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The hidden hierarchical nature of soft 
particulate gels

Minaspi Bantawa    1, Bavand Keshavarz    2, Michela Geri2, Mehdi Bouzid    3, 
Thibaut Divoux    4, Gareth H. McKinley    2 & Emanuela Del Gado    1 

Soft particulate gels are composed of a small amount of particulate matter 
dispersed in a continuous !uid phase. The solid components assemble to 
form a porous matrix, providing rigidity and control of the mechanical 
response, despite being the minority constituent. The rheological 
response and gel elasticity are direct functions of the particle volume 
fraction. However, the diverse range of di"erent functional dependencies 
reported experimentally has challenged e"orts to identify general scaling 
laws. Here we reveal a hidden hierarchical organization of fractal elements 
that controls the viscoelastic spectrum, and which is associated with the 
spatial heterogeneity of the solid matrix topology. The fractal elements 
form the foundations of a viscoelastic master curve, constructed using 
large-scale three-dimensional (3D) microscopic simulations of model 
gels, which can be described by a recursive rheological ladder model over 
a range of particle volume fractions and gelation rates. The hierarchy of 
the fractal elements provides the missing general framework required 
to predict the gel elasticity and the linear viscoelastic response of these 
complex materials.

Soft particulate gels include materials we can eat, squeeze or 3D print, 
from foods to bio-inks to cement hydrates. For gels formed through 
polymerization reactions or crosslinking of polymers in solution,  
80 years of polymer physics have provided the basis to fully understand 
the links between chemical architectures and rheology1,2. Percolation 
theory has been central for understanding the gel properties as a func-
tion of the distance from a gelation (percolation) threshold3. The 
self-similarity of the chemical architectures close to the percolation 
threshold naturally produces a hierarchy of lengthscales and time-
scales, leading to power-law characteristics in the viscoelastic 
response4–8. By contrast, in particulate gels, the link between micro-
structure and viscoelasticity remains elusive. Such gels can be formed 
from both synthetic or natural constituents, and represent a preferred 
strategy to incorporate high-value functional components while lim-
iting costs and risks. These gels form through physical association of 
the initial colloidal building blocks, due to surface forces and attractive 
interactions mediated by the solvent9–13. Ultimately, they develop as 

non-equilibrium structures produced by frustration in the growth of 
aggregates, interconnected and locked into larger-scale disordered 
assemblies, from which rigidity and viscoelasticity emerge. There is 
growing evidence that in this class of gels a percolation threshold may 
also universally control the onset of rigidity (rigidity percolation) and 
gel elasticity14–16. However, the microscopic origins of that percolation 
transition and of the resulting power-law rheological response, 
observed over a range of compositions and solid contents, remain 
unclear. The extreme variability of gel microstructures11,13,15,17 and micro-
scopic dynamics18–22 revealed by experiments seems to suggest that 
the microscopic physical origins of the macroscopic rheological 
response need to be established on a case-by-case basis. The particle 
volume fraction φ is the main control parameter in experiments, which 
invariably report a strongly varying shear modulus G

0

∝ ϕ

f

obs; however, 
the observed scaling exponent fobs ranges widely from 3 to 8, again 
questioning the existence of any universal behaviour and of a general 
framework to predict the mechanical response10,23–33.
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The ladder-like arrangement, sketched as an inset in Fig. 2a, comprises 
n viscoelastic elements with model contributions ( ̃
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) (with 0 ≤ i ≤ n) 
and an exponent α that sets the relationship between ( ̃
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) and ( ̃
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0
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) 
(equation (10) in the Methods). For large n (n ≥ 150), the ladder model 
predicts a loss factor tan δ that smoothly transitions from a linear 
increase to a plateau at high frequencies (Methods), in good agreement 
with the master curve obtained from the simulation data (Fig. 2a).

We can now vertically rescale the loss and storage moduli by a 
factor bφ (or bΓ) to obtain master curves for G′ and G′′, as shown in  
Fig. 2b. Taking the continuous limit of the ladder model introduced in 
Fig. 2a, we obtain a more compact description of the viscoelastic 
response in terms of a fractional Kelvin–Voigt model characterized by 
just four parameters: a spring constant (G0), a viscous dashpot (η) and 
a fractional element or ‘spring-pot’ (characterized by a scale factor 𝕍𝕍 
and an exponent α)45. The power-law exponent 0 ≤ α ≤ 1 reflects the 
recursive nature of the underlying ladder model, and we can relate the 
other parameters to the rungs of the ladder model in the limit n → ∞ 
(Supplementary Sections 2 and 3):
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The extended power-law regime evident in the master curves and 
its description by a ladder model reflect the scale-free characteristics 
of the relaxation spectra underpinning the viscoelastic response. For 
polymer gels, power-law characteristics and rheological ladder models 
directly stem from the self-similar chemical architecture close to per-
colation4,46–48. In soft particulate gels, instead, the microstructures are 
often not self-similar10,11,15,17,20, as is also the case here (Supplementary 
Fig. 3). Moreover, both φ and Γ determine the range of frequencies and 
viscoelasticity relevant to the power-law region of the spectra (Supple-
mentary Fig. 1c), demonstrating the intricate coupling between particle 
volume fraction and gelation kinetics, which makes the microstructural 
origin of the rheology of this class of gels so difficult to pin down.

Lengthscale and fractal characteristics
To tease out the microscopic origin of the rheological response, we 
analyse the fluctuations in the spontaneous microscopic dynamics 
across all our gels, at rest and subjected only to thermal fluctuations 

Gel microstructures and rheological master curve
We use 3D numerical simulations of a particle-based model that 
capture the microscopic dynamics and rheology of soft particulate 
gels34–38 (Methods). In terms of general trends, for a given gelation 
rate Γ, increasing the solid volume fraction φ increases, on average, 
the local connectivity and gel elasticity, by increasing the amount of 
branching in the gel (Fig. 1a,b). For a given φ, reducing the gelation rate 
also favours the branching of strands as the network self-assembles, 
leading to structures with higher local connectivity and elasticity  
(Fig. 1b,c). However, gels formed at lower φ are more sparsely con-
nected, and their local connectivity is also more spatially heterogene-
ous (Fig. 1a).

For all gels, the linear viscoelastic spectra G′(ω) and G′′(ω)  
(Fig. 1d–f) are computed using the OWCh protocol37,39, which yields 
fast and accurate estimates of the mechanical properties over a wide 
range of deformation frequencies, and we use reduced simulation 
units to scale both moduli and frequency (Methods). As in experi-
ments20,27,28,40–42, varying the particle volume fractions φ over a relatively 
small range (that is, between 5% and 15%) produces apparently minor 
changes in the microstructure but translates into dramatic variations 
of the viscoelastic strength and characteristic timescales (Fig. 1d,e). 
Changing the gelation rate for a fixed φ leads to similar observations 
(Fig. 1e,f and Supplementary Fig. 1).

The frequency dependence of the loss tangent tan δ = G′′/G′  
(Fig. 1g) summarizes the mechanical response of 11 gels, obtained 
for different φ and Γ. In spite of the wide range of driving frequen-
cies, all of the datasets are broadly self-similar and slowly approach 
a high-frequency plateau. A horizontal shift, rescaling the frequency 
either by a factor aφ at a given Γ, or by a factor aΓ at fixed φ, leads to a 
unique master curve for tan δ, covering six decades of rescaled fre-
quency (Fig. 2a). As the reference conditions for collapsing the data, 
we use a volume fraction of φ = 15% and a gelation rate Γ = 10−6 ε/kBτ0, 
where ε is the unit energy, so that the reduced dimensionless tempera-
ture is kBT/ε and τ0 sets the timescale in the simulations (see Methods).

Ladder and fractional models
The resulting master curve exhibits an extended power-law regime, 
highlighting a hierarchy of timescales that is captured by recursively 
combining viscoelastic elements in a hierarchical ladder structure43,44. 
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Fig. 1 | Microstructural and viscoelastic properties of networks having 
different connectivity. a–c, Simulation snapshots of gel bond networks at 
different particle volume fractions φ = 0.075 (a) and φ = 0.1 (b) prepared with a 
fixed gelation rate Γ = 10−6 ε/kBτ0, and φ = 0.1 with Γ = 10−3 ε/kBτ0 (c). The snapshots 
are coloured (see scale bar) based on the mesh size, that is, on the topological 
distance (in units of the particle diameter) between branching points, and the 

thickness of the bonds is proportional to the local density of branching points.  
d–f, Viscoelastic moduli corresponding to a–c, where the filled and open 
symbols represent the storage modulus G′ and loss modulus G′′, respectively. 
g, Variation in the loss tangent (tan δ = G′′/G′) versus frequency for gels with 
different volume fractions φ and gelation rates Γ. Typical error bars obtained 
from sample-to-sample fluctuations are shown for selected datasets for clarity.
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(Methods). In the simulations we can use a suitable range of thermal 
fluctuations such that no substantial changes in the gel structures are 
induced over the simulation time window. We then compute the dis-
placements ∆ = r(t0 + tw) − r(t0) from the particle trajectories 
r(t) ≡ (x(t), y(t), z(t)), where the time interval [t0, t0 + tw] is such that both 
t0 and tw are in the plateau region of the particle mean-squared displace-
ment as a function of time (Methods and Supplementary Fig. 4a). The 
fluctuations u = [(Δ

Δ

Δ − ⟨Δ

Δ

Δ⟩)

2

]

1/2  are widely distributed across the  
different gel microstructures (Supplementary Fig. 4b). In complex gel 
architectures, both the microscopic dynamics and the mechanics are 
largely controlled by the presence of more densely connected regions 
interspersed with sparsely connected ones36,49–52. We therefore meas-
ure, along network strands, the distribution of topological distances 
l, which separate two connected branching points. This distribution 
provides direct access to the structural and micromechanical hetero-
geneities in the gels that determine floppy modes and low-frequency 
elasticity53. From the probability distribution p(l) across all gels (Sup-
plementary Fig. 5a), we extract the variance and use ξ = ⟨(l − ⟨l⟩)

2

⟩

1/2, 
with dimensions of length, to characterize the gel mesh size heteroge-
neity. By rescaling all fluctuations u of the microscopic displacements 
with ξ2/lp, where lp denotes the persistence length of the gel strands38, 
the distributions p(u) collected across all gels collapse onto a unique 
curve (Fig. 3a). Hence the variation of ξ with φ and Γ captures the micro-
structural origin of the variations in the microscopic dynamics.

As the gels become softer with decreasing φ or increasing Γ, 
less-connected networks are produced, and ξ grows because 

less-connected networks are also more spatially heterogeneous. 
Extrapolating, at the very onset of rigidity, ξ captures the first rigid 
backbone, a single branch that spans the whole gel and that is sufficient, 
alone, to provide rigidity. These considerations point to ξ as a direct 
probe of the distance from the rigidity threshold in our gels. Such a 
metric, in fact, is ultimately set by the number of branching points, 
which we can measure, in our model gels, through the volume fraction 
φbr of particles with coordination z = 3. Although ξ varies with both φ 
and Γ, the data across all gels follow the scaling ξ ∝ ϕ

−ν

br

 (Fig. 3c), sug-
gesting that indeed ξ may capture the scaling of the critical correlation 
length associated with the rigidity transition that governs the emerging 
gel elasticity. The computed estimate for ν ≃ 0.80 ± 0.16 is compatible 
with the value of a 3D random percolation network48. Since we verify 
from the plateau in G′ at low frequencies that all our gels are rigid, the 
power-law dependence of ξ on φbr may reflect that, because of their 
extreme softness and structural complexity, soft particulate gels are 
marginally rigid and remain relatively close to a rigidity percolation 
threshold over a range of particle volume fractions.

If the rigidity percolation transition in particulate gels is akin to a 
random percolation, then following the blob–links–nodes model for 
the self-similar structure of a spanning cluster in percolation the-
ory46,48,54, each particulate gel is, effectively, a disordered network 
composed of fractal elements (blobs) whose linear size scales with ξ 
and whose fractal dimension is df. For a gel sample of linear size L, the 
volume Ld (in d dimensions) will consist of 

(L/ξ )

d  sub-boxes, each con-
taining a mass fraction of the gel that is 

∝ ξ

d

f . Close to the percolation 
threshold, the scaling hypothesis for a critical point dictates that 
M(L, ξ ) ∝ ξ

d

f

m (L/ξ ), where the scaling function is 
m (L/ξ ) = (L/ξ )

d−d

f  
(ref. 48).

When we compute the gel mass for samples with a range of sizes 
L for each volume fraction (here L is the linear size of the simulation 
box), the data are spread out and grow as L3 (inset, Fig. 3b). However, 
if we use the scaling argument just laid out, all data collapse onto the 
unique scaling function m (L/ξ )  developed above (Fig. 3b) for 
df ≃ 2.46 ± 0.12, a fractal dimension again consistent with a 3D random 
percolation network (Supplementary Fig. 7b). Inferring the frequency 
dependence of the viscoelastic modulus just from df as α = d/(df + 2), 
as proposed for polymer networks6,21,22, yields α ≃ 0.67 in good agree-
ment with the predictions of the fractional and ladder models 
(α = 0.66 ± 0.05) for the viscoelastic master curves (Fig. 2a,b).

Following further the blob–links–nodes model, each fractal ele-
ment should contain loops and singly connected bonds, whose number 
NSCB diverges, as ξ also does, at the percolation threshold (NSCB ∝ ξ1/ν). 
Indeed, close enough to the threshold, singly connected bonds should 
be present at all lengthscales, and organized in a self-similar fashion54. 
This implies that NSCB ∝ 1/φbr, and that φbr contains the information on 
how singly connected bonds become progressively more prevalent, 
over all lengthscales, as ξ ⟶ L (and φbr ⟶ 0). Hence the fact that ξ 
and φbr control both the microscopic dynamics and the bulk rheology 
of our gels can be directly related to the hierarchical organization of 
the singly connected structures.

The fractal blobs whose linear size ∝ ξ and with fractal dimension 
df fill the gel volume for any φbr ≠ 0, hence ξ ∝ ϕ

−1/(d−d

f

) and, combining 
with ξ ∝ ϕ

−ν

br

, we obtain ϕ
br

∝ ϕ

1/ν(d−d

f

). The simulation results satisfy 
this scaling prediction, if we use ν ≃ 0.8 and df ≃ 2.5 as obtained previ-
ously from our data (Fig. 3d). We note that, if these fractal elements 
controlling the rheology were the fractal aggregates formed through 
diffusion-limited or reaction-limited cluster aggregation (respectively 
DLCA or RLCA), quite common in colloidal suspensions, their fractal 
dimensions would be different (respectively df ≈ 1.8 or df ≈ 2.1;  
refs. 9,23,55) and this would lead to markedly different scalings between 
φbr and φ (cf. Fig. 3d). For DLCA aggregates our scaling translates into 
φ ∝ φbr, with the particle volume fraction directly setting the distance 
from the rigidity threshold, consistent with the analysis of fractal 
aggregation in colloidal gels9,56. The aggregation process considered 
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Ẽn

Fig. 2 | Rheological master curves and constitutive model for particulate 
gels. a, Superposition of the self-similar curves of tan δ onto a single master curve 
achieved by rescaling the imposed deformation frequency with a shift factor aφ 
or aΓ with respect to a reference gel at a volume fraction of φ = 0.15. The functional 
form of tan δ predicted by ladder models with increasing number of elements 
n, each having spring constant Ei and viscosity ηi, as well as by the asymptotic 
fractional model, is shown by different lines, as listed in the legend. Inset: 
schematic representation of the corresponding ladder model. b, Master curves 
for the moduli with the same horizontal shift factors aφ or aΓ (in units of time τ0) 
and vertical shift factors bφ or bΓ (with units inverse of the moduli). The solid and 
dashed lines represent, respectively, the predictions for G′′ and G′ with the four-
parameter fractional model shown in the inset.
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here corresponds to a more general case, as density fluctuations and 
collective microscopic dynamics contribute to the microstructure 
development14, and may apply, at a coarse-grained level, to a broader 
range of particulate gels11,15,29,53.

Elastic percolating network
We now consider the mechanics of fractal elements of linear size ∝ ξ 
having elastic stiffness Kξ. Assuming that they are uniformly distributed 
in space, the resulting elastic stiffness of the gel can be estimated as 
K ∝ (L/ξ)d − 2Kξ. With bending elasticity57, Kξ directly depends on the 
presence of singly connected bonds Kξ = K0/(NSCBξ2), where K0 is the 
torsional bending stiffness between neighbouring bonds, which, in our 
case, can be computed from the microscopic interactions38. Identifying 
the rigidity transition with random percolation as demonstrated above, 
close enough to the threshold, the gel modulus G0 should scale with ξ as

G

0

∝ ξ

−f/ν

, (2)

where f = νd + 1 (ref. 57). Based on Fig. 3 and the related discussion, 
these theoretical scaling predictions imply that G

0

∝ ϕ

f

br

. For ν ≃ 0.8 
we find that f ≃ 3.5 in 3D. The scaling that we measure as a function of 
φbr (or ξ) from the low-frequency shear modulus G0 of our gels, which 
also coincides with the vertical shift factor b in our master curves (Sup-
plementary Fig. 8), matches well with this prediction (f = 3.55 ± 0.04) 
(Fig. 4a). We note that, in the case of DLCA aggregates constituting the 
fractal elements responsible for rigidity, since φ ∝ φbr (Fig. 3d), we 
obtain G0 ∝ φf and f ≃ 3.5, in agreement with the behaviour typically 
found in colloidal gels where diffusion-limited aggregation processes 
form the initial fractal flocs23,56. Our analysis therefore highlights how 
the dependence of φbr (which measures the distance from the rigidity 
threshold) on φ (the actual particle content) changes with the specific 
aggregation process at play (see three examples in Fig. 3d). In experi-
ments, however, typically only φ is directly controllable, from which  
a general dependence G

0

∝ ϕ

f

obs  can be extracted. Hence, while the  
rigidity percolation transition remains universal to particulate gels, 
we obtain

f

obs

= f/ν(d − d

f

), (3)

which naturally has a range of values depending on the fractal dimen-
sion of the gel, df (as reflected in Table 1), shedding light onto a wide 
range of experimental observations10,23,24,26–32,58 (Supplementary  
Information).

Finally, the horizontal shift factors in our master curves  
(Fig. 2b,c) identify a characteristic timescale τ that we can trace back 
to the delay time for the gel elastic response to emerge from the 
microscopic fluctuations (Supplementary Fig. 8), which follows 
the same scaling as the elastic modulus G0. This result, which can be 
tested in microrheology experiments, explains why the viscous ele-
ment of the fractional model remains essentially constant for all of 
the gels (Fig. 4a). The scaling of τ with the critical lengthscale ∝ ξ that 
describes the fractal blobs (and φbr) is yet another strong signature of 
how the topology dependence of the gel modulus and heterogeneity 
determine the relaxation spectra.

From fractal characteristics to a hierarchical 
ladder model
We now demonstrate that the fractal blobs, uniformly distributed in 
d dimensions, indeed give rise to a mechanical ladder model (Fig. 4b), 
as hypothesized in Fig. 2. This model results in a compact description 
characterized by the four microscopic parameters E0, η0, n and α, and 
the overall mechanical response can be obtained as

(
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,
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𝕍𝕍) = (
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)
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, 𝕍𝕍), (4)

where (L/ξ)d − 2 is a purely geometrical factor. The elasticity of the ladder 
structures is set by the bending stiffness of the gel strands E0 ∝ K0/a3, 
where K0 is the torsional stiffness, with dimension of [force × length], 
and a is the unit distance between neighbouring particles in our simu-
lations. By combining the expressions for the overall elastic modulus 
of the ladder model (G0) as a function of the number n of elements in 
each ladder structure (equations (1) and (4)), we find that G0 is related 
to the torsional stiffness K0 through a structure-dependent factor 
G0 ∝ (L/ξ)d − 2K0/(a3n2α). Similarly, in disordered elastic networks with 
bending elasticity57, the scaling G0 ∝ (L/ξ)d − 2Kξ/L implies that 
G
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∝ (L/ξ )
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. These two distinct scaling expressions 
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Fig. 3 | Structural characterization of gel networks. a, Distributions of 
fluctuations of displacements u = [(Δ
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2

]

1/2 normalized by ξ2/lp. The data 
refer to samples with 105 particles. b, Master curve for the mass M (made 
dimensionless with the particle mass) of the gel network versus normalized 
system size Ldfm(L/ξ) for different volume fractions, where m(L/ξ) = (L/ξ)

d−d

f  
with a fractal dimension df = 2.46 ± 0.12. The data are obtained by changing the 
system size for different volume fractions (the symbols are the same as in a). 
Inset: M versus system size L. c, Correlation length ξ = ⟨(l− ⟨l⟩)

2

⟩

1/2 (in units of 
the particle diameter). The open (resp. filled) squares correspond to various 

volume fractions φ (resp. gelation rate Γ). The dashed line is a power law of 
exponent −0.8. Inset: evolution in correlation length ξ versus volume fraction φ 
(bottom axis and open squares) and versus gelation rate (top axis and filled 
squares). d, Volume fraction of branching points φbr versus the volume fraction 
of particles φ: circles correspond to the simulations data. The continuous line 
shows the best fit of the data by a power law of exponent 2.31 ± 0.06. 
Corresponding predictions for the DLCA and RLCA scenarios are shown by 
dashed lines of slope 1.00 ± 0.06 and 1.30 ± 0.06, respectively.
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for G0 suggest the following inter-relationship for the number of 
mechanical elements in each ladder structure:

n ∝ (

L

a

)

1/2α

N

(2ν+1)/2α

SCB

. (5)

Because each element of linear size ∝ ξ implies a number NSCB of singly 
connected bonds57, with each pairwise combination of these being a 
source of bending interactions, we hypothesize that n ∝ N

2

SCB

. Com-
bined with equation (5), this constrains the power-law exponent in the 
ladder model to

α = (2ν + 1)/4. (6)

Using ν ≃ 0.8 yields α = 0.68 ± 0.1 for our percolated gels in 3D. The data 
for tan δ and the corresponding fits from both fractional and ladder 
models confirm this prediction (Fig. 2b,c).

The product η = G0τ sets the large-scale rate of dissipation in the gel 
and is found to be independent of the volume fraction of branching points 
(Fig. 4a). The viscous dashpot η0 in the ladder model, which is linked to 
̃

η

0

, n and η by equations (1) and (4), therefore follows the scaling

η

0

∝ (

L

a

)

d−3+1/α

N

νd−3

SCB

η, (7)

where η can also be directly connected to the drag coefficient ζ in our 
simulations (Methods). Thus, equation (7) can be understood as a volu-
metric average measure of the viscous dissipation in a d-dimensional 
box of size ∝ ξ that is filled with NSCB singly connected bonds.

Finally, using equation (1), we can now directly connect the micro-
scopic physics of the gels to the hierarchical organization of the 
mechanical elements in the ladder model. Indeed, asymptotic expan-
sion of the recursive relations that specify the ladder model  
(equation (10) in the Methods) produces power-law decays for both 
the elastic and viscous coefficients as a function of the mode number, 
that is, we expect Ei ∝ E0/i2α − 1 and ηi ∝ η0/i2α − 1. We show in the following 
that this hierarchy of internal modes has its origins in the geometrical 
distribution of effective bending coefficients within the fractal blobs. 
We first consider the effective bending stiffness that arises from the 
torsion around the equilibrium angle θ for a certain bond when a force 
δF is applied on the Ith neighbouring bond away from it, along the 
elastically active backbone of the gel network (see sketch in Fig. 4b). 
Such an effective bending stiffness decreases by increasing the distance 
between the bonds along the backbone. As the relative neighbouring 
distance varies in 1 ≤ I ≤ NSCB, the number of modes in our ladder model 
varies in the corresponding range 1 ≤ i ≤ N

2

SCB

, suggesting that I = i1/2 
is a reasonable mapping between the ith relaxation mode in the ladder 
model and the portion of a blob constructed from I bonds. We show in 
the Methods that the effective stiffness for mode i = I2 in the ladder 
model scales as k

i=I

2

= δF/δx ∝ K

0

/(I

2ν

a

2

), and that the equivalent 
spring modulus of the ith mode is E

i=I

2

∝ (K

0

/a

3

)/I

2ν−1

= (K

0

/a

3

)/i

ν−1/2. 
An identical power-law decay in fact appears in the corresponding 
scaling for the viscous model parameters and one can clearly identify 
(Ei, ηi) = (1/iν − 1/2)(E0, η0). Using equation (6), these two power-law decays 
simplify to (Ei, ηi) = (1/i2α − 1)(E0, η0), which, remarkably, corresponds to 
the recursive relationship required in the ladder model to produce a 
power-law rheological response. These results demonstrate that the 
geometrical, self-similar arrangement of singly connected bonds and 
the cooperative dynamics of bending interactions within individual 
fractal blobs lie jointly at the origin of the hierarchical order of the 
corresponding ladder-based/fractional models that compactly and 

10–5

10–4

10–3

10–2

10–1

10–2 10–1

10–1 100

100

101

102

103

104

105

G
0 

(  
 )

η 
(  

 )
 ( 

  )
τ

3.55 ± 0.04

1

3.55 ± 0.8

1

a b

ξ

L

d ~ Iνa

θ

δx
δF

1

I

2

3

ξ

Singly connected
bonds

Multiply connected
bonds

ηn–1

η1

η2

η0

E0

E1

En–1

En

E2

φbr

ξ –1/ν

Fig. 4 | Scaling of viscoelastic parameters and connection to the ladder 
model. a, Scaling of dimensionless retardation time τ = aφ/τ0 or aΓ/τ0 (triangles), 
elastic modulus G0 = 1/bφ or 1/bΓ (circles), made dimensionless using ε/a3, and the 
resulting characteristic dimensionless viscosity η = τG0 (squares) versus volume 
fraction of branching points φbr (bottom axis) and ξ−1/ν (top axis). Error bars, 
obtained from sample-to-sample fluctuations, are comparable to the symbol 

sizes. b, Schematic representations of the underlying ladder model: fractal blobs 
of size given by the correlation length ξ (top left), singly and multiply connected 
bonds within a single blob (bottom left), bending moment of gel strands for 
which bond bending costs energy when deformation is applied (middle), and 
the equivalent hierarchical mechanical element representation, consisting of 
multiple springs and dashpots (right).

Table 1 | Scaling exponents for the evolution of the gel 
modulus with 
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obs for different colloidal 
aggregation processes

Aggregation process df f fobs

DLCA 1.8 3.5 3.6

RLCA 2.1 3.5 4.8

Present work 2.5 3.5 8.1
The observable power-law exponent fobs is related to the power law f by the expression 
fobs = f/ν(d − df), where d = 3, ν = 0.8 and df is the fractal dimension of the gel structure.
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effectively capture the power-law response of different colloidal gels 
over a wide range of timescales. On this basis, the viscoelastic master 
curve becomes a discriminating probe of the proximity to the rigidity 
threshold and of the marginal stability of particulate gels.

The fractal units and hierarchy of connectivities embedded in soft 
particulate gels may be buried in the static microstructure (clusters, 
strands, meshes, and so on) that is directly accessible through confo-
cal imaging or scattering, but they are revealed by measurements of 
linear viscoelasticity because these hidden structures govern stress 
transmission and elasticity. As such, they are naturally akin to force 
chains in granular media or localized excitations arising in amorphous 
solids59,60, and their spatial organization potentially determines the 
hierarchical stress transmission and redistribution under load, from 
particles to clusters and strands61–63. The ideas presented here show 
how mechanical spectroscopy can be used to understand the emergent 
viscoelastic properties of a broad range of technologically relevant 
materials, providing insight across a broad experimental literature and 
a new scientific basis for material design in areas from 3D printing to 
recycling. Future work, in fact, can build on this study to investigate the 
implications of fractal characteristics and hierarchical organization of 
particulate gels for nonlinear properties, memory encoding and smart 
adaptive response of soft materials.
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Methods
Numerical model and simulation
In the simulations, colloidal particles or aggregates, described as 
spherical objects of diameter a, spontaneously self-assemble into a 
gel network due to attractive short-range interactions64 of maximum 
strength ε, mediated by the solvent in which they are immersed and 
through which their thermal motion is overdamped. In real particulate 
gels, surface roughness, shape irregularity and sintering processes 
limit the relative motion of particles as they aggregate15,17,65. These 
effects are included in the model through an angular modulation of 
the net attraction that introduces a bending rigidity of the interpar-
ticle bonds38. Each gel is characterized by its solid volume fraction, 
estimated as φ = (π/6)Na3/L3, with N being the total number of parti-
cles and L the linear size of the cubic simulation box. For each value 
of φ, various gel microstructures are obtained by tuning the rate Γ at 
which the relative strength of the attractive interactions (with respect 
to kBT) is increased to induce gelation during the sample prepara-
tion. For the set of model parameters used here, all networks start 
from one-particle-thick semi-flexible strands (where particles have 
coordination number z = 2) that branch (z = 3) to reduce steric hin-
drances and frustration as they grow from different directions. Starting 
from these relatively simplified structural units, however, large-scale 
numerical simulations (>105 colloidal units) allow for hierarchical 
loops and larger-scale heterogeneities to naturally emerge during the 
gel self-assembly, depending on the gelation rate. As a consequence, 
the resulting disordered and heterogeneous network topologies are 
representative, at a coarse-grained level, of the structural complexity 
typical of a wide range of soft particulate gels15,16,65,66.

For all φ and Γ considered here, any further aging of the gels beyond 
the gel preparation is much slower than the simulation time window 
used to compute the rheological response of the samples, so it can 
be considered negligible in the context of this study. We use samples 
with N varying between 2 × 103 and 2 × 105, and L varying from 23 to 120 
particle diameters. Γ is varied between 10−3 ε/kBτ0 and 10−7 ε/kBτ0, and the 
range of particle volume fractions spans 0.05 ≤ φ ≤ 0.15. In the model, 
particles interact via a short-range attraction U2 and a three-body term 
U3, which introduces a bending stiffness between neighbouring bonds. 
Molecular dynamics (MD) simulations with periodic boundaries are 
implemented for a system of N particles in a cubic box of size L with 
position vectors {r1, …, rN} and interacting with a potential energy

U(r
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where rij = rj − ri. The functional forms of U2 and U3 are given in Sup-
plementary Section 11 and their detailed description can also be found 
in previous works35,38,50. The MD time unit is expressed in terms of 
particle mass m, diameter a and unit energy ε as τ

MD

=

√

ma

2

/ε. All other 
physical quantities are measured in units of m, a, ε and τMD. The equa-
tions of motion are solved using a Verlet algorithm with a time step of 
δt = 0.005τMD. All simulations have been performed using the 
open-source software LAMMPS67, modified to incorporate the potential 
energy (equation (8)). We use statistically independent samples and 
samples of different sizes to compute sample-to-sample fluctuations 
and estimate the error bars for the analysis performed.

Gel preparation
The initial gel configurations are prepared by following the protocol 
described in refs. 35,38. In the following, we briefly summarize the 
procedure. We use NVT equilibrium MD simulations, with a Nosé–
Hoover (NH) thermostat to cool a system of particles in a gas phase 
initially at a reduced temperature kBTi/ε = 0.5 down to kBTf/ε = 0.05 in 
Ncool MD steps, which define the cooling (or gelation) rate as Γ = ∆T/
∆t = (Tf − Ti)/Ncoolδt. We verify that the final temperature kBTf/ε = 0.05 
is low enough for the particles to aggregate and form a percolated gel 

network. Then, we let the system further equilibrate at kBTf/ε = 0.05 
with the NH thermostat for additional Nequi MD steps. To vary the gela-
tion rate Γ, we change the number of MD steps used for cooling, that is, 
Ncool. The gel configurations are then obtained by draining the kinetic 
energy from the system. This is carried out by quenching to kBT/ε ≈ 0, 
using dissipative microscopic dynamics:
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U − ζ
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i
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, (9)

where ζ is the drag coefficient of the given solvent and we choose 
m/ζ = 1.0τMD. This procedure ensures that the configurations find a local 
minimum of the potential energy or inherent structure.

The data for varying volume fraction φ correspond to a fixed gela-
tion rate of Γ = 10−6ε/kBτ0 with Ncool = 106 MD steps and Nequi = 106 MD 
steps. The data for varying gelation rates Γ correspond to a fixed volume 
fraction of φ = 10%, and the gelation rates vary in the range Γ = 10−7ε/kBτ0 
to 10−3ε/kBτ0 with Ncool = 108 – 104 MD steps and Nequi = 2 × 104 MD 
steps. This variation of gelation rates corresponds to a change in the 
low-frequency elastic moduli by an order of magnitude (cf. Fig. 1d–f).

Linear viscoelastic spectra
For each gel we use a computational scheme37 that has been inspired 
by a recently developed experimental technique39 and obtain the full 
linear viscoelastic spectrum by applying an optimally windowed chirp 
(OWCh) signal. The details of this protocol are presented in Supple-
mentary Section 11. In all linear viscoelastic tests we use an overdamped 
dynamics with a viscous drag ζ, which introduces a natural time scale 
τ

0

= ζa

2

/ϵ = 10τ

MD

, from the balance between the solvent drag and the 
bond spring. We use this timescale τ

0

 as the unit of time throughout.

Master curve for the loss tangent
As demonstrated in Fig. 2a, the viscoelastic spectra of the 
low-volume-fraction gels, close to the percolation limit, follow the 
principle of time-connectivity superposition, and the corresponding 
values of loss tangent will collapse on a master curve for these gels. This 
simple collapse, which is obtained with just a horizontal shift of the 
data, is a signature of the self-similarity that exists between the shape 
of the measured viscoelastic spectra. Thus, we can think of our method 
in generating a tan δ master curve in Fig. 2a from the measured spectra 
in Fig. 1g as a general ‘discriminating probe’ that determines whether 
the backbone of a mature gel is still similar to the original structure 
that was formed at the percolation or not.

Mathematical arrangement of model parameters in ladder 
models
As discussed in refs. 43,44, with simple analysis of continued fractions 
for ladder models, one can show that the following recursive arrange-
ment is required to obtain a power-law behaviour for the viscoelastic 
moduli that approaches the critical gel behaviour with exponent α:

̃

E

i

=

1

2i−1

Γ(α)

Γ(1−α)

Γ(i+1−α)

Γ(i−1+α)

̃

E

0

̃

η

i

= 2

Γ(α)

Γ(1−α)

Γ(i+1−α)

Γ(i+α)

̃

η

0

,

(10)

where Γ is the complete Gamma function and 1 ≤ i ≤ n represents the 
parameter index in the ladder model. This arrangement of parameters 
leads to a frequency-independent regime for the loss tangent that spans 
the frequency range (1/n2)E0/η0 ≤ ω ≤ E0/η0. For frequencies smaller and 
larger than the specified span, the ladder model displays asymptotic 
single-mode retardation and single-mode relaxation consistent with the 
predictions of the Kelvin–Voigt and Maxwell models, respectively.

By fitting the viscoelastic spectra with the proposed ladder model, 
one can estimate the number of ladder elements n and develop a quan-
titative measure for the range of scale-free relaxation modes in a given 
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gel system. This can be connected to the difference between bounding 
cutoff lengthscales and timescales in the underlying fractal structure 
and relaxation spectra of real networks (see Supplementary Section 
2 and Supplementary Fig. 2 for further details). Similarly, as shown in 
equation (10), by determining the power-law exponent α of the ladder 
or fractional model, we gain extra insight into the mechanical ladder 
structure’s hierarchical arrangement of springs and dashpots.

Microscopic dynamics
The overdamped microscopic dynamics of the gel are probed by using 
a Langevin dynamics:

m

d

2

r

i

dt

2

= −∇

r

i

U − ζ

dr

i

dt

+ F

i

r

(t), (11)

where m/ζ = 0.01τ0, and Fi
r

(t) is a random white noise that mimics  
thermal fluctuations and is related to the drag coefficient  
ζ: ⟨Fi

r

(t)F

j

r

(t

′

)⟩ = 2ζk

B

Tδ

ij

δ(t − t

′

). From the spontaneous particle dynamics 
with thermal fluctuations kBT/ε = 10−3 (large enough to induce particle 
motion but without changing the network topology), we monitor the 
position of particle i at time t, ri(t) ≡ (x(t), y(t), z(t)), where x, y and z 
represent the Cartesian coordinates. The magnitude of the gel displace-
ment is computed as ∆i = ||ri(t0 + tw) − ri(t0)||. Both the initial time t0 and 
waiting time tw are chosen to be in the plateau of the particle 
mean-squared displacement curve (Supplementary Fig. 4a) with 
t0 = 103τ0 and additional waiting time tw = 103τ0.

Scaling of physical distance and deformations in the fractal 
element
Due to the fractal nature of the blobs, the physical distance between 
neighbours that are I bonds apart is d ∝ aIν, and the corresponding 
torque from force δF scales as δFIνa, which leads to a change of angle 
δθ ∝ δFIνa/K0. The rotation of this angle leads to a local deformation of 
δx ∝ aIνδθ in the direction of the applied force δF.

Persistence length
The persistence length lp is determined by computing the correlation in 
the angles of successive bonds along a 50-particle strand sampled over 
different configurations with the dynamics (equation (11)) at a finite 
temperature38. For the parameters used in this study, the persistence 
length is estimated to be lp ≈ 5.5a.
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