
Eye-Based Point Rendering for Dynamic Multiview Effects

Fig. 1. 300 cube map reflections (50 cubemaps) generated by eye-based point rendering (EPR) for the sponza, breakfast, and gallery scenes [28];

with camera distant showing single reflection (top row) and camera close showing two recursive reflections(bottom row) with a single pass over the

geometry. EPR renders reflections up to 6.7 times faster than multi-pass rendering, and up to 7.2 times faster than improved view independent

rendering (iVIR).

Eye-based point rendering (EPR) can make multiview effects much more

practical by adding eye buffer resolution efficiencies to improved view-

independent rendering (iVIR). We demonstrate this very successfully by

applying EPR to dynamic cube-mapped reflections, sometimes achieving

nearly 7× speedups over iVIR and traditional multiview rendering (MVR),

with nearly equivalent quality. Our application to omnidirectional soft shad-

ows is less successful, demonstrating that EPR is most effective with larger

shader loads and tight eye buffer to off-screen buffer mappings. This is due

to EPR’s eye buffer resolution constraints limiting points and shading calcu-

lations to the sampling rate of the eye’s viewport. In a 2.48 million triangle

scene with 50 reflective objects (using 300 off-screen views), EPR renders

environment maps with a 49.40𝑚𝑠 average frame time on an NVIDIA 1080

Ti GPU. In doing so, EPR generates up to 5× fewer points than iVIR, and

regularly performs 50× fewer shading calculations than MVR.
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1 INTRODUCTION

In computer graphics, indirect effects such as coherent reflections

and soft shadows have been difficult to perform on GPU hardware,

which often requires rendering multiple views each needing a pass

over scene geometry, and each creating significant shading loads.

Author’s address:

© 2022 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in , https://doi.org/10.
1145/nnnnnnn.nnnnnnn.

View independent rendering (VIR) [27] avoids multiple passes

by generating and rendering points in real time. Frame by frame, it

converts the model’s triangles into a set of points fit to the views

the current frame needs. With the points, VIR then renders views in

parallel, requiring nearly an order of magnitude fewer passes. How-

ever, if off-screen views are not similar, the number of points needed

to fill every off-screen buffer pixel rises, increasing the cost of each

pass over VIR’s point set, and reducing VIR’s advantage. Gavane

et al. therefore introduced iVIR [12], which lessened this problem

by resizing off-screen buffers to match the resolution needed in by

the eye-buffer. This enabled rendering of dynamically environment

mapped scenes at 2-4× the speed of MVR.

In this paper, we introduce EPR, which innovates by adding the

the following improvements to iVIR:

• EPR limits point cloud size to eye-buffer resolution, making

the point set up to 5× smaller than VIR’s. This is enabled by

splatting points across several pixels in off-screen buffers.

• EPR limits shader loads by deferring lighting of all off-screen

pixels until they are reflected into an eye-buffer pixel, regu-

larly making shader loads 50× or more smaller than MVR’s.

To enable this, each off-screen buffer becomes an indexed

G-buffer, referencing the needed shading data in the point

set. Moreover, this indirection allows similarly lazy shading

of recursive reflections without additional rendering passes,

magnifying shader speedups further. We call this eye-based

deferred shading. In principle, this should also be possible in

more traditional renderers, as long as they limit memory use

by indexing off-screen buffers.
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These innovations enable rendering of dynamic cube-mapped re-

flections nearly 7× faster than iVIR and multiview rendering (MVR),

at nearly the same image quality. Speedups of omnidirectional shad-

ows are minor, revealing some of EPR’s limitations: significant ef-

ficiencies require meaningful shader loads (unlike shadow maps),

and fairly tight mappings of pixels in the eye buffer to off-screen

buffers. Indeed, in shadow mapping, there is no shading at all, and

so no eye-resolution limits to shader loads at all!

2 RELATED WORK

Realistic rendering requires precise modeling of light flow by sam-

pling Kajiya’s rendering equation [22]. This can be difficult, espe-

cially for effects like soft shadows, depth of field, motion blur and

indirect reflections [25]. MVR is often the best way to achieve this

with rasterizers: putting multiple views into off-screen buffers and

filtering them together when shading. But MVR is slow, with real-

time constraints regularly requiring subsampling [38]. Various MVR

pipelines have been studied (e.g., [8, 19ś21, 39]), but even the best of

these slows significantly when generating more than 32 views. Re-

cent ray-tracing hardware has enabled non-MVR solutions, hybrid

rasterization-ray tracing pipelines for computing effects including

reflections, refractions, and shadows [4, 35].

2.1 Reflections and Environment Mapping

Reflections add insight about a surface’s materials and environment,

and can be achieved using ray tracing [40]. However, ray-traced re-

flections can alias, particularly during animation. Avoiding aliasing

either requires more samples or hybridized solutions using raster-

ized reflections [2, 4]. Environment mapping is the best-known ras-

terized solution. It turns images of the environment around each re-

flective object into textures that are accessed using view-dependent

lookups. There are several techniques, most varying the mapping

between textures and the reflective surface [5, 10, 18, 29, 42]. Per-

haps the most widely used is cube mapping [14], because it fits well

in rectangular perspective buffers, permitting interactive reflections.

Environment mapping produces convincing reflections, but if the

scene is dynamic, textures become out of date and must be updated

each frame. Also, if an object is close to the reflective surface, differ-

ent reflective objects will łseež different views of that object, and so

they cannot share the same environment map. These shortcomings

require extensive multiview rendering in each frame, limiting the

use ofenvironment mapping in real time.

2.2 Shadows and Shadow Mapping

Shadows help viewers understand the spatial relationships between

objects. Rasterizers render the łhardž shadows cast by point lights

using shadow mapping [41], which compares the eye’s view and the

light’s view to determine what is in shadow; and shadow volumes

[7], which geometrically models shadow boundaries and finds the

objects intersecting them. More natural łsoft shadowsž are cast by

realistic light sources with area, instead of imaginary point lights.

Both shadow mapping [9, 17] and shadow volume [1] soft shadow

solutions exist, but both introduce unfortunate tradeoffs between

speed and accuracy. Fast approximations [3, 16] compromise shadow

quality to maintain real-time speed, such as percentage-closer soft

shadows (PCSS), which renders single-view hard shadows, and then

blurs their boundaries [11, 31].

Most real-world lights emit in many directions. This omnidirec-

tional lighting poses a challenge for current shadow algorithms,

which remain efficient by restricting light (shadow) flow to a lim-

ited range of directions. One rasterized solution creates six shadow

buffers on a cube surrounding each point sample of the the light

source [13, 24].

2.3 Points and iVIR

EPR avoids many rasterization constraints by using points as a ren-

dering primitive [15, 26]. Unfortunately when views change, points

can reveal incorrectly modeled gaps in surfaces. Preventing such

artifacts often requires a prohibitive number of points, or similarly

prohibitive filtering of sparser point sets (e.g., [34]). However, newer

algorithms can avoid such painful tradeoffs. Ritschel et al. [32ś34]

adaptively sample according to brightness and view. Schutz et al.

[37] apply compute shaders to render points more quickly.

Marrs et al’s VIR [27] innovates by using the GPU rasterizer

to create a new set of points for every frame, customized to that

frame’s off-screen views. It then renders views in parallel with nearly

an order of magnitude fewer geometry traversals than MVR. VIR

ensures that at least one point reaches every pixel in off-screen

buffers. When views captured in these buffers are self-similar (as in

directional soft shadows), resulting point clouds remain tractably

small. But when views are heterogeneous (as with environment

maps or omnidirectional shadows), point clouds grow, making real-

time performance challenging, particularly when shader loads are

large. Tomitigate this problem, Gavane andWatson’s iVIR [12] more

efficiently samples triangles and shrinks off-screen buffers to match

eye buffer resolution, reducing the number of points and shader

loads. This enables application of iVIR to environment mapping

with 2 − 4× speedups over MVR.

3 THE EPR RENDERING PIPELINE

iVIR did improve VIR, but speedups were modest. EPR improves

speeds further with eye-resolution reductions in point cloud size

and shader loads. This section focuses on reductions in point cloud

size, since all shading (including shading of off-screen buffers) is

deferred until the final deferred eye pass.

Figure 2 shows the EPR pipeline. Briefly, the vertex shader de-

termines whether a triangle is visible and therefore sampled at all.

The geometry shader sets the density with which a triangle will be

sampled by points, based on eye-resolution constraints. The raster-

izer produces those points, with fragments treated as points moving

through the fragment shader into storage buffers. The compute

shader splats those points into off-screen view buffers, which are in

fact index G-buffers referencing a point’s shading data in the point

buffers.

We next discuss each pipeline stage in more detail, highlighting

eye-resolution computational constraints.

3.1 The vertex shader computes visibility

Geometry should only be rendered if it might be visible to the eye.

We begin this visibility determination in the vertex shader. After
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Fig. 2. Eye-based point rendering (EPR) pipeline as implemented in the GPU

applying the model transformation, we conservatively compute the

visibility of the vertex in each of the views to be rendered, creating

a bit string for use later in the pipeline. Because the vertex-view

visibility string will be used to determine the visibility of entire

triangles, we compare the vertex against view frusta that have been

increased in size by 20%.

3.2 The geometry shader sets point cloud density

Ideally, a point cloud should be just dense enough to enable a fully

detailed rendering in the eye’s current view, and no more. Because

EPR recreates its point cloud in every frame, it can aggressively

optimize for the current view, ensuring only that the point cloud

enables full detail in all of the current frame’s off-screen views.

It need not concern itself with views in future (largely unknown)

frames.

When determining point cloud density, EPR ensures that every

pixel in the eye’s view is sampled at least once across all off-screen

views. This eye-resolution sampling is a significant departure from

iVIR, which ensures instead that every pixel in every off-screen

buffer is sampled at least once. EPR’s point clouds will typically be

much less dense than iVIR’s, because they need only ensure that

the eye’s view is fully detailed, rather than every off-screen view.

(On the rare occasions that the eye’s view requires more detail than

any off-screen buffer, we limit cloud density to the resolution of the

maximal off-screen buffer.)

Ensuring that every off-screen view is sampled densely enough

to put at least one sample in each pixel of the eye’s view requires

mapping the off-screen views to the eye’s view, which depends on

the particular multiview rendering technique being used. Sections 4

and 5 describe how we conservatively approximate this mapping

for environment maps, and omnidirectional soft shadows. In both

cases, the result is 𝜌𝑚𝑣 , which describes the sampling rate needed

by the current triangle.

To produce points for the current triangle, EPR rasterizes it in a

view-independent fashion, with each fragment becoming a point.

The primary function of the geometry shader is to set the triangle up

for view-independent rasterization, at the sampling rate described

by 𝜌𝑚𝑣 .

We begin by ensuring that the triangle is front-facing in at least

one off-screen view. If so, we center the triangle in the viewport,

and align it to be parallel to the view plane. To achieve this, the

geometry shader computes and applies the T𝑎𝑙𝑖𝑔𝑛 transformation

matrix unique to each triangle as described in Gavane et al. [12].

Next, we calculate the eye buffer resolution sampling rate 𝜌𝑚𝑣 for

the current triangle (see Sections 4 and 5 for examples). To ensure

the current triangle will be sampled at this rate, we simply scale it

by 𝜌𝑚𝑣 . We define EPR coordinate space as world space coordinates,

transformed by T𝑎𝑙𝑖𝑔𝑛 , and scaled by sampling density 𝜌𝑚𝑣 , S𝜌𝑚𝑣
,

as shown in the Eq. 1. We apply this composite transform to each

triangle vertex.

T𝑒𝑝𝑟 = S𝜌𝑚𝑣
∗ T𝑎𝑙𝑖𝑔𝑛 (1)

If the eye’s viewport has a different resolution than the EPR buffer

used to rasterize triangles into points, the ratio of eye over EPR

buffer resolution must be used as an additional scaling factor in

𝑇𝑒𝑝𝑟 . This ensures that every eye pixel is sampled. In addition we

have found it useful to allow some flexibility in the rate at which

eye pixels are sampled, enabling a tradeoff between point cloud size

and splatting costs. We introduce a third scaling factor into 𝑇𝑒𝑝𝑟 ,

𝜌𝑠𝑐𝑎𝑙𝑒 : at 1, 𝜌𝑠𝑐𝑎𝑙𝑒 puts one sample into each eye pixel. Lower values

reduce sampling (e.g. 1/2 makes 1 sample for every two pixels),

while higher values increase sampling (e.g. 2 makes two samples

per pixel). (Note that splatting ensures that holes never occur). We

examine this tradeoff in detail in Section 4.

Inspired by [23], when a projected triangle has an area of 1/10 of

a pixel or less in EPR space, we may stochastically cull it, removing

it from the rendering pipeline to avoid overly dense sampling of

eye pixels. The smaller the area of the triangle 𝐴𝑡 , the more likely

it will be culled, with probability 𝑃𝑐 = 1 − 10𝐴𝑡 . Although we

cannot mathematically guarantee it, we have never observed any

łholesž resulting in practice, and we estimate their probability to be
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extremely unlikely1. We find that stochastic culling reduces frame

times by roughly 15%.

To the fragment shader, we pass any unculled triangle’s vertices

and splat length in world coordinates, any material coefficients,

and an aggregated triangle-view visibility bit string, with each bit

representing the visibility of the triangle in an off-screen view. If

any triangle vertex is visible in a (conservative) view, the triangle is

visible.

3.3 The rasterizer produces points

The fragments generated as the rasterizer samples the EPR-transformed

triangles are EPR’s points. Note that a pixel in the eye’s viewport

can cover many pixels when mapped into off-screen buffers. Thus

even if an EPR point’s center is outside the triangle, the part of the

triangle it does cover can contain many off-screen pixels. Conserva-

tive rasterization is needed to ensure the rasterizer produces these

points, and avoids any łholes.ž

3.4 The fragment shader buffers points

The fragment shader next puts points in multiple storage buffers

for later splatting by the compute shader. The exact content of

these buffers varies depending on the multiview effect being im-

plemented (see e.g. Sections 4 and 5), however at a minimum, the

buffers must contain the triangle vertices, point center and splat

length in world coordinates, along with the triangle-view visibility

string. We currently use five storage buffers: vertices and center are

in three vector4 buffers, length and any materials are in a uvec4

buffer, and the visibility string is in two 64-bit unsigned integer

buffers.

We experimented with a bufferless implementation in which

the fragment shader splatted points directly, rather than buffering

them for processing in compute. This would have the advantage

of avoiding the possibility of buffer overflow. While this produced

identical imagery to our current solution, it was consistently less

than half as fast. Schutz et al. [37] reported similar results.

3.5 The compute shader splats points

The compute shader processes all points in the storage buffers. For

each point and view pairing, if the point’s triangle is visible in the

view, the shader splats the point into that view’s off-screen buffer.

To splat, the shader projects the world-space square defined by

the point center and splat length (oriented to its triangle’s longest

edge) into the current view, resulting a 2D quadrilateral. To simplify

shader computation, we then fill the off-screen buffer pixels in the 2D

bounding box around the quadrilateral with identical values. If the

buffers contain forward rendering results, the lighting computation

need only be performed once per point (at eye resolution), rather

than once per buffer pixel. If off-screen rendering is deferred, every

1A hole will have no uncullable triangles with area greater than 1/10 projecting to it, and
all cullable triangles will be culled. Because well-designed models avoid projecting too
many triangles inside single pixels, we estimate the likelihood 𝑃𝑢 of a pixel lacking any
uncullable triangles at 1%. If the average number of cullable triangles in a pixel is 1/𝐴𝑡 ,

then the likelihood 𝑃𝑐 of all cullable triangles being culled is 𝑃𝑐
1/𝐴𝑡 . As𝐴𝑡 declines,

𝑃𝑐 approaches 5 in 100, 000 Ð and when 𝑃𝑐 is combined with 𝑃𝑢 , the likelihood of a
hole is 5 in 10, 000, 000. Our EPR viewport typically contains only 256K pixels.

buffer pixel in the bounding box contains an identical reference to

lighting inputs in the storage buffers.

Although the splat defined by the bounding box can only be

slightly larger than an eye pixel, when combined with conserva-

tive rasterization in point generation, the box’s use can noticeably

increase the size of very small (about 1 eye pixel) details. For this

reason, we clip each splat against the edges of its triangle. As we

visit each buffer pixel in the splat bounding box, we fill it only if it

lies inside the triangle. This quality improvement reduces speed by

less than 20%.

The compute shader cannot use Z-buffering hardware, with its

guarantee of atomic data access by parallel threads. Instead, we use

atomic operations on integer buffers. Each off-screen buffer pixel is

a 64-bit unsigned integer with the 32 most significant bits used for

storing the depth of the point, and the remaining 32 bits for storing

point data. For deferred rendering, because 32 bits is not enough to

represent all point data, we adopt the solution described by Burns

et al. [6]: we store only a reference to the point data in the storage

buffers, rather than the data itself.

To reduce memory and bandwidth requirements, we adjust the

sizes of these off-screen buffers to eye resolution in every frame. The

size required depends on the mapping between these buffers and the

eye’s buffer, which in turn depends on the multiview effect to which

EPR is being applied (e.g., Sections 4 and 5). We set the maximum

resolution of any off-screen buffer to half of eye resolution. If buffer

sizes change too frequently, temporal aliasing can become visible.

To avoid this, we limit the frequency of size changes by requiring

that they exceed at least 32 pixels in each dimension. We encourage

readers to view the animations accompanying this paper to gauge

our success in controlling temporal aliasing.

Fig. 3. Conservative multiview sampling density is computed using

the distance 𝑑𝑟 , the shortest distance travelled by light from triangle(𝑡 )

via reflective object(𝑟 ) to the eye.

4 ENVIRONMENT MAPPING USING EPR

In this section, we describe our application of EPR to environment

mapping. We first discuss how to adapt EPR to environment map-

ping, and continue by examining the speed and image quality of

our EPR-based implementation.

4.1 Adapting EPR to Environment Mapping

To adapt EPR to environment mapping, we must map off-screen

views to the eye’s view to determine the eye-resolution sampling rate
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𝜌𝑚𝑣 and off-screen buffer sizes, defer shading in off-screen buffers,

and filter reflections.

4.1.1 Mapping off-screen views to the eye’s view. Finding a map-

ping from each off-screen view to the eye’s view lets us constrain

computation to eye-resolution. The mapping should enable efficient

estimation of the size of eye pixels as they are (reverse-) projected

into off-screen buffers. In the case of environment mapping, the light

paths between views move from triangle 𝑡 , to reflective object 𝑟 , to

the eye. For each triangle, we find 𝑑𝑟 , the shortest distance travelled

by the light from 𝑡 via 𝑟 to the eye (see Figure 3). To conservatively

bound 𝑑𝑟 , we approximate each reflective object with a bounding

sphere, then locate the point cp on this sphere that is closest to the

line from the triangle’s circumcenter cc to the eye [36].

To ensure that each eye pixel is sampled, each triangle must be

sampled at the densest of the rates required by the modeled scene’s

reflective objects. This rate 𝜌𝑚𝑣 is the maximum over all reflective

objects of the inverse of the sum of the distances 𝑑𝑒𝑟 and 𝑑𝑟𝑡 , as

described in Eq 2 and Eq 3.

𝑑𝑟 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑒, 𝑟, 𝑡) = 𝑑𝑒𝑟 + 𝑑𝑟𝑡 (2)

𝜌𝑚𝑣 = ∀𝑟 ∈𝑅 𝑚𝑎𝑥 (
1

𝑑𝑟
) (3)

where 𝑅 is the set of all reflective object centers 𝑟 , 𝑡 is a triangle, 𝑑𝑒𝑟
is the conservative distance from eye to reflective object, and 𝑑𝑟𝑡 is

the conservative distance from reflective object to triangle.

As points are projected into off-screen buffers, they will often

cover many pixels. To splat these points and fill these pixels, we

must know point size in world space, which we model with length

ℓ , the square root of the area of triangle in world space (𝐴𝑤𝑠 ) over

the number of samples it covers in the EPR space. This number of

samples is obtained by dividing the area of the EPR transformed

triangle 𝐴𝑒𝑝𝑟 by the area of an EPR pixel (P𝑒𝑝𝑟 ), which can be

computed from the graphics window size and the number of pixels

in the viewport. Eq 4 shows the formula for ℓ . When a triangle in

EPR space has subpixel area, we set the ℓ to the square root of the

area of the EPR transformed triangle.

ℓ =

√︄

𝐴𝑤𝑠

𝐴𝑒𝑝𝑟
∗ P𝑒𝑝𝑟 (4)

To constrain bandwidth use by eye resolution, we resize off-screen

buffers every frame. We determine the size needed for a particu-

lar view by computing the number of pixels its reflective object’s

bounding box covers when projected into the eye’s view. For envi-

ronment mapping, we find this optimization particularly important:

it reduces frame times by more than 60%.

4.1.2 Eye-based deferred shading. As noted in Section 3.5, EPR’s

buffers are actually G-buffers, storing references to point shading

data rather than RGB colors, and enabling deferred shading. How-

ever, rather than deferring shading until after all points are splatted,

we realize an additional significant eye-resolution efficiency by defer-

ring shading further until the final shading pass over the eye buffer.

Thus off-screen pixels are only shaded if they are reflected into

eye pixels. Figure 4 illustrates this process, and Table 1 shows the

Fig. 4. Diagrammatic representation of EPR eye-based deferred light-

ing evaluation

number of shading operations performed by our eye-based deferred

for single bounce reflection. The operations performed by eye-based

deferred is a magnitude less compared to MVR, which uses deferred

shading pass over each of its cube map views.

4.1.3 Filtering reflections. High quality environment maps require

filtering to accurately represent reflections. Unfortunately, hardware

filtering support such as mipmapping is not available to compute

shaders.We therefore filter during the eye’s deferred shading pass by

obtaining multiple lit samples from lazily shaded off-screen buffers

in every pixel depicting a reflective object. To do so, shaders assume

that normals on reflective objects change regularly, and that the

material within the pixel is unchanging. To support this, in the eye’s

deferred shading buffer we store the reflective object’s local normal

gradient, which we use to supersample reflection directions using

the Poisson distribution. Such supersampling would be prohibitively

slow without EPR’s lazily lit, eye-resolution sampling. We currently

supersample reflective pixels 25 times, a number we chose empir-

ically, because more samples did not improve visual quality. We

experimented with an adaptive scheme that added four samples

until color variance stopped declining, but found that it did not

achieve similar quality without reducing speed.

4.1.4 Eye-based deferred recursive reflections. EPR’s eye-based de-

ferred shading enables further significant eye-resolution efficiencies

Scene #refl objs avg res EPR #shading ops MVR #shading ops ×𝑡𝑖𝑚𝑒𝑠

Sponza

1 116.5 44K 1.51M 34.32

10 115.1 146K 15.24 104.38

20 114.5 335K 30.60M 91.34

50 110.3 812K 76.57 94.30

Gallery

1 113.0 265K 1.12M 4.37

10 114.4 558K 13.24M 23.73

20 114.1 820K 27.52M 33.56

50 112.2 1.68M 68.54M 40.80

Breakfast

1 174.5 199K 1.54M 7.74

10 182.9 546K 15.30M 28.02

20 156.8 743K 30.61M 41.20

50 106.7 1.09M 78.85M 72.34

Table 1. Number of shading computations carried out by our eye-

based deferred lighting vs the number of shading computations carried

out by MVR for a single bounce reflection.
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(a) one bounce (b) two bounces (c) three bounces

Fig. 5. Eye-based deferred recursive reflections in the sponza scene,

with two cylindrical reflective objects facing each other. The deferred

shading time taken by (a) one bounce is 1.64ms with 25 samples , (b)

two bounces is 2.92ms with 25 samples on first bounce and 4 samples

on the second, and (c) three bounces is 3.80ms with 25 samples for the

first and 4 samples for the second and third bounce.

by enabling no-pass recursive reflections. In an MVR environment

map renderer, each recursive reflection requires an additional ge-

ometry pass over all off-screen views to a second set of off-screen

buffers, with each pass shading every buffer pixel. In constrast,

within its G-buffer cubes, EPR can simply perform deferred lighting

recursively, following a reflection off of one point onto another.

Figure 5 shows multiple recursions in the sponza scene.

4.2 Results

We compared EPR’s reflections with sampling to reflections gener-

ated by iVIR and MVR. For this comparison, we used OpenGL 4.5

on a PC with an Intel i5-7600K @ 3.80 GHz CPU and an NVIDIA

1080Ti2 GPU, running Windows 10 OS. For testing, we used the

sponza, breakfast, and gallery scenes [28], shown in Figure 1. Scenes

were dynamic, with the eye revolving around the scene, and all the

reflective objects moving periodically. We used a physically-based

rendering shader [30] that accessed roughness and metallic textures.

Our cube maps used 64-bit unsigned integer buffers, with a max-

imum adaptive resolution of 5122. The MVR implementation for

environment mapping renders the cubemap for each reflector using

layered rendering, which enables rendering of six views of the cube-

map in a single pipeline pass, followed by hardware mipmapping.
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Breakfast Scene Accuracy vs Speed Table

MVR

EPR Rho 1 Fixed

EPR Rho 1 Adap

EPR Rho 1/2 Fixed

EPR Rho 1/2 Adap

EPR Rho 1/4 Fixed

EPR 1/4 Adap

Fig. 6. Speed vs. accuracy of EPR in the sponza scene as 𝜌
𝑠𝑐𝑎𝑙𝑒

and

shader sampling method vary. The scenes are viewed from positions

that vary the average projected resolution of reflectors across 68, 106,

128, 160, 208,230, and 260 pixels, forming each curve. Accuracy is the

RMSE in comparison to an MVR image at 4×𝐻𝐷𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛.

2This GPU is now two generations old.

4.2.1 Trading Off Sampling Rate with Splatting. We began our anal-

ysis by investigating the tradeoff between point sampling rate as

controlled by 𝜌𝑠𝑐𝑎𝑙𝑒 , and splatting complexity (which grows as sam-

pling rate declines). Figure 6 shows how EPR’s speed and quality

when rendering the breakfast scene are affected as 𝜌𝑠𝑐𝑎𝑙𝑒 varies

across 1/4, 1/2 and 1; and as shading uses fixed or adaptive sam-

pling rates. The green curve with 𝜌𝑠𝑐𝑎𝑙𝑒 = 1/2 and fixed sampling

are the clear winners, here and in the sponza and gallery scenes.

One can clearly see how speed declines as the average projected

size of reflectors increases (toward upper right of each curve). We

used this configuration of EPR for the remainder of our analysis.

4.2.2 Memory Comparison. EPR’s adaptively sized cubemap buffers

required 12.6MB of memory during evaluation, which is half of the

memory MVR’s cube maps required (25.2MB). In EPR, the total

memory requirement for 20 cubemap buffers is 252MB, and 80MB

per million points, and in MVR, the total memory requirement is

503MB for 20 cubemaps. Current GPU memories can contain more

than a dozen GB.

4.2.3 Speed Comparison. To compare performance, we averaged

GPU run-time and the number of points generated over 1000 frames

of execution, with each technique generating the same views at

different rates.

Table 2 compares EPR’s speed to iVIR’s andMVR’s for the sponza,

breakfast, and gallery scenes. Starting from the top to bottom,

the first three rows name the scene, show the number of reflec-

tive objects and triangles in the scene, and give the average pro-

jected size of reflectors in the scene in pixels. The next row reports

the performance improvement by comparing the EPR time with

MVR’s time and iVIR’s time. The next row reports the normalized

RMSE difference of EPR with MVR and iVIR. This is computed as

(𝑅𝑀𝑆𝐸𝑒𝑝𝑟 − 𝑅𝑀𝑆𝐸𝑚𝑣𝑟 )/255. The next row show EPR’s RMSE in

comparison to MVR HDx4 imagery, total rendering time for one

bounce reflection (with eye-based deferred shading time for single

reflection and a recursive reflection, 2 bounces, in parentheses), view

generation time, and point generation time (with number of points

in parentheses). In two bounces reported above, the first reflection

is sampled 25 times and the second is sampled 4 times. The next

four rows show similar measures for iVIR with mipmapping. The

last two column report MVR with mipmapping RMSE and total

time, The last column reports the performance improvement by

comparing the EPR time with MVR’s time. We highlight the best

performance in the shades of blue.

EPR renders these dynamic, complex cube maps up to 6.7× faster

than MVR. Speedups in comparison to iVIR are similar. EPR per-

formed more slowly in the breakfast scene. This is because the

gallery scene contains more triangles, and its projected reflectors

are larger.

4.2.4 Quality Comparison. Figure 7 shows the sponza, gallery, and

breakfast scenes in close and distant views, as rendered by MVR,

EPR, and iVIR. The visual quality of reflections produced by our

algorithm are quite comparable to that of MVR, despite requiring

significantly less time to render.

Figure 8 zooms in on differences in close views, and offers pos-

sible explanations for EPR’s slightly greater RMSE in comparison
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Scene Sponza Gallery Breakfast

#refl objs

(#tris)

1

(1.05M)

10

(1.07M)

20

(1.11M)

50

(1.20M)

1

(1.00M)

10

(1.03M)

20

(1.06M)

50

(1.16M)

1

(1.53)

10

(2.02M)

20

(2.39M)

50

(2.48M)

avg res 116.1 115.1 114.5 110.8 113.0 114.4 114.1 112.2 174.5 182.9 156.8 106.7

EPR
speedup

vs MVR 1.86 5.91 6.17 5.11 2.09 6.28 6.70 5.41 1.41 2.57 3.07 3.21

vs iVIR 1.62 2.47 2.72 7.29 1.69 2.61 2.94 5.13 1.26 2.38 2.94 6.10

EPR RMSE
nrm dfc

vs MVR 0% -0.004% -0.004% 0.004% 0.004% 0.012% 0.027% 0.067% 0% 0.004% 0.004% 0.016%

vs iVIR 0% -0.008% -0.020% -0.046% 0% 0% 0.004% 0.008% 0% -0.94% 0% -0.008%

EPR

RMSE 1.13 1.15 1.17 1.27 0.81 0.86 0.94 1.17 0.18 0.25 0.31 0.43

tot time

(eye dfrd 1B)

(eye dfrd 2B)

2.43

(0.51)

(0.52)
‘

7.31

(0.83)

(1.46)
‘

14.62

(1.33)

(2.49)

45.46

(2.62)

(4.24)

1.94

(0.65)

(0.74)

5.78

(1.22)

(2.49)

10.88

(1.83)

(3.81)

34.41

(3.95)

(6.96)

3.04

(0.79)

(0.91)

10.94

(1.81)

(3.38)

20.02

(2.31)

(5.75)

49.40

(3.17)

(6.20)

view

gen
0.68 3.84 8.49 27.81 0.15 1.45 3.15 11.37 1.01 5.56 10.45 26.00

point gen

(#points)

1.24

(603K)

2.64

(1.28M)

4.81

(1.47M)

15.03

(1.75M)

1.14

(148K)

3.12

(586K)

5.90

(677K)

19.09

(909K)

1.25

(845K)

3.56

(2.22M)

7.26

(2.88M)

20.23

(3.02M)

iVIR

RMSE 1.13 1.17 1.22 1.39 0.81 0.86 0.93 1.15 0.18 2.49 0.31 0.45

tot time

(dfrd)

3.93

(0.39)

18.06

(0.39)

50.25

(0.41)

331.39

(0.50)

3.25

(0.42)

15.11

(0.42)

32.03

(0.42)

176.53

(0.51)

3.83

(0.34)

26.06

(0.35)

58.88

(0.35)

301.29

(0.47)

view

gen
1.31 12.40 39.82 285.92 0.90 9.49 20.49 122.97 1.38 16.92 40.70 234.54

point gen

(#points)

2.24

(2.79M)

5.27

(5.73M)

10.02

(6.39M)

44.97

(7.69M)

1.94

(1.05M)

5.21

(2.78M)

11.12

(3.23M)

53.05

(4.38M)

2.11

(3.12M)

8.80

(12.23M)

17.82

(16.20M)

66.27

(17.51M)

MVR

RMSE 1.13 1.16 1.18 1.26 0.80 0.83 0.87 1.00 0.18 0.24 0.30 0.39

tot time 4.51 43.22 90.27 232.07 4.05 36.29 72.88 186.02 4.27 28.11 61.54 158.74

Table 2. Comparing speed and quality of EPR vs. iVIR and MVR, for the sponza, gallery, and breakfast scenes with 1-50 reflective objects and

1.0M, 990.8K and 1.5M non-reflective triangles, respectively. We report total time and RMSE, along with point cloud size and generation time for

EPR and iVIR for one bounce. In EPR row, under total time we also mention the eye-based deferred lighting time for one and two bounces.

MVR
232.07ms

MVR
230.46ms

MVR
186.02ms

MVR
184.11ms

MVR
158.74ms

MVR
157.07ms

EPR
45.46ms

EPR
82.26ms

EPR
34.41ms

EPR
57.25ms

EPR
49.40ms

EPR
57.11ms

iVIR
331.39ms

iVIR
842.71ms

iVIR
176.53ms

iVIR
603.92ms

iVIR
301.29ms

iVIR(*20)
142.24ms

Fig. 7. Cube-mapped reflections generated using MVR (top row), EPR (middle row) and iVIR (bottom row); in the sponza (first and second columns),

gallery (third and fourth columns), and breakfast (fifth and sixth columns) scenes; using distant (first, third, and fifth columns) and close (second,

fourth, and sixth columns) views. All use 50 cube maps (300 views), except close iVIR on the bottom right, it renders 20 cubemaps. The close times

were measured as described at the beginning of the subsection, but with different view paths.

to MVRx4. Because it uses conservative rasterization, EPR renders

small details that MVR often ignores. This can be observed in the

red boxes in Figure 8’s second row (sponza scene) and fourth row

(gallery scene) on the sphere magnified, EPR renders the flagpoles

(in sponza) and handlebars (in gallery) , while MVR blurs them. In

the magnified orange boxes for all scenes, EPR preserves the details

at the edge of the sphere (sponza), the wall art (gallery scene), and

the teacup and chair reflections (breakfast scene) and MVR blurs

them.
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MVRx4 MVR MVR EPR EPR iVIR iVIR

MVRx4 MVR MVR EPR EPR iVIR iVIR

MVRx4 MVR MVR EPR EPR iVIR iVIR

Fig. 8. Close view quality comparisons of reflections rendered by MVRx4 at 7680 × 4320 resolution (leftmost column), MVR at 1920 × 1080

resolution (next two columns, with HDR-VDP2 perceptual comparison), EPR (next two columns), and VIR (last two columns). All HDR-VDP2

imagery compare against MVRx4, with red indicating that differences are very perceivable, and blue rarely perceived. (Note: iVIR renders only 20

reflective objects in the breakfast scene on the bottom right corner)

As our supplementary videos show, even though the eye and

reflective objects are moving and EPR generates point clouds frame-

by-frame, reflections are temporally stable under animation.

5 OMNIDIRECTIONAL SOFT SHADOWS USING EPR

To examine the generality and the limits of EPR, we next applied

it to omnidirectional soft shadows. On one hand, omnidirectional

shadows are similar to environment maps, in that they build buffers

(often using cube maps) describing many views of the scene. On the

other hand, they are different, since building buffers containing only

depth gives shaders minimal loads; and unlike reflective objects

for environment maps, the location of shadow receivers (via which

light would flow to the eye, were it not occluded) is not well known.

5.1 Adapting EPR to omnidirectional shadow mapping

To adapt EPR to omnidirectional soft shadow mapping, we must

again map off-screen views to the eye’s view to determine the eye-

resolution sampling rate 𝜌𝑚𝑣 and off-screen buffer sizes. However,

there is no need for deferred shading or filtering of reflections.

When rendering reflections, the position and size of reflective

objects are known, making it simple to find an efficient mapping

that is not overly conservative. But when rendering shadows, things

are not so simple. To build a mapping between the eye and depth

views, the approach we used for environment maps would follow

the (occluded) light path from the eye, to the shadow receiver, to

the light. Unfortunately, the location of the receiver is not well

known, and indeed changes in dynamic scenes. Instead, we find

the distance from the eye to an intermediate surface, the triangle’s

shadow volume.

To calculate EPR’s sampling rate 𝜌𝑚𝑣 for shadows, we find the

ratio of the shortest distance from a light 𝑙 ∈ 𝐿, where 𝐿 is a set

of omnidirectional light samples, to the occluding triangle 𝑑𝑙𝑡 (see

9b). We also find the shortest distance from the eye to the occluding

triangle’s shadow volume 𝑑𝑒𝑣 , by finding the minimum of the dis-

tances from the eye to the two shadow’s volume’s two triangles (the

occluder and a copy at the light’s 𝑍𝐹𝑎𝑟 ) and three quadrilaterals.

We then find the ratio of these distances. Note that when the eye is

close to or indeed inside the shadow volume, this sampling density

may approach infinity. But the practical shadow map sampling rate

, Vol. 1, No. 1, Article . Publication date: December 2022.



Eye-Based Point Rendering for Dynamic Multiview Effects • 9

(a) (b)

Fig. 9. (a) The shadow volume created by a triangle. (b) The shortest

distance from eye to volume 𝑑𝑒𝑣 , and the shortest distance from light

to occluding triangle 𝑑𝑙𝑡 .

is always capped by the resolution of the shadow buffers, so in this

case we use iVIR’s sampling density 𝑠𝑜𝑟𝑡ℎ𝑜 (as discussed in [12]). Eq

5 describes these relationships:

𝜌𝑚𝑣 =𝑚𝑖𝑛(∀𝑙∈𝐿𝑚𝑎𝑥 (
𝑑𝑙𝑡
𝑑𝑒𝑣

), 𝑠𝑜𝑟𝑡ℎ𝑜 ) (5)

(a) MVR (b) iVIR (c) EPR

Fig. 10. Omnidirectional soft shadows rendered using (a) MVR, (b)

iVIR, and (c) EPR. The omnidirectional light is a spherical light (yel-

low sphere at the center of the scene) with 20 samples on its surface,

requiring 120 views.

Computation of splat length is the same as for environment map-

ping, described in Section 4.1.2. Shadow splats need only write their

projected depth into buffers, since they are not lit. For this reason

their storage buffers need not describe surface material. Note that

for shadows, we found it more efficient to let the fragment shader

write subpixel points directly into off-screen shadow buffers, while

the compute shader splatted larger points.

To adaptively resize shadow map buffers, we must know how

large the eye’s pixels would be, if they were (reverse-) projected

onto the receiver. This depends on the distance from the eye to the

receiver. As we generate the eye view’s deferred shading buffer, for

each triangle, we compute the maximum ratio of the shortest dis-

tance of the current triangle from each omnidirectional light (𝑙 ∈ 𝐿)

sample (𝑑𝑙𝑡 ), and the shortest distance of any receiver from the eye

(𝑑𝑒𝑟 ). The required adaptive shadow map resolution 𝑅𝑒𝑠𝑎𝑠𝑚 is then

the maximum of all these per-triangle ratios, over all triangles, mul-

tiplied by the maximum buffer resolution 𝑅𝑒𝑠𝑚𝑎𝑥 . This relationship

is shown in the Eq 6.

𝑅𝑒𝑠𝑎𝑠𝑚 = ∀𝑙∈𝐿𝑚𝑎𝑥 (
𝑑𝑙𝑡
𝑑𝑒𝑟

∗ 𝑅𝑒𝑠𝑚𝑎𝑥 ) (6)

5.2 Results

Here we briefly compare the performance of EPR while rendering

omnidirectional soft shadows to iVIR and MVR. We used the same

testing configuration is same as discussed in 4.2, except that we

used 32-bit unsigned integer buffers, with a maximum adaptive

resolution of 10242. Figure 10c shows that these three algorithms

produced imagery of similar quality.

#light

samples

EPR iVIR
MVR

time
EPR

#points

Frag Shader

time

Compute

time

total

time
#points

total

time

1 8.59𝑀 2.06 1.80 3.86 10.94 M 4.03 2.97

5 8.91𝑀 4.58 2.53 7.11 11.43 M 5.86 7.22

10 9.04𝑀 8.63 4.76 13.39 11.69 M 7.98 15.95

20 9.12𝑀 21.00 7.54 28.54 11.74 M 30.74 31.80

Table 3. Speed comparison of EPR, iVIR, and MVR while generating

omnidirection soft shadows in the dining scene with 1.4𝑀 triangles.

As the number of light samples varies, we report total time and point

cloud size.

Table 3 shows rendering times for the breakfast scene with 1.4𝑀

triangles. The leftmost column shows the number of light samples

on a spherical omnidirectional light. The next column shows EPR’s

point cloud size. The third, fourth and fifth columns show the the

total time for EPR to generate point clouds and make shadow cube

maps using our hybrid approach, with the third column showing

time in the fragment shader, the fourth time in the compute shader,

and the fifth total time. For comparison, the next two columns

report iVIR’s point cloud size and total rendering time, while the

last column reportsMVR’s total time.We observe that EPR generates

slightly fewer points than iVIR, and is slightly faster than iVIR and

MVR.

While this application of EPR to omnidirectional soft shadows

does begin to show its generality, it also shows two important lim-

itations of EPR. First, EPR works best when the size of the point

cloud is well within an order of magnitude of the number of trian-

gles in the model. For omnidirectional shadows, the locations of

shadow receivers are not as well-known as are reflective objects in

environment mapping, requiring a conservative estimate of receiver

distance that increases the size of the point cloud, and reduces the

effectiveness of other eye-resolution constraints on computation.

Second, EPR is most effective when it can amortize large eye-pixel

shader loads across many buffer pixels. Shader loads for shadows are

light, since they need only compare and write depth information.

6 CONCLUSIONS AND FUTURE WORK

This paper describes eye-based point rendering (EPR), a new tech-

nique that can make multiview effects such as dynamic environment

mapping much more practical. EPR achieves these improvements by

introducing new eye-resolution constraints that significantly reduce

point cloud size, and shader loads. In particular, eye-based deferred
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shading realizes efficiencies not only on the first reflection bounce,

but also on recursive bounces by avoiding any additional passes. We

applied EPR to environment mapped reflections and showed that it

is up to 6.7𝑥 faster than MVR, with similar speedups in comparison

to VIR.

Yet EPR does have limitations. An implementation of omnidirec-

tional soft shadows with EPR demonstrated that when shader loads

are low (or in the case of shadow maps, non-existent), the efficien-

cies of EPR’s eye-resolution constraints on shading computation

are reduced. An additional lesson was that when applying EPR to a

new multiview effect, the mapping between the eye and off-screen

views should not be too conservative, to avoid prohibitively large

point clouds.

Nevertheless, our application of EPR to environment mapping

was quite promising, and as a potential application for EPR, shadow

mapping is fairly unique in requiring so little computation for off-

screen views. We will therefore be continuing our work with EPR.

In the near term, we will improve EPR’s triangle visibility check,

making it more exact by performing the check in either the geometry

or fragment shader. We are convinced that our eye-based deferred

shading scheme could be used in other renderers including MVR,

and plan to demonstrate this soon.

In the medium term, because EPR does not perform well when

scenes have many large triangles, we might implement a hybrid

rasterization-EPR renderer, with EPR handling only smaller trian-

gles. Longer term, we will explore the use of EPR with other mul-

tiview effects such as defocus and motion blur. We also plan to

examine the use of EPR for foveation and with light field displays,

which demand tens or hundreds of views in every frame.

At least two GPU improvements might make EPR still more prac-

tical. First, we often used compute shaders to accelerate splatting.

However, while using compute shaders, we could not use graphics

functionality such as hardware depth buffers, mipmapping for fil-

tering and rasterization or variable rate shading for splatting. On

the other hand, fragment shaders were relatively slow Ð likely due

to threading constraints Ð and also could not access rasterizers or

(flexible) variable rate shading. We look forward to more global,

flexible access to such functionality.
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