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Abstract

We explore whether one can TT deform a collection of theories that are already

TT -deformed. This allows us to define classes of irrelevant deformations that know

about subsystems. In some basic cases, we explore the spectrum that results from

this procedure and we provide numerical evidence in favor of modular invariance. We

also study the flow of the classical Lagrangian for free bosons and free fermions under

successive deformations. Some of the models found by sequentially flowing are likely

to have interesting holographic interpretations.
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1 Introduction

The TT deformation is an interesting irrelevant deformation of quantum field theories in two

dimensions [1–3]. The TT operator is constructed from the following quadratic combination

of stress-energy tensors,

TT (x) = lim
y!x

�
T

µ⌫(x)Tµ⌫(y)� T
µ
µ (x)T

⌫
⌫ (y)

�
. (1.1)

It is universal in the sense that it requires little more than translation invariance. It is

natural to wonder what other tractable irrelevant deformations might exist. Analogues of

the form J1J2 have been studied where J1 and J2 are conserved currents, including higher

spin currents. This work is more exploratory in nature: our aim is to see what happens

when we deform theories with subsystems that are already themselves deformed. We will

provide evidence for the existence of theories which do not follow from the original reasoning

that leads to the TT deformation. For example, the leading irrelevant deformation is not

a scalar operator built from conserved currents of the theory.

The nature of a TT -deformed theory is currently mysterious. Quantizing the theory

on a cylinder of radius R gives an energy spectrum which satisfies the inviscid Burgers’
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equation:

@

@�
En(R,�) = En(R,�)

@

@R
En(R,�) +

Pn(R)2

R
. (1.2)

Here En are the energies and Pn are the quantized momenta. If Pn = 0, the equation

reduces to @�En = En@REn; in the absence of shocks, this equation admits an implicit

solution:

En(R,�) = En (R + �En(R,�), 0) . (1.3)

On the other hand if the seed theory is conformal, equation (1.2) can be solved explicitly

for general Pn,

En(�) =
R

2�

 r
1 +

4�En

R
+

4�2P 2
n

R2
� 1

!
. (1.4)

For the good sign of the deformation (� > 0), the high-energy density of states is Hagedorn

and the energies are real. This signals some kind of non-locality in the theory, perhaps

analogous to the non-locality found in string theory. Note that the ground state energy,

E0, for a unitary CFT is negative. For su�ciently large �, the ground state energy will

become complex so there is a bound:

� 
R

4|E0|
. (1.5)

Beyond this inequality, the high-energy density of states has passed the point of the Hage-

dorn phase transition and the torus partition function is typically no longer convergent.

For the bad sign (� < 0), the situation is considerably more mysterious. Integrating

the inviscid Burgers’ equation to find the deformed spectrum always encounters a shock

singularity for an infinite number of su�ciently large initial energies. This happens re-

gardless of how small one chooses �. After encountering the singularity, the energy given

by the formal solution (1.4) becomes complex and multi-valued. It is not at all clear that

using the implicit solution (1.3) is sensible after reaching the singularity. At this point one

needs some prescription to define the spectrum, assuming the theory exists at all. Often in

the fluids literature, a physically motivated conservation equation weaker than the inviscid

Burgers’ equation (1.2) is imposed [4]. It would be very interesting if some analogue of that

procedure can be found for quantum field theory.

In this discussion, we will not need to assume the theory makes sense for � < 0, but we

will occasionally use deformations with this sign in intermediate steps, or even in a final
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flow, as long as two criteria are satisfied. The first criterion is some reasonable prescription

for determining the final energy spectrum. The second criterion is that the final deformed

energies are real for some range of deformation parameters.

One of the basic features of local quantum field theory is that given a collection of

theories, one can tensor the theories together. Imagine tensoring two local quantum field

theories together. One might wonder whether we can define an irrelevant deformation that

couples the two theories together in a way that knows about the subsystems. Something

like T1T 2 rather than the original TT deformation, which is agnostic to any subsystem

structure.

This turns out to be closely related to the following question: can one TT deform a

collection of theories with each already TT -deformed? In one case, the answer is clear. For

a single theory, we can continuously perturb by the good sign TT operator because that

is how the deformation is essentially defined. Since the deformation preserves translation

invariance, there is no issue with defining the operator at each point along the flow. As a

first case, we explore sequential deformations of a single theory in section 2.

To define T1T 2, let us restrict to seed theories which are conformal so we can use the

explicit energy formula (1.4) for the seed energy spectrum. Take CFT1
�1

and CFT2
�2
, where

each theory is deformed with parameter �1 or �2, respectively. Tensor these two theories

together. We should be able to now deform the tensor product CFT1
�1

⌦ CFT2
�2

to obtain

a theory which we denote as
�
CFT1

�1
⌦ CFT2

�2

 
�3
. The first order in (�1,�2,�3) deforming

operator is,

�3

⇥
(T1 + T2)(T 1 + T 2)

⇤
+ �1T1T 1 + �2T2T 2. (1.6)

In writing this operator, we are only using the undeformed initial stress-energy tensors. If

we choose �3 = ��1 = ��2 then this operator is

�3

⇥
T1T 2 + T 1T2

⇤
. (1.7)

It is not at all clear that the operator in (1.7) exists beyond first order in �3. The indi-

vidual operators T1 and T2 do not have any immediate definition once one TT deforms the

combined system because only the energy and momentum of the total system is conserved.

Yet the procedure of sequentially deforming that we described would seem to define some

theory, whose leading order deformation might be taken to be (1.7) perhaps only in the

special limit where �3 = ��1 = ��2 are infinitesimal. Visually, the procedure we have in

mind is depicted in Figure 1.
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�
CFT1

�1
⌦ CFT2

�2

 
�3

CFT1
�1

⌦ CFT2
�2

CFT1
�1

CFT2
�2

CFT1 CFT2

�1

⌦

�2

⌦

�3

Figure 1: Sequentially deforming two CFTs.

At this stage, we can try to determine the energy spectrum of
�
CFT1

�1
⌦ CFT2

�2

 
�3
.

Even though CFT1
�1

might have a complex energy spectrum for �1 < 0, the additional

deformation of the combined theory might restore real energies for some range of the defor-

mation parameter. That is what seems to happen when studying combinations like JT+TT ,

where JT alone always has complex energies for any choice of deformation parameter [5–8].

Let us very briefly summarize what we find for the case of a bipartite system:

• For �1 > 0,�2 > 0,�3 > 0, we find a real energy spectrum with a bound on how large

the flow parameters can become before the ground state energy goes complex. This

is completely analogous to the constraint on the good sign deformation of a single

theory given in (1.5). We also present some numerical evidence in favor of modular

invariance of the resulting spectrum. This case is explored in section 3.1.

• For �1 > 0,�2 > 0,�3 < 0, we always find complex energies. Depending on the

relative amounts of good sign versus bad sign flows, there can be a finite or infinite

number of complex energies. This case is explored in section 3.2.

• For �1 < 0,�2 < 0,�3 > 0, we find that in specific cases like �3 = r|�1| with �1 = �2

the spectrum can be all real when r � 2. There is a more intricate and interesting

phase structure for r < 2, described in section 3.3, when the theory has complex

energies.
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We also explore cases with �2 = 0 in section 3.4. In section 4, we study the flow equation for

the classical Lagrangian in the case of two free bosons and in the case of two free fermions.

While a single flow takes a free boson to the gauge-fixed Nambu-Goto action, the second

flow generates a kind of interacting theory of multiple strings. It would be interesting

to explore the relation of this deformation with other TT -inspired deformations of string

theory, like the case studied in [9].

Models of potential holographic interest

While our discussion here is mainly focused on quantum field theory, we cannot resist

commenting on some specific cases that are of potential interest for holography. Take a

specific example of AdS3/CFT2 duality. A possible holographic interpretation of CFT2

deformed by the wrong sign TT flow has been o↵ered in [10]. The interpretation is a kind

of cuto↵ AdS spacetime. However, this deformed CFT2 has an infinite number of complex

energies, which makes its interpretation as a field theory unclear. If one tensors together

two such theories and then deforms the combination with a su�ciently large good sign flow

then our analysis suggests the resulting theory is free of any immediate pathologies. It

might be possible to interpret this procedure in terms of wormhole physics along the lines

of [11–13]. For such an endeavor, it is likely one will need a more complete understanding

of the holographic interpretation of the good sign TT -deformed CFT2.1

A more robust holographic proposal has been o↵ered in [20, 21]. This involves a kind

of single trace analogue of the good sign TT deformation, although a precise definition

of the deforming operator is unknown. The holographic interpretation involves changing

the spacetime from asymptotically AdS to asymptotically linear dilaton. One could again

consider the wrong sign for the single trace deformation. In the bulk, this has been discussed

in [22]. The field theory should have the same pathologies as the conventional wrong sign

double-trace TT deformation. One could try a similar cure for this theory, as described

above, by tensoring two such theories together and flowing the combination by a su�cient

amount of good sign double trace TT . We should stress that this case is interesting in its

own right simply from a field theory perspective since it involves a mix of single trace and

double trace deformations.

1Some progress has been made in interpreting the holographic good sign TT deformation as a change

of boundary conditions for the 3d bulk fields, either in metric [14] or Chern-Simons variables [15]. See also

[16–19] for related analyses in the dimensionally reduced setting where boundary conditions are modified

for 2d bulk fields dual to a (0 + 1)-dimensional TT -deformed quantum mechanics.
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Conventions

As a matter of convention, we will denote dimensionless energies and parameters by vari-

ables with a tilde. Explicitly for a theory on a cylinder of size R,

e� =
�

R2
, eE = ER, eE = ER . (1.8)

Future directions

It seems likely that we are only scratching the surface of a large class of non-local theo-

ries. For example, one could relax constraints like Lorentz invariance, or consider higher

spin deformations. Even if one restricts to Lorentz invariant theories and only considers

sequential flows by TT operators, there are many interesting possibilities.

Imagine, for example, that we begin with three seed theories. The direct analogue of

the bipartite case is to flow each one individually and then flow the tensor product. This

is pictured in figure 2. We can view the final step as deforming the tensor product of three

‘level 1’ deformed theories.

�
CFT1

�1
⌦ CFT2

�2
⌦ CFT3

�3

 
�4

CFT1
�1

⌦ CFT2
�2

⌦ CFT3
�3

CFT1
�1

CFT2
�2

CFT3
�3

CFT1 CFT2 CFT3

�1

⌦ ⌦

�2 �3

⌦

�4

Figure 2: Deforming the tensor product of three ‘level 1’ deformed theories.

In this case, we could alternatively perform the procedure depicted in figure 3. The final

step can be viewed as deforming the tensor product of a ‘level 2’ deformed theory with a

‘level 1’ deformed theory.
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n�
CFT1

�1
⌦ CFT2

�2

 
�3

⌦ CFT3
�4

o

�5

�
CFT1

�1
⌦ CFT2

�2

 
�3

⌦ CFT3
�4

�
CFT1

�1
⌦ CFT2

�2

 
�3

CFT3
�4

CFT1
�1

⌦ CFT2
�2

CFT3

CFT1
�1

CFT2
�2

CFT1 CFT2

�1

⌦

�2

⌦

�3 �4

⌦ ⌦

�5

Figure 3: Deforming the tensor product of a ‘level 2’ deformed theory with a ‘level 1’

deformed theory.

This kind of construction can clearly be extended to N theories in many ways with

potentially interesting large N limits. The most straightforward generalization is to flow

the tensor product of N ‘level 1’ deformed theories along the lines of figure 4.
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�
CFT1

�1
⌦ · · ·⌦ CFTn

�n

 
�n+1

CFT1
�1

⌦ · · ·⌦ CFTn
�n

CFT1
�1

· · · CFTn
�n

· · ·

CFT1
· · · CFTn

�1 �n

⌦

�n+1

⌦ ⌦

Figure 4: Deforming the tensor product of N ‘level 1’ deformed CFTs.

2 Deforming a Single Theory

We want to understand what kind of energy spectrum results from solving (1.2) for examples

like the sequence of TT deformations depicted in figure 1. As a warm up case, let us first

consider a single theory deformed by two successive TT deformations. Although this is a

well-studied example, the structure seen in this case will help illuminate what we find in

examples that involve multiple systems. We will examine three cases from most conservative

and most likely to result in a unitary theory to more speculative.

For simplicity, let us consider the zero momentum sector using a seed theory which is a

CFT. To avoid confusion, we will introduce three di↵erent symbols for the energies at each

step of the deformation process:

en
�1
�! En

�2
�! En . (2.1)

That is, en = en(R) are the energies in the totally undeformed CFT, En = En(R,�1) are

the energies after the first deformation step, and En = En(R,�1,�2) are the final energies

after both deformations.
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2.1 Sequential good sign deformations

As we saw in equation (1.4), after the first deformation step by parameter �1 > 0, the

energies are given by

En(�1) =
R

2�1

 r
1 +

4�1en
R

� 1

!
. (2.2)

We now deform the theory with energies (2.2) again, this time by parameter �2 > 0. Since

the new initial theory is no longer conformal, we cannot simply use the result (1.4) again to

find the final energies after the second deformation step. However, since we are restricting

to the zero momentum sector, we are free to use the implicit solution (1.3) to the inviscid

Burgers’ equation, which we reproduce here for convenience:

En(R,�1,�2) = En

⇣
R + �2En,�1

⌘
. (2.3)

Because (2.3) instructs us to replace all instances of the cylinder radius R, we must restore

the dependence of the CFT energies en on R. In any unitary CFT one has states with

energies,

en =
�n +�n �

c
12

R
⌘
↵n

R
, (2.4)

where (�n,�n) are the conformal dimensions of local operators, and we have introduced the

notation ↵n for brevity. We are also assuming c = c for simplicity. Then the intermediate

energies with all R-dependence made explicit are given by

En(�1) =
R

2�1

 r
1 +

4�1↵n

R2
� 1

!
. (2.5)

Equations (2.3) and (2.5) give rise to the implicit relation

En =
R + �2En

2�1

 s
1 +

4�1↵n

(R + �2En)
2 � 1

!
, (2.6)

which can be rearranged as

(2�1 + �2)En +R =
q

(R + �2En)
2 + 4�1↵n . (2.7)

Squaring both sides of this constraint then gives a quadratic equation for the final energies

En whose solution is

En =
R

2(�1 + �2)

 r
1 +

4(�1 + �2)↵n

R2
� 1

!
. (2.8)
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We see that (2.8) is exactly of the form (2.5) except with the deformation parameter �1

replaced by the sum �1 + �2. In particular, first deforming by �1 > 0 and then deforming

by �2 > 0 is the same as deforming by the sum �1 + �2 all at once.

2.2 Good sign followed by bad sign

As before, flowing first with the good sign gives energies En with the square root form (2.2).

We now flow by �2 < 0. Do we get a real sensible spectrum? In the analogy with fluid

mechanics, the flow in � is a flow in time. Viewed this way, the question is how far back

can we flow in ‘time’ before we hit a singularity. Certainly if �2 is much larger than �1

we expect the theory to behave like bad sign TT . The issue is whether any amount of

backward flow is problematic or a finite amount is permissible.

The implicit solution (1.3) of the Burgers’ equation is the undeformed seed energy

evaluated at a radius that is energy-dependent: R̃ = R + �2En(R,�1,�2). Following the

discussion in [3, 23], one kind of singularity develops when @R̃R = 0. This occurs when

1� �2
@En

@x
(x,�1)

����
x=R̃c

= 0, (2.9)

where the critical radius is located at Rc = R̃c��2E(R̃c,�1). Solving for this critical radius

in the specific case of a two step flow with �1 > 0 and �2 < 0 gives,

R̃
2
c = �

↵n(2�1 + �2)2

�1 + �2
, 2�1 + �2 < 0, (2.10)

R
2
c = �4↵n (�1 + �2) . (2.11)

Note that there is no solution for R̃c unless 2�1 + �2 < 0. We hit a shock singularity when

Rc has a positive real solution so we want to restrict to R > Rc.

This is one condition for a good implicit solution. If one starts with CFT data and

flows once, this is su�cient because the only singularity of the initial CFT energy in the

complex R-plane is a pole at R = 0. Since we are looking at multi-step flows, our initial

data has a more complicated analytic structure. For example, after the �1 flow the initial

data has square root branch points seen in (2.5). There is also no remaining pole singularity

at R = 0. In general this is a di�cult problem to study analytically [24]. Our primary tool

for exploring solutions of the inviscid Burgers’ equation will be numerics.
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Avoiding any shock region

From (2.8) with positive energy ↵n > 0, we find the bound

|�2|  �1. (2.12)

At the point of equality, we have flowed forward and backward by the same amount. It

seems reasonable that we have arrived back at the undeformed spectrum in that case. Note

there is no bound from (2.10) because we never reach a su�ciently large �2. The other

bound follows from considering the ground state ↵0 < 0. For the initial flow by �1, we had

a bound that �1 
R2

4|↵0| . The most conservative approach is that we impose this strong

constraint and completely avoid any shock region. In this case, the final constraints are

|�2|  �1 
R2

4|↵0| .

Entering and exiting a shock region

There is another interesting possibility in this two step flow. Suppose we permit ourselves

to travel past the singularity in the initial flow forward by taking �1 >
R2

4|↵0| . We still

assume that (2.2) applies giving a complex multi-valued deformed ground state energy at

the first step. We could simply declare that our prescription for treating the flow back by

�2 corresponds to using the implicit solution again, as we have done in the conservative

analysis. In this case the backward flow might ‘cure’ the complex ground state energy.

We can check whether this is sensible by taking either complex root for the energy of

the ground state in the shock region as initial data for the flow backward:

E0(�1) =
R

2�1

 
±i

�����

r
1�

4�1|↵0|

R2

������ 1

!
, �1 >

R
2

4|↵0|
. (2.13)

In the region where the solution (2.5) gives real energies, there is no ambiguity in the branch

of the square root. Demanding that �1 ! 0 give the initial energy fixes the branch to be

the positive root. Once we cross the branch point and the energy becomes complex, we

have to impose a prescription about how to continue past the singularity into the shock

region.

There are two choices of root given in (2.13). The implicit equation for the flow back

by an amount |�2| depends on the choice of root. To recover a real energy, one must flow

back out of the shock region, which requires:

|e�2| � e�1 �
1

4|↵0|
. (2.14)
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With this prescription, we preserve the full spectrum of energies satisfying (2.8) with no

constraint on �1. The only price we pay is that small energies might be complex until

�2 < 0 satisfies (2.14). We are still left with the question of defining the theory with a finite

number of complex energies if we do not satisfy (2.14) but do satisfy �1+�2 � 0. If we fail

to satisfy even �1+�2 � 0 then we are back in the bad sign situation of an infinite number

of complex energies. Perhaps additional ingredients along the lines of [25] might result in

a well-defined theory for cases with complex energies. The most conservative option is to

simply avoid the shock region entirely.

2.3 Bad sign followed by good sign

The final case to consider is to first flow by �1 < 0 followed by a flow with �2 > 0. Let

us take the same approach as our prior discussion, and try to use the implicit equation to

define these sequential flows. Regardless of the magnitude of �1, the high energy states are

largely complex after the first flow. Let us take

�2 = r|�1| (2.15)

and ask what happens for di↵erent ranges of r.

The r < 1 phase

From the implicit solution (2.8), we expect most high energy states to remain complex.

We simply have not flowed ‘forward’ enough by positive �2 to cure the complex spectrum.

Numerics confirm this picture.

The r � 1 phase

For r = 1, we expect the backward then forward flow to return us to the initial undeformed

theory. The solution to the two step flow (2.8) shows this is the case as long as we are careful

about correlating the implicit equation with the branch of the square root determining the

complex energy. In this case, the only bound is not to flow too far forward and make the

ground state complex,

(r � 1)|�1| 
R

2

4|↵0|
. (2.16)

Otherwise we have to again deal with a theory with a finite number of complex energies.

12



Although this was a straightforward algebraic exercise, it demonstrates that a TT de-

formation by positive � can cure a spectrum with an infinite number of complex energies,

at least in this simple case. One might have thought that a theory with infinitely many

complex energies is an unsuitable seed, and that deforming it with any kind of operator

would generically lead to another sick theory. However, we have now checked that apply-

ing a TT deformation to this pathological seed theory can actually reverse the pathology

and generate a final deformed theory with a reasonable spectrum; in this case as long as

�2 > |�1|.

Finally we note that the analysis of this section assumed that Pn = 0 so that we could

use the implicit solution to the Burgers’ equation. However, the full solution with non-zero

Pn in (1.4) has an additional term proportional to �
2
P

2
n in the argument of the square

root. Since this extra term is strictly non-negative, it can only improve the behavior of the

deformed spectrum, in the sense that states which have real energies for Pn = 0 will also

have real energies when Pn 6= 0.

3 Deforming Multiple Theories

Next we will repeat the simplified analysis of section 2 in the case where we tensor together

TT -deformed systems as a first step and then deform by the total TT operator of the

combined system as the second step. This is how we can generate a deformation like T1T 2

that knows about subsystems.

As in the preceding discussion, we will restrict to the zero momentum sector for sim-

plicity and consider a seed theory which is the tensor product of two CFTs:

CFTseed = CFT1 ⌦ CFT2 . (3.1)

The undeformed energies of CFTseed will be written as en,m. Each such energy is the sum

of two energy eigenvalues, one in CFT1 and one in CFT2:

en,m = e
(1)
n + e

(2)
m . (3.2)

The energies e(1)n , e(2)m take the form (2.4), so we will introduce constants ↵n, �m and write

e
(1)
n =

↵n

R
, e

(2)
m =

�m

R
. (3.3)

Now we apply a T1T 1 deformation with parameter �1, only to the theory CFT1 with energies

e
(1)
n . Likewise, we apply a T2T 2 deformation with parameter �2 to theory CFT2. The total

13



deformed theory is still a tensor product of the two deformed CFTs, and thus its energy

levels are given by the sum of the deformed energies in the two tensor product factors. We

write these total deformed energies as

En,m(R,�1,�2) =
R

2�1

 r
1 +

4�1↵n

R2
� 1

!
+

R

2�2

 r
1 +

4�2�m
R2

� 1

!
. (3.4)

For the last deformation step, we will take the tensor product theory with energies (3.4) as

our seed and perform a total TT deformation by parameter �3, with T constructed from

the overall stress-energy tensor of the combined system. Denote the energies of this final

deformed theory by En,m. Because we are restricting to the zero momentum sector, these

energies satisfy the implicit relation

En,m(R,�1,�2,�3) = En,m

⇣
R + �3En,m,�1,�2

⌘
. (3.5)

Using the expression (3.4) for En,m, this gives the constraint

En,m =
R + �3En,m

2�1

 s
1 +

4�1↵n

(R + �3En,m)
2 � 1

!

+
R + �3En,m

2�2

 s
1 +

4�2�m

(R + �3En,m)
2 � 1

!
. (3.6)

For choices of parameters such that a solution exists, equation (3.6) can be solved for

En,m by a computer algebra system, although the general result is quite unwieldy and not

especially illuminating. It is more tractable if we consider some special cases. We will try

to order these cases again roughly from more conservative to less conservative.

3.1 All good sign deformations

The most conservative situation would be all good sign flows: �1,�2,�3 > 0. To avoid

entering the shock region on the first flow, we restrict �1 and �2 as in (1.5) so that the

deformed ground state energies, ↵0 and �0 respectively, remain real.

High-energy behavior

Let us first examine the high-energy behavior in this case when both ↵n and �m are very

large. In this limit,

En,m ⇠

r
↵n

�1
+

r
�m

�2
�

R

2�1
�

R

2�2
+

R
2

8
p
↵n�

3/2
1

+
R

2

8
p
�m�

3/2
2

+ . . . . (3.7)
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Superficially, we might expect that only the leading two terms in (3.7) are needed to de-

termine the high-energy behavior of En,m. However, this is not the case. When solving the

implicit equation (3.5) for En,m, we replace R with R+ �3En,m which means the remaining

terms in (3.7) contribute at the same order as the leading two terms. We can still use the

implicit solution (3.6) to determine En,m in a power series in �3 around �3 = 0:

En,m =
R

2

�1 + �2 � �2

q
1 + 4↵n�1

R2 � �1

q
1 + 4�m�2

R2

��1�2 +
�2�3
2

✓
�1 + 1q

1+
4↵n�1

R2

◆
+ �1�3

2

✓
�1 + 1q

1+
4�m�2

R2

◆ + . . .

!
2�2

p
↵n�1 + 2�1

p
�m�2 �R(�1 + �2)

2�1�2 + �1�3 + �2�3
+ . . . . (3.8)

The arrow denotes the result when we take the high-energy limit for ↵n and �m. This is

again a Hagedorn spectrum at high energies characterized by the square root dependence

on ↵n and �m.

High-energies for CFT2

Now we can turn to the case where the seed energy �m is taken very large with ↵n fixed but

otherwise unconstrained. In this case, the general expression for the energy is complicated

and not particularly illuminating so let us further simplify by taking,

�1 = �2 = �3 = � . (3.9)

The seed energies then take the form,

En,m ⇠
R

2�

 r
1 +

4�↵n

R2
� 1

!
+

r
�m

�
�

R

2�
. (3.10)

This is very similar to the two step flow we studied in section 2.1. Solving the implicit

equation gives deformed energies of the form,

En,m ⇠
2
�
R +

p
�m�

�

15�

s
1 +

15�↵n�
R +

p
�m�

�2 +
8

15

r
�m

�
�

7R

15�
. (3.11)

This deformed energy has a similar form to the seed energy (3.10) with a change in the

e↵ective radius R ! R +
p
�m�.

At the expense of a more complicated formula, we can relax (3.9) and consider

�1 = �2 = � , (3.12)
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with arbitrary �3 > 0. In this case, we find

En,m ⇠
1

4�2 + 8��3 + 3�23

⇣
4
p
�m�

3 + 4
p
�m��3 � 4�R� 3�3R

�2

r
�

n
�m�

2
3 + ↵n (4�2 + 8��3 + 3�23) + 2

p
�m��3R + �R2

o!
. (3.13)

The expression (3.13) reduces to (3.11) when �3 = � as should be the case. By examining

the square root of (3.13) we can extract an interesting feature: for large �m we can flow

forward by �3 as far as we like even if ↵n = ↵0 is the ground state. Said di↵erently:

tensoring the deformed ground state of CFT1 with a deformed high-energy state of CFT2

can cure the tachyon, or complex energy, we might have expected from just flowing CFT1

forward alone.

The diagonal spectrum

There is one additional case that admits a nice analytic solution. Take �1 = �2 = �. There

could be seed energies where ↵n = �m = ↵; for example, if CFT1 = CFT2 then all ↵n = �n.

For this diagonal component of the spectrum, the input data for the e�3 flow is simple and

we can write out an analytic solution for the two-step deformed energies,

En,m =
R

(�+ 2�3)

 r
1 +

4↵ (�+ 2�3)

R2
� 1

!
. (3.14)

These energies become complex when �+2�3 exceeds
���R2

4↵

��� when ↵ is negative. This is not

surprising because we have simply multiplied the deformed negative energy of CFT1 by a

factor of 2 and continued flowing. If we had taken N copies of {CFT1}� and considered

negative energy ↵ in each copy, there would be a bound on �3 of the form �+N�3 
R2

4|↵| to

avoid a complex energy. As one final check, note that for large ↵ we recover the expression

(3.8) with �1 = �2 = � as long as we expand (3.14) to leading order in �3.

The ground state

The next case of qualitative interest is the ground state given by (3.4) with both ↵0 and

�0 negative. How far forward can we flow by �3 before the ground state energy now goes

complex? At least intuitively we still expect it to become complex for some su�ciently large

�3. This is clear from the formula for the diagonal spectrum (3.14) applied to a negative

energy state.
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Explicit formulae, however, become quite complicated when either ↵0 6= �0 or �1 6=

�2. It seems more useful to examine a few cases numerically to see how things change

qualitatively. To present the numerical results, it is convenient to make the energies and

parameters dimensionless using R with the convention given in (1.8) that dimensionless

quantities are denoted with a tilde.

As a first case, however, we can at least demonstrate that complex energies develop at

some su�ciently large value of e�3 using an asymptotic analysis. To do this, we assume that
e�3 � e�1, e�2 and expand the constraint equation (3.6), keeping only the leading contribution

at large e�3. The result is

eE2
n,m =

↵n + �m

e�3
. (3.15)

Up to terms which are subleading at large positive e�3, we see that eE2
n,m has the same sign as

↵n + �m. In particular the deformed ground state energy is purely imaginary at this order.

Although this asymptotic analysis does not tell us the value of e�3 at which complex energies

first appear, it does demonstrate that we cannot maintain a real ground state energy at

arbitrarily large values of e�3.
Some numerical results are presented in table 1. When the initial ground state energies

4(↵0, �0) = (�1,�1) then the maximum values of (e�1, e�2) are (1, 1) before one of the

initial seed energies goes complex. The maximum value of e�3 is approximate aside from

two exceptional cases where an analytic result is possible. Note that when either e�1 or e�2
approach their critical values, the amount e�3 that we can further flow forward appears to

go to zero. Finally we list the resulting ground state energy for the maximum e�3.

As a final sanity check, we can take a look at a range of energies for �m with ↵n = ↵0.

We expect no strange behavior for positive �m and some numerical checks appear to confirm

that belief.

Evidence for modular invariance

To close this discussion of good sign flows, we will provide some numerical evidence in favor

of modular invariance of the resulting energy spectrum. For this numerical investigation we

consider two copies of the c = 1 free boson CFT. If the free boson is compact with radius

r̂, the CFT energies and momenta are given by

ECFT =
m

2

4r̂2
+ n

2
r̂
2 + N̂ + M̂ �

1

12
, P = mn+

⇣
N̂ � M̂

⌘
, (3.16)
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4(↵0, �0) (e�1, e�2) Max e�3 4⇥Energy

(�1,�1) (0.5, 0.5) 1
4 = 0.25 �4

(�1,�1) (0.5, 0.9) 0.06 �3.24

(�1,�1) (0.5, 0.99) 0.00629 �3.18

(�1,�1) (0.5, 0) 0.302 �3.41

(�1,�2) (0.5, 0.25) 1
6 ⇠ 0.167 �6

(�1,�2) (0.5, 0.45) 0.038 �5.26

(�1,�2) (0.5, 0.49) 0.0077 �5.18

(�1,�2) (0.5, 0) 0.21 �4.54

Table 1: A table listing the approximate maximum e�3 for several cases along with the

resulting ground energy.

where m is the momentum quantum number, n is the winding and (N̂ , M̂) are the oscillator

excitations. To simplify calculations, we chose the self-dual radius r̂ = 1p
2
for both CFT1

and CFT2 so that the ground state is the only state with negative energy in each CFT. In

computing the partition function,

Z(⌧) =
X

m,n,N̂,M̂

e
2⇡i⌧1P e

�2⇡⌧2E, (3.17)

with ⌧2 > 1, the result will be dominated by the ground state.

The most interesting check is the modular S-transformation which sends

⌧2 �!
1

⌧2
. (3.18)

The modular transformation properties of each deformation parameter e� are determined

by the radius of the cylinder used to make � dimensionless; see, [26, 27], for example. This

means,

e� �!

e�
|c⌧ + d|2

,

0

@a b

c d

1

A 2 SL(2,Z), (3.19)

and in our case (e�1, e�2, e�3) are each transformed according to (3.19). In table 2, we have

listed the numerical values of the partition function with ⌧1 = 0 for various cuto↵s on the
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sums appearing in (3.17) along with choices ⌧2 and the following choice of deformation

parameters

⇣
e�1, e�2, e�3

⌘
= (0.1, 0.1, 0.5). (3.20)

For example, cuto↵=2 includes 50, 625 energies which each require a separate numerical

solution of the inviscid Burgers’ equation. We cannot just numerically solve the implicit

equation because that solution only applies to zero momentum states.

If the theory is modular invariant, the value of the partition function should agree

with the value at 1
⌧2

as long as we transform the three deformation parameters in accord

with (3.19). Even with the relatively low quantum numbers for momentum, winding and

oscillators that we included, there is quite good agreement between the partition function

and its S-dual value. It would be very interesting to see whether the analytic proof of

modular invariance developed in [26, 27] for deforming CFTs can be extended to these

more general theories.

⌧2 cuto↵ Z ⌧2 cuto↵ Z

1.2 1 5.20 1
1.2 1 5.14

1.2 2 5.20 1
1.2 2 5.19

1.5 1 6.37 1
1.5 1 6.16

1.5 2 6.37 1
1.5 2 6.31

1.75 1 8.08 1
1.75 1 7.60

1.75 2 8.08 1
1.75 2 7.91

2 1 10.55 1
2 1 9.49

2 2 10.55 1
2 2 10.14

Table 2: The value of the partition function for di↵erent values of ⌧2. The winding and

momentum (m,n) run from -cuto↵ to cuto↵, while the oscillator numbers (N̂ , M̂) run from

0 to cuto↵.

19



3.2 Sequential flows with e�1, e�2 > 0 and e�3 < 0

We now turn to another case described in the introduction that motivated this analysis. We

want to flow forward by e�1 > 0 and e�2 > 0 separately and then flow the combined resulting

theory backward by e�3. The general case is complicated; here we want to establish existence

of a reasonable spectrum in any single example so let us restrict to,

e�1 = e�2 = e� > 0, e�3 = �re�, r � 0. (3.21)

The possible values for the parameter r, if any, compatible with a real spectrum will de-

termine what kind of operators like T1T 2, along the lines of (1.6), we can define this way.

Intuition from flowing a single theory forward then backward, described in section 2.2,

would suggest that we can get a reasonable spectrum.

The diagonal spectrum

As a further simplification, let us assume that CFT1 = CFT2. We then have the usual

bound on e� 
1

4|↵0| if we wish to keep the ground state energy real after the first flow.

We want to examine how large r can become while still keeping the energies real. For the

diagonal spectrum ↵n = �n we can use the solution we found earlier, which we reproduce

here in terms of dimensionless parameters:

eEdiag =
�1 +

q
1 + 4↵e� (1� 2r)

(1� 2r)e�
. (3.22)

From this we see that r > 1
2 looks like a bad sign flow with large ↵ > 0 becoming complex.

For r <
1
2 there is no obvious pathology and this diagonal spectrum appears to be well-

behaved. In this case, the leading irrelevant operator is given by,

�
�
(1� r)

�
T1T 1 + T2T 2

�
� r

�
T1T 2 + T 1T2

� 
, r <

1

2
. (3.23)

There is an interesting question of what is happening for r = 1
2 . In this case, the solution to

the implicit equation gives eEdiag = 2↵, so long as e� <
1
↵ , which is confirmed by a numerical

investigation. That is, the deformed diagonal spectrum returns exactly to the undeformed

diagonal spectrum for r = 1
2 and su�ciently small e�. We can extend this discussion of the

diagonal spectrum to N copies of CFT1. The bound changes to r 
1
N .

20



The o↵-diagonal spectrum

Now we would like to explore some features of the o↵-diagonal spectrum, ↵n 6= �m, for

the case of 2 copies of CFT1. Because we are flowing backward by by re�, we might have

thought any sickness should be visible in the high energy spectrum. This intuition turns

out to be wrong. When both ↵n and �m are very large, we can use formula (3.8), which is

accurate for small e�3 and thus small r, to find

eEn,m ⇠

q
↵n
e�+

q
�m

e��R

e�(1� r)
. (3.24)

This shows that the high-energy spectrum is free of pathologies at least for small r where

the expression (3.24) is valid.

The other case that needs investigating is when ↵n and �m di↵er substantially. Specifi-

cally we can take the ground state ↵0 < 0 and some �m > 0. Here we find a surprise which

we did not see for the case of a single theory. Let us revisit the implicit equation we are

trying to study:

eE0,m =
1� re�eE0,m

2e�

0

BB@

vuuut1�
4e�|↵0|⇣

1� re�eE0,m
⌘2 � 1

1

CCA

+
1� re�eE0,m

2e�

0

BB@

vuuut1 +
4e��m⇣

1� re�eE0,m
⌘2 � 1

1

CCA . (3.25)

What happens in this case, which did not happen in the case of a single theory, is that the

first square root of (3.25) can become imaginary for large eE0,m regardless of how small one

chooses r. Numerics seems to confirm that there are a finite number of complex energies

for generic r.

To see this graphically, we have plotted the real spectrum for the case of e� = 1
2 in

Figures 5 and 6. In both cases, we begin with ground state energies ↵0 = �0 = �
1
4 and

then assume an evenly-spaced discrete spectrum where the gaps between adjacent energy

levels is 1
10 so that ↵n+1�↵n = 0.1. In both cases, almost all of the energies are real except

for a small strip that has been excised when one of the energies is negative and the other

is moderate and positive. These excluded strips are visible as ragged edges that have been

cut o↵ on either boundary of the plots. For this combination of flows, there is a slim chance
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that exceptional solutions exist where the seed CFT has a special spectrum and one tunes
e� and r to specific values. Such a theory exist, should it exist, would be isolated.

In hindsight, the existence of complex energies seems reasonable. For r = 1
2 , the diagonal

spectrum returns to its undeformed value. This includes the ground state. However, the

o↵-diagonal spectrum is definitely changed. It is hard to see how such a spectrum could

remain compatible with modular invariance.

Figure 5: A plot of the deformed energies En,m as a function of the undeformed energies

(↵n, �m), where e�1 = e�2 = 1
2 and r = 1

4 so that e�3 = �
1
8 . The left plot shows the

deformed spectrum for ↵n, �m ranging from �
1
4 to 80. The right plot zooms onto the region

�
1
4  ↵n  1, where there is a window of complex energies that are not plotted.
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Figure 6: A plot of the deformed energies En,m with e�1 = e�2 = 1
2 and r = 1

2 . Again the

left plot shows a wide view of the spectrum and the right plot zooms into the region where

some energies are excised because the solution to the implicit equation is complex.

3.3 Sequential flows with e�1, e�2 < 0 and e�3 > 0

Now we reverse the order of the flows and first flow backward into the shock region and

then flow forward. We will use the same simplifying assumption of CFT1 = CFT2 and
e�1 = e�2 = e� < 0 with e�3 = r|e�|. Is there any range of r for which the resulting spectrum

is real?

The diagonal spectrum

There is no immediate natural bound on e� since any amount of backward flow generates

complex energies. Let us first examine the diagonal spectrum with ↵n = �n:

eEdiag =
�1 +

q
1 + 4↵|e�| (2r � 1)

(2r � 1)|e�|
. (3.26)

As in section 3.2, there is an exceptional case r = 1
2 where the diagonal spectrum appears

to return to its undeformed value, eEdiag = 2↵, so long as |e�| < 1
↵ . To prevent high energy

states from becoming complex we require r �
1
2 . To keep the ground state energy real we

also require 2r 
1

4|↵0
e�|
+ 1. This is a fairly weak bound since |e�| can be very small. As in

the previous example, the diagonal spectrum looks quite reasonable. For N copies of CFT1

rather than 2 copies we replace

(2r � 1) ! (Nr � 1). (3.27)
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The o↵-diagonal spectrum

Now let us examine what is happening for the o↵-diagonal spectrum. The implicit equation

takes the form,

eEn,m =
1 + r|e�|eEn,m

2|e�|

0

BB@1�

vuuut1�
4|e�|↵n⇣

1 + r|e�|eEn,m
⌘2

1

CCA

+
1 + r|e�|eEn,m

2|e�|

0

BB@1�

vuuut1�
4|e�|�m⇣

1 + r|e�|eEn,m
⌘2

1

CCA . (3.28)

The square roots can become imaginary only if ↵n or �m is positive. Assume both ↵n > 0

and �m > 0 which should be close to a worst case. If we set ↵n = 0 and solve, we find the

analytic result corresponding to flowing a single system

eE(↵n = 0) =
1

2|e�| (r � 1)

⇣
1�

p
1 + 4�m (r � 1)

⌘
. (3.29)

This requires r > 1 strengthening the constraint seen from the diagonal spectrum.

The last bound we find is something we see numerically; namely, that r � 2. Unlike

the case of good sign followed by bad sign, for this range of r there does appear to be a

completely real spectrum. In table 3, we have listed some numerical results for the energies

in the zero momentum sector with various choices of e� and r.

One way to argue for the bound r � 2 is as follows: suppose that we consider very high

energy states in the final deformed theory so that eEn,m � 1. This corresponds to states in

the undeformed theory with either ↵n � 1, or �m � 1, or both. In order for the arguments

of the square roots in (3.28) to remain positive, the ratios

4↵n

r2|e�|2 eE2
n,m

,
4�m

r2|e�|2 eE2
n,m

, (3.30)

must remain smaller than 1. For simplicity, we will take the simultaneous limits ↵n ! 1,

�m ! 1, eEn,m ! 1 with the ratios ↵n
eE2
n,m

and �m
eE2
n,m

held fixed and finite. To leading order,

the implicit equation (3.28) in this limit can be written as

eEn,m(1� r) = �
1

2e�

✓q
eE2
n,mr

2e�2 � 4↵n
e�+

q
eE2
n,mr

2e�2 � 4�me�
◆

. (3.31)
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(↵n, �m) |e�| r Energy (↵n, �m) |e�| r Energy

(�1
4 ,�

1
4)

1
8 2 �0.558 (�1

4 ,�
1
4)

1
8 2.25 �0.571

(�1
4 , 1)

1
8 2 0.732 (�1

4 , 1)
1
8 2.25 0.717

(�1
4 , 100)

1
8 2 24.561 (�1

4 , 100)
1
8 2.25 22.293

(�1
4 ,�

1
4)

1
4 2 �

2
3 (�1

4 ,�
1
4)

1
4 2.25 �0.739

(�1
4 , 1)

1
4 2 0.705 (�1

4 , 1)
1
4 2.25 0.680

(�1
4 , 100)

1
4 2 18.097 (�1

4 , 100)
1
4 2.25 16.356

Table 3: A table showing the numerical solutions for the deformed energies eEn,m for various

choices of dimensionless undeformed energies (↵n, �m), |e�|, and r. In all cases we take

R = 1.

This can be converted into a quartic equation for eEn,m which has four roots:

eEn,m = ±

s
(r � 1)(↵n + �m)±

p
4↵n�m � 8r↵n�m + r2(↵n + �m)2

(1� 3r + 2r2)e�
. (3.32)

The two ± symbols in (3.32) are independent and all four possible choices of signs yield

solutions to the quartic. However, only the choice of root with both plus signs will give

positive real energies. Since the conversion from (3.31) to a quartic equation involved

squaring, we may have introduced spurious roots and we must check that the purported

solution actually satisfies the original equation. Indeed, one finds that substituting the

preferred root

eEn,m =

s
(r � 1)(↵n + �m) +

p
4↵n�m � 8r↵n�m + r2(↵n + �m)2

(1� 3r + 2r2)e�
(3.33)

into the implicit equation (3.31) only yields a solution when r � 2. This behavior is related

to the fact that the four roots (3.32) become degenerate at r = 2, coming in two pairs of

double roots, and the preferred root only becomes a solution past this crossing point in the

region r � 2.

Another way to interpret this bound is to note that for our high-energy solution (3.33),

one of the two ratios 4↵n

r2|e�|2 eE2
n,m

,
4�m

r2|e�|2 eE2
n,m

appearing in (3.30) tends to 4
r2 if ↵n is taken to

infinity at fixed �m, or if �m ! 1 with ↵n fixed. In order to guarantee that both ratios

remain smaller than 1, so that the arguments of the square roots are positive, we need
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r � 2. We conclude that this bound r � 2 is necessary to have a well-behaved high-

energy spectrum in the deformed theory. If one is willing to tolerate a theory with complex

energies, there is an interesting phase structure that we see as a function of r.

The r < 1 phase

This phase is morally similar to the bad sign TT deformation. Namely, an infinite number

of high-energy states have complex energies. More importantly, there are only a finite

number of real energies. The easiest way to see this is to look at a plot of energies for a

specific r. One such case is displayed in Figure 7. Once again, we take ↵0 = �0 = �
1
4 and

choose evenly spaced energy levels with a di↵erence of 1
10 . That is, ↵n+1 � ↵n = 1

10 and

likewise for the �m.

Figure 7: The deformed energies En,m as a function of the undeformed dimensionless energies

(↵n, �m), and where r = 1
2 ,
e� = 1

10 . Note that real energies only exist in a finite band around

↵n = �m and that solutions fail to exist when ↵n, �m >
1
e�
= 10, as expected from equation

(3.34). For undeformed energies outside this region, no real solution exists so the surface

plot has been truncated.

We chose to plot the case r = 1
2 because this case can also be studied analytically. For

the diagonal part of the spectrum (↵n = �m), one finds that the implicit equation (3.6)

only admits a real solution if

|↵| 
1
e�
. (3.34)

26



This means that the diagonal part of the spectrum has been cut o↵ at high energies.

Although the undeformed theory had an infinite tower of states with energies (↵n, �m) with

↵n and �m growing arbitrarily large, the corresponding high energy states in the deformed

theory either have complex energies or are not present at all.

For states which do satisfy the bound (3.34), the diagonal deformed energies are given

by (3.26) when r 6= 1
2 . In the special case r = 1

2 , as we mentioned above, the implicit

relation degenerates and admits the new solution

E =
2↵

R
, (3.35)

which is the same as the corresponding energy level in the undeformed product of CFTs.

In addition to the upper bound in the diagonal sector, we find a second constraint on

the di↵erence between the two undeformed energies which must be satisfied in order to give

a state in the deformed spectrum. This is most easily seen from a numerical investigation,

such as Figure 7 above. We see that, when |↵n � �m| is too large, which corresponds to a

point on the plot which is too far from the diagonal, the implicit equation fails to have a

real solution. Therefore there is a upper bound on |↵n��m| in order to have real deformed

energies, although the analytic expression for this bound is unwieldy. Graphically, we see

that there is a finite ribbon of real energies close to the diagonal which satisfy this bound.

The upshot is that in the range r < 1, any interpretation of the deformed spectrum

via truncation to a finite number of real energy modes or by some other approach will

encounter the same di�culties as bad sign TT .

The 1  r < 2 phase

There is a qualitative change at r = 1. In addition to an infinite number of complex

energies, there are now an infinite number of real energies, which is unlike the case of bad

sign TT . The real energies are all close to the diagonal case of ↵n = �m while the complex

energies are far from the diagonal. We can see this numerically in Figure 8. What was a

finite ribbon of real energies near the diagonal for r < 1 now becomes an ribbon of infinite

diagonal extent but finite width.
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Figure 8: Deformed energies En,m for r = 3
2 ,
e� = 1

4 . In this phase, all of the energies within

a finite band around the diagonal ↵n = �m remain real in the deformed theory. However,

very o↵-diagonal energies with |↵n � �m| large become complex, or perhaps alternatively

become truncated.

A simplification occurs in the case of r = 1. In this case, the deformed energy levels are

eEn,m =
1
e�

✓q
1 + 2e�(↵n + �m) + e�2(↵n � �m)2 � 1

◆
. (3.36)

However, not every pair of undeformed energies associated with parameters ↵n, �m leads to

a real energy level in the deformed theory. This is because the implicit equation (3.6) only

admits a real solution for eEn,m if the parameters satisfy certain bounds. If either ↵n � 0 or

�m � 0, the expression (3.36) solves (3.6) with r = 1 as long as

|↵n � �m| 
1
e�
. (3.37)

If ↵n and �m are both negative, the constraint is

|↵n + �m| 
1

2e�
. (3.38)

For pairs of undeformed energies which do not satisfy these constraints, there is no real

solution to the implicit equation (3.6).

The r � 2 phase

As mentioned earlier, the case that looks completely real is r � 2. For comparison with

smaller values of r, the spectrum is plotted in Figure 9 for r = 2.1.
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Figure 9: A plot of the deformed energies En,m for r = 2.1, e� = 1
4 . In the phase r � 2, all

of the deformed energies remain real and there are no complex or truncated energies.

The ground state

The other point we want to check is how large e� can become before the ground state

energy becomes complex. Many of the analytic results in our preceding discussion assumed

diagonal energies, �m = ↵n = ↵, but the spectra of CFT1 and CFT2 were otherwise

unconstrained. Now we will assume the ground state energies are the same for both theories

so e0,0 =
2↵0
R . From (3.26), we see that

e� 
1

4(2r � 1)|↵0|
. (3.39)

This is in contrast with (1.5) where there is an upper bound on e� set by the central charge.

3.4 Sequential flows with e�2 = 0

We will briefly mention one additional possibility: one can first deform CFT1 by e�1 then

tensor the result with an undeformed CFT2, and finally deform the tensor product by an

additional flow with parameter e�3. This corresponds to setting e�2 = 0 in the preceding

discussion. Note that bounds for the maximum allowed e�3 when e�2 = 0 were given for some

special cases in Table 1. Because the qualitative features of the e�2 = 0 case are similar to

the flows described in the preceding subsections, we will not undertake a detailed analysis.

Instead we content ourselves with describing the various possibilities and presenting plots

to illustrate the behavior.
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The first possibility is to deform CFT1 by a positive flow parameter e�1 > 0, tensor with

the undeformed CFT2, and then flow the combined system by another positive parameter
e�3 > 0. Because this sequential flow involves only positive deformation parameters, we

expect it to behave like the all-good-sign flows of section 3.1. These flows appear to produce

spectra with all real energies so long as the total length of the positive flows is not so large

that the ground state energy becomes complex. An example of the numerical spectrum

for a flow of this form is shown in Figure 10, where the undeformed energies in CFT1 and

CFT2 are taken to be evenly-spaced with a ground state at ↵0 = �0 = �
1
4 and a gap of 0.1

between adjacent energy levels. Indeed one finds that all of the deformed energies are real.

Figure 10: The deformed energies eEn,m for a combined flow by e�1 = 1
4 ,
e�2 = 0, e�3 = 1

4 . No

complex energies arise for this combination of flow parameters.

Another possibility is a sequential flow by e�1 < 0, e�2 = 0, and e�3 < 0. This combination

is less interesting because it involves only the bad sign of the deformation parameter and

therefore deformed energies corresponding to high-energy states of CFT1 or CFT2 will

always be complex.

A more interesting possibility is to first flow by e�1 < 0 and then by e�3 > 0, again with
e�2 = 0. We expect this to behave like the sequential flows discussed in section 3.3 where

both CFTs were first deformed by the bad sign of the deformation parameter and then

the combined system was deformed with the good sign. In that context, we saw a phase

structure emerge with several possible cases. When the bad-sign flow parameters e�1, e�2
were too large compared to the good-sign parameter e�3, we saw that part of the spectrum

remained complex. When e�3 became su�ciently large the entire deformed spectrum became
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real. We find numerically that a similar phenomenon occurs when e�2 = 0. In particular, if
e�1 < 0 and e�3 = r|e�1|, we find that part of the deformed spectrum is truncated or becomes

complex when r < 2, but for r � 2 all of the deformed energies appear real. This behavior

is shown in Figure 11.

Figure 11: Deformed energies eEn,m with e�1 = �
1
4 ,
e�2 = 0, and e�3 = r|e�1|. The top-left

plot shows r = 1 where half of the spectrum below the diagonal becomes complex and is

truncated. The top-right plot displays the corresponding spectrum when r = 3
2 ; in this

case part of the truncated spectrum has been cured, but there is still an infinite region of

excised energies below a shifted diagonal which is visible in the bottom-right part of the

plot. Finally, the plot on the second line shows the case r = 2, where it appears that the

entire spectrum has been cured and all deformed energies are real.

Finally, for the class of sequential deformations with e�1 > 0 and e�2 = 0, one could ask

about the maximum allowed e�3 with which we may flow before the ground state energy
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becomes complex. This is the analogue of the question we addressed numerically in Table

1. In the e�2 = 0 case, the approximate maximum values of e�3 and resulting ground state

energies for several choices of e�1 are shown in Table 4.

4(↵0, �0) e�1 Max e�3 4⇥Energy

(�1,�1) 0.25 0.41 �3.42

(�1,�1) 0.5 0.302 �3.41

(�1,�1) 0.9 0.006 �2.9

(�1,�2) 0.25 .29 �5.3

(�1,�2) 0.5 0.21 �4.54

(�1,�2) 0.9 0.0049 �3.55

Table 4: For flows with e�1 > 0, e�2 = 0, we have listed the approximate maximum allowed
e�3 for which the ground state energy remains real together with the value of that deformed

ground state energy.

4 Flow Equation for the Lagrangian

In the preceding sections, we have considered the flow equation for the energy levels in a

pair of CFTs coupled via a T1T2 procedure. Aside from the checks of modular invariance,

much of the discussion is restricted to the zero-momentum sector where we can use an

implicit solution to the inviscid Burgers’ equation. Next we will consider the flow equation

for the Lagrangian itself. This is a classical analysis so we are not constrained by quantum

constraints on whether the theory is sensible. For the original TT deformation, the study

of classical flows has led to an unexpected new organizing principle for many well-known

e↵ective actions [3, 28–36]. Along the first leg of our multi-step deformation, the Lagrangian

obeys the di↵erential equation:

@L�

@�
=

1

2

⇣�
T

µ
µ

�2
� T

µ⌫
Tµ⌫

⌘
. (4.1)
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4.1 Two Free Bosons

We will be primarily motivated by the example of two free bosons � and �, with an initial

seed theory of the form

L0 = @
µ
�@µ�+ @

µ
�@µ� . (4.2)

For the first step of our deformation, we will separately deform CFT1 of the scalar � by

T1T 1 and deform CFT2 of the scalar � by T2T 2, both by a total parameter �. It was first

shown in [3] that this procedure of deforming a free scalar produces a deformed Lagrangian

corresponding to a Nambu-Goto string in static gauge. After the first leg of our deformation,

the resulting theory is therefore simply the tensor product of two gauge-fixed Nambu-Goto

theories:

L� =
1

2�

⇣p
1 + 2�@µ�@µ�+

p
1 + 2�@µ�@µ�� 2

⌘
. (4.3)

We would now like to consider (4.3) as a new seed theory and deform by the total TT of the

combined theory. In a sense, the first flow by � takes us from point particles to gauge-fixed

strings. The second flow should be taking us to a kind of interacting theory of multiple

strings.

As a first step in the analysis, it will be useful to consider the possible scalar quantities

that can appear in the final Lagrangian after performing this deformation. The Hilbert

stress tensor Tµ⌫ of (4.3) contains one term proportional to @µ�@⌫�, one term proportional

to @µ�@⌫�, and one term of the form gµ⌫L�. When we construct bilinears in Tµ⌫ , therefore,

three independent Lorentz scalars will appear:

x = @
µ
�@µ� , y = @

µ
�@µ� , z = @

µ
�@µ� . (4.4)

It is clear that this exhausts the list of scalars that can be constructed from @
µ
� and

@
µ
�, since we will never generate terms with more than one derivative per field and every

index appearing on a derivative @µ of a field must appear contracted with a derivative @µ

of another field. During the second step of the flow, we can therefore assume that the

Lagrangian takes the form

L�,�3 = f(�,�3, x, y, z) , (4.5)

where we use the symbol �3 for the deformation parameter along the second leg of the

deformation. We write L�,�3 for the final deformed Lagrangian. The Hilbert stress tensor
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associated with L�,�3 is

Tµ⌫ = �2
�
fx @µ�@⌫�+ fy @µ�@⌫�+ fz @(µ�@⌫)�

�
+ gµ⌫f , (4.6)

where we write fx = @f
@x and so on. Using (4.6) we can construct the bilinears appearing in

(4.1). First the trace is

T
µ
µ = �2 (x fx + y fy + z fz) + 2f , (4.7)

and the contraction Tµ⌫T
µ⌫ is

Tµ⌫T
µ⌫ = 4

✓
x
2
f
2
x + 2z2fxfy + 2xzfxfz + y

2
f
2
y + 2yzfyfz +

1

2
(xy + z

2)f 2
z

◆

� 4f (xfx + yfy + zfz) + 2f 2
. (4.8)

The flow equation with respect to the �3 variable is therefore

@L�,�3

@�3
=

1

2

⇣�
T

µ
µ

�2
� T

µ⌫
Tµ⌫

⌘
,

= f
2
� 2f (x fx + y fy + z fz) + (4fxfy � f

2
z )(xy � z

2) . (4.9)

Starting from the seed theory (4.3), we can use this flow equation to find a perturbative

solution to any desired order in �3. For instance, up to O(�3), one has

L�,�3 = L�,0 +
3�3
2�2

+
�3

2�2
p

(1 + 2�x)(1 + 2�y)

"
1 + �(x+ y) + 2�2(xy � z

2)

� 2
⇣p

1 + 2�x+
p

1 + 2�y
⌘
� 2�

⇣
y
p
1 + 2�x+ x

p
1 + 2�y

⌘#
+O(�23) , (4.10)

where for convenience we repeat

L�,0 ⌘ L� =
1

2�

⇣p
1 + 2�@µ�@µ�+

p
1 + 2�@µ�@µ�� 2

⌘
. (4.11)

Expanding (4.10) to leading order in � gives

L�,�3 = L�,0 + �3

✓
xy � z

2
�

1

4
(x+ y)2

◆

+ �3�(x+ y)

✓
1

2
(x2 + y

2)� (xy � z
2)

◆
+O(�23,�

2
�3) . (4.12)

The O(�3�0) term of (4.12) reproduces the leading contribution when � = 0. This cor-

responds to deforming the tensor product of two free bosons by a TT deformation of the
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total system. The exact closed form for this case was presented in [3] and corresponds

to a gauge-fixed Nambu-Goto string with two transverse directions rather than one. The

deformed action with � = 0 has an O(2) symmetry rotating � into �. The combinations

xy � z
2 and (x+ y)2 separately respect this symmetry.

The O(�3�) term, however, explicitly breaks this symmetry as we expect since the

action (4.3) does not respect this symmetry. Finding a closed form solution for the flow

equation appears to be di�cult in this model by contrast with cases like [37, 38] where

exact implicit solutions were possible. Knowing the exact form would be very interesting

for cases like � < 0 followed by �3 > 0 where we expect the bad behavior of a string with

negative tension to be cured by the forward flow. It is natural to suspect that there is a

critical velocity for such models similar to the critical velocity seen in (4.3) with the good

sign flow � > 0.

4.2 Two Free Fermions

An even simpler case to consider is the T1T2 coupling of two free Majorana fermions, since

the number of allowed terms is severely constrained by nilpotency. Consider two fermionic

fields  ± and ⇣± with the undeformed action

L0 = i +@�� + + i �@++ � + i⇣+@��⇣+ + i⇣�@++⇣� . (4.13)

Here we use bispinor notation for vector indices; for details on these conventions, see [30, 31],

for example. Next we would like to compute the components of the stress tensor. Using the

usual Noether procedure but being careful to account for Grassmann statistics, one finds

that the stress tensor components of a general fermionic theory for a single field  ± are

given by

T++++ = (@++ +)
�L

�(@�� +)
+ (@++ �)

�L

�(@�� �)
,

T++�� = (@�� +)
�L

�(@�� +)
+ (@�� �)

�L

�(@�� �)
� L ,

T��++ = (@++ +)
�L

�(@++ +)
+ (@++ �)

�L

�(@++ �)
� L ,

T���� = (@�� +)
�L

�(@++ +)
+ (@�� �)

�L

�(@++ �)
. (4.14)

Note that the Noether stress tensor is not symmetric (T++�� 6= T��++) which is a generic

feature of theories with fermions. It can be made symmetric via an improvement transfor-

mation or by using the appropriate version of the Hilbert stress tensor, but for our purposes
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the Noether stress tensor will be su�cient. The analogous stress tensor components for the

subsystem with the field ⇣± can be obtained by replacing  ± with ⇣± in (4.14).

Using these expressions for the components of Tµ⌫ , it is straightforward to find the

TT -deformed Lagrangian after deforming each fermion theory separately by �,

L� = L0 + �

⇣
 +@�� + �@++ � �  +@++ + �@�� �

+ ⇣+@��⇣+⇣�@++⇣� � ⇣+@++⇣+⇣�@��⇣�

⌘
. (4.15)

Although (4.15) only contains a correction which is linear in �, it actually satisfies the exact

TT flow (within each sector) to all orders in �, because all higher terms vanish. This is

simply because there are no additional non-vanishing terms that can be constructed from

a single fermion because of Grassmann statistics.

Now we would like to treat (4.15) as a seed theory and TT deform again but this time

with parameter �3. The components of the stress tensor associated with (4.15), using

bispinor conventions for the vector indices, are

T++++ = i +@++ + + i⇣+@++⇣+ ,

T++�� = �i �@++ � � i⇣�@++⇣� ,

T��++ = �i +@�� + � i⇣+@��⇣+ ,

T���� = i �@�� � + i⇣�@��⇣� . (4.16)

In particular, the O(�) term drops out of the stress tensor entirely. Therefore the two-step

deformed Lagrangian is

L�,�3 = L0 + (�+ �3)
⇣
 +@�� + �@++ � �  +@++ + �@�� � + ⇣+@��⇣+⇣�@++⇣�

� ⇣+@++⇣+⇣�@��⇣�

⌘
+ �3

⇣
 +@�� +⇣�@++⇣� �  +@++ +⇣�@��⇣�

+ ⇣+@��⇣+ �@++ � � ⇣+@++⇣+ �@�� �

⌘
. (4.17)

One can verify by direct computation that the components of the stress tensor associated

with L� are identical to those associated with L�,�3 . Thus (4.17) gives the exact, all-orders

solution in both � and �3 to the two-step flow. For instance, we can set � = ��3 to find

L��,� = L0 + �

⇣
 +@�� +⇣�@++⇣� �  +@++ +⇣�@��⇣�

+ ⇣+@��⇣+ �@++ � � ⇣+@++⇣+ �@�� �

⌘
, (4.18)
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which gives the finite-� solution for the T1T 2 deformation discussed in (1.7). As mentioned

above, this is an irrelevant coupling of the two seed theories but the deforming operator

OT1T 2
⌘
@L��,�

@�

=  +@�� +⇣�@++⇣� �  +@++ +⇣�@��⇣�

+ ⇣+@��⇣+ �@++ � � ⇣+@++⇣+ �@�� � (4.19)

cannot be expressed as any scalar quantity constructed from the stress tensor Tµ⌫ of the

theory. It is not the product of currents and is therefore a qualitatively di↵erent deformation

from any TT -like deformation.

Although this solution for the Lagrangian of the T1T 2 deformed system has a fairly

simple form involving four fermion interactions, it is interesting to note that the cylinder

spectrum of this interacting theory is still in principle determined by iterated applications

of the inviscid Burgers’ equation, as we discussed in section 3.
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