampling and hard comparison feedback.

o We develop a fast and efficient smart contract fuzzer ITyFuzz
(Section 5) and demonstrate its effectiveness (Section 6).

e Based on ITYFuzz, we propose a new auditing method for smart
contracts to conduct testing based on state fetched from the
blockchain on the fly (Section 6.4). Using this method, we detect
and reproduce exploits of on-chain projects worth millions of
dollars.

2 BACKGROUND
2.1 Fuzzing

Coverage-guided fuzzing. Fuzz testing or fuzzing is a technique to
automatically find vulnerabilities and bugs in software by providing
random inputs to the target program. To better explore the target
program, a fuzzer often employs heuristics and feedback from test
executions to generate lots of new interesting inputs by mutating

323

Chaofan Shou, Shangyin Tan, and Koushik Sen

existing test inputs. To this date, coverage-guided fuzzers have
found numerous bugs in many real-world software systems.

We show a simplified algorithm for coverage-guided fuzzer in Fig-
ure 1. The fuzzer starts with an initial corpus 7, which contains
a set of initial inputs, where in each iteration, an input i from the
corpus is selected. i is then randomly mutated to produce several
mutated inputs. The fuzzer then executes each mutated input iy,
and checks whether the execution is interesting. An execution is
interesting if it covers new coverage points that have not been
covered by existing inputs. If the execution is interesting, the fuzzer
adds the mutated input iz, to the corpus 7 and updates the coverage
information. The addition of i, to the corpus ensures that the input
gets further chance to mutate in future. Thus the fuzzer can explore
the target programs more efficiently using coverage feedback while
ignoring redundant (or uninteresting) inputs. In Section 2.2, we
describe a more general feedback called Waypoint first proposed
in [21].

I « initial_corpus
coverage «— 0

while true:
i <« random.choice(Z)
T « T\ {i}
for i, in Mutation(i):
f < execute(iy,)
if f increases coverage:
I «— T Ut
coverage «— coverage U f

= O 00NN U R W =

_ =

Figure 1: Coverage-guided fuzzing algorithm (simplified)

Fuzz Smart Contract. Although fuzzing techniques have been
widely adopted to test traditional software systems, smart contracts
pose new challenges to the current coverage-guided fuzzing tech-
niques. As discussed in Section 2.3, smart contracts are stateful
programs. Because smart contracts have access to persistent mem-
ory on the blockchain, constructing inputs individually to test smart
contracts in a given persistent state is ineffective. To address this
issue, smart contract fuzzers must produce a sequence of inputs
(transactions) to test the smart contract.

2.2 Waypoints

Fuzzfactory [21] summarized a generalized feedback mechanism
called waypoint. Waypoints are intermediate inputs that provide
interesting feedback after executing the target program. For ex-
ample, in coverage-guided fuzzing algorithm Figure 1, new inputs
(waypoints) are recorded if running the target program produces
new coverage. However, waypoints are not limited to the coverage
points—some other common waypoints include execution time,
memory usage, and distance between two compared values way-
point. To implement customized waypoints, we need to collect other
targeted, dynamic information during the execution of the program
and provide a new predicate function is_interesting to replace
line 9 in Figure 1. Unlike traditional fuzzers that use waypoints to
test the interestingness of inputs, in ITYFuzz, we design novel state
comparison and dataflow waypoints to decide if output states are
interesting for snapshot-based fuzzing. We will discuss dataflow

ITYFuzz: Snapshot-Based Fuzzer for Smart Contract

and comparison waypoints for states in more detail in Section 4.3
and Section 4.4.

2.3 Smart Contract

Smart contracts are computer programs deployed on the blockchain.
The inputs to smart contracts are typically called transactions.
Once a transaction is executed and posted on the blockchain, it
is immutable and irreversible, and the state change caused by the
transaction adds to the persistent state of the blockchain. Because
blockchain and smart contracts are immutable and decentralized,
many applications, including decentralized finance, voting, gaming,
etc., have been built with smart contracts.

As we discussed before, smart contracts are on-chain computer
programs. Many programming languages can be used to write smart
contracts. Among them, Solidity is arguably one of the most popu-
lar languages for writing smart contracts. Solidity is a high-level
language inspired by famous languages like Javascript, Python,
and C++. Solidity programs are deployed and executed on a spe-
cial blockchain called Ethereum. To run Solidity programs on the
Ethereum blockchain, one has to compile Solidity programs into
Ethereum Virtual Machine (EVM) bytecode. We show one example
of a Solidity program in Figure 2, and we will explain it in more
detail in Section 3.

3 MOTIVATING EXAMPLE

To see why current sequence-based fuzzers fail to exploit some vul-
nerabilities, consider a simple yet realistic smart contract program
in Figure 2 with s a single state variable counter. The function incr
increases the counter by one when the argument is smaller than the
current counter, and similarly, decr decreases the counter when
the argument is greater than counter. Function buggy introduces a
bug when counter reaches some constant T.

The inputs to this program are sequences of transactions, where
each transaction is simply the function to execute and its corre-
sponding parameters. For example, when T == 2, a bug-triggering
transaction sequenceis [(incr, 0), (incr, 1), (buggy,)1.This
sequence first calls incr with valid inputs two times to increase
the counter to 2. Then, the last transaction calls buggy, which will
trigger the bug.

Although the above input sequence seems simple and easy to syn-
thesize, constructing a more complex transaction sequence when
T is large is non-trivial. The bug-triggering transaction sequence
can be very long and complex in real-world scenarios. For instance,
hackers leveraged six transactions, each with on average 40 function
calls to build up the state that makes Team Finance decentralized
finance (DeFi) platform vulnerable to attack [30].

When exploring the transaction sequence space of this simple
smart contract, previous state-of-the-art smart contract fuzzers like
SMARTIAN (5] fail to quickly detect a bug as T increases (Figure 3).
This is because when evaluating a transaction sequence, the fuzzer
needs to re-execute the entire sequence of transactions from the
very beginning, including deploying the transaction to be tested.
Time spent executing a transaction in an arbitrary state needs to
include the time spent re-executing the sequence of transactions
required to reach the arbitrary state.

324

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

1 contract SimpleState {

2 int256 counter = 0;

3

4 function incr(int256 x) public {
5 require(x <= counter);

6 counter += 1;

7 }

8

9 function decr(int256 x) public {
10 require(x >= counter);

11 counter -= 1;

12 }

13

14 function buggy() public {

15 if (counter == T) {

16 bug! ();

17 }

18 }

19 1}

Figure 2: Smart contract with a simple persistent state counter

54 SMARTAIN
== == [tyFuzz
4
=
3
)
=2
cuz'
£
[_1
1_
[A i P F—
0 2 4 6 8 10
Value of T

Figure 3: Time (hours) to find a bug-triggering transaction
sequence for SimpleState with different T values

To empirically study how re-execution slows down the over-
all performance, we run SMARTIAN with default mode on the
SimpleState contract and set T = 10. We recorded the re-execution
time and their percentage to the total fuzzing time in Figure 4.
Re-execution times are recorded when the EVM executor exe-
cutes a seen (state, transaction) pair, and exploration times
are recorded otherwise. In SMARTIAN, re-execution takes more
than 90 percent of the total fuzzing time.

The amortized re-execution time grows exponentially as the
length of the sequence of transactions grows linearly. Fortunately,
the re-execution time can be eliminated if the state reached after
executing a sequence of transactions can be memoized. However,
memoization requires saving the number of states that is exponen-
tial in the number of transaction sequences. The key insight in
ITyFuzz is that we can only memoize a set of “interesting states”,
called snapshots, instead of memoizing all intermediate states and
using these interesting states only to explore new states without
re-execution. The “interestingness” of a state is defined using two

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

B Exploration Time

EEl Re-execution Time = Re-execution Percentage

100%
200

(0]

= F90% &

150 - §

2 - -80%

2100 l I I I B

F 111N

(5]

%

301 L] L 60% &

[

0 L 50%

0 100 200
Total Time (s)

300

Figure 4: Re-execution time (y-axis) and percentages when
running SimpleState on SMARTIAN

novel waypoint ideas. We discuss the snapshot-based fuzzing tech-
nique in detail in Section 4.2.

4 METHODOLOGY

This section introduces our methodology to build ITYFuzz. We first
describe the overall architecture of ITYFuzz (Section 4.1). Then
we describe three crucial building blocks for ITYFuzz: snapshot-
based fuzzing (Section 4.2), dataflow waypoint (Section 4.3), and
comparison waypoint (Section 4.4).

4.1 ItyYFuzz Architecture

We present the general architecture of ITYFuzz in Figure 5. To under-
stand the architecture of ITYFuzz, recall that Solidity smart contract
programs are executed on Ethereum Virtual Machine (EVM). EVM
can be viewed as a function EVM : (SXT) — S, which maps a state
s € S and a transaction t € T to a new state in S which we denote
by s;. Note that the target program is an immutable part of the
initial state s. Like conventional coverage-guided fuzzers, ITyFuzz
starts the fuzzing loop with a corpus of seed inputs (shown in the
left-top corner of Figure 5). In each iteration, a transaction and state
pair is selected from the corpus and mutated to generate a pair, say
(so, to). The mutated input is executed by the EVM executor. After
the execution, ITYFuzz utilizes the execution waypoints to decide if
the trace collected during the execution is “interesting”. An input is
said to be interesting if it increases the coverage of some waypoint.
If yes, ITYFuzz adds the mutated input pair (so, to) to the corpus.
Unlike conventional converage-guided fuzzers, the EVM executor
also returns the updated state. We employ the state waypoints to
save snapshots of interesting result states.

4.2 Snapshot-Based Fuzzing

In smart contract executions, a state s can be constructed by exe-
cuting a sequence of transactions from an initial state. To travel
back to some intermediate state, a common practice for existing
stateful fuzzers is to re-execute the transactions to construct the

325

Chaofan Shou, Shangyin Tan, and Koushik Sen

specific state from the initial state. Instead of re-executing the pre-
vious transactions, we directly snapshot the state and save the
unique states. We maintain a corpus C that stores pairs of the
form (s, t), where s € S and t € T. Specifically, given an execution
EVM(s, t) — s’, where s’ € Sisthe new state after execution of t on
s, the pair (s, t) is added to the corpus when the combination of feed-
back (waypoints) for C reported by the execution of the transaction
on that state is interesting. We employ multiple waypoint mech-
anisms, including coverage-guided feedback, dataflow waypoint
(Section 4.3), and comparison waypoint (Section 4.4). Since ITYyFuzz
always adds interesting pairs to the corpus, future exploration with
the mutants of these pairs may also be rewarding.

Since ITYFuzz adds the state before a transaction to the corpus C,
the state obtained after executing the transaction is lost. Therefore,
if ITYFuzz keeps mutating the states from the corpus, it is only
going to explore the initial state with random transactions. The
subsequent states built with transactions on the initial states are
never explored, undermining the purpose of stateful fuzzing, which
is to explore all potential states. To make our exploration more
efficient and to avoid re-execution, ITYFuzz maintains a separate
corpus of states to memorize the states after execution, which we
call the “infant state corpus”, say Cs. Specifically, given an execution
EVM(s, t) > s’, the state s’ is added to the infant state corpus when
ITyFuzz finds it interesting using a combination of waypoints. Note
that the waypoints for the infant state corpus are different from that
of C—they determine whether the current execution is interesting,
but waypoints for the infant state corpus determine whether such
a state can lead to future interesting executions. We discuss how to
compute the waypoints for the infant state-corpus in Section 4.3
and Section 4.4.

The pseudo-code in Figure 6 summarizes ITYFuzz’s snapshot-
based fuzzing algorithm . During each iteration of the fuzz loop, the
fuzzer first picks a state and transaction pair from the corpus C. The
fuzzer then either mutates the transaction ¢ structurally to t,,; or
replaces the state s with a state, say s;,¢, stored in the infant state
corpus Cs. The new mutant is always sound (i.e. reachable in the
input space) because the selected state from the infant state corpus
can be constructed by a sequence of transactions, and the state
allows the execution of a new transaction. The mutant is executed
by the EVM, which yields a new state. After the execution, ITYFuzz
saves the state and transaction pair (Smuyt, fmur) to corpus C if the
observed waypoints are interesting. ITyFuzz adds the the resulting
state s’ to the infant state corpus C; if s’ may lead to a potentially
interesting executions with new transactions. In Section 4.3 and
Section 4.4, we will discuss the details of two types of state way-
points, dataflow waypoint and comparison waypoint, to decide if
s’ are interesting.

4.3 Dataflow Waypoint

Defining waypoints for measuring the interestingness of an input
during execution has been explored by Padhye et al. in FuzzFactory
[21] (e.g., recording coverage and memory-related instruction call
patterns). Yet, there has been no work on how to define waypoints
for states. The goal for the waypoints is to save resulting states
in the corpus only if future executions from these states are in-
teresting. Therefore, testing if a state is interesting also requires

ITYFuzz: Snapshot-Based Fuzzer for Smart Contract

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

e - Violates | Yes .
/ \\I Muat Oracle? &
|| Infant State | utator T
i | Corpus () ! l
! Input L |
i : (sa' ta) EVM Executor
I | Corpus (s, t) | | -
| i Execution
N / Waypoints

(Sg ’ te)
Save?
Yes
Save State ,
Yes s'? Waypoints Result State s

Figure 5: Architecture of ITyFuzz

1 C « Corpus() # transaction and state pair corpus

2 Cs <« Corpus() # infant state corpus

3

4 while true:

5 (s,t) « Next(C)

6 if Random(0, 1) > P:

7 tmut < Mutation(Z) # mutate transaction

8 Smut <~ S

9 else

10 Smut < Next(Cs) # mutate state by fetching from infant

state corpus

11 tut <— t

12

13 # execute transaction fpys on state Spyur

14 # f represents waypoints, s’ is the resulting state

15 f. 8" —EVM(Smut, tmut)

16 if Wiss) (f) is interesting: # get feedback for waypoints of
execution

17 C — C U (Smut+ tmur)

18 if W) (f, s’) is interesting: # get feedback for waypoints of
infant state corpus

19 Cs «— Cs Us

Figure 6: ITYFuzz Fuzzing Algorithm

semantic information about the state in order to capture "future
interestingness".

We define two waypoints for states. One is called dataflow way-
point. With dynamic dataflow information, we know a memory
location is interesting if it appears as the argument of the load
instruction in the future. If a state change contains unique writes
to interesting memory locations, we can conclude that the state
is interesting for future exploration. We leverage bytecode instru-
mentation to conduct dynamic dataflow analysis by observing load
and store instructions on the fly. Note that conventional way to
perform dataflow analysis is through static analysis of the source
code. However, static analysis tools do not work well with smart
contract fuzzers because smart contract may call external contracts
dynamically. However, the static dataflow information gained only
from the target contract is not sufficient.

Since load instructions which determine the interestingness of a
memory location happen in the future, the determination of a store
instruction’s “interestingness” at present is impossible. To resolve
this issue, we propose to approximate the future interesting load
locations using past load locations. The key insight here is that if a

326

Algorithm 1: Algorithm for dataflow waypoint instrumen-
tation
Result: L, S
1 while EVM is Executing do
2 if Current Instruction is load(Loc) then
3 | L (Loc % MAP_SIZE) « true ;

4 if Current Instruction is store(Loc, Value) then
5 | S(Loc % MAP_SIZE)(BucketOf{Value)) « true;

Algorithm 2: Algorithm for dataflow waypoint evaluation
Data: L, S
Result: IsStateInteresting
/* Interesting if the bucket changes from false to

true */
1 if JBucket € S s.t. Bucket changes from false to true then
/* Interesting if the location has been loaded
before */
2 if L at the index of Bucket then
3 L IsStatelnteresting = true;

memory location has been written with interesting values in the
past, then it is very likely to be written in the future. Therefore,
ITyFuzz tracks the memory locations that were loaded in the past
and the abstraction of the values being loaded. If a store of a value
in the current execution writes such a memory location and the
abstraction of the value being written is different from all previous
abstract values stored at the location, then we say that the store is
interesting and the resulting state after the store is also interesting.

We show the dataflow waypoint algorithm in Algorithm 1 and
Algorithm 2. During the execution of transactions, we maintain two
maps (Algorithm 1) that record abstraction of past memory loca-
tions of load and store instructions separately. As discussed before,
we use past load locations to determine whether a memory location
is interesting. We can then check whether a store instruction in an
execution is writing a new abstract value to the interesting memory
location. Specifically, the check for whether a location is interesting

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

or not happens as follows. Load map L maps an abstract memory
location to a Boolean value initialized to false. When a load instruc-
tion Load(Loc) is executed, L(Loc % MAP_SIZE) is set to true. Loc %
MAP_SIZE is a course abstraction of Loc which is necessary to create
a small abstract address space. A small abstract address space helps
lower storage and lookup overhead. Store map S maps each abstract
memory location to a bucket abstraction of values. The bucket ab-
straction of a value is similar to the bucketing mechanism used in
AFL [33]. Bucketing helps reduce the amount of total value inserted
into the map, thus reducing the storage and evaluation cost, with
the trade off for losing granularity of the inserted data. Each bucket
is a partition of the domain of the actual value being stored, which
is a 256-bit integer in the context of EVM. For instance, one parti-
tion plan for 256-bit integer could be [2°, 28), [28, 216), [224, 2256),
which split the domain into three partitions. We use buckets to
avoid storing the entire states, because storing all unique states is
not effective. When a Store(Loc, Value) is executed, Value is first
abstracted to determine its bucket. If b € B is the bucket abstraction
of Value, S(Loc % MAP_SIZE)(b) is set to true. After execution, if
a bucket in the store map S changes from false to true, and the
corresponding location in L(Loc % MAP_SIZE) is also true (line 2 at
Algorithm 2), then the new state is considered as interesting. The
size and the range of each bucket can be fine-tuned as a hyper-
parameter. With more number of buckets in each slot, more states
would be evaluated to be interesting, increasing the size of Cs. As
size of Cs increases, it becomes harder to effectively choose the
next state to explore and causes storage overhead.

4.4 Comparison Waypoint

Algorithm 3: Algorithm for comparison waypoint instru-
mentation
Result: Ciycq
1 Clgcal < Vec<U256> = U256::max
2 while EVM is Executing do
3 if Current Instruction is lt(Lhs, Rhs) then
" | Clocal (PC % MAP_SIZE) « Lhs - Rhs ;

5 if Current Instruction is eq(Lhs, Rhs) then
| Clocal (PC % MAP_SIZE) « abs(Lhs - Rhs) ;

=N

Algorithm 4: Algorithm for comparison waypoint evalua-
tion
Data: C, Ciocals S
1 for ¢ € C, cjpeq1 € Clpeqr do
/* When the current execution minimizes a slot

in comparison map */
2 if ¢ > cjycq then
3 € < Clocals
4 s.wotes = s.wotes+1 /x Vote for the state */

Since ITYFuzz is not sending a sequence of transactions to the
smart contract, all intermediate states needed to construct a crucial

327

Chaofan Shou, Shangyin Tan, and Koushik Sen

state, must be included in either of the two corpuses. Consider
the SimpleState example in Figure 2, if ITYFuzz only stores 0, 1, 2
in counter and never saves 3 for counter because it falls in the
range 2 to 4, which is already filled by 2, then ITYFuzz is never able
to build up a state where counter is 4 or even the bug-triggering
state (where counter is 10). If only dataflow waypoint is used, the
inclusion of certain states may not be possible if the partition of
the domain (i.e., buckets) is not fine-grained enough for the target
smart contract.

Nevertheless, the problem with fine-grained partitioning is the
significant amount of states in the infant state corpus, which leads
to huge memory usage overhead over time for large smart contracts.
To efficiently tackle this overhead, we propose to use comparison
waypoints. Comparison waypoints only considers all intermedi-
ate states, having some comparison instruction operands growing
closer to each other than previous executions, which is required
for reaching higher coverage, to be interesting. For instance, in
fig. 2, comparison waypoint considers all states having counter
growing from 0 to 10 one by one as interesting because counter
grows towards the comparison target on line 16.

We show a simple algorithm in Algorithm 3 to build the compar-
ison waypoint. First ITYFuzz initializes a map local to the current
execution Cjy¢,] With maximum possible value (line 1). Then during
execution, for every comparison instructions, ITYFuzz updates the
distance at key Program Counter % MAP_SIZE (i.e., the location of
the comparison instruction) as in line 4 and 6. The distance reflects
the proximity of two sides to achieve parity in a comparison, de-
termined by the absolute value of their difference. For example, if
ITYFuzz processes the EQ(1, 3) operation, the distance would be 2.
An execution is deemed interesting when it has a higher likelihood
of any comparison being true than all previous ones. In another
word, as depicted in algorithm 4, if the current execution displays a
smaller distance in the local map (Cjyca1) compared to the map that
records the smallest distance ever recorded in previous executions
(C), the execution is considered interesting.

Surprisingly, the comparison waypoint is useful to determine
whether a state should be pruned from the infant state corpus to
solve the memory overhead arising from fine-grained partition-
ing. Intuitively, to prune the infant state space using comparison
waypoint, ITYFuzz simply prune states with less “interestingness”
feedback from the comparison waypoints. In detail, we illustrate a
voting algorithm in algorithm 4 to track how interesting an infant
is: each time when execution on an initial state (state before execu-
tion) minimizes the comparison map (line 2), ITYFuzz increases the
votes for that initial state by 1. The number of votes encodes the
interestingness of the state.

Now, recall the problem of the infant state corpus growing
quickly when using dataflow waypoint with fine-grained partitions.
This problem causes two issues:

(1) There are too many states to select from for exploration and
most states are likely similar to other states. A naive queue
polling algorithm is not effective. (i.e., search space grows
too large).

(2) The infant state corpus grows too large to be stored in the
fuzzing host.

ITYFuzz: Snapshot-Based Fuzzer for Smart Contract

To resolve issue (1), ITYFuzz needs to prioritize more interest-
ing states in the infant corpus in terms of comparison waypoint.
Naturally, we propose to use a probabilistic sampling algorithm
that prioritizes the exploration of states that have greater votes. By
intuition, if the future executions of the state minimize comparison
map for more time, it should be selected more for exploration as
it has greater potential to cover more code locations and gener-
ate other interesting states (according to the dataflow waypoint).
To avoid being greedy (i.e., mostly exploring a specific state), the
algorithm switches between random sampling and probabilistic
sampling during each epoch. It is analogous to having two phases
where one is in charge of maximizing rewards, and the other one
is in charge of probing.

To resolve issue (2), ITYFuzz prunes the infant state corpus
when its size reaches a threshold. We want to prune least inter-
esting yet most explored states inside the corpus. Similar to the
previous solution, ITyFuzz sorts the states with respect to their
votes/visits, where visits is the number of times this state has
been chosen and executed. Then, ITyFuzz discards M states with
lowest votes/visits and have visits greater than a threshold O.
If a state can not minimize comparison map over O visits, then it is
highly likely that either this state could be represented by another
state or maximum coverage has been achieved for such a state re-
gardless of how transactions are mutated. The pruning algorithm is
expensive, but it is only called when the infant state corpus reaches
the threshold, which only occurs less often during fuzzing.

5 IMPLEMENTATION

To implement the snapshot-based fuzzing algorithm and both the
dataflow and comparison waypoints, we build ITYFuzz from scratch.
We use LibAFL [7] as a backbone and implement a separate state
corpus to support snapshotting the states. We also incorporate the
dataflow and comparison waypoints into ITYFuzz using customized
feedback. Because ITYFuzz is implemented in Rust, we use revm [2]
as the EVM executor for convenience. We also leverage revm’s inter-
preter hook to perform dynamic instrumentation, collect dataflow
and comparison information, and conduct fast snapshotting. ITY-
Fuzz also supports starting from a state pulled from a specific block
from any blockchains supporting Geth client.

ITyFuzz is modularized. It can be easily extended to support
fuzzing smart contracts on other chains like Solana by adding new
executor components. New domain-specific feedback or waypoints
can also be added quite easily. ITYFuzz is opensourced at https:
//github.com/fuzzland/ityfuzz

6 EVALUATION

Research questions. In this section, we show the performance
brought by snapshot-based fuzzing and various waypoint mecha-
nisms. We aim to answer the following research questions:

RQ 1: Does ITyFuzz perform better than other tools with regards
to instruction coverage?

RQ 2: Can ITYFuzz identify and generate exploit for real-world
vulnerabilities?

RQ 3: Does storing state instead of a sequence of transactions incur
high memory overhead and can this be resolved by using
waypoints?

328

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

RQ 4: Is on-chain auditing beneficial for uncovering vulnerabilities
ignored during the development cycle?
RQ 5: Can the response time of ITyFuzz support on-chain auditing?

Experimental setup. We leverage three datasets (B1, B2, and B3) to
evaluate our tool. B1 (extracted from VERISMART [28]) contains 57
smart contracts supporting ERC20 standard interface (i.e., tokens).
B2 and B3 contains 72 and 500 smart contracts crawled from the
Ethereum chain. We build ITYFuzz as described in Section 5, and to
evaluate the effectiveness of each technique, we create two ablations
of ItTyFuzz:

e ITyFuzz- Rand: snapshots states and stores them into the infant
state corpus with a likelihood of 50%.

o ItYFuzz- DF: snapshots states and stores them into the infant
state corpus based on only dataflow waypoint.

We perform all experiments on a machine with AMD Epyc CPUs
(128 cores) and 256 GB memory. All ablations and other tools used
in the evaluation are compiled with optimization (-O3).

6.1 Coverage

To answer RQ 1, whether our tool performs well on coverage met-
rics, we compare our tool with the state-of-the-art smart contract
fuzzer SMARTIAN [5] using dataset B1, B2, and B3. We do not com-
pare with other fuzzers mentioned in Section 7 because SMARTIAN
has already been shown to significantly outperform all these tools.
For each dataset, only instruction coverage is used for comparison
since control flow cannot represent of statefulness of smart con-
tract programs. We count the total possible coverage by summing
number of instructions in all deployed contract bytecode. As nei-
ther our tool nor SMARTIAN supports mutating function hash and
generating spurious input data not conforming to the structural
requirement, we do not count instructions in the basic block that
validates input structure and function hash. We also removed un-
reachable code (i.e., metadata) that present after the last Return
instruction in the program.

Figure 7, Figure 8, Figure 9 show the total instruction cover-
age over time for each tool on the B1, B2, and B3 datasets respec-
tively. Even though SMARTIAN uses concolic execution, ITyFuzz
performs significantly better than SMARTIAN regarding the in-
struction coverage versus time. Time improvement can be justified
by using snapshots of states instead of building up states with re-
execution, as re-execution incurs significant time overhead. For the
smart contracts in B1, ITYFuzz covers almost all instructions after
10 seconds while SMARTIAN can not do so in one minute. This
is because comparison waypoints prioritize explorations of states
that can potentially improve future coverage.

6.2 Vulnerabilities

To answer RQ 2, we tested ITYFuzz on real-world smart contract
projects. We gathered 42 previously exploited projects and fuzzed
each project with a one-hour time limit. Among them, ITYFuzz was
able to identify concrete exploits for 36 of them, with an average
time of 13.8 seconds. SMARTIAN failed to reach vulnerable states
in 24 hours for Bacon Protocol and EGD Finance (determined by
our custom oracle). Due to lack of automation, creating oracles

https://github.com/fuzzland/ityfuzz
https://github.com/fuzzland/ityfuzz

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

85K 1
[}
an
s
2 80K -
o
O
[=]
.S
5 75K A
g
k= ItyFuzz
70K 1 SMARTAIN
Total
65K T T T T T T T
0 10 20 30 40 50 60
Time (s)

Figure 7: Instruction coverage for different tools over time
for B1, Total is the total number of instructions, higher is
better

36K
34K A
(0]
50
s
9 32K A1
o
O
=
-2 30K 1
Q
£
E 28K 1 ItyFuzz
SMARTAIN
26K A Total
0 10 20 30 40 50 60
Time (s)

Figure 8: Instruction coverage for different tools over time
for B2, Total is the total number of instructions, higher is
better

becomes tedious and almost impossible for all 42 projects. Addi-
tionally, reputable firms audited most of the 42 projects, further
showcasing our tool’s effectiveness. There is no false positive as
ITyFuzz identified actual exploits that could be executed on a fork.
The main reason for false negatives was that certain projects re-
quired input of an address (160 bits) or a signature (>256 bits) with
no hints (i.e., no comparison with a constant), making it difficult to
brute-force using the fuzzer. We believe that concolic execution can
resolve this problem easily and leave it as potential future work.
We also applied our tool to 45000 smart contract projects (with
more than 150k smart contracts) received >100 transactions on both
Binance Smart Chain and Ethereum. Fuzzing each project for five

329

Chaofan Shou, Shangyin Tan, and Koushik Sen

1.1M
]
g
5 1.0M A
>
5
@]
=
g
3]
£ 0.9M
g ItyFuzz
SMARTIAN
Total
0.8M ~— T . T . T :
0 10 20 30 40 50 60
Time (s)

Figure 9: Instruction coverage for different tools over time
for B3, Total is the total number of instructions, higher is
better

minutes, ItyFuzz is able to generate concrete exploits for stealing
assets valued at over $500k (approximated using Uniswap data)
among 21 vulnerable projects, consisting of liquidity pools, ERC20
tokens, and a GameFi. Additionally, ItyFuzz can also find common
vulnerabilities like arbitrary external calls and arbitrary ERC20
token burning in 1384 projects, holding assets valued at over $8M.

We are unable to compare our tools with previous works. All
existing tools do not support multiple-contract fuzzing, require
huge amount of manual effort to create harness and invariant, or
can not generate concrete exploits (e.g., only report all potential bug
locations via static analysis). Thus, we present an ablation study
with each project and report the time to identify the bug. The result
is shown in Table 1.

For most vulnerabilities, ITYFuzz outperforms all its ablations.
Especially when the contract is complex and has deep state space,
ITyFuzz can find the vulnerabilities in a short time while ITYFuzz-
Rand and ITYFuzz- DF time out after one hour.

Rarely, ITyFuzz- DF times out while ITyFuzz- Rand does not. This
is because ITyFuzz- DF, based on dataflow waypoints (Section 4.3)
may fail to include a crucial state to build up the final state of which
the vulnerability is found. This happens because a state is only
added to the corpus when its dataflow value falls into a unique
bucket. States falling into the same bucket, despite with different
values, are ignored although sometimes such states are interesting
and important. On other hand, ITyFuzz Rand does not block any
state from inclusion into the corpus. ITYFuzz prevents this issue
by providing higher granularity for what states are considered to
be interesting, allowing these states ignored by ITYFuzz DF to be
stored in the infant state corpus, thus facilitating the exploration.

6.3 State Overhead

To answer RQ 3, whether storing states incur memory overhead, we
conduct an ablation study of ITYFuzz. We count the total amount

ITYFuzz: Snapshot-Based Fuzzer for Smart Contract

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

Table 1: Ablation Study of Vulnerability Detection Time, OOM stands for out of memory

Project Exploit Type ITyFuzz Rand | ITyFuzz DF | ITyFuzz
DVD - Unstoppable DoS 1.4s Timeout 1.3s
Bacon Protocol Reentrancy OOM Timeout 16.4s
No00d Token Reentrancy OOM Timeout 28.2s
EGD Finance Price Manipulation | OOM 6.2min 9.3s
Contract 1 (Undisclosed) | Access Control 0.7s 0.6s 0.7s
Contract 2 (Undisclosed) | Reentrancy OOM 54.7s 1.6s

of items in the infant state corpus over time for executing ITYFuzz
and its ablations on dataset B1. The result is shown in Figure 10.

ItyFuzz - DF
ItyFuzz
ItyFuzz - Rand

—_
(=]
=)
1

Infant State Corpus Size

0 10 20 30 40 50 60
Time (s)

Figure 10: Infant State Corpus Storage Overhead, Y axis is
the number of unique states stored in the infant state corpus

ITyFuzz- Rand crashes because of out-of-memory (OOM) after
approximately three seconds for most smart contracts. This happens
because ITYFuzz- Rand keeps adding states into the infant state
corpus, meaning that a constant fraction of all execution resultant
states are stored in the corpus. On the other hand, states added to the
corpus of ITYFuzz- DF increases gradually for the first 20 seconds
and converges to an approximate constant. This is because at first,
the dataflow waypoint collects the states that store to interesting
locations according to the load map and set the corresponding entry
in the store map’s bucket to true. After that, states are less likely
to be added to the corpus unless the load map changes. This is
because if the state does store at an interesting location, but the
store map entry is already set to true, we do not save the state to
corpus again. ITYFuzz actively prunes the infant state corpus so
that the size ultimately converges to a constant.

6.4 On-Chain Auditing

To answer the last two research questions RQ 4 and RQ 5, whether
fast vulnerability discovery can prevent the attack, we evaluate our
implementation on two previously hacked DeFi projects: Nomad
Bridge and Team Finance. The result is shown in Table 2.

330

Nomad Bridge is a cross-chain bridge allowing for fund transfer.
On August 1st, 2022, 41 days after the vulnerable contract is de-
ployed, attackers exploited the bridge and stole $190M assets. The
vulnerability occurred because of an incorrect initialization on the
chain.

When we ran ITYFuzz on their test deployment script from
commit hash 3a997a44 (i.e., one day before the attack happens),
ITYFuzz could not find the vulnerability. Similarly, CI for 3a997a44,
which contains dynamic and static analysis, had not reported any
vulnerability. This is because their deployment script initializes
correctly. If we fork the actual chain from block 15259103 (after
the deployment of the new contracts) and perform fuzzing based
on that state, ITYFuzz can identify the vulnerability in 0.3s. This
example illustrates that testing in the development environment
is not enough, especially for code that manages huge amounts of
real-world assets. As the production environment may differ from
the testing and staging environment, using ITYFuzz- On-chain can
account for these differences.

Moreover, as the techniques adopted by hackers are also evolv-
ing, such a vulnerability is likely to be discovered and exploited
in a few minutes. As we reduced the vulnerability discovery time
to a sufficiently low value (0.3s), contract deployers can leverage
our tool to continuously monitor after the deployment, and gain
concrete exploitation information before the hackers do.

Team Finance is a DeFi platform for token storing and vesting. It
was hacked on October 7th, 2022 and hackers stole $15.8M worth of
assets [30]. The vulnerability is simple yet ignored by manual audi-
tors. Specifically, in their migrate fund contract, there is a vulnerable
function migrate (Figure 11), whose argument sqrtPriceX96 con-
trols the swapping rate of the liquidity pool (i.e., the argument can
control the swapping price between two tokens). sqrtPriceX96
should only be gained from trusted entities, not arbitrary callers. If
a hacker creates a skewed swapping rate via sqrtPriceX96 between
a token they can control and a token with real value, then they
can generate huge refunds of that token with real value from the
migration and earn from the refunds.

ITyFuzz cannot find it offline in one hour because building up
a state that allows conditions in lines 6 to 9 to be true is non-
trivial. To build such a state, the message sender has first to gain
balance k of tokens, approve contract with k” token, deposit into
the contract through calling lockToken with the correct amount
of ETH sent for locking fee and v, such that v < kK’ Av < k, and
finally call extendLockDuration with the correct ID gained from
lockToken and the timestamp to increase locking time greater than
current time stamp. After reaching this state, hackers also need

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

Chaofan Shou, Shangyin Tan, and Koushik Sen

Table 2: Vulnerability Detection Time

Project Exploit Type Reaction Time | ITYFuzz (Dev) | ITYFuzz (On-chain)
Nomad Bridge | Incorrect Initialization | 41 Days Timeout 0.3s
Team Finance | Logic Flaw 1.12 Hour Timeout 2.2s

1 function migrate(uint256 _id, IV3Migrator.MigrateParams calldata
params,
bool noLiquidity, uintl60 sqrtPriceX96, bool _mintNFT
) {

Items memory lockedERC20 = lockedToken[_id];

require(block.timestamp < lockedERC20.unlockTime, "Unlock time
already reached");

7 require(_msgSender() == lockedERC20.withdrawalAddress, "

Unauthorised sender");

8 aoo

9 uint256 tokenOBalanceBefore = IERC20(params.token®).balanceOf (
address(this));

10 uint256 tokenlBalanceBefore = IERC20(params.tokenl).balanceOf (
address(this));

11 //initialize the pool if not yet initialized

12 if(noLiquidity) {

13 v3Migrator.createAndInitializePoolIfNecessary(params.

tokenO, params.tokenl, params.fee, sqrtPriceX96);

14 }

15 v3Migrator.migrate(params);

16 //refund eth or tokens

17

18}

Figure 11: Migrate function of Team Finance

to generate a correct sqrtPriceX96 to profit from the attack. Still,
given a longer time to run and build up states, ITYFuzz can discover
such a vulnerability. However, longer vulnerability discovery time
is not desirable for contract deployers.

In reality, the attack initiated by a hacker at block 15837893 (Oct-
27-2022 07:22:59 AM +UTC) (creating a token, transferring balance,
and locking the amount) finalized at block 15838225 (Oct-27-2022
08:29:23 AM +UTC). If we start from block 15837893 and use the
attacker address as the address controlled by the ITYFuzz, ITYFuzz
can identify the vulnerability in 2.2s on average, which is less than
the time (1 hour 7 minutes) before the exploit finalizes. ITYFuzz-
On-chain can give developers enough time to prevent the final
harmful transaction from being successfully executed by pausing
the contract or even fixing the vulnerability. As a result, ITyFuzz-
On-chain is beneficial for exploring previously unexplored code
locations made possible by the attackers.

Lastly, there has not yet been any attack that manipulates price
oracle on EVM-based chains. However, Mango Market, which is a
Solana smart contract project, has been recently exploited because
the attacker controlled a price oracle, and the smart contract become
vulnerable after the price is skewed. ITYFuzz- On-chain can prevent
these vulnerabilities since it is based on a real-time price oracle and
can conduct analysis when the price becomes skewed. We envision
the number of vulnerabilities related to oracle manipulation will
grow over time as there are more and more state-sponsored hackers,
who are equipped with assets enough to manipulate oracles, joined
such a realm [29] [17].

331

7 RELATED WORK
7.1 Feedback-driven Fuzzing

Coverage-guided fuzzing. To increase the search efficiency for
fuzzers, various feedbacks are collected dynamically during the
execution process. One of the most popular and effective feedback
is coverage, i.e., how many instructions or control flow edges have
been covered by the current execution. By prioritizing inputs that
led to new coverage, the fuzzers can widely explore the whole ex-
ecution space. Most, if not all, modern software fuzzers (e.g. AFL
[33], HonggFuzz [8], FairFuzz [15]) incorporate coverage-feedback
into the search process. However, coverage feedback is not always
effective for stateful smart contracts. For example, in the Figure 2
example, almost all smart contract fuzzers can easily reach all cov-
erage in both incr and decr functions, but since our goal (bug) is
embedded in the buggy function with a hard-to-solve stateful guard,
coverage-guided fuzzers are not able to proceed further.

Customized Waypoints. To address the coverage-guided fuzzing
issue, some fuzzers introduce more exotic feedback. For example,
Validity fuzzing [20] incorporates the feedback of the validity of the
inputs with respect to the target program, e.g. whether the input has
a valid HTTP header to a web server. SlowFuzz [23] tracks the exe-
cution path length in order to prioritize inputs that lead to deeper
execution spaces. To find performance bugs, PerfFuzz [14] improves
SlowFuzz by taking multi-dimensional feedback from the execution
including execution counts at all program locations. Another pow-
erful feedback extensively used by the security community is the
comparison feedback [16, 22, 24, 32]. In real-world software, many
hard comparison constraints are difficult to solve, and comparison
feedback partially solves this issue by recording inputs that are
closer to the hard condition constants. Finally, FuzzFatory[21] for-
malizes the concept of waypoints which provide customization of
feedbacks. However, all these feedbacks and waypoints are designed
for general traditional software which differs substantially from
smart contracts. Inspired by the above work, we propose two novel
feedback mechanisms tailored for stateful smart contract programs
in Section 4.3 and Section 4.4 and demonstrate their effectiveness
in Section 6.

7.2 Stateful Fuzzing

SMARTIAN [5] starts from a clean state and sends a sequence
of transactions to build up the state. Nyx [25] implements a fast
OS-level snapshotting strategy and subsequent work Nyx-Net [26]
leverages this snapshotting techniques to reset the state for complex
stateful targets efficiently. Additionally Nyx-Net stores snapshots
incrementally (i.e., stores snapshots after executing every K inputs).
Similarly, Dong et al. incrementally snapshots Android OS for ef-
fective time travelling to previous state during testing Android
applications. Storing snapshots every K inputs is impractical in our
scenarios, as illustrated by section 6.3. To resolve state explosion,

ITYFuzz: Snapshot-Based Fuzzer for Smart Contract

ITyFuzz stores states in infant state corpus only when waypoints
consider the state as interesting. ITYFuzz also leverages schedulers
for polling the corpus and corpus culling techniques to further
ensure we are exploring interesting states. CorbFuzz [27] is a web
application fuzzer. It tackles the statefulness of web applications
by modeling the states and synthesizing a result for each data load
query. These synthesized data can be spurious since they are not
built from concrete store queries. Yet, ITyFuzz builds the state from
concrete transactions and each state can be reproduced via a se-
quence of transactions. It is impossible for ITYFuzz to generate false
positives.

7.3 Smart Contract Security Tools

To secure economically crucial smart contract applications, various
fuzzers and dynamic analysis tools have been developed to detect
security bugs in smart contract programs. ContractFuzzer [12] is
a black-box contract fuzzer with relatively low overall coverage.
Echidna [10] and Harvey [31] are two industrial-adopted fuzzers.
More recently, SMARTIAN [5] is a hybrid smart contract fuzzer that
also leverages static and dynamic data-flow analysis. However, all
these tools fail to effectively reuse intermediate states and thus have
large re-execution overhead. We solve this issue by introducing a
novel snapshot-based fuzzing technique (Section 4.2) and develop
a blazing fast fuzzer called ITYFuzz.

Beyond fuzzers, other program analysis tools have been devel-
oped for smart contracts as well, including symbolic execution tools
like Mythril [19], Manticore [18], verification approaches [1, 11, 13],
static analysis frameworks [3, 4, 6, 9]. A common problem among
these tools is the human-in-the-loop requirement, which is less de-
sired because real-world smart contract exploits are time-sensitive
and only highly efficient automated tools can detect them in time.
On the other hand, ITyFuzz is a fully automated fuzzer that can
detect security bugs in smart contracts without human intervention
in only a few seconds.

8 CONCLUSION

In conclusion, we design a new snapshot-based fuzzer ITYFuzz for
testing smart contracts that effectively stores intermediate states
to reduce re-execution overhead. We define multiple customized
waypoint mechanisms to efficient categorize and store interesting
states for better program explorations. We also demonstrate state
snapshots enable fast reentrancy exploits synthesis. Finally, we
show that with our low response time fuzzer ITYFuzz, we can
perform on-chain auditing to identity and prevent exploits for real-
world smart contract applications.

ACKNOWLEDGEMENTS

This work was supported in part by NSF grants CCF-1900968, CCF-
1908870, and CNS1817122 and SKY Lab industrial sponsors and
affiliates Astronomer, Google, IBM, Intel, Lacework, Microsoft, Mo-
hamed Bin Zayed University of Artificial Intelligence, Nexla, Sam-
sung SDS, Uber, and VMware. Any opinions, findings, conclusions,
or recommendations in this paper are solely those of the authors
and do not necessarily reflect the position or the policy of the
sponsors.

332

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

REFERENCES

[1] Sidney Amani, Myriam Bégel, Maksym Bortin, and Mark Staples. 2018. Towards
verifying ethereum smart contract bytecode in Isabelle/HOL. In Proceedings of
the 7th ACM SIGPLAN International Conference on Certified Programs and Proofs,
CPP 2018, Los Angeles, CA, USA, January 8-9, 2018, June Andronick and Amy P.
Felty (Eds.). ACM, 66-77. https://doi.org/10.1145/3167084
bluealloy. 2022. revm - Rust Ethereum Virtual Machine.
bluealloy/revm

Lexi Brent, Anton Jurisevic, Michael Kong, Eric Liu, Francois Gauthier, Vin-
cent Gramoli, Ralph Holz, and Bernhard Scholz. 2018. Vandal: A Scalable Se-
curity Analysis Framework for Smart Contracts. CoRR abs/1809.03981 (2018).
arXiv:1809.03981 http://arxiv.org/abs/1809.03981

Krishnendu Chatterjee, Amir Kafshdar Goharshady, and Yaron Velner. 2018.
Quantitative Analysis of Smart Contracts. In Programming Languages and Sys-
tems - 27th European Symposium on Programming, ESOP 2018, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thes-
saloniki, Greece, April 14-20, 2018, Proceedings (Lecture Notes in Computer Science,
Vol. 10801), Amal Ahmed (Ed.). Springer, 739-767. https://doi.org/10.1007/978-3-
319-89884-1_26

Jaeseung Choi, Doyeon Kim, Soomin Kim, Gustavo Grieco, Alex Groce, and
Sang Kil Cha. 2021. SMARTIAN: Enhancing Smart Contract Fuzzing with Static
and Dynamic Data-Flow Analyses. In 36th IEEE/ACM International Conference
on Automated Software Engineering, ASE 2021, Melbourne, Australia, November
15-19, 2021. IEEE, 227-239. https://doi.org/10.1109/ASE51524.2021.9678888
Josselin Feist, Gustavo Grieco, and Alex Groce. 2019. Slither: a static analysis
framework for smart contracts. In Proceedings of the 2nd International Workshop
on Emerging Trends in Software Engineering for Blockchain, WETSEB at ICSE 2019,
Montreal, QC, Canada, May 27, 2019. IEEE / ACM, 8-15. https://doi.org/10.1109/
WETSEB.2019.00008

Andrea Fioraldi, Dominik Maier, Dongjia Zhang, and Davide Balzarotti. 2022.
LibAFL: A Framework to Build Modular and Reusable Fuzzers. In Proceedings of
the 29th ACM conference on Computer and communications security (CCS) (Los
Angeles, US.A.) (CCS "22). ACM.

Google. 2022. HonggFuzz. https://github.com/google/honggfuzz

Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard Scholz, and
Yannis Smaragdakis. 2018. MadMax: surviving out-of-gas conditions in Ethereum
smart contracts. Proc. ACM Program. Lang. 2, OOPSLA (2018), 116:1-116:27.
https://doi.org/10.1145/3276486

Gustavo Grieco, Will Song, Artur Cygan, Josselin Feist, and Alex Groce. 2020.
Echidna: effective, usable, and fast fuzzing for smart contracts. In ISSTA °20: 29th
ACM SIGSOFT International Symposium on Software Testing and Analysis, Virtual
Event, USA, July 18-22, 2020, Sarfraz Khurshid and Corina S. Pasareanu (Eds.).
ACM, 557-560. https://doi.org/10.1145/3395363.3404366

Akos Hajdu and Dejan Jovanovic. 2019. solc-verify: A Modular Verifier for
Solidity Smart Contracts. In Verified Software. Theories, Tools, and Experiments
- 11th International Conference, VSTTE 2019, New York City, NY, USA, July 13-
14, 2019, Revised Selected Papers (Lecture Notes in Computer Science, Vol. 12031),
Supratik Chakraborty and Jorge A. Navas (Eds.). Springer, 161-179. https:
//doi.org/10.1007/978-3-030-41600-3_11

Bo Jiang, Ye Liu, and W. K. Chan. 2018. ContractFuzzer: fuzzing smart contracts
for vulnerability detection. In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, ASE 2018, Montpellier, France,
September 3-7, 2018, Marianne Huchard, Christian Késtner, and Gordon Fraser
(Eds.). ACM, 259-269. https://doi.org/10.1145/3238147.3238177

Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:
Analyzing Safety of Smart Contracts. In 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California, USA, February
18-21, 2018. The Internet Society. http://wp.internetsociety.org/ndss/wp-content/
uploads/sites/25/2018/02/ndss2018_09-1_Kalra_paper.pdf

Caroline Lemieux, Rohan Padhye, Koushik Sen, and Dawn Song. 2018. PerfFuzz:
automatically generating pathological inputs. In Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2018,
Amsterdam, The Netherlands, July 16-21, 2018, Frank Tip and Eric Bodden (Eds.).
ACM, 254-265. https://doi.org/10.1145/3213846.3213874

Caroline Lemieux and Koushik Sen. 2018. FairFuzz: a targeted mutation strategy
for increasing greybox fuzz testing coverage. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ASE 2018, Montpellier,
France, September 3-7, 2018, Marianne Huchard, Christian Késtner, and Gordon
Fraser (Eds.). ACM, 475-485. https://doi.org/10.1145/3238147.3238176

Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei Lin, Yang Liu,
and Alwen Tiu. 2017. Steelix: program-state based binary fuzzing. In Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2017, Paderborn, Germany, September 4-8, 2017, Eric Bodden, Wilhelm Schéfer,
Arie van Deursen, and Andrea Zisman (Eds.). ACM, 627-637. https://doi.org/10.
1145/3106237.3106295

Decrypt / Sander Lutz. 2022. North Korean Attackers Behind $100M Harmony
Hack: Report. https://decrypt.co/104138/north-korean-attackers-behind-100m-

5

https://github.com/

[4

[5

[6]

=
2

(11]

[12

[13

[14

[15

[16

[17

https://doi.org/10.1145/3167084
https://github.com/bluealloy/revm
https://github.com/bluealloy/revm
https://arxiv.org/abs/1809.03981
http://arxiv.org/abs/1809.03981
https://doi.org/10.1007/978-3-319-89884-1_26
https://doi.org/10.1007/978-3-319-89884-1_26
https://doi.org/10.1109/ASE51524.2021.9678888
https://doi.org/10.1109/WETSEB.2019.00008
https://doi.org/10.1109/WETSEB.2019.00008
https://github.com/google/honggfuzz
https://doi.org/10.1145/3276486
https://doi.org/10.1145/3395363.3404366
https://doi.org/10.1007/978-3-030-41600-3_11
https://doi.org/10.1007/978-3-030-41600-3_11
https://doi.org/10.1145/3238147.3238177
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_09-1_Kalra_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_09-1_Kalra_paper.pdf
https://doi.org/10.1145/3213846.3213874
https://doi.org/10.1145/3238147.3238176
https://doi.org/10.1145/3106237.3106295
https://doi.org/10.1145/3106237.3106295
https://decrypt.co/104138/north-korean-attackers-behind-100m-harmony-hack-report
https://decrypt.co/104138/north-korean-attackers-behind-100m-harmony-hack-report

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

(18]

[19

[20

[21]

[22

[23

[24

[25]

harmony-hack-report

Mark Mossberg, Felipe Manzano, Eric Hennenfent, Alex Groce, Gustavo Grieco,
Josselin Feist, Trent Brunson, and Artem Dinaburg. 2019. Manticore: A User-
Friendly Symbolic Execution Framework for Binaries and Smart Contracts. In
34th IEEE/ACM International Conference on Automated Software Engineering,
ASE 2019, San Diego, CA, USA, November 11-15, 2019. IEEE, 1186-1189. https:
//doi.org/10.1109/ASE.2019.00133

Bernhard Mueller. 2018. Smashing Ethereum Smart Contracts for Fun and AC-
TUAL Profit. In Proceedings of the HITB Security Conference,.

Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, and Yves Le
Traon. 2019. Validity fuzzing and parametric generators for effective random
testing. In Proceedings of the 41st International Conference on Software Engineer-
ing: Companion Proceedings, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019,
Joanne M. Atlee, Tevfik Bultan, and Jon Whittle (Eds.). IEEE / ACM, 266-267.
https://doi.org/10.1109/ICSE-Companion.2019.00107

Rohan Padhye, Caroline Lemieux, Koushik Sen, Laurent Simon, and Hayawardh
Vijayakumar. 2019. FuzzFactory: domain-specific fuzzing with waypoints. Proc.
ACM Program. Lang. 3, OOPSLA (2019), 174:1-174:29. https://doi.org/10.1145/
3360600

Hui Peng, Yan Shoshitaishvili, and Mathias Payer. 2018. T-Fuzz: Fuzzing by
Program Transformation. In 2018 IEEE Symposium on Security and Privacy (SP).
697-710. https://doi.org/10.1109/SP.2018.00056

Theofilos Petsios, Jason Zhao, Angelos D. Keromytis, and Suman Jana. 2017.
SlowFuzz: Automated Domain-Independent Detection of Algorithmic Complexity
Vulnerabilities. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November
03, 2017, Bhavani Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu
(Eds.). ACM, 2155-2168. https://doi.org/10.1145/3133956.3134073

Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida, and
Herbert Bos. 2017. VUzzer: Application-aware Evolutionary Fuzzing. In NDSS.
Sergej Schumilo, Cornelius Aschermann, Ali Abbasi, Simon Wor-ner, and
Thorsten Holz. 2021. Nyx: Greybox Hypervisor Fuzzing using Fast Snapshots and
Affine Types. In 30th USENIX Security Symposium (USENIX Security 21). USENIX

333

[26

[27

[29
[30

(31

[33

]

Chaofan Shou, Shangyin Tan, and Koushik Sen

Association, 2597-2614. https://www.usenix.org/conference/usenixsecurity21/
presentation/schumilo

Sergej Schumilo, Cornelius Aschermann, Andrea Jemmett, Ali Abbasi, and
Thorsten Holz. 2022. Nyx-Net: Network Fuzzing with Incremental Snapshots. In
Proceedings of the Seventeenth European Conference on Computer Systems (Rennes,
France) (EuroSys "22). Association for Computing Machinery, New York, NY, USA,
166-180. https://doi.org/10.1145/3492321.3519591

C. Shou, I. Kadron, Q. Su, and T. Bultan. 2021. CorbFuzz: Checking Browser
Security Policies with Fuzzing. In 2021 36th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE Computer Society, Los Alamitos,
CA, USA, 215-226. https://doi.org/10.1109/ASE51524.2021.9678636

Sunbeom So, Myungho Lee, Jisu Park, Heejo Lee, and Hakjoo Oh. 2020. VERIS-
MART: A Highly Precise Safety Verifier for Ethereum Smart Contracts. In 2020
IEEE Symposium on Security and Privacy, SP 2020, San Francisco, CA, USA, May
18-21, 2020. IEEE, 1678-1694. https://doi.org/10.1109/SP40000.2020.00032
USGovernment. 2022. North Korea Designation Update. https://home.treasury.
gov/policy-issues/financial- sanctions/recent-actions/20220414

Ibiam Wayas. 2022. DeFi liquidity locker Team Finance exploited for $15 million.
https://www.cryptopolitan.com/team-finance- exploited-for-15-million/
Valentin Wiistholz and Maria Christakis. 2020. Harvey: a greybox fuzzer for
smart contracts. In ESEC/FSE ’20: 28th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, Virtual
Event, USA, November 8-13, 2020, Prem Devanbu, Myra B. Cohen, and Thomas
Zimmermann (Eds.). ACM, 1398-1409. https://doi.org/10.1145/3368089.3417064
Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. 2018. QSYM : A
Practical Concolic Execution Engine Tailored for Hybrid Fuzzing. In 27th USENIX
Security Symposium, USENIX Security 2018, Baltimore, MD, USA, August 15-17,
2018, William Enck and Adrienne Porter Felt (Eds.). USENIX Association, 745-761.
https://www.usenix.org/conference/usenixsecurity18/presentation/yun

Michal Zalewski. 2017. Technical “Whitepaper” for AFL. https://lcamtuf.
coredump.cx/afl/technical_details.txt

Received 2023-02-16; accepted 2023-05-03

https://decrypt.co/104138/north-korean-attackers-behind-100m-harmony-hack-report
https://doi.org/10.1109/ASE.2019.00133
https://doi.org/10.1109/ASE.2019.00133
https://doi.org/10.1109/ICSE-Companion.2019.00107
https://doi.org/10.1145/3360600
https://doi.org/10.1145/3360600
https://doi.org/10.1109/SP.2018.00056
https://doi.org/10.1145/3133956.3134073
https://www.usenix.org/conference/usenixsecurity21/presentation/schumilo
https://www.usenix.org/conference/usenixsecurity21/presentation/schumilo
https://doi.org/10.1145/3492321.3519591
https://doi.org/10.1109/ASE51524.2021.9678636
https://doi.org/10.1109/SP40000.2020.00032
https://home.treasury.gov/policy-issues/financial-sanctions/recent-actions/20220414
https://home.treasury.gov/policy-issues/financial-sanctions/recent-actions/20220414
https://www.cryptopolitan.com/team-finance-exploited-for-15-million/
https://doi.org/10.1145/3368089.3417064
https://www.usenix.org/conference/usenixsecurity18/presentation/yun
https://lcamtuf.coredump.cx/afl/technical_details.txt
https://lcamtuf.coredump.cx/afl/technical_details.txt

	Abstract
	1 Introduction
	2 Background
	2.1 Fuzzing
	2.2 Waypoints
	2.3 Smart Contract

	3 Motivating Example
	4 Methodology
	4.1 ItyFuzz Architecture
	4.2 Snapshot-Based Fuzzing
	4.3 Dataflow Waypoint
	4.4 Comparison Waypoint

	5 Implementation
	6 Evaluation
	6.1 Coverage
	6.2 Vulnerabilities
	6.3 State Overhead
	6.4 On-Chain Auditing

	7 Related Work
	7.1 Feedback-driven Fuzzing
	7.2 Stateful Fuzzing
	7.3 Smart Contract Security Tools

	8 Conclusion
	References

