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Soft particulate gels are composed of a small amount of particulate matter
dispersed ina continuous fluid phase. The solid components assemble to
form a porous matrix, providing rigidity and control of the mechanical
response, despite being the minority constituent. The rheological
response and gel elasticity are direct functions of the particle volume
fraction. However, the diverse range of different functional dependencies
reported experimentally has challenged efforts to identify general scaling
laws. Here we reveal a hidden hierarchical organization of fractal elements

that controls the viscoelastic spectrum, and which is associated with the
spatial heterogeneity of the solid matrix topology. The fractal elements
form the foundations of a viscoelastic master curve, constructed using
large-scale three-dimensional (3D) microscopic simulations of model
gels, which can be described by arecursive rheological ladder model over
arange of particle volume fractions and gelation rates. The hierarchy of
the fractal elements provides the missing general framework required

to predict the gel elasticity and the linear viscoelastic response of these

complex materials.

Soft particulate gelsinclude materials we can eat, squeeze or 3D print,
from foods to bio-inks to cement hydrates. For gels formed through
polymerization reactions or crosslinking of polymers in solution,
80 years of polymer physics have provided the basis to fully understand
thelinks between chemical architectures and rheology'?. Percolation
theory hasbeen central for understanding the gel properties asafunc-
tion of the distance from a gelation (percolation) threshold®. The
self-similarity of the chemical architectures close to the percolation
threshold naturally produces a hierarchy of lengthscales and time-
scales, leading to power-law characteristics in the viscoelastic
response*®, By contrast, in particulate gels, the link between micro-
structure and viscoelasticity remains elusive. Such gels canbe formed
fromboth synthetic or natural constituents, and represent a preferred
strategy to incorporate high-value functional components while lim-
iting costs and risks. These gels form through physical association of
theinitial colloidal building blocks, due to surface forces and attractive
interactions mediated by the solvent’ ., Ultimately, they develop as

non-equilibrium structures produced by frustration in the growth of
aggregates, interconnected and locked into larger-scale disordered
assemblies, from which rigidity and viscoelasticity emerge. There is
growing evidence thatinthis class of gels a percolation threshold may
alsouniversally control the onset of rigidity (rigidity percolation) and
gelelasticity" . However, the microscopic origins of that percolation
transition and of the resulting power-law rheological response,
observed over a range of compositions and solid contents, remain
unclear. The extreme variability of gel microstructures™"*">" and micro-
scopic dynamics'®?? revealed by experiments seems to suggest that
the microscopic physical origins of the macroscopic rheological
response need to be established on a case-by-case basis. The particle
volume fraction ¢ is the main control parameter in experiments, which
invariably reportastrongly varying shear modulus G, « ¢foss; however,
the observed scaling exponent £, ranges widely from 3 to 8, again
questioning the existence of any universal behaviour and of ageneral
framework to predict the mechanical response'**,
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Fig.1|Microstructural and viscoelastic properties of networks having
different connectivity. a-c, Simulation snapshots of gel bond networks at
different particle volume fractions ¢ = 0.075 (a) and ¢ = 0.1 (b) prepared with a
fixed gelation rate =107 /k;T,, and ¢ = 0.1with ' =107 £/k;7, (c). The snapshots
are coloured (see scale bar) based on the mesh size, that is, on the topological
distance (in units of the particle diameter) between branching points, and the

thickness of the bonds is proportional to the local density of branching points.
d-f, Viscoelastic moduli corresponding to a-c, where the filled and open
symbols represent the storage modulus G’ and loss modulus G”, respectively.
g, Variationin the loss tangent (tan § = G”’/G’) versus frequency for gels with
different volume fractions ¢ and gelation rates I". Typical error bars obtained
from sample-to-sample fluctuations are shown for selected datasets for clarity.

Gel microstructures and rheological master curve
We use 3D numerical simulations of a particle-based model that
capture the microscopic dynamics and rheology of soft particulate
gels**® (Methods). In terms of general trends, for a given gelation
rate [, increasing the solid volume fraction ¢ increases, on average,
the local connectivity and gel elasticity, by increasing the amount of
branchinginthe gel (Fig.1a,b). Foragiven ¢, reducing the gelationrate
also favours the branching of strands as the network self-assembles,
leading to structures with higher local connectivity and elasticity
(Fig.1b,c). However, gels formed at lower ¢ are more sparsely con-
nected, and their local connectivity isalso more spatially heterogene-
ous (Fig.1a).

For all gels, the linear viscoelastic spectra G’(w) and G (w)
(Fig. 1d—f) are computed using the OWCh protocol’”*, which yields
fast and accurate estimates of the mechanical properties over awide
range of deformation frequencies, and we use reduced simulation
units to scale both moduli and frequency (Methods). As in experi-
ments?*7?49"% yvarying the particle volume fractions ¢ over arelatively
smallrange (that is, between 5% and 15%) produces apparently minor
changesinthe microstructure but translates into dramatic variations
of the viscoelastic strength and characteristic timescales (Fig. 1d,e).
Changing the gelation rate for a fixed ¢ leads to similar observations
(Fig.1e,fand Supplementary Fig.1).

The frequency dependence of the loss tangent tan 6 = G”’/G’
(Fig. 1g) summarizes the mechanical response of 11 gels, obtained
for different ¢ and I'. In spite of the wide range of driving frequen-
cies, all of the datasets are broadly self-similar and slowly approach
a high-frequency plateau. A horizontal shift, rescaling the frequency
either by afactor a,atagivenr, or by afactor a,at fixed ¢, leads to a
unique master curve for tan §, covering six decades of rescaled fre-
quency (Fig. 2a). As the reference conditions for collapsing the data,
we use a volume fraction of ¢y =15% and a gelation rate I'=107° £/k,T,,
where gisthe unit energy, so that the reduced dimensionless tempera-
tureis kzT/eand 7, sets the timescale in the simulations (see Methods).

Ladder and fractional models

The resulting master curve exhibits an extended power-law regime,
highlighting a hierarchy of timescales that is captured by recursively
combining viscoelastic elementsin ahierarchical ladder structure**,

Theladder-like arrangement, sketched asaninsetin Fig. 2a, comprises
nviscoelastic elements withmodel contributions (£;, 7;)(withO<i<n)
and anexponentathatsets therelationship between (£;, 77;)and (o, fip)
(equation (10) in the Methods). For large n (n >150), the ladder model
predicts a loss factor tan § that smoothly transitions from a linear
increaseto aplateau at high frequencies (Methods), ingood agreement
with the master curve obtained from the simulation data (Fig. 2a).

We can now vertically rescale the loss and storage moduli by a
factor b, (or b;) to obtain master curves for G’ and G, as shown in
Fig.2b. Taking the continuous limit of the ladder modelintroducedin
Fig. 2a, we obtain a more compact description of the viscoelastic
responseinterms of afractional Kelvin-Voigt model characterized by
justfour parameters: aspring constant (G,), a viscous dashpot () and
afractional element or ‘spring-pot’ (characterized by a scale factor Vv
and an exponent a)*. The power-law exponent 0 < a < 1reflects the
recursive nature of the underlyingladder model, and we canrelate the
other parameters to the rungs of the ladder model in the limit n >
(Supplementary Sections 2 and 3):
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The extended power-law regime evident in the master curves and
itsdescription by aladder model reflect the scale-free characteristics
of the relaxation spectra underpinning the viscoelastic response. For
polymer gels, power-law characteristics and rheological ladder models
directly stem from the self-similar chemical architecture close to per-
colation***"*, In soft particulate gels, instead, the microstructures are
often not self-similar'®'>72° asisalso the case here (Supplementary
Fig.3).Moreover, both ¢ and I determine the range of frequencies and
viscoelasticity relevant to the power-law region of the spectra (Supple-
mentary Fig.1c), demonstrating theintricate couplingbetween particle
volume fraction and gelation kinetics, which makes the microstructural
origin of the rheology of this class of gels so difficult to pin down.

Lengthscale and fractal characteristics

To tease out the microscopic origin of the rheological response, we
analyse the fluctuations in the spontaneous microscopic dynamics
across all our gels, at rest and subjected only to thermal fluctuations
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Fig.2|Rheological master curves and constitutive model for particulate
gels. a, Superposition of the self-similar curves of tan § onto a single master curve
achieved by rescaling the imposed deformation frequency with a shift factor a,,
ora,withrespect toareference gel ata volume fraction of ¢ = 0.15. The functional
form oftan 6 predicted by ladder models with increasing number of elements

n, each having spring constant £;and viscosity r,, as well as by the asymptotic
fractional model, is shown by different lines, as listed in the legend. Inset:
schematic representation of the corresponding ladder model. b, Master curves
for the moduli with the same horizontal shift factors a, or a (in units of time 7,,)
and vertical shift factors b, or b, (with units inverse of the moduli). The solid and
dashed lines represent, respectively, the predictions for G’ and G’ with the four-
parameter fractional model shownin the inset.

(Methods). In the simulations we can use a suitable range of thermal
fluctuations such that no substantial changesin the gel structures are
induced over the simulation time window. We then compute the dis-
placements A =r(t, +t,) — r(t,) from the particle trajectories
r(£) = (x(¢), y(¢), z(¢)), where the time interval [t,, ¢, + ¢, ]is such thatboth
t,andt,areinthe plateau region of the particle mean-squared displace-
ment as afunction of time (Methods and Supplementary Fig. 4a). The
fluctuations u = [(A — (A)*]V2 are widely distributed across the
different gel microstructures (Supplementary Fig.4b).In complex gel
architectures, both the microscopic dynamics and the mechanics are
largely controlled by the presence of more densely connected regions
interspersed with sparsely connected ones***~, We therefore meas-
ure, along network strands, the distribution of topological distances
[, which separate two connected branching points. This distribution
provides direct access to the structural and micromechanical hetero-
geneities in the gels that determine floppy modes and low-frequency
elasticity®>. From the probability distribution p(/) across all gels (Sup-
plementary Fig. 5a), we extract the variance and use § = (({ — <I>)2>1/2,
with dimensions of length, to characterize the gel mesh size heteroge-
neity. By rescalingall fluctuations u of the microscopic displacements
with &/1,, where [, denotes the persistence length of the gel strands™,
the distributions p(u) collected across all gels collapse onto a unique
curve (Fig.3a). Hence the variation of Ewith ¢ and I captures the micro-
structural origin of the variations in the microscopic dynamics.

As the gels become softer with decreasing ¢ or increasing I,
less-connected networks are produced, and § grows because

less-connected networks are also more spatially heterogeneous.
Extrapolating, at the very onset of rigidity, £ captures the first rigid
backbone, asingle branch that spans the whole gel and thatis sufficient,
alone, to provide rigidity. These considerations point to {as a direct
probe of the distance from the rigidity threshold in our gels. Such a
metric, in fact, is ultimately set by the number of branching points,
which we can measure, in our model gels, through the volume fraction
¢, of particles with coordination z= 3. Although £ varies with both ¢
and [, the data across all gels follow the scaling § o ¢ (Fig. 3¢), sug-
gesting thatindeed { may capture the scaling of the critical correlation
length associated with the rigidity transition that governs the emerging
gel elasticity. The computed estimate for v~ 0.80 + 0.16 is compatible
with the value of a 3D random percolation network*®, Since we verify
fromthe plateauin G’ at low frequencies that all our gels are rigid, the
power-law dependence of £ on ¢, may reflect that, because of their
extreme softness and structural complexity, soft particulate gels are
marginally rigid and remain relatively close to a rigidity percolation
threshold over arange of particle volume fractions.

Iftherigidity percolation transitionin particulate gelsisakintoa
random percolation, then following the blob-links-nodes model for
the self-similar structure of a spanning cluster in percolation the-
ory***85* each particulate gel is, effectively, a disordered network
composed of fractal elements (blobs) whose linear size scales with £
and whose fractal dimension is d;. For a gel sample of linear size L, the
volume L?(ind dimensions) will consist of(L/E)d sub-boxes, each con-
taining amass fraction of the gel that is  £4. Close to the percolation
threshold, the scaling hypothesis for a critical point dictates that
M(L, &)  £%m (L/€), where the scaling functionis m (/) = (L/6)*
(ref. 48).

When we compute the gel mass for samples with a range of sizes
L for each volume fraction (here L is the linear size of the simulation
box), the data are spread out and grow as L (inset, Fig. 3b). However,
if we use the scaling argument just laid out, all data collapse onto the
unique scaling function m(L/§) developed above (Fig. 3b) for
dy~2.46 £ 0.12, afractal dimension again consistent witha3D random
percolation network (Supplementary Fig. 7b). Inferring the frequency
dependence of the viscoelastic modulus just from d; as a = d/(d; + 2),
as proposed for polymer networks®**, yields a ~ 0.67 in good agree-
ment with the predictions of the fractional and ladder models
(a=0.66 £ 0.05) for the viscoelastic master curves (Fig. 2a,b).

Following further the blob-links-nodes model, each fractal ele-
ment should contain loops and singly connected bonds, whose number
Nsc diverges, as €also does, at the percolation threshold (Ngcg < €).
Indeed, close enough to the threshold, singly connected bonds should
be presentatalllengthscales, and organized in aself-similar fashion®*.
This implies that Ny < 1/¢b,,,, and that ¢, contains the information on
how singly connected bonds become progressively more prevalent,
over all lengthscales, as § — L (and ¢,, — 0). Hence the fact that £
and ¢, control both the microscopic dynamics and the bulk rheology
of our gels can be directly related to the hierarchical organization of
the singly connected structures.

The fractal blobs whose linear size «< £and with fractal dimension
dfillthe gel volume for any ¢, # 0, hence £ x ¢~(@=4and, combining
with § « @7, we obtain ¢y, o« ¢'*@=%). The simulation results satisfy
this scaling prediction, if we use v~ 0.8 and d;~ 2.5 as obtained previ-
ously from our data (Fig. 3d). We note that, if these fractal elements
controlling the rheology were the fractal aggregates formed through
diffusion-limited or reaction-limited cluster aggregation (respectively
DLCA or RLCA), quite common in colloidal suspensions, their fractal
dimensions would be different (respectively d;=1.8 or d;=2.1;
refs. 9,23,55) and this would lead to markedly different scalings between
¢ and ¢ (cf. Fig. 3d). For DLCA aggregates our scaling translates into
¢ = ¢, with the particle volume fraction directly setting the distance
from the rigidity threshold, consistent with the analysis of fractal
aggregation in colloidal gels**°. The aggregation process considered
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Fig.3|Structural characterization of gel neztworks. a, Distributions of volume fractions ¢ (resp. gelation rate I'). The dashed line is a power law of
fluctuations of displacements u = [(A — (A))"]Y2 normalized by &/,. The data exponent —-0.8. Inset: evolution in correlation length  versus volume fraction ¢
refer to samples with 10° particles. b, Master curve for the mass M (made (bottom axis and open squares) and versus gelation rate (top axis and filled
dimensionless with the particle mass) of the gel network versus normalized squares). d, Volume fraction of branching points ¢, versus the volume fraction
d—dp

systemsize LY m(L/€) for different volume fractions, where m(L/§) = (L/§)
withafractal dimensiond;=2.46 + 0.12. The dataare obtained by changing the
system size for different volume fractions (the symbols are the same asina).
Inset: Mversus systemsize L. c, Correlation length £ = (({ — (I))2>1/2 (inunits of
the particle diameter). The open (resp. filled) squares correspond to various

of particles ¢: circles correspond to the simulations data. The continuous line
shows the best fit of the data by a power law of exponent 2.31 + 0.06.
Corresponding predictions for the DLCA and RLCA scenarios are shown by
dashed lines of slope 1.00 + 0.06 and 1.30 + 0.06, respectively.

here corresponds to a more general case, as density fluctuations and
collective microscopic dynamics contribute to the microstructure
development™, and may apply, at a coarse-grained level, to abroader
range of particulate gels™">***,

Elastic percolating network

We now consider the mechanics of fractal elements of linear size «< £
having elastic stiffness K. Assuming that they are uniformly distributed
in space, the resulting elastic stiffness of the gel can be estimated as
Ko< (L/§)* K. With bending elasticity”, K¢ directly depends on the
presence of singly connected bonds K= Ko/ (Nscs€), where K, is the
torsional bending stiffness between neighbouring bonds, which, inour
case, canbe computed from the microscopicinteractions®. Identifying
therigidity transition with random percolation as demonstrated above,
closeenoughtothethreshold, the gel modulus G,should scale with £as

Go « &7, 2

where f=vd +1(ref. 57). Based on Fig. 3 and the related discussion,
these theoretical scaling predictions imply that G, « ¢£r. Forv~0.8
we find that f~ 3.5in 3D. The scaling that we measure as a function of
o, (or §) from the low-frequency shear modulus G, of our gels, which
also coincides with the vertical shift factor b in our master curves (Sup-
plementary Fig. 8), matches well with this prediction (f=3.55+ 0.04)
(Fig.4a). We note that, in the case of DLCA aggregates constituting the
fractal elements responsible for rigidity, since ¢ =< ¢, (Fig. 3d), we
obtain G, = ¢ and f~ 3.5, in agreement with the behaviour typically
foundin colloidal gels where diffusion-limited aggregation processes
formtheinitial fractal flocs***°. Our analysis therefore highlights how
the dependence of ¢, (which measures the distance from the rigidity
threshold) on ¢ (the actual particle content) changes with the specific
aggregation process at play (see three examples in Fig. 3d). In experi-
ments, however, typically only ¢ is directly controllable, from which
ageneral dependence G, « ¢/obs can be extracted. Hence, while the
rigidity percolation transition remains universal to particulate gels,
we obtain

fobs :f/V(d - df), 3

which naturally has arange of values depending on the fractal dimen-
sion of the gel, d; (as reflected in Table 1), shedding light onto a wide
range of experimental observations'®?*?*2¢323% (Supplementary
Information).

Finally, the horizontal shift factors in our master curves
(Fig.2b,c) identify acharacteristic timescale T that we can trace back
to the delay time for the gel elastic response to emerge from the
microscopic fluctuations (Supplementary Fig. 8), which follows
the same scaling as the elastic modulus G,. This result, which can be
tested in microrheology experiments, explains why the viscous ele-
ment of the fractional model remains essentially constant for all of
the gels (Fig. 4a). The scaling of Twith the critical lengthscale = {that
describes the fractal blobs (and ¢,,) is yet another strong signature of
how the topology dependence of the gel modulus and heterogeneity
determine the relaxation spectra.

From fractal characteristics to a hierarchical
ladder model

We now demonstrate that the fractal blobs, uniformly distributed in
ddimensions,indeed give rise to amechanical ladder model (Fig. 4b),
as hypothesized in Fig. 2. This model results in acompact description
characterized by the four microscopic parameters E,, 1, n and a, and
the overall mechanical response can be obtained as

d-2

(Eo» 1o, V) = (%) Eor o, V), @)

where (L/€)* %isapurely geometrical factor. The elasticity of the ladder
structures is set by the bending stiffness of the gel strands E, =< K,/a?,
where K, is the torsional stiffness, with dimension of [force x length],
and aisthe unitdistance between neighbouring particles in our simu-
lations. By combining the expressions for the overall elastic modulus
of the ladder model (G,) as a function of the number n of elements in
eachladder structure (equations (1) and (4)), we find that G, is related
to the torsional stiffness K, through a structure-dependent factor
Gy (L/§) *K,/(a’n®). Similarly, in disordered elastic networks with
bending elasticity”, the scaling G, = (L/€)* ?K,/L implies that

Gy « (L/E)d_ZKONggg—la—Z/L . These two distinct scaling expressions
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Fig. 4|Scaling of viscoelastic parameters and connection to the ladder
model. a, Scaling of dimensionless retardation time 7= a,/7, or a,/7, (triangles),
elastic modulus G, =1/b,, or 1/b,(circles), made dimensionless using €/a’, and the
resulting characteristic dimensionless viscosity n = TG, (squares) versus volume
fraction of branching points ¢, (bottom axis) and £ (top axis). Error bars,
obtained from sample-to-sample fluctuations, are comparable to the symbol

sizes. b, Schematic representations of the underlying ladder model: fractal blobs
of size given by the correlation length & (top left), singly and multiply connected
bonds within asingle blob (bottom left), bending moment of gel strands for
whichbond bending costs energy when deformationis applied (middle), and

the equivalent hierarchical mechanical element representation, consisting of
multiple springs and dashpots (right).

Table 1| Scaling exponents for the evolution of the gel
modulus with Go°<¢£r and Gyxg’s for different colloidal
aggregation processes

Aggregation process d; f fobs
DLCA 1.8 3.5 3.6
RLCA 21 35 4.8
Present work 25 35 81

The observable power-law exponent f,, is related to the power law f by the expression
fops=f/v(d~d;), where d=3, v=0.8 and d is the fractal dimension of the gel structure.

for G, suggest the following inter-relationship for the number of
mechanical elementsin each ladder structure:

L 1/2a @vaD)/2
V+. a
ne(g) NG ®)

Because each element of linear size « {implies anumber Ny of singly
connected bonds”, with each pairwise combination of these being a
source of bending interactions, we hypothesize that n « stcs‘ Com-
bined with equation (5), this constrains the power-law exponentinthe

ladder model to

a=Q2v+1)/4. (6)

Using v ~0.8yieldsa=0.68 + 0.1for our percolated gelsin3D. The data
for tan 6 and the corresponding fits from both fractional and ladder
models confirm this prediction (Fig. 2b,c).

The product n = G,rsetsthe large-scalerate of dissipation in the gel
andisfoundtobeindependent of the volumefraction of branching points
(Fig. 4a). The viscous dashpot 1, in the ladder model, whichis linked to
fio,nand nby equations (1) and (4), therefore follows the scaling

Ng&Gn, )

d-3+1/a
2)

’Zo°<(—

where np can also be directly connected to the drag coefficient in our
simulations (Methods). Thus, equation (7) canbe understood asavolu-
metric average measure of the viscous dissipation in a d-dimensional
box of size = £ that is filled with Ny singly connected bonds.

Finally, using equation (1), we can now directly connect the micro-
scopic physics of the gels to the hierarchical organization of the
mechanical elements in the ladder model. Indeed, asymptotic expan-
sion of the recursive relations that specify the ladder model
(equation (10) in the Methods) produces power-law decays for both
the elasticand viscous coefficients as afunction of the mode number,
thatis, weexpect E; < E,/i** 'and ;< n,/i**~*. We show in the following
that this hierarchy of internal modes hasiits origins in the geometrical
distribution of effective bending coefficients within the fractal blobs.
We first consider the effective bending stiffness that arises from the
torsionaround the equilibrium angle 6 for a certainbond when aforce
6F is applied on the /th neighbouring bond away from it, along the
elastically active backbone of the gel network (see sketch in Fig. 4b).
Suchaneffective bending stiffness decreases by increasing the distance
between the bonds along the backbone. As the relative neighbouring
distance variesinl</< Ny, the number of modesin ourladder model
varies in the corresponding range 1 < i < N2, suggesting that /=i
isareasonable mapping betweenthe ith relaxationmodeintheladder
modeland the portion of ablob constructed from/bonds. We showin
the Methods that the effective stiffness for mode i = /*in the ladder
modelscales as k;_» = 8F/8x « Ky/(I**a%), and that the equivalent
spring modulus of the ithmodeis E;_p « (Ko/a®)/P~! = (Ko/a3)/i¥~12
An identical power-law decay in fact appears in the corresponding
scaling for the viscous model parameters and one can clearly identify
(E, n) = /" Y*)(E,, o). Using equation (6), these two power-law decays
simplify to (€, n,) = (1/i*"Y)(E,, no), which, remarkably, corresponds to
the recursive relationship required in the ladder model to produce a
power-law rheological response. These results demonstrate that the
geometrical, self-similar arrangement of singly connected bonds and
the cooperative dynamics of bending interactions within individual
fractal blobs lie jointly at the origin of the hierarchical order of the
corresponding ladder-based/fractional models that compactly and
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effectively capture the power-law response of different colloidal gels
over awide range of timescales. On this basis, the viscoelastic master
curvebecomesa discriminating probe of the proximity to the rigidity
threshold and of the marginal stability of particulate gels.

The fractal units and hierarchy of connectivities embedded in soft
particulate gels may be buried in the static microstructure (clusters,
strands, meshes, and so on) that is directly accessible through confo-
cal imaging or scattering, but they are revealed by measurements of
linear viscoelasticity because these hidden structures govern stress
transmission and elasticity. As such, they are naturally akin to force
chainsingranular media or localized excitations arisingin amorphous
solids**®°, and their spatial organization potentially determines the
hierarchical stress transmission and redistribution under load, from
particles to clusters and strands® . The ideas presented here show
how mechanical spectroscopy canbe used to understand the emergent
viscoelastic properties of a broad range of technologically relevant
materials, providing insight across abroad experimental literature and
anew scientific basis for material design in areas from 3D printing to
recycling. Future work, infact, can build on this study toinvestigate the
implications of fractal characteristics and hierarchical organization of
particulate gels for nonlinear properties, memory encoding and smart
adaptive response of soft materials.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability areavailable at https://doi.org/10.1038/s41567-023-01988-7.
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Methods

Numerical model and simulation

In the simulations, colloidal particles or aggregates, described as
spherical objects of diameter a, spontaneously self-assemble into a
gel network due to attractive short-range interactions®* of maximum
strength ¢, mediated by the solvent in which they are immersed and
through which their thermal motionis overdamped. Inreal particulate
gels, surface roughness, shape irregularity and sintering processes
limit the relative motion of particles as they aggregate'>'"*. These
effects are included in the model through an angular modulation of
the net attraction that introduces a bending rigidity of the interpar-
ticle bonds’®. Each gel is characterized by its solid volume fraction,
estimated as ¢ = (11/6)Na®/L3, with N being the total number of parti-
cles and L the linear size of the cubic simulation box. For each value
of ¢, various gel microstructures are obtained by tuning the rate I"at
which therelative strength of the attractive interactions (with respect
to k;7) is increased to induce gelation during the sample prepara-
tion. For the set of model parameters used here, all networks start
from one-particle-thick semi-flexible strands (where particles have
coordination number z = 2) that branch (z=3) to reduce steric hin-
drances and frustration as they grow from different directions. Starting
fromthese relatively simplified structural units, however, large-scale
numerical simulations (>10° colloidal units) allow for hierarchical
loops and larger-scale heterogeneities to naturally emerge during the
gel self-assembly, depending on the gelation rate. As a consequence,
the resulting disordered and heterogeneous network topologies are
representative, ata coarse-grained level, of the structural complexity
typical of awide range of soft particulate gels''*>°¢,

Forall¢pand 'considered here, any further aging of the gelsbeyond
the gel preparation is much slower than the simulation time window
used to compute the rheological response of the samples, so it can
be considered negligible in the context of this study. We use samples
with Nvarying between 2 x 10°and 2 x 10°, and L varying from 23 t0 120
particle diameters. Iis varied between 107 £/k,1,and 107 £/k,T,, and the
range of particle volume fractions spans 0.05 < ¢ < 0.15. In the model,
particlesinteract viaashort-range attraction U,and athree-body term
U,, whichintroduces abending stiffness between neighbouring bonds.
Molecular dynamics (MD) simulations with periodic boundaries are
implemented for a system of N particles in a cubic box of size L with
position vectors{r,, ..., ry} and interacting with a potential energy

ur, ... ry) =¢

so(2)EEuEy) e

i>) i jok

where r;=r;-r,. The functional forms of U, and U, are given in Sup-
plementary Section11and their detailed description canalso be found
in previous works®?**%°, The MD time unit is expressed in terms of
particlemass m, diameter aand unitenergy £as typ = v ma2/e. All other
physical quantities are measured in units of m, a, € and 7y,,. The equa-
tions of motion are solved using a Verlet algorithm with a time step of
6t =0.0051,,p. All simulations have been performed using the
open-source software LAMMPS®, modified toincorporate the potential
energy (equation (8)). We use statistically independent samples and
samples of different sizes to compute sample-to-sample fluctuations
and estimate the error bars for the analysis performed.

Gel preparation

The initial gel configurations are prepared by following the protocol
described in refs. 35,38. In the following, we briefly summarize the
procedure. We use NVT equilibrium MD simulations, with a Nosé-
Hoover (NH) thermostat to cool a system of particles in a gas phase
initially at a reduced temperature k;7,/e = 0.5 down to k3 T/ =0.05in
N0t MD steps, which define the cooling (or gelation) rate as I'= AT/
At =(T;— T))/N,,,0t. We verify that the final temperature k; T/ = 0.05
islow enough for the particles to aggregate and form a percolated gel

network. Then, we let the system further equilibrate at k;7/e = 0.05
withthe NH thermostat for additional N,q,; MD steps. To vary the gela-
tionrate/, we change the number of MD steps used for cooling, that s,
N The gel configurations are then obtained by draining the kinetic
energy from the system. Thisis carried out by quenchingto k;7/¢ = 0,
using dissipative microscopic dynamics:

dr;

d?r;
S v, U-7=,
(dt

5 =V ©)

where (is the drag coefficient of the given solvent and we choose
m/{=1.0ty. This procedure ensures that the configurations find alocal
minimum of the potential energy or inherent structure.

Thedatafor varying volume fraction ¢ correspond to afixed gela-
tion rate of I'=10"¢/kyT, With N o, = 10° MD steps and N, =10° MD
steps. The datafor varying gelation rates"correspond to afixed volume
fraction of ¢ =10%, and the gelationrates vary inthe range '=107¢/k;T,
to 107e/ksT, With N oo = 10° — 10* MD steps and Nq,; =2 x 10* MD
steps. This variation of gelation rates corresponds to a change in the
low-frequency elastic moduli by an order of magnitude (cf. Fig. 1d-f).

Linear viscoelastic spectra

For each gel we use a computational scheme® that has been inspired
by arecently developed experimental technique® and obtain the full
linear viscoelastic spectrum by applying an optimally windowed chirp
(OWCh) signal. The details of this protocol are presented in Supple-
mentary Section1l.Inalllinear viscoelastic tests we use an overdamped
dynamics with a viscous drag ¢, which introduces a natural time scale
10 = {a?/e = 101yyp, from the balance between the solvent drag and the
bond spring. We use this timescale 7, as the unit of time throughout.

Master curve for the loss tangent

As demonstrated in Fig. 2a, the viscoelastic spectra of the
low-volume-fraction gels, close to the percolation limit, follow the
principle of time-connectivity superposition, and the corresponding
values of loss tangent will collapse on amaster curve for these gels. This
simple collapse, which is obtained with just a horizontal shift of the
data, is asignature of the self-similarity that exists between the shape
ofthemeasured viscoelastic spectra. Thus, we can think of our method
ingenerating atan d master curve in Fig. 2a from the measured spectra
inFig. 1g as a general ‘discriminating probe’ that determines whether
the backbone of a mature gel is still similar to the original structure
that was formed at the percolation or not.

Mathematical arrangement of model parametersinladder
models
Asdiscussedinrefs. 43,44, with simple analysis of continued fractions
forladder models, one can show that the following recursive arrange-
ment is required to obtain a power-law behaviour for the viscoelastic
moduli that approaches the critical gel behaviour with exponent a:

E_i - L I(a) F(1:+1—or) &

2i-1 r-a) rii-1+a)

0

s Ia) T(i+l-a) ~ (10)

f-a) G+a) ‘07

where T is the complete Gamma function and 1< i< nrepresents the
parameter index in the ladder model. This arrangement of parameters
leadstoafrequency-independent regime for the loss tangent that spans
the frequency range (1/n?)Ey/n, < w < Eo/n,. For frequencies smaller and
larger than the specified span, the ladder model displays asymptotic
single-moderetardationand single-mode relaxation consistent with the
predictions of the Kelvin-Voigt and Maxwell models, respectively.

By fitting the viscoelastic spectrawith the proposed ladder model,
one can estimate the number of ladder elements n and develop aquan-
titative measure for the range of scale-free relaxation modesin agiven
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gel system. This can be connected to the difference between bounding
cutofflengthscales and timescales in the underlying fractal structure
and relaxation spectra of real networks (see Supplementary Section
2 and Supplementary Fig. 2 for further details). Similarly, as shownin
equation (10), by determining the power-law exponent a of the ladder
or fractional model, we gain extra insight into the mechanical ladder
structure’s hierarchical arrangement of springs and dashpots.

Microscopic dynamics
The overdamped microscopic dynamics of the gel are probed by using
alangevin dynamics:

2

m% =-V,U- (% +Fi(o), (1
where m/{=0.01t,, and Fi(t) is a random white noise that mimics
thermal fluctuations and is related to the drag coefficient
CAF OF(t)) = 20ky T6;6(t — t').Fromthe spontaneous particle dynamics
with thermal fluctuations k; T/ =107 (large enough to induce particle
motion but without changing the network topology), we monitor the
position of particle i at time ¢, r,(t) = (x(¢), y(©), z(t)), where x, y and z
represent the Cartesian coordinates. The magnitude of the gel displace-
mentiscomputedas4;=||r(¢, +t,) — r{t,)|l. Boththeinitial time¢,and
waiting time ¢, are chosen to be in the plateau of the particle
mean-squared displacement curve (Supplementary Fig. 4a) with
t,=10%r,and additional waiting time ,, = 10°7,,

Scaling of physical distance and deformations in the fractal
element

Due to the fractal nature of the blobs, the physical distance between
neighbours that are /bonds apart is d =< al*, and the corresponding
torque from force 6F scales as 6FI"a, which leads to a change of angle
660« &Fl'a/K,. Therotation of this angle leads to alocal deformation of
6x < al’60in the direction of the applied force 6F.

Persistence length

Thepersistence length [, is determined by computing the correlationin
the angles of successive bonds along a 50-particle strand sampled over
different configurations with the dynamics (equation (11)) at a finite
temperature®. For the parameters used in this study, the persistence
lengthis estimated tobe [, = 5.5a.

Data availability

We have deposited the manuscript datain a public repository (https://
doi.org/10.5281/zenodo.7580589). Additional data supporting the
manuscript dataare available from the authors upon request.

Code availability
The codes used in this study are available from the corresponding
author uponreasonable request.

References

64. Israelachvili, J. N. Intermolecular and Surface Forces
(Academic Press, 2015).

65. Dibble, C. J., Kogan, M. & Solomon, M. J. Structural origins
of dynamical heterogeneity in colloidal gels. Phys. Rev. E 77,
050401 (2008).

66. Laurati, M. et al. Structure, dynamics and rheology of
colloid-polymer mixtures: from liquids to gels. J. Chem. Phys. 130,
134907 (2009).

67. Plimpton, S. Fast parallel algorithms for short-range molecular
dynamics. J. Comput. Phys. 117, 1-19 (1995).

Acknowledgements

We acknowledge support from the National Science Foundation,
under grants nos. NSF DMR-2026842 (M. Bantawa and E.D.G.) and
NSF DMREF CBET—2118962 (E.D.G.). This research was supported
in part by the National Science Foundation under grant no. NSF
PHY-1748958 through the KITP programme on the Physics of
Dense Suspensions.

Author contributions

M. Bantawa and B.K. contributed equally to this work. M. Bantawa
performed simulations. B.K. developed the viscoelastic master curve
and the rheological ladder model. All authors analysed data and wrote
the paper.

Competinginterests
The authors declare no competing interests.

Additional information
Supplementary information The online version
contains supplementary material available at
https://doi.org/10.1038/s41567-023-01988-7.

Correspondence and requests for materials should be addressed to
Emanuela Del Gado.

Peer review information Nature Physics thanks the anonymous
reviewers for their contribution to the peer review of this work.

Reprints and permissions information is available at
www.nature.com/reprints.

Nature Physics


http://www.nature.com/naturephysics
https://doi.org/10.5281/zenodo.7580589
https://doi.org/10.5281/zenodo.7580589
https://doi.org/10.1038/s41567-023-01988-7
http://www.nature.com/reprints

	The hidden hierarchical nature of soft particulate gels

	Gel microstructures and rheological master curve

	Ladder and fractional models

	Lengthscale and fractal characteristics

	Elastic percolating network

	From fractal characteristics to a hierarchical ladder model

	Online content

	Fig. 1 Microstructural and viscoelastic properties of networks having different connectivity.
	Fig. 2 Rheological master curves and constitutive model for particulate gels.
	Fig. 3 Structural characterization of gel networks.
	Fig. 4 Scaling of viscoelastic parameters and connection to the ladder model.
	Table 1 Scaling exponents for the evolution of the gel 
modulus with and for different colloidal 
aggregation processes.


