Eye-Based Point Rendering for Dynamic Multiview Effects

Fig. 1. 300 cube map reflections (50 cubemaps) generated by eye-based point rendering (EPR) for the sponza, breakfast, and gallery scenes [28];
with camera distant showing single reflection (top row) and camera close showing two recursive reflections(bottom row) with a single pass over the
geometry. EPR renders reflections up to 6.7 times faster than multi-pass rendering, and up to 7.2 times faster than improved view independent

rendering (iVIR).

Eye-based point rendering (EPR) can make multiview effects much more
practical by adding eye buffer resolution efficiencies to improved view-
independent rendering (iVIR). We demonstrate this very successfully by
applying EPR to dynamic cube-mapped reflections, sometimes achieving
nearly 7x speedups over iVIR and traditional multiview rendering (MVR),
with nearly equivalent quality. Our application to omnidirectional soft shad-
ows is less successful, demonstrating that EPR is most effective with larger
shader loads and tight eye buffer to off-screen buffer mappings. This is due
to EPR’s eye buffer resolution constraints limiting points and shading calcu-
lations to the sampling rate of the eye’s viewport. In a 2.48 million triangle
scene with 50 reflective objects (using 300 off-screen views), EPR renders
environment maps with a 49.40ms average frame time on an NVIDIA 1080
Ti GPU. In doing so, EPR generates up to 5x fewer points than iVIR, and
regularly performs 50x fewer shading calculations than MVR.
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1 INTRODUCTION

In computer graphics, indirect effects such as coherent reflections
and soft shadows have been difficult to perform on GPU hardware,
which often requires rendering multiple views each needing a pass
over scene geometry, and each creating significant shading loads.
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View independent rendering (VIR) [27] avoids multiple passes
by generating and rendering points in real time. Frame by frame, it
converts the model’s triangles into a set of points fit to the views
the current frame needs. With the points, VIR then renders views in
parallel, requiring nearly an order of magnitude fewer passes. How-
ever, if off-screen views are not similar, the number of points needed
to fill every off-screen buffer pixel rises, increasing the cost of each
pass over VIR’s point set, and reducing VIR’s advantage. Gavane
et al. therefore introduced iVIR [12], which lessened this problem
by resizing off-screen buffers to match the resolution needed in by
the eye-buffer. This enabled rendering of dynamically environment
mapped scenes at 2-4x the speed of MVR.

In this paper, we introduce EPR, which innovates by adding the
the following improvements to iVIR:

e EPR limits point cloud size to eye-buffer resolution, making
the point set up to 5x smaller than VIR’s. This is enabled by
splatting points across several pixels in off-screen buffers.

o EPR limits shader loads by deferring lighting of all off-screen
pixels until they are reflected into an eye-buffer pixel, regu-
larly making shader loads 50X or more smaller than MVR’s.
To enable this, each off-screen buffer becomes an indexed
G-buffer, referencing the needed shading data in the point
set. Moreover, this indirection allows similarly lazy shading
of recursive reflections without additional rendering passes,
magnifying shader speedups further. We call this eye-based
deferred shading. In principle, this should also be possible in
more traditional renderers, as long as they limit memory use
by indexing off-screen buffers.
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These innovations enable rendering of dynamic cube-mapped re-
flections nearly 7x faster than iVIR and multiview rendering (MVR),
at nearly the same image quality. Speedups of omnidirectional shad-
ows are minor, revealing some of EPR’s limitations: significant ef-
ficiencies require meaningful shader loads (unlike shadow maps),
and fairly tight mappings of pixels in the eye buffer to off-screen
buffers. Indeed, in shadow mapping, there is no shading at all, and
so no eye-resolution limits to shader loads at all!

2 RELATED WORK

Realistic rendering requires precise modeling of light flow by sam-
pling Kajiya’s rendering equation [22]. This can be difficult, espe-
cially for effects like soft shadows, depth of field, motion blur and
indirect reflections [25]. MVR is often the best way to achieve this
with rasterizers: putting multiple views into off-screen buffers and
filtering them together when shading. But MVR is slow, with real-
time constraints regularly requiring subsampling [38]. Various MVR
pipelines have been studied (e.g., [8, 19-21, 39]), but even the best of
these slows significantly when generating more than 32 views. Re-
cent ray-tracing hardware has enabled non-MVR solutions, hybrid
rasterization-ray tracing pipelines for computing effects including
reflections, refractions, and shadows [4, 35].

2.1 Reflections and Environment Mapping

Reflections add insight about a surface’s materials and environment,
and can be achieved using ray tracing [40]. However, ray-traced re-
flections can alias, particularly during animation. Avoiding aliasing
either requires more samples or hybridized solutions using raster-
ized reflections [2, 4]. Environment mapping is the best-known ras-
terized solution. It turns images of the environment around each re-
flective object into textures that are accessed using view-dependent
lookups. There are several techniques, most varying the mapping
between textures and the reflective surface [5, 10, 18, 29, 42]. Per-
haps the most widely used is cube mapping [14], because it fits well
in rectangular perspective buffers, permitting interactive reflections.

Environment mapping produces convincing reflections, but if the
scene is dynamic, textures become out of date and must be updated
each frame. Also, if an object is close to the reflective surface, differ-
ent reflective objects will “see” different views of that object, and so
they cannot share the same environment map. These shortcomings
require extensive multiview rendering in each frame, limiting the
use ofenvironment mapping in real time.

2.2 Shadows and Shadow Mapping

Shadows help viewers understand the spatial relationships between
objects. Rasterizers render the “hard” shadows cast by point lights
using shadow mapping [41], which compares the eye’s view and the
light’s view to determine what is in shadow; and shadow volumes
[7], which geometrically models shadow boundaries and finds the
objects intersecting them. More natural “soft shadows” are cast by
realistic light sources with area, instead of imaginary point lights.
Both shadow mapping [9, 17] and shadow volume [1] soft shadow
solutions exist, but both introduce unfortunate tradeoffs between
speed and accuracy. Fast approximations [3, 16] compromise shadow
quality to maintain real-time speed, such as percentage-closer soft
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shadows (PCSS), which renders single-view hard shadows, and then
blurs their boundaries [11, 31].

Most real-world lights emit in many directions. This omnidirec-
tional lighting poses a challenge for current shadow algorithms,
which remain efficient by restricting light (shadow) flow to a lim-
ited range of directions. One rasterized solution creates six shadow
buffers on a cube surrounding each point sample of the the light
source [13, 24].

2.3 Points and iVIR

EPR avoids many rasterization constraints by using points as a ren-
dering primitive [15, 26]. Unfortunately when views change, points
can reveal incorrectly modeled gaps in surfaces. Preventing such
artifacts often requires a prohibitive number of points, or similarly
prohibitive filtering of sparser point sets (e.g., [34]). However, newer
algorithms can avoid such painful tradeoffs. Ritschel et al. [32-34]
adaptively sample according to brightness and view. Schutz et al.
[37] apply compute shaders to render points more quickly.

Marrs et al’s VIR [27] innovates by using the GPU rasterizer
to create a new set of points for every frame, customized to that
frame’s off-screen views. It then renders views in parallel with nearly
an order of magnitude fewer geometry traversals than MVR. VIR
ensures that at least one point reaches every pixel in off-screen
buffers. When views captured in these buffers are self-similar (as in
directional soft shadows), resulting point clouds remain tractably
small. But when views are heterogeneous (as with environment
maps or omnidirectional shadows), point clouds grow, making real-
time performance challenging, particularly when shader loads are
large. To mitigate this problem, Gavane and Watson’s iVIR [12] more
efficiently samples triangles and shrinks off-screen buffers to match
eye buffer resolution, reducing the number of points and shader
loads. This enables application of iVIR to environment mapping
with 2 — 4X speedups over MVR.

3 THE EPR RENDERING PIPELINE

iVIR did improve VIR, but speedups were modest. EPR improves
speeds further with eye-resolution reductions in point cloud size
and shader loads. This section focuses on reductions in point cloud
size, since all shading (including shading of off-screen buffers) is
deferred until the final deferred eye pass.

Figure 2 shows the EPR pipeline. Briefly, the vertex shader de-
termines whether a triangle is visible and therefore sampled at all.
The geometry shader sets the density with which a triangle will be
sampled by points, based on eye-resolution constraints. The raster-
izer produces those points, with fragments treated as points moving
through the fragment shader into storage buffers. The compute
shader splats those points into off-screen view buffers, which are in
fact index G-buffers referencing a point’s shading data in the point
buffers.

We next discuss each pipeline stage in more detail, highlighting
eye-resolution computational constraints.

3.1 The vertex shader computes visibility

Geometry should only be rendered if it might be visible to the eye.
We begin this visibility determination in the vertex shader. After
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applying the model transformation, we conservatively compute the
visibility of the vertex in each of the views to be rendered, creating
a bit string for use later in the pipeline. Because the vertex-view
visibility string will be used to determine the visibility of entire
triangles, we compare the vertex against view frusta that have been
increased in size by 20%.

3.2 The geometry shader sets point cloud density

Ideally, a point cloud should be just dense enough to enable a fully
detailed rendering in the eye’s current view, and no more. Because
EPR recreates its point cloud in every frame, it can aggressively
optimize for the current view, ensuring only that the point cloud

enables full detail in all of the current frame’s off-screen views.

It need not concern itself with views in future (largely unknown)
frames.

When determining point cloud density, EPR ensures that every
pixel in the eye’s view is sampled at least once across all off-screen
views. This eye-resolution sampling is a significant departure from
iVIR, which ensures instead that every pixel in every off-screen
buffer is sampled at least once. EPR’s point clouds will typically be
much less dense than iVIR’s, because they need only ensure that

the eye’s view is fully detailed, rather than every off-screen view.

(On the rare occasions that the eye’s view requires more detail than
any off-screen buffer, we limit cloud density to the resolution of the
maximal off-screen buffer.)

Ensuring that every off-screen view is sampled densely enough
to put at least one sample in each pixel of the eye’s view requires
mapping the off-screen views to the eye’s view, which depends on
the particular multiview rendering technique being used. Sections 4
and 5 describe how we conservatively approximate this mapping
for environment maps, and omnidirectional soft shadows. In both
cases, the result is p,,, which describes the sampling rate needed
by the current triangle.

To produce points for the current triangle, EPR rasterizes it in a

view-independent fashion, with each fragment becoming a point.

The primary function of the geometry shader is to set the triangle up
for view-independent rasterization, at the sampling rate described

by pmo-

We begin by ensuring that the triangle is front-facing in at least
one off-screen view. If so, we center the triangle in the viewport,
and align it to be parallel to the view plane. To achieve this, the
geometry shader computes and applies the Ty, transformation
matrix unique to each triangle as described in Gavane et al. [12].

Next, we calculate the eye buffer resolution sampling rate ppm,, for
the current triangle (see Sections 4 and 5 for examples). To ensure
the current triangle will be sampled at this rate, we simply scale it
by pmo. We define EPR coordinate space as world space coordinates,
transformed by Tyj;4y,, and scaled by sampling density pmao, Sp,,,, »
as shown in the Eq. 1. We apply this composite transform to each
triangle vertex.

Tepr = Spmv * Talign (l)

If the eye’s viewport has a different resolution than the EPR buffer
used to rasterize triangles into points, the ratio of eye over EPR
buffer resolution must be used as an additional scaling factor in
Tepr- This ensures that every eye pixel is sampled. In addition we
have found it useful to allow some flexibility in the rate at which
eye pixels are sampled, enabling a tradeoff between point cloud size
and splatting costs. We introduce a third scaling factor into Tepy,
Pscale: At 1, pscale puts one sample into each eye pixel. Lower values
reduce sampling (e.g. 1/2 makes 1 sample for every two pixels),
while higher values increase sampling (e.g. 2 makes two samples
per pixel). (Note that splatting ensures that holes never occur). We
examine this tradeoff in detail in Section 4.

Inspired by [23], when a projected triangle has an area of 1/10 of
a pixel or less in EPR space, we may stochastically cull it, removing
it from the rendering pipeline to avoid overly dense sampling of
eye pixels. The smaller the area of the triangle A;, the more likely
it will be culled, with probability P, = 1 — 10A;. Although we
cannot mathematically guarantee it, we have never observed any
“holes” resulting in practice, and we estimate their probability to be
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extremely unlikely!. We find that stochastic culling reduces frame
times by roughly 15%.

To the fragment shader, we pass any unculled triangle’s vertices
and splat length in world coordinates, any material coefficients,
and an aggregated triangle-view visibility bit string, with each bit
representing the visibility of the triangle in an off-screen view. If
any triangle vertex is visible in a (conservative) view, the triangle is
visible.

3.3 The rasterizer produces points

The fragments generated as the rasterizer samples the EPR-transformed

triangles are EPR’s points. Note that a pixel in the eye’s viewport
can cover many pixels when mapped into off-screen buffers. Thus
even if an EPR point’s center is outside the triangle, the part of the
triangle it does cover can contain many off-screen pixels. Conserva-
tive rasterization is needed to ensure the rasterizer produces these
points, and avoids any “holes.”

3.4 The fragment shader buffers points

The fragment shader next puts points in multiple storage buffers
for later splatting by the compute shader. The exact content of
these buffers varies depending on the multiview effect being im-
plemented (see e.g. Sections 4 and 5), however at a minimum, the
buffers must contain the triangle vertices, point center and splat
length in world coordinates, along with the triangle-view visibility
string. We currently use five storage buffers: vertices and center are
in three vector4 buffers, length and any materials are in a uvec4
buffer, and the visibility string is in two 64-bit unsigned integer
buffers.

We experimented with a bufferless implementation in which
the fragment shader splatted points directly, rather than buffering
them for processing in compute. This would have the advantage
of avoiding the possibility of buffer overflow. While this produced
identical imagery to our current solution, it was consistently less
than half as fast. Schutz et al. [37] reported similar results.

3.5 The compute shader splats points

The compute shader processes all points in the storage buffers. For
each point and view pairing, if the point’s triangle is visible in the
view, the shader splats the point into that view’s off-screen buffer.

To splat, the shader projects the world-space square defined by
the point center and splat length (oriented to its triangle’s longest
edge) into the current view, resulting a 2D quadrilateral. To simplify
shader computation, we then fill the off-screen buffer pixels in the 2D
bounding box around the quadrilateral with identical values. If the
buffers contain forward rendering results, the lighting computation
need only be performed once per point (at eye resolution), rather
than once per buffer pixel. If off-screen rendering is deferred, every

1A hole will have no uncullable triangles with area greater than 1/10 projecting to it, and
all cullable triangles will be culled. Because well-designed models avoid projecting too
many triangles inside single pixels, we estimate the likelihood Py, of a pixel lacking any
uncullable triangles at 1%. If the average number of cullable triangles in a pixel is 1/A;,
then the likelihood P, of all cullable triangles being culled is PCI/AI. As A; declines,
P, approaches 5 in 100, 000 — and when P, is combined with P,,, the likelihood of a
hole is 5 in 10, 000, 000. Our EPR viewport typically contains only 256K pixels.
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buffer pixel in the bounding box contains an identical reference to
lighting inputs in the storage buffers.

Although the splat defined by the bounding box can only be
slightly larger than an eye pixel, when combined with conserva-
tive rasterization in point generation, the box’s use can noticeably
increase the size of very small (about 1 eye pixel) details. For this
reason, we clip each splat against the edges of its triangle. As we
visit each buffer pixel in the splat bounding box, we fill it only if it
lies inside the triangle. This quality improvement reduces speed by
less than 20%.

The compute shader cannot use Z-buffering hardware, with its
guarantee of atomic data access by parallel threads. Instead, we use
atomic operations on integer buffers. Each off-screen buffer pixel is
a 64-bit unsigned integer with the 32 most significant bits used for
storing the depth of the point, and the remaining 32 bits for storing
point data. For deferred rendering, because 32 bits is not enough to
represent all point data, we adopt the solution described by Burns
et al. [6]: we store only a reference to the point data in the storage
buffers, rather than the data itself.

To reduce memory and bandwidth requirements, we adjust the
sizes of these off-screen buffers to eye resolution in every frame. The
size required depends on the mapping between these buffers and the
eye’s buffer, which in turn depends on the multiview effect to which
EPR is being applied (e.g., Sections 4 and 5). We set the maximum
resolution of any off-screen buffer to half of eye resolution. If buffer
sizes change too frequently, temporal aliasing can become visible.
To avoid this, we limit the frequency of size changes by requiring
that they exceed at least 32 pixels in each dimension. We encourage
readers to view the animations accompanying this paper to gauge
our success in controlling temporal aliasing.

eye

Fig. 3. Conservative multiview sampling density is computed using
the distance dy, the shortest distance travelled by light from triangle(t)
via reflective object(r) to the eye.

4 ENVIRONMENT MAPPING USING EPR

In this section, we describe our application of EPR to environment
mapping. We first discuss how to adapt EPR to environment map-
ping, and continue by examining the speed and image quality of
our EPR-based implementation.

4.1 Adapting EPR to Environment Mapping

To adapt EPR to environment mapping, we must map off-screen
views to the eye’s view to determine the eye-resolution sampling rate



pmo and off-screen buffer sizes, defer shading in off-screen buffers,
and filter reflections.

4.1.1 Mapping off-screen views to the eye’s view. Finding a map-
ping from each off-screen view to the eye’s view lets us constrain
computation to eye-resolution. The mapping should enable efficient
estimation of the size of eye pixels as they are (reverse-) projected
into off-screen buffers. In the case of environment mapping, the light
paths between views move from triangle ¢, to reflective object r, to
the eye. For each triangle, we find d, the shortest distance travelled
by the light from ¢ via r to the eye (see Figure 3). To conservatively
bound d,, we approximate each reflective object with a bounding
sphere, then locate the point cp on this sphere that is closest to the
line from the triangle’s circumcenter cc to the eye [36].

To ensure that each eye pixel is sampled, each triangle must be
sampled at the densest of the rates required by the modeled scene’s
reflective objects. This rate p,, is the maximum over all reflective
objects of the inverse of the sum of the distances de, and dy;, as
described in Eq 2 and Eq 3.

dr = distance(e,r,t) = dey + dyyt (2)

1
Pmo = Vrer max(d_) (3)
r

where R is the set of all reflective object centers r, t is a triangle, de,
is the conservative distance from eye to reflective object, and dy; is
the conservative distance from reflective object to triangle.

As points are projected into off-screen buffers, they will often
cover many pixels. To splat these points and fill these pixels, we
must know point size in world space, which we model with length
¢, the square root of the area of triangle in world space (As) over
the number of samples it covers in the EPR space. This number of
samples is obtained by dividing the area of the EPR transformed
triangle Apr by the area of an EPR pixel (Pepr), Which can be
computed from the graphics window size and the number of pixels
in the viewport. Eq 4 shows the formula for £. When a triangle in
EPR space has subpixel area, we set the ¢ to the square root of the
area of the EPR transformed triangle.

* Pepr 4)

To constrain bandwidth use by eye resolution, we resize off-screen
buffers every frame. We determine the size needed for a particu-
lar view by computing the number of pixels its reflective object’s
bounding box covers when projected into the eye’s view. For envi-
ronment mapping, we find this optimization particularly important:
it reduces frame times by more than 60%.

4.1.2 Eye-based deferred shading. As noted in Section 3.5, EPR’s
buffers are actually G-buffers, storing references to point shading
data rather than RGB colors, and enabling deferred shading. How-
ever, rather than deferring shading until after all points are splatted,
we realize an additional significant eye-resolution efficiency by defer-
ring shading further until the final shading pass over the eye buffer.
Thus off-screen pixels are only shaded if they are reflected into
eye pixels. Figure 4 illustrates this process, and Table 1 shows the
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number of shading operations performed by our eye-based deferred
for single bounce reflection. The operations performed by eye-based
deferred is a magnitude less compared to MVR, which uses deferred
shading pass over each of its cube map views.

4.1.3 Filtering reflections. High quality environment maps require
filtering to accurately represent reflections. Unfortunately, hardware
filtering support such as mipmapping is not available to compute
shaders. We therefore filter during the eye’s deferred shading pass by
obtaining multiple lit samples from lazily shaded off-screen buffers
in every pixel depicting a reflective object. To do so, shaders assume
that normals on reflective objects change regularly, and that the
material within the pixel is unchanging. To support this, in the eye’s
deferred shading buffer we store the reflective object’s local normal
gradient, which we use to supersample reflection directions using
the Poisson distribution. Such supersampling would be prohibitively
slow without EPR’s lazily lit, eye-resolution sampling. We currently
supersample reflective pixels 25 times, a number we chose empir-
ically, because more samples did not improve visual quality. We
experimented with an adaptive scheme that added four samples
until color variance stopped declining, but found that it did not
achieve similar quality without reducing speed.

4.1.4 Eye-based deferred recursive reflections. EPR’s eye-based de-
ferred shading enables further significant eye-resolution efficiencies

Scene #refl objs | avgres | EPR #shading ops | MVR #shading ops | Xtimes
1 116.5 44K 1.51M 34.32

Sponza 10 115.1 146K 15.24 104.38
20 114.5 335K 30.60M 91.34

50 110.3 812K 76.57 94.30
1 113.0 265K 1.12M 4.37

Gall 10 114.4 558K 13.24M 23.73
atery 20 114.1 820K 27.52M 33.56
50 112.2 1.68M 68.54M 40.80
1 174.5 199K 1.54M 7.74

Breakfast 10 182.9 546K 15.30M 28.02
20 156.8 743K 30.61M 41.20

50 106.7 1.09M 78.85M 72.34

Table 1. Number of shading computations carried out by our eye-
based deferred lighting vs the number of shading computations carried
out by MVR for a single bounce reflection.
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(c) three bounces

(a) one bounce (b) two bounces
Fig. 5. Eye-based deferred recursive reflections in the sponza scene,
with two cylindrical reflective objects facing each other. The deferred
shading time taken by (a) one bounce is 1.64ms with 25 samples , (b)
two bounces is 2.92ms with 25 samples on first bounce and 4 samples
on the second, and (c) three bounces is 3.80ms with 25 samples for the
first and 4 samples for the second and third bounce.

by enabling no-pass recursive reflections. In an MVR environment
map renderer, each recursive reflection requires an additional ge-
ometry pass over all off-screen views to a second set of off-screen
buffers, with each pass shading every buffer pixel. In constrast,
within its G-buffer cubes, EPR can simply perform deferred lighting
recursively, following a reflection off of one point onto another.
Figure 5 shows multiple recursions in the sponza scene.

4.2 Results

We compared EPR’s reflections with sampling to reflections gener-
ated by iVIR and MVR. For this comparison, we used OpenGL 4.5
on a PC with an Intel i5-7600K @ 3.80 GHz CPU and an NVIDIA
1080Ti? GPU, running Windows 10 OS. For testing, we used the
sponza, breakfast, and gallery scenes [28], shown in Figure 1. Scenes
were dynamic, with the eye revolving around the scene, and all the
reflective objects moving periodically. We used a physically-based
rendering shader [30] that accessed roughness and metallic textures.
Our cube maps used 64-bit unsigned integer buffers, with a max-
imum adaptive resolution of 5122. The MVR implementation for
environment mapping renders the cubemap for each reflector using
layered rendering, which enables rendering of six views of the cube-
map in a single pipeline pass, followed by hardware mipmapping.

Breakfast Scene Accuracy vs Speed Table
0.6 T

— MVR
—— EPR Rho 1 Fixed
-~ EPRRho 1 Adap
—— EPR Rho 1/2 Fixed
- -~~~ EPR Rho 1/2 Adap
—— EPR Rho 1/4 Fixed
EPR 1/4 Adap

Accuracy [rmse]
-
e
;

0 10 20 30 40 50 60

Speed (in msec)

Fig. 6. Speed vs. accuracy of EPR in the sponza scene as p___,, and
shader sampling method vary. The scenes are viewed from positions
that vary the average projected resolution of reflectors across 68, 106,
128, 160, 208,230, and 260 pixels, forming each curve. Accuracy is the
RMSE in comparison to an MVR image at 4<xHDresolution.

2This GPU is now two generations old.
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4.2.1 Trading Off Sampling Rate with Splatting. We began our anal-
ysis by investigating the tradeoff between point sampling rate as
controlled by pscqre, and splatting complexity (which grows as sam-
pling rate declines). Figure 6 shows how EPR’s speed and quality
when rendering the breakfast scene are affected as pg 47, varies
across 1/4, 1/2 and 1; and as shading uses fixed or adaptive sam-
pling rates. The green curve with ps.,7. = 1/2 and fixed sampling
are the clear winners, here and in the sponza and gallery scenes.
One can clearly see how speed declines as the average projected
size of reflectors increases (toward upper right of each curve). We
used this configuration of EPR for the remainder of our analysis.

4.2.2  Memory Comparison. EPR’s adaptively sized cube map buffers
required 12.6MB of memory during evaluation, which is half of the
memory MVR’s cube maps required (25.2MB). In EPR, the total
memory requirement for 20 cubemap buffers is 252MB, and 80MB
per million points, and in MVR, the total memory requirement is
503MB for 20 cubemaps. Current GPU memories can contain more
than a dozen GB.

4.2.3 Speed Comparison. To compare performance, we averaged
GPU run-time and the number of points generated over 1000 frames
of execution, with each technique generating the same views at
different rates.

Table 2 compares EPR’s speed to iVIR’s and MVR’s for the sponza,
breakfast, and gallery scenes. Starting from the top to bottom,
the first three rows name the scene, show the number of reflec-
tive objects and triangles in the scene, and give the average pro-
jected size of reflectors in the scene in pixels. The next row reports
the performance improvement by comparing the EPR time with
MVR’s time and iVIR’s time. The next row reports the normalized
RMSE difference of EPR with MVR and iVIR. This is computed as
(RMSEepr — RMSEmyr)/255. The next row show EPR’s RMSE in
comparison to MVR HDx4 imagery, total rendering time for one
bounce reflection (with eye-based deferred shading time for single
reflection and a recursive reflection, 2 bounces, in parentheses), view
generation time, and point generation time (with number of points
in parentheses). In two bounces reported above, the first reflection
is sampled 25 times and the second is sampled 4 times. The next
four rows show similar measures for iVIR with mipmapping. The
last two column report MVR with mipmapping RMSE and total
time, The last column reports the performance improvement by
comparing the EPR time with MVR’s time. We highlight the best
performance in the shades of blue.

EPR renders these dynamic, complex cube maps up to 6.7X faster
than MVR. Speedups in comparison to iVIR are similar. EPR per-
formed more slowly in the breakfast scene. This is because the
gallery scene contains more triangles, and its projected reflectors
are larger.

4.2.4 Quality Comparison. Figure 7 shows the sponza, gallery, and
breakfast scenes in close and distant views, as rendered by MVR,
EPR, and iVIR. The visual quality of reflections produced by our
algorithm are quite comparable to that of MVR, despite requiring
significantly less time to render.

Figure 8 zooms in on differences in close views, and offers pos-
sible explanations for EPR’s slightly greater RMSE in comparison
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Scene Sponza Gallery Breakfast
#refl objs 1 10 20 50 1 10 20 50 1 10 20 50
(#tris) (1.05M) (1.07M) (L1IM) (1.20M) | (1.OOM) (1.03M) (L.06M) (L.16M) | (1.53)  (2.02M)  (2.39M)  (2.48M)
avg res 1161 1151 1145 1108 | 1130 1144 1141 1122 | 1745 1829 156.8 106.7
EPR vs MVR 1.86 2.09 141 2.57 3.07 3.21
speedup vs iVIR 1.62 2.47 2.72 1.69 2.61 2.94 1.26 2.38 294 | 610
EPRRMSE | vs MVR 0%  -0.004% -0.004% 0.004% | 0.004% 0.012% 0.027% 0.067% | 0% 0.004%  0.004%  0.016%
nrm dfc vs iVIR 0%  -0.008% -0.020% -0.046% | 0% 0%  0.004% 0.008% | 0% -0.94% 0% -0.008%
RMSE 113 115 117 127 0.81 0.86 0.94 117 0.18 0.25 031 0.43
tot time 243 731 1462 4546 1.94 578 1088 3441 | 304 10.94 20.02 49.40
(eye dfid 1B) | (051)° (0.83)°  (133)  (2.62) | (0.65) (122)  (1.83) (395 | (0.79)  (1.81)  (231) (3.17)
PR (eyedfrd2B) | (052)  (146)  (249) (424) | (074) (249) (38)  (696) | (09)  (338) (575 (6.20)
ng: 0.68 3.84 849  27.81 0.15 1.45 3.15 1137 1.01 5.56 10.45 26.00
point gen 124 2.64 481 15.03 114 3.12 590 19.09 1.25 356 7.26 20.23
(#points) | (603K) (128M) (1.47M) (1.75M) | (148K) (586K) (677K) (909K) | (845K) (2.22M)  (2.88M)  (3.02M)
RMSE 113 117 122 139 0.81 0.86 0.93 115 0.18 249 031 0.45
tot time 393 1806 5025 33139 | 325 1511 3203 17653 | 383 26.06 5888 301.29
(dfrd) (039 (039)  (041)  (050) | (042)  (0.42)  (0.42)  (0.51) | (0.34)  (0.35)  (0.35) (0.47)
VIR ‘g:: 131 1240  39.82 28592 | 0.90 949 2049 12297 | 138 16.92 4070 23454
point gen 224 527 1002 4497 194 521 1112 5305 | 211 8.80 17.82 66.27
(#points) | (279M) (5.73M) (6.39M) (7.69M) | (1.05M) (2.78M) (3.23M) (4.38M) | (3.12M) (12.23M) (16.20M) (17.51M)
RMSE 113 116 1.18 1.26 0.80 0.83 0.87 1.00 0.18 0.24 0.30 0.39
MVR tot time 451 4322 9027 23207 | 405 3629  72.88 18602 | 427 28.11 6154  158.74

Table 2. Comparing speed and quality of EPR vs. iVIR and MVR, for the sponza, gallery, and breakfast scenes with 1-50 reflective objects and
1.0M, 990.8K and 1.5M non-reflective triangles, respectively. We report total time and RMSE, along with point cloud size and generation time for
EPR and iVIR for one bounce. In EPR row, under total time we also mention the eye-based deferred lighting time for one and two bounces.

MVR
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331.39ms
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MVR
157.07ms
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Fig. 7. Cube-mapped reflections generated using MVR (top row), EPR (middle row) and iVIR (bottom row); in the sponza (first and second columns),
gallery (third and fourth columns), and breakfast (fifth and sixth columns) scenes; using distant (first, third, and fifth columns) and close (second,
fourth, and sixth columns) views. All use 50 cube maps (300 views), except close iVIR on the bottom right, it renders 20 cubemaps. The close times

were measured as described at the beginning of the subsection, but with different view paths.

to MVRx4. Because it uses conservative rasterization, EPR renders
small details that MVR often ignores. This can be observed in the
red boxes in Figure 8’s second row (sponza scene) and fourth row
(gallery scene) on the sphere magnified, EPR renders the flagpoles

them.

(in sponza) and handlebars (in gallery) , while MVR blurs them. In

the magnified orange boxes for all scenes, EPR preserves the details
at the edge of the sphere (sponza), the wall art (gallery scene), and
the teacup and chair reflections (breakfast scene) and MVR blurs
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Fig. 8. Close view quality comparisons of reflections rendered by MVRx4 at 7680 X 4320 resolution (leftmost column), MVR at 1920 x 1080
resolution (next two columns, with HDR-VDP2 perceptual comparison), EPR (next two columns), and VIR (last two columns). All HDR-VDP2
imagery compare against MVRx4, with red indicating that differences are very perceivable, and blue rarely perceived. (Note: iVIR renders only 20

reflective objects in the breakfast scene on the bottom right corner)

As our supplementary videos show, even though the eye and
reflective objects are moving and EPR generates point clouds frame-
by-frame, reflections are temporally stable under animation.

5 OMNIDIRECTIONAL SOFT SHADOWS USING EPR

To examine the generality and the limits of EPR, we next applied
it to omnidirectional soft shadows. On one hand, omnidirectional
shadows are similar to environment maps, in that they build buffers
(often using cube maps) describing many views of the scene. On the
other hand, they are different, since building buffers containing only
depth gives shaders minimal loads; and unlike reflective objects
for environment maps, the location of shadow receivers (via which
light would flow to the eye, were it not occluded) is not well known.

5.1 Adapting EPR to omnidirectional shadow mapping

To adapt EPR to omnidirectional soft shadow mapping, we must
again map off-screen views to the eye’s view to determine the eye-
resolution sampling rate p,,, and off-screen buffer sizes. However,
there is no need for deferred shading or filtering of reflections.

, Vol. 1, No. 1, Article . Publication date: December 2022.

When rendering reflections, the position and size of reflective
objects are known, making it simple to find an efficient mapping
that is not overly conservative. But when rendering shadows, things
are not so simple. To build a mapping between the eye and depth
views, the approach we used for environment maps would follow
the (occluded) light path from the eye, to the shadow receiver, to
the light. Unfortunately, the location of the receiver is not well
known, and indeed changes in dynamic scenes. Instead, we find
the distance from the eye to an intermediate surface, the triangle’s
shadow volume.

To calculate EPR’s sampling rate pp,, for shadows, we find the
ratio of the shortest distance from a light [ € L, where L is a set
of omnidirectional light samples, to the occluding triangle dj; (see
9b). We also find the shortest distance from the eye to the occluding
triangle’s shadow volume dg, by finding the minimum of the dis-
tances from the eye to the two shadow’s volume’s two triangles (the
occluder and a copy at the light’s Zp,,) and three quadrilaterals.
We then find the ratio of these distances. Note that when the eye is
close to or indeed inside the shadow volume, this sampling density
may approach infinity. But the practical shadow map sampling rate
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Fig. 9. (a) The shadow volume created by a triangle. (b) The shortest
distance from eye to volume dey, and the shortest distance from light
to occluding triangle dy;.

is always capped by the resolution of the shadow buffers, so in this
case we use iVIR’s sampling density s,,p, (as discussed in [12]). Eq
5 describes these relationships:

) d
Pmo = mln(VlELmGX(di)asortho) ®)
ev

(a) MVR

(b) iVIR (c) EPR

Fig. 10. Omnidirectional soft shadows rendered using (a) MVR, (b)
iVIR, and (c) EPR. The omnidirectional light is a spherical light (yel-
low sphere at the center of the scene) with 20 samples on its surface,
requiring 120 views.

Computation of splat length is the same as for environment map-
ping, described in Section 4.1.2. Shadow splats need only write their
projected depth into buffers, since they are not lit. For this reason
their storage buffers need not describe surface material. Note that
for shadows, we found it more efficient to let the fragment shader
write subpixel points directly into off-screen shadow buffers, while
the compute shader splatted larger points.

To adaptively resize shadow map buffers, we must know how
large the eye’s pixels would be, if they were (reverse-) projected
onto the receiver. This depends on the distance from the eye to the
receiver. As we generate the eye view’s deferred shading buffer, for
each triangle, we compute the maximum ratio of the shortest dis-
tance of the current triangle from each omnidirectional light (I € L)
sample (d};), and the shortest distance of any receiver from the eye
(der). The required adaptive shadow map resolution Resgsm is then
the maximum of all these per-triangle ratios, over all triangles, mul-
tiplied by the maximum buffer resolution Respqx. This relationship
is shown in the Eq 6.
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d
Resgsm = VleLmax(di * Resmax) (6)
er

5.2 Results

Here we briefly compare the performance of EPR while rendering
omnidirectional soft shadows to iVIR and MVR. We used the same
testing configuration is same as discussed in 4.2, except that we
used 32-bit unsigned integer buffers, with a maximum adaptive
resolution of 10242, Figure 10c shows that these three algorithms
produced imagery of similar quality.

EPR iVIR
#light MVR
6 EPR | Frag Shader | Compute | total . total .
samples . . . . #points . time
#points time time time time
1 8.59M 2.06 1.80 3.86 || 10.94M | 4.03 2.97
5 8.91M 4.58 2.53 7.11 11.43M | 5.86 7.22
10 9.04M 8.63 4.76 13.39 || 11.69M | 7.98 15.95
20 9.12M 21.00 7.54 28.54 || 11.74 M | 30.74 || 31.80

Table 3. Speed comparison of EPR, iVIR, and MVR while generating
omnidirection soft shadows in the dining scene with 1.4M triangles.
As the number of light samples varies, we report total time and point
cloud size.

Table 3 shows rendering times for the breakfast scene with 1.4M
triangles. The leftmost column shows the number of light samples
on a spherical omnidirectional light. The next column shows EPR’s
point cloud size. The third, fourth and fifth columns show the the
total time for EPR to generate point clouds and make shadow cube
maps using our hybrid approach, with the third column showing
time in the fragment shader, the fourth time in the compute shader,
and the fifth total time. For comparison, the next two columns
report iVIR’s point cloud size and total rendering time, while the
last column reports MVR’s total time. We observe that EPR generates
slightly fewer points than iVIR, and is slightly faster than iVIR and
MVR.

While this application of EPR to omnidirectional soft shadows
does begin to show its generality, it also shows two important lim-
itations of EPR. First, EPR works best when the size of the point
cloud is well within an order of magnitude of the number of trian-
gles in the model. For omnidirectional shadows, the locations of
shadow receivers are not as well-known as are reflective objects in
environment mapping, requiring a conservative estimate of receiver
distance that increases the size of the point cloud, and reduces the
effectiveness of other eye-resolution constraints on computation.
Second, EPR is most effective when it can amortize large eye-pixel
shader loads across many buffer pixels. Shader loads for shadows are
light, since they need only compare and write depth information.

6 CONCLUSIONS AND FUTURE WORK

This paper describes eye-based point rendering (EPR), a new tech-
nique that can make multiview effects such as dynamic environment
mapping much more practical. EPR achieves these improvements by
introducing new eye-resolution constraints that significantly reduce
point cloud size, and shader loads. In particular, eye-based deferred
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shading realizes efficiencies not only on the first reflection bounce,
but also on recursive bounces by avoiding any additional passes. We
applied EPR to environment mapped reflections and showed that it
is up to 6.7x faster than MVR, with similar speedups in comparison
to VIR.

Yet EPR does have limitations. An implementation of omnidirec-
tional soft shadows with EPR demonstrated that when shader loads
are low (or in the case of shadow maps, non-existent), the efficien-
cies of EPR’s eye-resolution constraints on shading computation
are reduced. An additional lesson was that when applying EPR to a
new multiview effect, the mapping between the eye and off-screen
views should not be too conservative, to avoid prohibitively large
point clouds.

Nevertheless, our application of EPR to environment mapping
was quite promising, and as a potential application for EPR, shadow
mapping is fairly unique in requiring so little computation for off-
screen views. We will therefore be continuing our work with EPR.

In the near term, we will improve EPR’s triangle visibility check,
making it more exact by performing the check in either the geometry
or fragment shader. We are convinced that our eye-based deferred
shading scheme could be used in other renderers including MVR,
and plan to demonstrate this soon.

In the medium term, because EPR does not perform well when
scenes have many large triangles, we might implement a hybrid
rasterization-EPR renderer, with EPR handling only smaller trian-
gles. Longer term, we will explore the use of EPR with other mul-
tiview effects such as defocus and motion blur. We also plan to
examine the use of EPR for foveation and with light field displays,
which demand tens or hundreds of views in every frame.

At least two GPU improvements might make EPR still more prac-
tical. First, we often used compute shaders to accelerate splatting.
However, while using compute shaders, we could not use graphics
functionality such as hardware depth buffers, mipmapping for fil-
tering and rasterization or variable rate shading for splatting. On
the other hand, fragment shaders were relatively slow — likely due
to threading constraints — and also could not access rasterizers or
(flexible) variable rate shading. We look forward to more global,
flexible access to such functionality.
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