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Abstract

We explore the holographic proposal involving spacetimes with linear dilaton
asymptotics in three dimensions from a gravity perspective. The holographic dual
shares some properties with a symmetric product conformal field theory deformed by a
single-trace analogue of the TT deformation. We present solutions of ten-dimensional
supergravity which interpolate from BTZ black holes in the interior to either a linear
dilaton spacetime near infinity, or to flat space. This allows a precise identification of
field theory parameters with gravity parameters. The solutions manifestly exhibit the
square root structure that is characteristic of TT-deformed conformal field theories.
We compute the mass of the spacetimes using the covariant phase space formalism
and find agreement with the square root formula for the case of black holes without
spin. We also discuss whether closed string tachyons might play a role when the

deformation parameter becomes too large and the vacuum becomes unstable.



Contents

1 Introduction 1
2 Type IIB Supergravity Brane Solutions 5
2.1 Constraints from Flux Quantization . . . . . . . . . ... ... ... .. ... 6
2.2 Review of NS5-Brane and F-String Bound State . . . . . .. ... ... ... 7
3 Generalized NS5-Brane and F1-String Solutions 9
3.1 Characterizing the General Solution . . . . . . . .. .. .. ... ... .. .. 10
3.2 Solutions with ALD Asymptotics . . . . . .. ... ... ... ... ..... 11
3.3 Solutions with Flat Space Asymptotics . . . . . . . .. ... ... ... ... 13
4 Mass Calculation 13
4.1 Surface Charges in Gravitational Theories . . . . . . . . .. ... ... ... 14
4.2 Evaluating the Charge . . . . . . . . . .. ... ... o 20
4.3 Winding Tachyon . . . . . . . . . . . . 22
5 The Two Parameter Family of Solutions 23
A Derivation of General Solutions 29
A.1 The partially decoupled case ks =0 . . . . . . . .. ... ... ... .. 30
A.2 The asymptotically flat case where ks >0 . . . ... ... ... ... .. 38

1 Introduction

Although holography for asymptotically AdS spacetimes has been extensively studied and
tested in a variety of contexts, holography for spacetimes with non-AdS asymptotics is
poorly understood. This certainly includes the cases of asymptotically flat and asymp-
totically de Sitter spacetimes. There are good reasons to suspect that new structures in
quantum field theory are needed to define quantum gravity in such spacetimes, should such
gravity theories exist. If one assumes a correspondence similar in spirit to the AdS/CFT
correspondence then any holographic description is forced to have a high-energy density of
states that grows faster than a local quantum field theory in order to match the spectrum
of large black holes. If one is in low enough dimension, this obstruction might be avoided
but it seems hard to avoid in theories with propagating gravitons.

It seems reasonable then to suspect that a field theory dual to a non-AdS spacetime,



with a potentially rich spectrum of black holes, might be controlled by some structure other
than a local quantum field theory at high energies. On the other hand, we have recently
learned that some special irrelevant deformations of local quantum field theories possess
exactly the property of dramatically modifying the ultraviolet behavior of the theory. It
is an exciting prospect that the new structures seen in quantum field theory by turning
on controlled irrelevant deformations might play a role in defining quantum gravity on
non-AdS spacetimes.

The most prominent family of controlled irrelevant deformations, which has generated
considerable recent excitement, involves operators constructed from bilinears of conserved
currents in two-dimensional quantum field theories. The first example in this family is the
TT operator of [1]. This operator, which can be used to deform any 2d QFT, is given by
the combination det(7),

TT(x) = lim (T"(2) T, (y) — T, (2)T7, (v)) (1.1)

Yy—x

where 7}, is the stress tensor of the theory. Although this definition involves a coincident-
point limit of local operators, all OPE divergences which arise in this limit are proportional
to total derivatives. These total derivatives do not contribute to one-point functions in
translationally invariant states. Therefore, up to fairly harmless total derivative ambigu-
ities, one can always define a local irrelevant operator from the stress tensor using (1.1).
Since any 2d QFT with translation invariance admits a stress-energy tensor, this operator
is universal. We will call this the double-trace T'T deformation to distinguish it from a
different deformation of interest in this work.

We define a flow in the space of theories with tangent vector [ TT(x). The flow param-
eter A has length dimension 2. The stress tensor must be recomputed at each step along the
flow, and the composite operator (1.1) is constructed using this A-dependent stress tensor.
Quantizing this theory on a cylinder of radius L gives an energy spectrum which satisfies
the inviscid Burgers’ equation:
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Pu(L)?

L

(En(L,N)?) + (1.2)

Here E, are the energies and P, are the quantized momenta [1-3].

There is considerable evidence that this deformation defines a theory at the quantum
level for flat and even AdS, spacetimes [4], and leads to a new structure beyond local
quantum field theory. For example, the high-energy density of states exhibits a Hagedorn
growth which can be inferred from the explicit solution of (1.2) for a T'T-deformed CFT,
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on a cylinder of radius L,

L ANE, 4NP2
En(A):ﬁ<\/1+ = —1), (1.3)

where E,(\) is the deformed energy, E, is the undeformed CFTy energy and P, is the

momentum of the n'" eigenstate.! Many of the basic questions that one might ask about
this new structure, like the nature of physical observables, are still unsettled.
If one instead considers the symmetric product orbifold Sym™ (CFTy) = (CFTy)N /Sy

then we could deform by the single-trace operator

D(w) = lim 3~ [(T@)" (T)),., — (), (L)) (1.4)

which exists at the orbifold point [6], instead of the usual double-trace operator

TT(z) = lim [(Zn@))””@n(y))w - (Zn<x>)“u(2n<y>)"yl . ()

Here T; denotes the stress tensor for the i*® copy of CFT5 in the symmetric product.
There is a very intriguing holographic proposal for defining quantum gravity in space-
times with linear dilaton asymptotics in three dimensions [6-8]. Such backgrounds include
solutions that interpolate between AdSs spacetimes and linear dilaton spacetimes [9-11].
The proposal is that deforming by an operator like (1.4), although not precisely this oper-
ator,” provides the holographic description of this system [6-8]. The specific backgrounds
studied arise as limits of the gravitational solution describing a collection of type II NS5-
branes and fundamental strings. Such a gravitational solution has a holographic description
controlled in the ultraviolet by the conjectured little string theory supported on the NS5-

branes; for reviews, see [13, 14].

LAll of our discussion is for the “good” sign of the deformation, which corresponds to A > 0. For this
sign, all of the energies are real for sufficiently small A\. For the “bad” sign A < 0, most of the energies
are complex. If one considers sequential flows by irrelevant operators then the bad sign behavior can be
cured [5].

2The holographic definition of AdSs string theory with NS-flux cannot be the symmetric product orb-
ifold, aside possibly from the stringy case of a single NS5-brane [12]. Rather the holographic theory is
suspected to correspond to a marginal deformation of the orbifold theory. The existence of a well-defined
irrelevant operator analogous to (1.4) away from the orbifold point is in no sense obvious. For our purpose,
what is important is that an energy formula like (1.3) exists for at least some states in the holographic

description.



This example is especially interesting because an asymptotically linear dilaton (ALD)
spacetime is structurally quite different from an asymptotically AdS spacetime. For in-
stance, AdS has a timelike boundary but an ALD spacetime has a null component in
the boundary. We might therefore expect holography in the ALD setting to differ signifi-
cantly from the familiar AdS/CFT correspondence. Much of the progress in realizing that
deformations in the spirit of D(z) play a role in holography has come from worldsheet
considerations. In the specific case of the M = 0 BTZ background with pure NS-flux, there
is a marginal worldsheet deformation that generates the ALD spacetime [9, 10]. The effect
of this worldsheet deformation on the long string excitation spectrum has been argued to
match the way D(z) deforms the energies of the symmetric product orbifold [6]. This is
compelling evidence that something like a single-trace T'T operator, with a similar effect
on the energy spectrum, should exist in the actual holographic CFTy which defines AdS;
with pure NS-flux.

Our goal in the present work is to provide a complementary view of this holographic
proposal: rather than using a worldsheet construction, we will work primarily in the target
spacetime and perform an analysis using only classical general relativity. We find families of
solutions which look like AdS3 spacetimes in the interior but with either ALD asymptotics
(3.5) or flat space asymptotics (3.8). What is striking about these solutions, which are
parametrized by the mass and spin (M J ) of the interior BTZ black hole, is that the

dilaton solution exhibits exactly the square root form seen in (1.3):

o 131 8 4 16 (k) 5 (16)
a P2+ kyr? ' '
The radial coordinate in (1.6) is 7 while the parameter k; corresponds to A of (1.3) via the
relation:
()2 [ms|

2R?
The constants r5 and 71 in (1.6) are fixed length scales determined by the number of NS5-

A= ki . (1.7)

branes, ms, and the number of fundamental strings, m;. The string length is £, = v/o/ and
R is the size of an asymptotic circle which is finite in string-frame and characteristic of the
ALD spacetime.

It is worth noting that the effect of the k; deformation is detectable even in the deep
interior where r is very small. For example, the AdS3 length scale is k;-deformed in a mass
and spin-dependent way. Alternately, the value of the dilaton at » = 0 in (1.6) is now mass

and spin-dependent while it is simply constant in the case of AdSs. Said differently: the
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gravity solution ‘knows’ about the irrelevant deformation of the holographic CFT even in
regions of spacetime normally associated to the deep infrared of the CFT.

Our conventions can be found in section 2 along with a review of the M = 0 brane
solutions. In section 3 we summarize the final form of the various families of solutions
with mass and spin. A more detailed analysis leading to these solutions can be found in
Appendix A. In section 4, we use the covariant phase space formalism to compute the
mass of the ALD solutions. For the case without spin, we find a square root form for the
mass of the spacetime (4.28) in accord with our expectations for a T7T-like deformation
of the holographic description. The case with spin is more subtle because of issues with
charge integrability which we discuss in section 4.2. Lastly, in section 4.3 we briefly explore
whether a closed string tachyon might play a role in understanding the fate of the vacuum
state when the deformation parameter becomes too large.

Some generalizations of the holography discussed here for the pure NS background
to cases with (p,q) 5-branes, which really require the kind of gravity approach we have

employed, will appear elsewhere.

Note Added: The results in this paper have been in a state of partial completion for quite
a long time. During that period two interesting papers appeared with related results from
different approaches [15, 16]. The long delay can, in part, be attributed to the arrival of
a new baby during the COVID lockdown. After this paper appeared, we were informed of
other potentially related work [17].

2 Type IIB Supergravity Brane Solutions

We first want to find general solutions of type II supergravity with NS5-brane and fun-
damental string charge that asymptote to flat space. There will be two decoupling limits
that play a role in our discussion and we will want to write the solutions in convenient
coordinates for exhibiting these limits.

As a starting point, in this section we review brane solutions of type IIB supergravity,
which fully decouple to the Poincaré patch of the M = 0 BTZ background. In section 3, we
will find the general class of solutions with non-zero mass and spin. Because the solutions
involve a torus, we can dualize between type ITA or type IIB string theory; for concreteness,

we will discuss solutions of the type IIB equations of motion.



2.1 Constraints from Flux Quantization

To fix conventions, let us begin with the bosonic action for ten-dimensional type IIB su-

pergravity in string-frame:

. 1 1
Sup = 2 )7 OV ot /dmm V- { o (R+4(8‘D)2 - E|H3|2> - §|F1|2

1
—E|F3—COH3|2 T 5‘|F5|2} (2.1)

where ﬁ5 =dC, — %CQ ANHsz+ %Bg A F3.> We define the gravitational constant
2 1 7 14 23
Klo = 5(2#) a e (2.2)

in terms of the string length, ¢, = v/o/, and the asymptotic value of the string coupling
gs = e®°. The hatted variables § and R refer to string-frame quantities.

The analysis of TT-like deformations and holography in general flux backgrounds —
when the Ramond fluxes Cy, C5, C4 may be nonzero — will be explored in future work.
For our present purposes, we will restrict to the case of pure NS fluxes. In this case, it is
consistent to set Co = Cy=C,; = 0.

We will consider solutions of the form Mjs x S3 x T4, The T* factor is a spectator
which could also be replaced by K3 without changing the analysis. Although not visible in

supergravity, in string theory flux quantization through the S requires that

1
A2’ Jgs

H; =m;, (2.3)

where mj is an integer corresponding to the NS5-brane charge.

There is another quantization condition on the dual field strength. If we define
H7:6_2¢’*H3, (24)

then this form satisfies the following quantization condition for any 7-cycle X7,

L
(2m)%(")? Jx,

3We use boldface to denote differential forms to conform with the notation often found in the gravity

H7:m1€Z. (25)

literature and used in section 4.



2.2 Review of NS5-Brane and F-String Bound State

There is a well-known class of solutions in type IIB supergravity which satisfy the flux
quantization conditions outlined in the previous subsection and which form the prototype
for the generalized solutions that we will consider in section 3. These much-studied solutions
are interpreted as bound states of m; fundamental strings and ms NS5 branes, where mq, ms
are the integers appearing in the quantization conditions (2.5) and (2.3), respectively.

One way of presenting these solutions [18], which is nicely reviewed in [19], is

_ 1 fi 1
e 2 = ?ﬁ’ Bos = E -1, Hipnp = € 9y(log f5)
S
~2  —dt? +dz?
B =T | i) ¢ (i) 26)
where m,n,p,q =1,...,4, €nnpq is the volume form for f; 2?21 dx? and
2 4,2 13 2 /
B T 167 gia"my _ Ty a’'ms
fl—l—l-ﬁ_l—FT, f5_1+ﬁ_1+ 2 (2.7)

In these expressions, r represents a radial coordinate in the four-dimensional space trans-
verse to the NS5-branes parameterized by @1, 22, o3, 74, while the coordinates 2%, 27, 2%, °
parametrize a torus with volume Vj;. The asymptotic region corresponds to large . The
constant g, specifies the asymptotic value of the string coupling. We have a choice about

how to treat x5. To patch to AdS; in the interior, we will periodically identify
Ty Nx'5+27TR. (28)

Note that the flux Hj3 has two separate contributions, one arising from the explicit H,,,
components and one arising from H = dB with B = Bys; dxz° A dz® and Bys as indicated
in (2.6).

The solution (2.6) contains at least two qualitatively different asymptotic regions. For
r > 11,15, the solution approaches flat 10-dimensional Minkowski space. On the other
hand, in the near-horizon limit » < 7y, r5, the sphere and torus become spectators and we
recover an effective three-dimensional gravity solution which is diffeomorphic to a Poincaré
patch of AdSs.

We will refer to the full spacetime with the asymptotically flat region retained as the
undecoupled or totally undecoupled solution, and the near-horizon solution in the deep bulk
as the decoupled or totally decoupled solution. The process of taking the full decoupling

limit may be thought of as simultaneously sending the asymptotic string coupling g; — 0
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and sending o/ — 0, along with a re-scaling of coordinates. Alternatively, one may think
of this decoupling limit as dropping the 1’s in the harmonic functions f; and f5 so that
2 2

Partial Decoupling

There is also an intermediate regime in this spacetime which looks neither like AdS;3 in the

Poincaré patch nor like flat space. To take this limit, define r = g, and take g; — 0 giving,

~9 ~2 9 _dt2 d 2 2
L T_2 (1 i %) ’ ds — % + %’dﬁ + r2dQ5 + dsia
s r 1 r
72 167%a®m (29)
1 1 n
f1:1+§:1+W, 1T = gsr -

2 2
This amounts to replacing f5; = 1+ :—3 by f5 = :—3, but retaining the full function f; without

2
dropping the 1 there, since :—; is not necessarily big.

Full Decoupling

The fully decoupled solution is found by making r very small and dropping the 1 in f; [20].

To put the resulting metric in a conventional AdS; form, we define dimensionless variables

R2 i ~ t

~2 ~92 ~ 5 ~

7 7 (9——N<Q—|—27T t=—. 2.10
Tgf’%’ R ’ R ( )

In these variables the metric takes the form
2 =2 ) oy, A7 2 2

ds” =02 (7 (—d¥® + dp°) + =5 +dY ) +ds,
(2.11)

20 7:27”% 72% decoupling f%

A

where ¢ = r5 is the AdS;3 length scale. We note that the size, R, of the x5 circle at infinity

is absorbed into a redefinition of time and therefore energy. This will play a role later when

we compare energies in the partially decoupled theory to energies in the AdS;3 region. The

last comments on the fully decoupled case concern the value of the gravitational coupling

in the AdSs theory which is given by,

2
(k3)® = 871Gy = _ 2t (2.12)

\mﬂ\/ \m5|’

and the central charge of the dual holographic CFT which is given by

3¢



We can identify the radius L of the holographic CFT by noting that the mass of global
AdS; is —ﬁ. This corresponds to the ground state of the CFT with energy —5+ so we

identify:
L=10=+/|ms|ls. (2.14)

This is independent of the radius R of the x5 circle which appears in (2.8).

As we discussed in the introduction, gravity solutions of the partially-decoupled form
have been argued to have field theory duals which are obtained by deforming a conformal
field theory by an irrelevant operator related to TT [6-8]. These solutions have also been
shown to arise from TsT transformations [15, 16, 21]. In the following section we will
generalize these well-known solutions for the M = 0 BTZ case without spin to metrics
which interpolate from a general spinning BTZ black hole in the interior to either an

asymptotically linear dilaton spacetime or to an asymptotically flat spacetime.

3 Generalized NS5-Brane and F1-String Solutions

In this section, we will present a class of supergravity solutions with the desired quantized
charges, symmetries and asymptotic behavior. These solutions can be interpreted as bound
states of a system of F1 strings and NS5-branes that interpolate between an AdSs3 black
hole in the deep interior with some mass and spin to either a linear dilaton solution in
the asymptotic region, or to asymptotically flat six dimensions at large distances. We
will separately present those two cases because the latter is a more complicated class of
solutions.

The full spacetime equations of motion are quite difficult to solve in generality without
some physically reasonable metric ansatz as an input. Our ansatz is spelled out in Appendix
A along with the calculations of the metric and dilaton functions, and the details of the fairly
involved asymptotic matching needed to identify the physical parameters of the solution.
The aim of this section is to present clearly the assumptions going into the analysis and
the final solutions. There are other classes of solutions in Appendix A, which are even
more surprising: they appear to interpolate from an AdSs; spacetime in the interior to an
asymptotic 3-dimensional spacetime with positive curvature. Whether those solutions are

fully sensible will be explored elsewhere.



3.1 Characterizing the General Solution

We will look for solutions to the equations of motion of type IIB supergravity, written using

the same coordinates as (2.6), which satisfy the following assumptions:

1. Asymptotics. We assume that near infinity the family of solutions approach either
the linear dilaton asymptotic form seen in (2.9), or the flat space asymptotic form
seen in (2.6). We will insist that the isometries of T, S® and S* are preserved by the
solutions. This collapses the unknown functions in the metric, fluxes and dilaton to
functions of r and possibly time ¢. We assume these coordinates can be extended to
global coordinates for our spacetime soution. Lastly, we assume the metric, dilaton,

and NS-flux admit an expansion in powers of % near r — 00.

Near r = 0, we insist the solution takes the form Mj x S® x T* with the dilaton ®
tending to a constant. We need this form if we are to interpret the holographic theory
as some kind of deformed CFT.

2. Symmetries. We assume that the solution is stationary and therefore only depends
on the radial coordinate r. Because the spacetime is assumed to be stationary but
not static, the timelike Killing vector d; need not be irrotational. However, we will
constrain the allowed rotation to occur only in the x5 direction. Operationally, this
means that a non-vanishing metric component g,. is allowed — corresponding to a
spinning BTZ black hole at small » — but no other off-diagonal metric components

are permitted.

3. Fluxes. We assume that the Ramond potentials C,, are all vanishing and that the
NS flux H3 = dB, only threads the three-dimensional submanifolds S and Mj. So
H3; is a sum of the volume forms €gs and €, on S® and M3, respectively, with
coefficients that can in principle depend on r. Finally, we impose the usual flux

quantization conditions (2.3) and (2.5) on Hj required by string theory.
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3.2 Solutions with ALD Asymptotics

The J =0 case

From the analysis presented in Appendix A, we find the following solutions in string-frame

for the case where the black hole has no spin:

2

% 1 2

ds? = ——— - dt* + —— da? + S dr® 4 12 dQE 4 dsta
kl‘i‘% kl"‘% 7"2—062

2 Mr2 .
o T3\ 148k o2 = 8MT%T§ ) , o 16miamy | (3.1)

et = 2V
72+ kg2 Vi

These solutions depend on a dimensionless parameter k;. The fully decoupled pure AdSs
solutions correspond to k1 = 0. We will momentarily identify k; with the deformation
parameter A of a TT-deformed theory. It is important to point out that the M =0
solutions, which match (2.9), are sensitive to whether k; is zero or non-zero. However, the
precise value of k; is not important and can be absorbed in a rescaling of coordinates. This
reflects the fact that F = 0 states remain zero energy under a 7T deformation: namely,
zero energy does not flow. Any case with M = 0, however, is sensitive to the value of k.

Note that the x5 circle has periodicity f}r—kif at 7 = oo in string-frame. In Einstein frame,
the x5 circle has a proper size that goes to infinity as r — oo. The dimensionless mass M
is related to the dimensionful mass of the BTZ black hole near r = 0 via M = M G5, where
(5 is specified in (2.12).

On first glance, it might appear that the solutions (3.1) have the wrong large r asymp-
totics in Einstein-frame because the dilaton is mass-dependent. However a careful redefi-
nition of the radial coordinate in the large r region, discussed around (A.27), shows that
these solutions have the correct asymptotic behavior. Also notice that the value of the
dilaton at r = 0 is now mass-dependent and differs from the pure AdSs case where k; = 0.
As a consequence, the AdS; length scale is also mass-dependent in Einstein frame.

Global AdS3 has mass M = —é. This corresponds to the ground state of the holographic
CFT which should have dimensionless energy E=EL=M G% Notice that the dilaton
solution is only real if the condition,

R2

27
Ts

ki < (3.2)

is satisfied. It is important to note that this condition is independent of m; but depends

on the value of ms via r2. As we increase mj, the maximum value of k; decreases. It is this
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asymmetry between m; and ms that singles out the single-trace 7T deformation rather
than the conventional double-trace deformation. In the latter case, we should have seen the
maximum value of k; reduce as we increase the total central charge (2.13) which depends
on both m; and ms. We can then compare this bound with (1.3) which states that
3L*  3L?

A< = —
Chlock  6|ms|’

(3.3)

where cpoec = 6|ms| is the central charge of a block that would appear if the holographic

dual were actually a symmetric product [6]. Via this comparison we can identify,
N2 /

A= %kl, A= 22 = sk, (3.4)
where we have also defined the natural dimensionless TT-deformation parameter \. This
makes clear that the 7T deformation is controlled by the asymptotic size of the z5 circle in
string frame. We will see further evidence for this identification in the spinning case. It is
striking that the square root solution of the TT flow equation for a CFT emerges directly

from gravity in the structure of the dilaton solution.

The 57& 0 case

The solutions for Spinning black holes are similar,

1-%4 S 1 a? \’ 2
ds? — o ot ae? + _ <dx5 _ —;dt> 1 T— dr® + r2 dQ2 + ds?a
by + 5 ki+ % r r2—o+ 4
Mr2 2 J2rd . .
20 = \/1 kel st 126 ) Tae , al= Syl . a2=4J FIArS (3.5)
72+ kyr R2 J R2

Here J = JTGR’ is a dimensionless spin, but this is not the natural quantity to study from
the perspective of the dual CFT. The AdS/CFT correspondence maps the dimensionless
parameter J = J G% to the dimensionless momentum quantum number P = PL of the
holographic CFT. With this identification, the form of the dilaton solution again beautifully
matches the structure of the TT-deformed energy formula (1.3),

Mr 2 72,4 —_ ~ ~
\/1 + 8k 5 416 (ky)? JRZ5 — \/1 +4\E + 4X2P? (3.6)
where we identify
~ J ~ ~ 1 ([~
P== E=4msM=— (M- —| . 3.7
m17 e my < G3> ( )



Here E and P are the energy and momentum, respectively, of a single block of the symmetric
product.
3.3 Solutions with Flat Space Asymptotics

Lastly we turn to the fully undecoupled solutions that asymptote to a flat 6-dimensional

spacetime. In string-frame, the metric and dilaton take the form:

2 a4. 2
1— % 4% 1 a?
ds? = ——> " gt + - (d:z:5 — —;dt>
ko + % fy + % r
ksr? — 552 1 [rd — k2o + Lk2a 2
J 45 e o
+ 7"4—7"2042—1—044 r?dr? + r? (k5+r—§) dQ32 + dsts
20 _ g + I;WL% 2 7 2 =713 k1g?
8 ir _ _ _ s
€ T, ae_8Mﬁ’ O{J—4J?, ]’1’}5—7,
kir?
ka?  kiaf
<\/l<: ab+4(rd — k2ad) — k5a§> : = \/1 + ;; + ;43 . (3.8)
1 1

This final form for the metric depends on the dimensionless parameters (gs, k1) where g
is the r = oo value of the string coupling. The solution also depends on the flux quantum
numbers via (71,75) defined in (3.1) and the black hole mass and spin (M,.J). We note
that the 3-sphere now grows as r becomes large which is why the asymptotic theory is
6-dimensional.

The square root structure of the solution to the 7T flow equation is encoded in v which
now appears both in the metric via k5 and the dilaton. Notice that the size of the S® at
r = 0 is also deformed from the pure AdS3 case by an amount that depends on the mass
and spin of the interior black hole. Lastly we note that the parameter k still controls the

size of the x5 circle near infinity.

4 Mass Calculation

The supergravity solutions derived in the previous section appear to have something to
do with a TT-deformed theory. We made a tentative identification of the deformation
parameter with k; of the spacetime solution based on the appearance of the square root in
the dilaton solution of (3.5). This identification assumes that the holographic CFT is of

symmetric product type and that the deformation is purely a single-trace 7T deformation.
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The only cases where we have formulae for the deformed energies are the single and double-
trace TT deformations, and sequential flows by such irrelevant operators [5]. However,
the undeformed holographic CFT is not a symmetric product though it is believed to be
connected to a symmetric product by a marginal deformation. Regardless, we can provide
further evidence for a correspondence with some kind of single-trace TT-like deformation
of that undeformed theory by directly computing the mass of the solutions (3.1).

The definition of mass in general relativity is not unique. There are a variety of proposals
that depend on the asymptotics of the background. A way to uniformly define the mass is
by using the covariant phase space formalism [22]. This will provide an independent way

of confirming the parameter identification we made in section 3.

4.1 Surface Charges in Gravitational Theories

The covariant phase space formalism allows us to define conserved surface charges in gen-
erally covariant theories. In this section we will review this formalism before using it to
compute the charges associated with the solutions in section 3. Our discussion of this for-
malism will be very brief and many facts will be stated without justification; for a more
comprehensive treatment, we refer the reader to a review such as [23].
First consider a theory described by a general Lagrangian density L(®?) in a theory with
n spacetime dimensions, where ®° represents an arbitrary collection of fields. Following
common conventions in the gravity literature we denote differential forms in spacetime
by boldface symbols, so L = L d"x is the top form associated with the usual Lagrangian
density L. In pure Einstein gravity, for instance, the only field ®' is the metric g,, and
L= ﬁ\/—_gR. Upon variation of the fields ®?, one sees
SL = % 50" — dO[1D"; d'] . (4.1)
The form O[§®*; 7] is called the presymplectic potential and depends both on the fields
@’ and their variations 6®. One can think of © as simultaneously being an (n — 1)-form
in spacetime and a 1-form in the space of field variations. In what follows, we will suppress
the index i when writing the functional dependence on fields and simply write @[dP; P].
To define conserved charges, it is convenient to introduce a related object w called the

presymplectic form via

Here we write the dependence of w on both variations d; 2® to emphasize that © itself

depends on one variation 9;P of the fields, and w is defined by again performing a second
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variation dy of the fields and finding how © varies (with appropriate antisymmetrization).
From this perspective, the symbol § acts as the exterior derivative in field space so that w
is an (n — 1)-form in spacetime and a 2-form in the space of field variations.

We will be especially interested in field variations 6,® that are associated with an
infinitesimal diffeomorphism generated by z# — x* 4 &*. For instance, under such a

transformation any tensor field 7},,..,,, transforms via the Lie derivative L¢ as
O¢Tyy oy = LTy opy, - (4.3)

We will consider the case where the field configuration ® satisfies the equations of motion
for the theory, the first variation 6;® = §® solves the linearized equations of motion about
the solution ®, and the second variation 0,® = 0P is generated by a diffeomorphism of

this form. In this case, one can show that w[d P, 0P; P| is exact, so that
w0 D, 0Q; D] = dk[0D; D] (4.4)

This differential form k¢ is an (n — 2)-form in spacetime and a 1-form in the space of field
variations. Note that we will also identify the (n — 2)-form k¢ with its Hodge dual, an
anti-symmetric 2-tensor with components £*”, which we write without boldface type. This

k¢ can also be expressed as
ke[0®@; @] = —0Q[6P; @] + i O[6D; D], (4.5)

up to the ambiguity of adding a total (spacetime) derivative term to ke. This ambiguity

will not be relevant for us, since we are primarily interested in the integral

0Q¢ = ]iksw@;q’], (4.6)

where S is a closed codimension-2 surface. Typically we will think of a spacetime with a
radial direction r and let the surface S be a sphere at a fixed (large) value of r and at a
fixed time ¢. For this case, the total derivative ambiguity of k¢ will not contribute to the
integral in (4.6).

Finally, we will specialize to the case where ¢ is an exact Killing vector of the solution.
In this case, the expression §Q)¢ in (4.6) can always be integrated in order to define a
conserved charge ()¢. Operationally, this procedure always involves first computing the
change in the charge () associated with a variation d® around a particular solution ®. In

examples of interest, we usually think of a one-parameter family of solutions ®(«) which
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solve the equations of motion for a continuous range of values of . In this case, we can

consider the variation

09(a)
bl = — = (4.7)

Since ®(«v) is a solution for any «, the variation (4.7) always satisfies the linearized equations

of motion. We can then compute

dQe _ .
= ]i ke[0,D; @], (4.8)

and integrate the resulting expression with respect to o (using a suitable initial condition)
to find Q¢(a). For example, the BTZ black hole with mass M is a solution to the three-
dimensional equations of motion for pure gravity (with negative cosmological constant) for
any value of M. We can compute the change in the charge associated with the exact Killing
vector { = 0, in these backgrounds using the known expression for k¢ in Einstein gravity.

The resulting integral gives

dQs _7{ .
dM - Ské[dMng]?

=1. (4.9)
Using the initial condition Q¢(M = 0) = 0, we can then trivially integrate to find
Qc= M, (110)

which recovers the fact that the mass of the black hole is the conserved charge associated
with the global timelike Killing vector 0.

Charge Integrability

Given a family of spacetimes labeled by some parameter «, and possessing some exact

Killing vector &, we have seen that the covariant phase space formalism allows us to compute

the quantity % which controls how the conserved charge associated with & varies with a.

If « is the only parameter in our family of solutions, it is then trivial to integrate % given
an initial condition and recover the expression Q¢(«) for the conserved charge.

Now consider a family of solutions which depend on several parameters oy, ..., a,. The

0Q

formalism permits us to compute a collection of partial derivatives 5=* for each i. We are

Qg

not guaranteed that integrating any two of these quantities will yield equivalent charges.
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For instance, in the simple case of a solution for a black hole which depends on a mass

parameter M and a spin parameter J, we could obtain two separate derivatives

Q¢ _ .

Q¢ _ .

If computing 0,00 Q¢ using the first line of (4.11) yields the same result as computing

(4.11)

Om0;Q¢ using the second line of (4.11), then we can unambiguously define the charge
Qe(M, J) in a way which does not involve any choice of how to perform the integration.
In this case, the charge Q¢(M, J) is said to be integrable. More generally, the integrability

condition will hold so long as

51 f kg[(Sg(I); (I)] = 52 % k€[51q); (I)] s (412)
S S

for any pair of variations 6;®, doP.

Charge integrability holds in many cases of physical interest, such as the Kerr black
hole in D > 3 dimensions or the spinning BTZ black hole in D = 3, both of which possess
charges that are integrable in the space of M and J parameters. However, it was pointed
out in [24] that solutions to the equations of motion for type IIB supergravity with multiple
parameters «; do not, in general, possess manifestly integrable charges. In such cases, if
we are given only the information about the gravity solution, the definitions of conserved
charges like mass and spin can be ambiguous; one obtains different answers depending on
which quantity g%f one integrates.

To resolve this ambiguity, one requires additional input which identifies a preferred
notion of the surface charges. For instance, in the cases analyzed in [24], the additional
input comes from holography: if a type IIB supergravity solution is dual to a conformal
field theory, one can use the scale invariance of the field theory to identify particular choices
of the gravitational charges that are natural from the perspective of the boundary theory.

However, for more general solutions that are not dual to CFTs, there does not appear to
be a general principle for constructing unambiguous charges in the case of non-integrable
solutions. We will see shortly that the supergravity solutions constructed in section 3
possess exactly this ambiguity when J # 0 . Because these bulk geometries are believed
to be dual to field theories which are obtained through deforming a CFT by an irrelevant
operator — namely, something akin to a single-trace TT operator — we cannot rely on the

scale invariance of the dual theory to construct a preferred set of gravitational charges.
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Surfaces Charges in Type IIB-Like Theories

The formalism reviewed above applies to any generally covariant Lagrangian L. Next we
will restrict attention to a class of Lagrangians which are relevant for type I1B supergravity

theories in Einstein frame and with pure NS flux. Consider an action of the form

1
5= 167G

/de V=g (R - %au@a% - %f(cb)|H|2> : (4.13)

Here H = dB is the field strength associated with a now general p-form potential B =
By, et . odatr |H? = H A«H, and f(®) is an arbitrary function which controls the
scalar coupling to the p-form kinetic term. When D = 10, p = 2, and f(®) = e~ %, this
gives the Einstein-frame action for type IIB supergravity. After performing the conformal
mapping from string-frame to Einstein-frame, the general solutions which we derived in
section 3 satisfy the equations of motion associated with this action.

The surface charges associated with the Lagrangian (4.13) were worked out in [25]; here
we will recall the results which are relevant for our analysis.*

The contribution from the scalar is
kS [6g,69; g; ] = i¢O Op = *(dD 0D). (4.14)
In components, (4.14) is
kP Sg,0®; g3 @) = 2(5®) - oM@, (4.15)

where T = % (T“b - Tb“) denotes the usual antisymmetrization. Recall that the non-
bolface k¢ is the antisymmetric 2-tensor whose Hodge dual is the (n — 2)-form k..

The contribution from the p-form B is more complicated and can be expressed as
k{6g,0B;9, B, ®] = —0Q¢ +i¢®p — EZ[L:B,6B], (4.16)
where

Q¢ = f(®) (ieB) A *H
©F = f(®) (0B) A*H |
1
2(p—1)!

4These formulas have also been implemented in Mathematica by the author of [25] in a convenient

EB[L:B,6B) = f(®) * ( 0Buay-ay 1 (LeB), 0" dat /\dm”) . (4.17)

package which may be found here.
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It is convenient to separate the component expression for kf # into its contributions from
the tensor field variation dB (and its field strength variation H = d (0B)), the metric

variation dg,,, and the dilaton variation d®:

kO = 2Kl + 2Kk 4 2K

Kip = —f(®)

]_jguHualwap (5B)a1---ap _ (EgB)HOélmapfl (53)11

oyop—1

N BB) g+ OH) T By

ngf@d—lwma

2 o, HIerer lprpal-..apﬂ +(p—-1) (59)#p pralm%_léchal ap—1

2 (59)HP pralmap_lgaBUOq--ap 1]

Kty = 98 (50) 0B, L, (1.18)
Here we write dg = ¢g"dg,, for the trace of the metric fluctuation.’
Finally, the contribution from the Einstein-Hilbert term /—¢R is
k{[69; 9] = —0Q¢lg] — ie®[3g; g] . (4.19)
where
o = 1\2;; (V, 69" — VHtig) ,
Q= g;v“ﬁ” (d"x),, - (4.20)

Here we follow the conventions of [23] for differential forms; for instance, (d"Pz)
defined by

entries

is
. A\ dx" where ¢ is the Levi-Civita symbol with
-1, O or 1 (without the factor of \/—g). In components, (4.19) can be written as

H1-.-fp
Vp+1
(n— p)'gﬂl ‘HpVp41.-. Vndm N

1
kf’”" :§[VV“]6g _ g[vva(;gu]a + gav[vggu]a + 5ggv[1/§u]
1 1
— 559‘1[”%5“1 + 5590‘[”V"]£a . (4.21)

5This differs from the usage in expressions like k? [0g; g], where dg refers to the full metric fluctuation
rather than its trace, but where we have suppressed indices for ease of notation

19



The total contribution to the change in a charge Q¢ as a parameter o of the solution is

varied, therefore, is given by

oQ
a—of = fgks[@ag;g],
ke = ki + k¢ + K. (4.22)

We will take the surface S to lie at a fixed time and fixed large value R of the radial
coordinate r in our solutions, and then take the limit as R — oco. The integral (4.22) then
extracts the component ké” of the antisymmetric 2-tensor which is Hodge dual to k.. For
the purpose of computing the integral (4.22), the compact directions S x T% are merely

spectators which are integrated over to yield an appropriate volume factor.

4.2 Evaluating the Charge

Our goal is to compute the Noether-Wald surface charge ()¢ associated with the exact
Killing vector £ = 0, of the solutions with ALD asymptotics (ks = 0) derived in section
3. We will restrict to the case given in (3.1) of a non-rotating black hole with J = 0. We
will comment on the case with both mass and spin at the close of this section. That case
involves interesting subtleties related to the non-integrability discussed in section 4.1.

As is typical in the covariant phase space formalism, rather than computing the charge
Q¢ directly, we first find % where « is one of the parameters in these solutions. At
this stage we have a choice, since our spacetimes depend on the parameters (kj, M ) with
quantized fixed charges determined by (m;, ms). If we vary both (kq, M ) then we find that
the charge Q¢ is not integrable in the space of these parameters; that is, we obtain different
expressions for the mass if we, for instance, (1) compute 86%15 and integrate with respect to
ki, or (2) compute % and integrate with respect to M. In this case, we view the failure
of integrability as reflecting the definition of an asymptotically linear dilaton spacetime.
Namely, the parameter k; is a part of the definition of the asymptotic behavior and should
not be varied.

For this reason, we will consider a one-parameter family of solutions where a,, which
controls M , is varied but all other parameters are held fixed. Therefore we will use the

variations of the fields

0B, o
Sa, By = 80:3 Gl =g

0
oo, '

5aeg,u1/ = (423)
Under this linearized variation, the combined contribution from kf, kf, and k¢ to the
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change in the charge is

r10
4\/?% + klaz

Here S is a fixed time slice at large r in M3 and includes an integral over all the compact

00, Qe = 7{ (K + Kk + k) = (4.24)
S

directions. Because we have used the variations (4.23) associated with changing a., we
have 0o, Q¢ = % so that

Qe

an . flOée

aae B 4\/’?%4—]610[2 '

This equation can be trivially integrated to find

Qe = i\/ i+ ka2 4+ C, (4.26)
4k,

where (' is an integration constant which may be a function of k; and a4 but not of a,. We

(4.25)

fix the integration constant by requiring that the conserved charge Q)¢ have a finite limit as

k1 — 0. This is only possible if the constant C' is chosen so that the charge takes the form

o)
1

~9 2

& a?
Qe = — 1+ —-11. 4.27
¢ 4k < & ) ( )

To recover the undeformed black hole, we take k; — 0. This is an easy way to fix the

overall normalization. We will choose to normalize the charge, denoted @5, so that k1 — 0

~ R? SMTQ
= \/1 k 511 . 4.28
Q£ 47”52)]{71 +h R2 ( )

This square root is identical to the expression that appears in the dilaton solution found in

gives M:

(3.1). Tt is strong evidence for a holographic correspondence in the spirit proposed in [6].
A straightforward extension of this analysis to the case with mass and spin encounters
the issue of non-integrability in the space of (]Téf , J ) solutions. Similar issues have been seen
in past work [24, 26, 27]. It would be interesting to resolve the non-integrability and see if
one can reproduce the mass and charge for these asymptotically linear dilaton spacetimes

expected from the form of the dilaton solution seen in (3.5).
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4.3 Winding Tachyon

We have seen that the solution which interpolates from global AdS3; to ALD asymptotics,
presented in section 3 with M = —%, has a spacetime mass (4.28) which becomes complex
when k; is made too large.

What might be happening in string theory when this ground state approaches this
instability? Note that the string-frame metric sees an approximately constant circle for
large r of size \/% and a very weak string coupling. Global AdS in the interior corresponds
to anti-periodic boundary conditions for spacetime fermions on the x5 circle. Boundary
conditions of this type tend to produce tachyons for strings wrapping the circle if the circle
becomes too small [28]. Qualitatively, this is the kind of phenomenon we might hope would
happen prior to the spacetime becoming unstable, although the endpoint of condensing
such a bulk closed string tachyon is often non-geometric [29]. If the holographic theory
exists for k1 beyond the value where the ground state energy becomes complex, we will see
that the more likely resolution lies in the low-energy gravity theory.

To estimate where a tachyon might emerge, we note that a fundamental string on a circle
of radius \/% with winding w and a twisted boundary condition breaking supersymmetry
satisfies a mass-shell condition,

w? R?

2
2 = Z (N, + N 4.29
m kl(o/)z + o ( L+ R) ) ( )

for bosonic excitations with no momentum on the circle. In the (NS—, NS—) sector with
odd winding and no oscillators, the zero point energy is given by N;, = Ni = —%. The first
state to become tachyonic has w = 1 which happens for k; > 2%2,. This is not quite right
in our case because we have not taken the linear dilaton background into account. The
linear dilaton slope is often denoted () in the literature on worldsheet descriptions of linear
dilaton backgrounds, where in this case @) = ﬁ; see, for example [14]. For a string with
no radial momentum, the mass-shell condition for a singly wound string is modified slightly

from the simple circle of (4.29),

R? Q* 2
2 = = — —. 4.30
" ki(a/)? * 4 o (4:30)
Now the condition to avoid a tachyon becomes
R2
ki < (4.31)



This should be contrasted with the condition (3.2) needed to avoid a complex dilaton
solution, which we repeat here for convenience:
R2

msa/

These conditions only agree for ms; = 1. For large ms the gravity condition is violated
first, long before one expects a closed string tachyon, suggesting a possible resolution in
the low-energy theory without stringy ingredients. There is one final observation which is
curious: if there were a ‘long’ string with tension reduced by a factor of ms so the tension
Tiong = ;5 then a tachyon for this string would emerge before the gravity solution

2wa’m

becomes complex as k; is increased.’

5 The Two Parameter Family of Solutions

Now we will explore the family of solutions that depend on an additional parameter c;,
which are derived in Appendix A. These solutions are quite intriguing but exhibit some
surprising features so our discussion is oriented around addressing the more basic issues
with these solutions. At short distances and small black hole mass, the solutions again
look like AdSs3 black holes. At large distances, these solutions exhibit positive curvature in
string-frame, which is typically hard to engineer in string theory in stationary backgrounds.

With the details of the analysis again relegated to the Appendix, we first list the form

of the string-frame metric for the case without spin:

()[2
PR Sl L 7“5%(1+k104%01)(1+k101(a%+k1a5))d 2
§° = 5 dt” + 5 dxs + 5 5 3 CIRD) r
ky+ % ko + % (r? —a2) (1 + krca(of + kar?))
+ 72 dQ3 4 dsta (5.1)
with a2 = 8M fizg, and where the dilaton is given by
1+ ]ﬁCl (Oé2 + /{317’2>
20 _ 2 1

= . 5.2
¢ @ ( o + kyr? (52)

Notice that e2® given in (5.2) always decreases as r ranges from 0 to co. Here the parameters

c1 and ¢y are related by the algebraic constraint

b vt of + kaja? (5.3)
27 L haad + Dk (af + kia2) +1) '

6Such long strings are expected from the low-energy physics of the D1-D5 system but are not expected
to be visible in the weakly coupled perturbative string spectrum of the F1-NS5 system.
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The curvatures for this metric are non-singular and the dilaton is well behaved as long as
k1 > 0 and ¢; > 0. Notice that the dilaton interpolates from a constant at small r to a
different constant for very large r.
What is quite peculiar about the metric (5.1) is the behavior of f, which determines
the g, component of the metric. For large 7,
fom

ré’

(5.4)

This means r = 0o is now a point at finite distance. How should we treat this boundary?

There are several possible approaches which might give physically interesting backgrounds:

e One can try to continue the metric beyond r = oo.

e One can try to impose boundary conditions at » = co or at some continuation of the

metric. This is similar in spirit to the holographic proposal of [30].

e One can try to include a brane source at or beyond r = co. If such a source has a sen-
sible string theory interpretation then the metric might admit a natural continuation

which takes into account the stress-energy and charge of the brane.

We will explore one of these possibilities.

Continuing the metric

At large r, it is natural to change to the radial variable p = %2'7 The range of p is (p,0)

prior to any continuation. Here py is a cutoff which is sufficiently small so that we can ignore
O (p) corrections. We are interested in the physics for p — 0 where the three-dimensional

spacetime metric takes the simple form,

1 1 1
ds® = —k—ldt2+k—ld:c§+zdﬁ2+0(ﬁ) ,
e (5:5)

iy = ,
i1+ kia2e) (1 + ko + k2eja?)

where k; is a positive constant. At this point, one could imagine imposing a boundary
condition at p = 0 in the spirit of [30]. At this boundary, the string coupling has a finite

value:

e*® = kicics. (5.6)

"We are denoting this radial variable by 5 to avoid confusion with the p that appears in equation (A.27)

and surrounding discussion.
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Or we might attempt to continue the metric by taking p negative. The string coupling

takes the form,

e _ 2 (ﬁ + k?1~012(f704% + kl)) ' (5.7)
paq + ki

The string coupling will either diverge or go to zero as we make p more negative. If
kicia? > 0 then the string coupling always goes to zero before we hit a strong coupling
singularity. We want k; positive otherwise the dr2 term of (5.1) will flip sign at finite r
introducing a closed time-like curve. If ¢; is not positive then the dilaton will not make
sense for finite r so it appears we must encounter a point where gravity is shut off before
we meet any potential strong coupling singularity.

This is quite suggestive. Holography for linear dilaton spacetimes is motivated, in part,
by gravity shutting off at radial infinity because the string coupling goes to zero. Here we
meet a finite value of p at which the string coupling vanishes given by,
kicy

SN B 5.8
1 + ]{?1010{% ( )

p=

Finding a linear dilaton coordinate

After some experimentation and with some hindsight, it is useful to first answer the following
question before continuing the metric (5.5): is there a new radial coordinate that makes
the dilaton of (5.2) look like the expression with ¢; = 07 The answer turns out to be yes in

some cases,

¢ = T2(1 — Clk’lOé%) — 0120/11 7 (59)
1 + Clkl(kl’l"Q + O[l)

with the dilaton taking the form,

2

20 Gy
== 5.10
c kth + Oé% ( )

The expression (5.9) for v makes sense for sufficiently large r and sufficiently small ¢;ky;
crad
1fc1k1a%

impose on (¢, k1) so that the solution for the dilaton is real. There appears to be no upper

specifically r? > and ¢ ko < 1. At this point, we can ask what bounds we should
bound on ¢; > 0 and the bound on k; from considering (5.2) for the case of a? < 0 is the
same as our earlier discussion with ¢; = 0.

Let us assume these conditions are satisfied. We can always choose r to be sufficiently

large but making c;k; sufficiently small is not necessary based on what we have seen so far.
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Note that the range of v is (0, t,,) where

(1 — C1 ]{710[%>
oo = || ——5—, 5.11
> C1 k% ( )
is finite. Plotting v as a function of r shows that it is monotonic asymptoting to the value
ts. The natural continuation in this variable is to allow t to continue to infinity past the

finite value t,,. The metric expressed in this radial variable takes the form,

o2 — ci(af + kafa?) — (1 + cr1ki(of + k1a?)) 2
d 2 — e 1 1%e 1 e dtQ 2 d 2
s 07 & 2 + | o] + —o@ PRy T
N r2e?(1+ c1k102) (1 + crki(of + k1a?))
(craf +v2(1 + c1kia?)) (craf + (crkia? — 1)a2 + v2(1 + c1ki (a2 + k1a2)))

de?, (5.12)

which simplifies as t — oo to
ds* = ( — i—kc (af + ki0?) —|——1 (af + kia?) ) dt* + i—i—coﬂ——a% da?
kl 1 1 1&e k%t2 1 1&e kl 164 k%tQ 59

+ s dv* +0 (l) : (5.13)
2 vt

There are a couple of observations worth making concerning (5.13). First the dr? has

precisely the form we expect for a linear dilaton theory and the dilaton (5.10) has the right

radial dependence to define a linear dilaton spacetime. However the t-independent term in

the dt?* coefficient appearing in (5.13) now depends on . Similarly the dx? leading metric

is ¢; modified so the radius of the asymptotic circle in string-frame has changed.

Making the asymptotic radial metric canonical

We have just seen that finding a coordinate in which the dilaton has the same asymptotic
form as the ¢; = 0 case is possible when clkzloz% < 1. However, we have yet to see any
reason to restrict ¢; to this particular case. There is another approach we can take. Let
us see if we can find a coordinate in which the dr? coefficient of the metric (5.1) takes the

asymptotic form

2
ZdA2 A2 2dA2 A2
52y (arctanh( - %)> i ad <1+o(%)) : (5.14)

©2_ a2 2 2

for a new coordinate t with a horizon at some potentially new location &.. We can then

see how the dilaton depends on this new coordinate.
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As a first case, let us take a. = 0 and no horizon in the extension so &, = 0 as well.® In

this case we can take,

% _ V1+ kiey(a? + kir?) | (5.15)

— har + 0T<Ti2) | (5.16)

where the second line is expanded near » = co. We have picked the sign so that small r

corresponds to small t. This relation can be inverted giving,

2 (1 ‘f‘]ﬁClOé%) EZ
= . 1
" 1-— Cll{?% fQ <5 7)

1
ki
past this point to infinity. The dilaton can now be expressed in terms of t,
c3 (1 + kiciaf)

k'1%2 + CY% ’

The point r = oco corresponds to t = The continuation corresponds to t extending

1
P = log { (5.18)

This is indeed an asymptotically linear dilaton spacetime with a slope that is superficially
determined by 75 and c;k;. Beautifully, however, the constant c3 (1 + kjcia?) appearing
in (5.18) becomes c¢;-independent for this case of a. = 0 using the relation (5.3) and we
recover the same dilaton as the ¢; = 0 case. We can now examine the full metric expressed

in terms of t,
2
1+ Clk’lOél
=7

kl-l—%

2
2 2 2 s 1~2
ds (—dt* + da3) + ) de”. (5.19)
Up to a rescaling of time and a redefinition of the asymptotic x5 circle size, this solution is
now identical to the ¢; = 0 case.

Now we can turn to the case of o, > 0 with » > «,. The change of variables in this case
is given by,

¢’ = i 5.20
v = 1 (r2—a2)(14+kicia?) ° ( ’ )

T r2(1+kici(adtkia2))

This is invertible giving,

252
a v
2 e
r? = T el (5.21)
A2 4+ = 161(&e
Qe (1+k’101a%

8We will assume that the a, of (5.1) is finite. One might also consider the case where the coordinate
patch parametrized by r is actually inside the black hole horizon with the horizon located in the extension

past r = oo.
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Substituting into the dilaton expression (5.2) gives,

26 _ 2 aZ(1+ kiead)(1 + ke (of + kia?))
2\ ka2 + (1 + kil + K2cia2)a?az ) -

(5.22)

If we impose the condition that the denominator of (5.22) take the form seen in (5.2) then

N / 1 + klcla%
Qe = Ol TW . (523)

On substituting back into the dilaton we wonderfully find all factors conspire to give,

2
2¢ Ty 4 24 1
= {\/% + klalai} e (5.24)

1

we relate o, and & as follows:

which is the form expected for a solution with ¢; = 0. At least for these cases, analytic
continuation together with a suitable map of parameters recovers the solutions discussed

earlier with ¢; = 0.
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A Derivation of General Solutions

In this Appendix we derive a general class of type IIB supergravity solutions which satisfy
the assumptions laid out in section 3.1. We will work in string frame with the action (2.1),

for which the associated equations of motion for the metric, dilaton, and flux are

1
R, +2V,V,® — Z|H|fw =0, (A1)

1
R+ 4V?® — 4|VO|* — E]HP =0, (A.2)
VH (e**Hyp) =0, (A.3)

respectively. A combination of the first two equations gives a nice equation for the dilaton.

See, for example [31]:
Ve ?? = 22 |H . (A.4)
We will begin with the following general ansatz consistent with the symmetry and flux
assumptions stated in section 3.1:

fe<r) 2 1
ARG

O =P(r), Hy =

ds? = —

{dxs + f;(r)dt}* + fr(r) dr? 4+ v f5(r) dQ2 + fra(r)dsia,

2m5

2

€ss + fa, (7’)624)6?/[3 . (A.5)

Here €gs is the volume form for S? with [egs = 272¢2. Flux quantization through S® is

automatically satisfied. Flux quantization through Mj requires that

4,13 2
_ 32mymiagg

fams(r) = V4r3f5(7“)3/2 :

(A.6)

That fixes one unknown function. This form for Hj also solves (A.3). One way to make
R, vanish in the T* directions is by setting fr4(r) to a constant. It is not clear that any
other solution exists so will set frs(r) = 1. This is in accord with the torus playing no
significant role in the physics.

The choice of f, is the freedom to parametrize the radial direction in a convenient
way. At this point, we need to understand what asymptotic conditions to impose on our

spacetime at small r and large 7.
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A.1 The partially decoupled case k5 = 0

Interpolating ansatz

It will simplify our analysis to take the following ansatz for the ten-dimensional metric,

2 2 2
f1<r>:kl+2—;2, L) =1-% A=, )

with f; set to 0 because J = 0. We could have considered the more general f5(r) = ks + ff—zg
but for this partially decoupled case, we set k5 = 0. We also demand that k£ > 0 and
k, > 0 for a sensible metric at large r. We have chosen to absorb the constant k. that
might have appeared in f, into a redefinition of the other parameters. Because this is the
string-frame metric rather than the Einstein-frame metric, we will leave ki in the ansatz

until later when we determine how to normalize the time direction at large 7.

Constraints from equations of motion

With this assumption, plugging our ansatz into the Einstein and dilaton equations gives

constraints,
k
af=caf,  as=73, (A8)
k1
and the following solution for e??,
1+ kicy (0 + kyr?)
20 2 1
_ A9
c E ( a? + kyr? ’ (A.9)

where ¢; and ¢y are unknown constants. Imposing the dilaton equation of motion relates
c1 and ¢y as follows,

r_§ - (kicia?d + 1) (kiei (a2 + ka?) + 1>c4 —0 (A.10)
2 = U '

7 af + kra2a?

Note that ¢y cannot be set to zero. At this juncture, we have not imposed either small
r or large r asymptotics on the dilaton. The constants (¢, ¢2) determine the dilaton and
fr. Everything else is fixed by both matching onto BTZ at small » and imposing large r
asymptotics, which we have yet to examine.

If we now demand that g; — 0 as r — oo then we need to set ¢; = 0 in (A.9) to get a

dilaton:
e*? = —C% : (A.11)
a? + kqyr?
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We also require % > 0 since it is the coefficient of the large r string coupling of (A.9) so
c2 > 0. For a sensible value of €?® in a neighborhood of 7 = 0 we must also then require
a? > 0. This also fixes ¢, in terms of the other parameters of the ansatz using (A.10):

4
cy = %(ofl1 + kata?). (A.12)
1

With the dilaton determined, we can now solve for f,.:
fr(r) = = (A.13)

— 2’
r g

Small r asymptotics

At very small r we demand that the solution in Einstein-frame look like a three-dimensional
BT7Z black hole. This expectation is at least reasonable for low mass black holes whose
structure should not care very much about the large r asymptotic behavior of the metric.
For simplicity let us first consider a black hole with mass but no spin. In the notation of the
full decoupling limit presented in equation (2.11), the metric of a three-dimensional BTZ
black hole of mass M and spin J =0 is

ds’ = 1 <— (—8J\7+ f2) di? + P2dg? + 1—7"2) , (A.14)

—8M + 72

where the mass parameter M has been made dimensionless using the effective three-
dimensional Newton constant.

We will initially be noncommittal about the relation between these dimensionless vari-
ables and the dimensionful variables of our ansatz (A.7). Because as = r5 by the equations
of motion, the reduction on S® and T* to a three-dimensional theory is unchanged from the
discussion around (2.11). There are no mass-dependent factors from integrating over those
volumes in string-frame.

The three-dimensional Einstein-frame metric is given by,

dst = e *®ds? (A.15)

string *
The most commonly studied backgrounds involve a constant dilaton so moving between
string-frame and Einstein-frame is straightforward. This is no longer immediately the case
in backgrounds where the dilaton varies so we will want to keep careful track of dilaton
factors. For this ¢; = 0 case we can expand e~*® at small 7 to find,

4 2
et = a—j (1 + Qkf ) +O0(r"), (A.16)

&) ag
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where ¢} is given in (A.12).

How shall we fix the small r» asymptotics? Let us first note that there is no singularity in
e2® which must be positive for all r so the conformal factor in (A.15) does not introduce any
potential singularities. On the other hand, f,. appearing in (A.13) does have a singularity
at 7 = a.. Comparing with (A.14) tells us that

o’ ~ M. (A.17)

We still need to relate the coordinates of our ansatz to the dimensionless coordinates of the
BTZ solution. There is a natural place to begin such an identification with,

1
e—4‘1’mdx§ — }7dg? (A.18)

for small r. There is no freedom to redefine the angular coordinate which allows us to

unambiguously identify:

2 2 4
—4 2 2 - 2he 01 2 ok 4

e trr=0r=r=0r——r = r'=0r——r°"+0(0"). A.19

R2 kl RQ kl a%RQ ( ) ( )

Once we have this relation between the dimensionless 7 and r, we can determine a small 7

. . . . . . dd .
regime where the dilaton (A.11) is approximately constant. This requires that 2 be small:

2l lc?
ky——2f = \/kiky— 1. A.20
ol R e aRT S (#.20)

In this regime we demand that the solution looks like a BTZ black hole in approximately
AdS space.

Now we can examine the metric coefficient of dr? in (A.5),

4 2kir? r2
—4® e g = (4 (1422 5 ) ar2. A21
gt = (2 (102 ) ) () @ (A21)

Comparison with (A.14) teaches us that

4 2.2
9 Of 5 2 ~Fk, airs
F = @ s, a = 8M_/<:1 7 (A.22)

As expected, o? is related to the mass of the black hole. Interestingly the definition of ¢
looks mass-dependent when k; # 0 unlike the case of constant dilaton. We can also simplify

(A.19),

r? k., a%r%

E=T R (A.23)
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and the regime where the solution will look approximately like AdS:

rsT
kik,—— 1. A.24
1 R < ( )

The remaining task is to relate ¢ and ¢, which follows by requiring the singularity at

r? = a? be a coordinate singularity. Let us recall that 6_4(1)#(7“) is positive and introduces

neither singularities nor changes to the signature of the time coordinate. On the other
hand, f,.(r) does change sign at r = a, and this change must be matched by the behavior

of the dt? metric coefficient. This constrains the dt?> metric coefficient to match BTZ,
2 —_—
T2 a2) {1+ 00N} di2 =2 <f2 - 8M> i (A.25)

&)

From the O(r?) term we conclude:

r? a? .t |k
di? = = di? = 1= —/—. A.26
72 0421£2 R kl ( )

The other r-independent condition from (A.25) is then automatically satisfied.

Matching large and small r asymptotics

To go further we need to examine the large r asymptotics. In essence, the issue is what
large r criteria define metrics which are asymptotically linear dilaton? To understand the
large r asymptotics, we need an appropriate large 7 coordinate. From the e~ f,(r)dr?
term with the explicit form for f,. given in (A.13), we see that the natural radial coordinate

for large r takes the form,

N T5k1 2 7’2

2
r _ 26

(A.27)

2¢3 o, sk

In terms of p, the three-dimensional asymptotic metric takes the form:

40 (1 1 40% (1 1
d? = -2 (=10 (=) ) a?+ (= +0(=)) da? +dp?. A28
ez (mro()) g (G0 (p)) i i

What is important is that the leading term at large p is completely independent of the mass
M. This defines the vacuum to which each solution should asymptote with mass-dependent
subleading corrections.

Our remaining task is to identify a2. We have one example of an asymptotically linear

dilaton metric in (2.9) which corresponds to M = 0 BTZ. This case turns out to be
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somewhat special when compared with black holes with M # 0. For example, any non-zero
value of k; can be set to 1 by a redefinition of the radial coordinate.” This is not the case
when M # 0. Regardless, we can still try to use this case to normalize o in our metric

ansatz (A.7). Let us examine the large p behavior of our dilaton:

1 1. ry 1 adrs 1
d=—-1 “log = — =log (14 —22=
g oBPTley 2Og<+2c§p
1 1 5 Oé%Tg,l 1
S “log= — L4 0( =) . A.29
plosrtalosy — 520+ 0| 5 (A.29)

All the potential mass-dependence, which is hidden in ¢3, is p-suppressed. If we set a, = 0
and compare these expressions for the dilaton and metric with the expressions found in

(2.9), we can identify a?:

o =72, (A.30)
2
At this point we could redefine time to absorb the % factor with the replacement af — 2‘—11

However the AdS limit where k; — 0 is more transparent with the explicit k;. On the
other hand, redefining the periodicity of x5 so that k, — k1 does look natural. With this

redefinition, o, — «; using (A.8). The final string-frame metric and dilaton take the form,

a2
— Ze 1 T2
ds2:——’l22dt2+—ﬂdx§+ S dr? +r2dQ3 + ds>
]Cl —+ % kl + % r? — Oég
9 / Mr2 R
ren/ 1+ 8k =22 ~P2p2
2% 5 1 g2 2 175
TA% + k‘lT2 ¢ R2 ( )
27 R

Note that the x5 circle has periodicity Tr, atr=o00 in string-frame.

The case of ¢; # 0

In solving for the dilaton, we set ¢; = 0in (A.9). In this subsection we will examine whether
there are any sensible solutions with ¢; > 0. The case of ¢; < 0 is ruled out because there
would be a singularity in the dilaton at some finite r. If a solution exists with ¢; > 0, it
would be quite curious because it interpolates from one approximately constant value of

the dilaton near » = 0 to a different approximately constant value near r = oo.

9There is a similar special feature for F = 0 states under a TT deformation; namely the energy does

not flow. This is readily visible from (1.3).
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The first step is to solve for ¢j using (A.10). This is just algebraic and gives:

4 4 2 2
s af + kroqal }

f_‘f { (kicia? + 1) (ke (a2 + ka2) + 1)

N W

(A.32)

The » — oo UV value of the dilaton is determined by e?® = kicicd while the r — 0 IR

value,

1+k 2
e*® (ﬂ) c2 > kieica, (A.33)

ay

is strictly larger. If the asymptotic solutions are both approximately AdS solutions with
the same string-frame length scale ¢ then this relation would be in accord with the two-
dimensional c-theorem. This suggests a potential holographic interpretation of this class
of solutions as describing a flow from a UV two-dimensional CF'T to an IR CFT. What is
particularly interesting about this possibility is that by taking ¢; very small, this background
would have a long intermediate region that looks like a linear dilaton but which eventually
becomes AdS3 again.

When ¢; > 0, f, is constrained to be

r2(1 + krader) (1 + ke (of + kia?))
(r — ae)(r + ae) (1 + kicy (a2 + kyr?))2’

fr(r) = (A.34)

which diverges at r = a, just like the ¢; = 0 solution. Again it appears that this is

only a coordinate singularity and not a genuine curvature singularity. The full Ricci scalar

associated with this ten-dimensional solution is given by

2
R:ﬁx

2
s
(Bkyr* + 101203 + 2ky1r?a? — 5ada? + bkycy (kir? + o3) (r? (203 + kia?) — afa?))

€ A.35
(k1r? + )2 (1 + kieiaf) (1 + ker(af + ko)) )

If k; > 0 and o > 0, the Ricci scalar is finite for all values of r. It appears to interpolate

from a constant negative value at small r to a constant positive value at large . One finds

].0]431@2
limR = — £ A.36
rl—I}é 7“52)0&%(1 + ]flOé%Cl + k%agcl) ’ ( )
while
_ 2 (34 10k1a?c; + 5eik?a?)
lim R = 5 . A.37
s r2(1+ k1c1a3)(1 + kjade; + k2a2er) ( )
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We can also compute the Ricci scalar R®) associated with the three-dimensional spacetime
M3 parameterized by t,r, x5. This is given by
R(g) =2 (]_ + k;lcl(k:17“2 + Oé%)) X

(4k1r2a? — 3af + 2k 1202 — 5kiala? — 3kicia (kir? + a2) (a2 + kia?))

. (A.38
r2(kir? + a2)2(1 + kicra?) (1 + ke (a2 + kja2)) ( )
Again we can look at the small r and large r limits,
lim R(3) _ _2 (3&% —2|- 52]€1CY3 + 3k10;04%(04% + klag)) ’
r—0 read(1 4+ ki (af + k1a2))
lim RO — 2c, (24/{:104% + 2]{:%2 2_ 31{;%010@2(0@ + k1a?)) ' (A.39)
r—00 r2(1+ kic1ad) (1 + ke (af + kr1a2))

We see that the small 7 limit of R® is negative-definite, corresponding to an AdS; in the
deep interior, but that the large r value of R® has competing contributions with opposite
signs. In order to have negative curvature at large r, we require
2 1 1

c > 30 (a_f + m) . (A.40)
Notice that this condition is easy to violate by taking k; small. The surprising result is
that we seem to be able to construct a three-dimensional spacetime M3 with positive scalar
curvature at least in string-frame!

Our remaining task with these solutions is to determine the parameter map following
the analysis of the ¢; = 0 case. We will highlight the differences. For simplicity, we assume
k. = ki. The relation between r? and 7 given in (A.19) now becomes,

2 G P

2y o). A4l
" a?R? (1 + kicia?)? +0(™) ( )

Also from,
Cae (L+kiade)) (1 + ke (a3 + kia?)) r2dr?

e f(rydr? =e ,
fr(r) (1 + ke (a2 + kyr2))? r? — a?

we can read off
2 air? (1+ ke (a? + ka?))
C3 (1+ kicia2)?

which has additional mass dependence beyond the ¢; = 0 case. The last step is to relate

, (A.43)

Q. to M which now gives the following relations:

2 a%gg (14 kies(af + kéo@) ) (A.44)
R (1+ kicra?)

W2 8Mr2a2 (1 + ciky0?) (A45)
© R2(1+ aki0?)’ — 8¢ k2Mr2a?
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Adding spin J

Now let us return to the case ¢; = 0 and extend our solutions (A.31) to include spin. This
will also help us identify the relation between the deformation parameter k; and A of (1.3).
The BTZ solution with spin takes the form,

~, ~ 2
~ — 16./2 4]
ds =2 | - <—8M +7 + %) di* + 7 <d¢ — f—;]dt)

d~2
T — (A.46)
—8M + 72 4 L8

In parallel with the mass M=M (3, we have absorbed factors of the gravitational coupling
into the angular momentum via J = JT?“ with G3 defined in (2.12). This redefinition is
quite important because we have already seen that ¢ is mass-dependent in (A.22). Soon we
will see that it also becomes spin-dependent when k; # 0. We will use the following ansatz

for f; and f. which have the expected behavior at small r,

o a; | A
fir) = =3 flr)=1- 5+ % (A.47)

We can then try solving the equations of motion for the dilaton, which again gives

1
29 — 20 - A4
(& C2 <a% + k17’2> ) ( 8)

where ¢, is an unknown constant, as in the solution (A.9) with J = 0. We also find the

algebraic constraints

i e\ /4
ay =4/ k_al , Qe = (k_1> a;, o5 = T;5. (A.49)
1 x

As in the discussion around equation (A.31), we can rescale z5 to set k, = k; which signif-
icantly simplifies the number of parameters. In the spinning case, the relationship between
co and the other parameters, imposed by the dilaton equation of motion, is modified. In

this case we find

re (o/l1 + K (a%ag + kla;*))

= - (A.50)
1
Likewise, the equations of motion determine f,.(r) to be
fr<T> = A (A51)
r?2 —a+ 4



In determining the parameter map, we see that the relations,

2 2,.2 4
r aqr o
T R C5

remain unchanged from the case without spin. With this identification, we can determine
a; in terms of J appearing in the metric (A.46). The final string-frame metric and dilaton
take the form,

2 2
1- %+ 1 aj 2
ds® = — r2 = L dt? p <dx5 - —édt) + T—5a4 dr® 4+ 12 dQ5 + dsa
ki + % ki + 3 " r?—aZ+4 4
2 Mr2 2 J2rf ~ ~
oo 7“5\/1 + 8k1 = + 16 (k)" 522 o = 8M7’%7’§ o2 = 4jr%r§ (A.53)
2+ hyr? o R Y R '

The form of the dilaton solution is eerily reminiscent of the solution of the TT-deformed

energy flow equation (1.3).

A.2 The asymptotically flat case where k5 > 0

We will now attempt to recouple the asymptotic region by taking k; > 0 for the general class
of metrics with mass and spin. This means that asymptotic theory will be 6-dimensional
rather than 3-dimensional because the 3-sphere will decompactify as r — oo, while the T

remains compact.

Interpolating Ansatz

To simplify our analysis, we take the following ansatz for the ten-dimensional metric which

is a slight generalization of the prior cases,

042 042 6{4 a2

) =ki+—,  f)=1-—5+—5  fi(r)=k+—,
" 2 " (A.54)
(67 ;

for) = ket —50  fi(r)=——3.

We also demand that k; > 0,k, > 0 and k5 > 0 for a sensible metric at large r. We can
repeat the steps of the preceeding analysis and see what constraints emerge from trying to
solve the spacetime equations of motion. Firstly, there are algebraic constraints generalizing

what we found in the k5 = 0 case:

~ e\ /4 i \/kz(rg — az) — kik3a R
Qe = (k_m) aj, 0y = k—lal, o = P/ . (A.55)
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Once again it is natural to rescale the x5 circle to set k, = k; and replace both &, by «;

and «a, by aj. With these replacements the solution for f,.(r) is given by,

ksa2r?(ksr? 4+ a?)

(r) = , A.56
1+(r) r2 (a5 + ksagr? —r3) + ksaj (ksr? 4 af) ( )
while the dilaton takes the form:
oo _korttad |y a ot (o8 kseg —rd) (A.57)
72 (kyr? + af) ! 17 ks
It is more convenient to invert the relation between as and a.,
1
ai = 3 <\/k‘§a§ +4(rs — kia)) — kgozg) (A.58)

As a check, notice that as — r5 when we take ks — 0 which is the solution we found earlier
in (A.8). In this more general case, a; is mass-dependent. In a small k5 expansion, we see
that

k 2
a2=1r2_ % T O(k). (A.59)

Substituting (A.58) into (A.57) gives the following nicer form for the dilaton:

(A.60)

- 2
kir? + aj

20 _ ksr? + a2 [a] + kiada? + ko]
: . '
1

2 and o? are determined by the

Let us count parameters versus expectations. First o ;
mass and spin of the deep interior BTZ black hole via (A.53). Together with ks, these
parameters determine o using (A.58). That leaves oy, k; and ks to be identified with
physical parameters of the asymptotic solution. Now the existence of a non-zero ks is the
statement that we have not taken the partial decoupling limit. Therefore it should be
possible to identify k5 with the asymptotic value of the string coupling, called g, in (2.6).

To determine the precise identifications, we can start by examining the asymptotic value
of the dilaton. This cannot be mass or spin-dependent because it is part of the data defining
the quantum gravity Hilbert space. Unlike the prior discussion, we now need to make a
conformal transformation in a 6-dimensional gravity theory rather than a 3-dimensional
theory. The Einstein frame metric is now given by,

ds]%}instein = e—(q)—q)o)dS? (A61)

string »
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where @ is the now finite r — oo value of the dilaton. We will require that ®, be
independent of mass and spin since it determines the gravitational constant. To determine
how to implement this condition, it is useful to examine the nicer form of the dilaton
appearing in (A.60). It is not possible to make the square root independent of mass and

spin by modifying a; in a way proportional to k5 so we expect that the relation
oy = 721 s (A62)

is unchanged. This means we must absorb the mass and spin-dependence in k5. So we
define

. ka2 k2ol
ks = ks - 7, 7:\/1+ 1% 4 25 (A.63)
ay Qq

In terms of 1%5, the dilaton now takes the form

T 02 2

) A.64
kir? 4+ o2 ( )
As r — oo the Einstein frame metric now contains the terms,
—(®—Dp) 7.2 ks 2 2302
e AS5iring = 5 (dr* +r2dQ3) + ... . (A.65)
The natural radial coordinate at large distances is now
k
p? = 2p2 (A.66)
Y
and the dilaton takes the form
20 ];’5 4 klOég’}/ — ]2350(% O 1
€ = — _— J—
k1 k3r? rd )’
]%5 ]%5 klagv — ]%5@% 1
=—4+ —=—>—-——=+40—). A.67
Bk R IRV (A.67)

The mass-dependence is now encoded in the subleading terms of the p expansion. Now we

can identify g2 = i—f, or equivalently ks = kig2. The periodicity of the x5 circle is f}’—g at

7 = OQ.

40



The final string-frame metric and dilaton take the form,

1-% 4+ 1 a? \?
S AL L N (d:c5 = —;dt>
T

k 2
sr? — o rd — k20t 4+ 1k204 2
2 b 575 AT Te 5 o 2 a5 2 2
rodre + 07 | ks + — | dQ5 +dsqa
r

_|_
rt —r2al + o
2 4 os ) 12 92 .
oo Is T k2 2 _ o7’ 2 _ 470175 e — 195
€ - ,,’;% ) ae - R2 ) aj - R2 9 5 — )
1+ kim2 K
1 k; Oé2 /422044
i = 3 (\/kgaﬁ +4 (Tg - k?ﬂ?) - ksﬂ?) , 7= \/1 + ;26 ;4] (A.G8)
1 1

This final form for the metric depends on (gs, k1,71, 75) along with the mass and spin (]\7 , J )

of the interior BTZ black hole.
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