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Abstract: Large-scale imaging studies often face challenges stemming from heterogeneity arising
from differences in geographic location, instrumental setups, image acquisition protocols, study
design, and latent variables that remain undisclosed. While numerous regression models have been
developed to elucidate the interplay between imaging responses and relevant covariates, limited
attention has been devoted to cases where the imaging responses pertain to the domain of shape. This
adds complexity to the problem of imaging heterogeneity, primarily due to the unique properties
inherent to shape representations, including nonlinearity, high-dimensionality, and the intricacies of
quotient space geometry. To tackle this intricate issue, we propose a novel approach: a shape-on-scalar
regression model that incorporates confounder adjustment. In particular, we leverage the square root
velocity function to extract elastic shape representations which are embedded within the linear Hilbert
space of square integrable functions. Subsequently, we introduce a shape regression model aimed at
characterizing the intricate relationship between elastic shapes and covariates of interest, all while
effectively managing the challenges posed by imaging heterogeneity. We develop comprehensive
procedures for estimating and making inferences about the unknown model parameters. Through
real-data analysis, our method demonstrates its superiority in terms of estimation accuracy when
compared to existing approaches.

Keywords: imaging heterogeneity; Alzheimer’s disease; corpus callosum; square root velocity
function; shape-on-scalar regression model

1. Introduction

Multi-site neuroimaging data integrative analysis is becoming of great interest so that
establishing the relationship between imaging responses and covariates of interest from
large-scale imaging studies, such as the Alzheimer’s Disease Initiative (ADNI) study [1], can
identify significant biomarkers for major neurological diseases, irrespective of any technical
barriers. The need for imaging integration strategies arises as the differences in image
acquisition protocols, experimental designs, and other unknown hidden factors could lead
to invalid associations between biological variables of interest and false conclusions.

Some statistical integration techniques have been developed and applied to neuroimag-
ing data harmonization. ComBat was first developed to remove unwanted variations
caused by batches (with small samples) in gene expression data [2]. Recently, ComBat was
applied to neuroimage data by shrinking the batch effect to the overall mean batch effect
across voxels using the empirical Bayes framework. ComBat-GAM is an extension of Com-
Bat where nonlinear trends of demographic features like age and sex are accommodated in
the location-scale adjustment model by using a generalized additive model [3]. Surrogate
variable analysis is another widely used harmonization technique to estimate unknown
hidden factors in gene expression studies [4]. It was also applied to neuroimaging data that
successfully identified brain disorder identification and predicted disease progression after
removal of inter-site heterogeneity [5–9]. Although these strategies have been developed to
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harmonize multi-site effect and increase power and reproducibility of statistical tests of
various imaging data modalities, including diffusion tensor images [10], cortical thickness
measurements [11,12], and functional magnetic resonance imaging (MRI) data [13,14], lim-
ited work has been conducted for imaging responses derived from the shape space. The
shape is broadly defined to be a characteristic that is left after certain nuisance or shape-
preserving transformations, such as rotations, translations, and scale, are removed [15–17],
with the result that shape representation spaces are nonlinear, high-dimensional, and have
quotient space geometry [18]. Therefore, the conventional normality assumptions often
applied to imaging responses in existing image-on-scalar regression models cannot be
directly extended to shape data. Furthermore, most existing harmonization approaches fail
to provide inference tools to investigate the model uncertainty [2,3].

This paper aims to introduce a shape-on-scalar regression model that incorporates
confounder adjustment. In particular, we leverage the square root velocity function to
extract elastic shape representations, which are embedded within the linear Hilbert space
of square integrable functions. Subsequently, we introduce a shape regression model
aimed at characterizing the intricate relationship between elastic shapes and covariates
of interest, all while effectively managing the challenges posed by imaging heterogeneity.
We develop comprehensive procedures for estimating and making inferences about the
unknown model parameters. To demonstrate our method, we consider the corpus callosum
contour (CC) shape data from ADNI study and investigate its relationship with some
covariates of interest. CC is the largest white matter tract containing millions of nerve fibers
that connect the left cerebral hemisphere to the right hemisphere. It facilitates cognitive
functions like attention, memory, learning, reasoning, planning, and problem solving.
Studies on Alzheimer’s disease (AD) consistently show that the CC undergoes notable
changes in the early stages of the disease. These alterations in both anterior and posterior
CC sections correlate with cognitive decline. Specific MRI measurements of the CC are
associated with this cognitive deterioration. Overall, patterns of callosal deformation are
emerging as significant biomarkers for diagnosing and tracking AD progression [19–23].

The paper is organized as follows. Section 2 introduces a shape-on-scalar regression
model with confounder adjustment and outlines the estimation and inference procedures
for the model parameters. In Section 3, we apply our method to the CC shape dataset in
the ADNI study.

2. Methods
2.1. Preliminaries and Notations

We suppose that we observe both imaging data and covariates of interest, including
clinical variables and demographic information, from n unrelated subjects. Instead of the
whole brain image, we are interested in the contour of the planar CC. We let Li be a m× 2
matrix with m landmarks representing the contour of the ROI in R2. In addition, we let X
be an n× p full column rank matrix of observed covariates, including the intercept. We let
e⊗2 = ee> for any vector e, A⊗ B be the Kronecker product of two matrices A and B, and
diag(·) represent a diagonal matrix with all the elements on the diagonal.

2.2. Shape-on-Scalar Regression Model

Given the landmarks Li from the contour of planar CC, we first derive the coordi-
nate functions, f i(t)

.
= ( fi,1(t), fi,2(t)) with fi,1(t) and fi,2(t) in the x-axis and the y-axis,

respectively, in Kendall’s shape space, where shapes are invariant to shape-preserving
transformations, e.g., rotation, translation, and scaling. Specifically, we remove these
nuisance transformations from the landmarks Li via applying some preprocessing steps
(details can be found in [24]). After that, as illustrated in [25], we derive the square root
velocity function (SRVF) representations for the ith subject:

gi(t) : [0, 1]→ R2, gi(t) = (gi,1(t), gi,2(t)), gi,j(t) = ḟi,j(t)/
√
| ḟi,j(t)|, j = 1, 2. (1)
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According to the results in [25], if the functions in f i(t) are absolutely continuous, then
the corresponding SRVF representations are square integrable, i.e., gi(t) ∈ L2([0, 1],R2), i =
1, . . . , n. Under this representation, we can further determine the optimal registration (or
re-parameterization) group action for each SRVF representation, which corresponds to the
following optimization problem:

γi,∗(t) = arginfγ(t)∈Γ‖µ(t)− (gi ◦ γ(t))
√

γ̇(t)‖, i = 1, 2, · · · , n, (2)

where µ(t) is a template, such as the mean of {gi(t), i = 1, · · · , n}, Γ includes all possible
diffeomorphisms of [0, 1] that preserve the boundaries, i.e., Γ = {γ(t) : [0, 1] → [0, 1] |
γ(0) = 0, γ(1) = 1}, and the composition gi ◦ γ(t) is a re-parameterization of gi(t). Then,
we can obtain the aligned SRVF representations as follows:

ψ(gi,j(t), γi,∗(t)) = (gi,j ◦ γi,∗(t))
√

γ̇i,∗(t), j = 1, 2, i = 1, . . . , n. (3)

To investigate the relationship between shape representations and some covariates
of interest while handling the heterogeneity introduced by unobserved confounders, we
consider the following shape-on-scalar regression model:

Ψ(t) = XB(t) + Λ(t) + η(t) + ε(t), (4)

where Ψ(t) is a n × 2 matrix, including the shape representations, with the jth column
Ψ.j(t) = (ψ(g1,j(t), γ1,∗(t)), . . . , ψ(gn,j(t), γn,∗(t)))>, j = 1, 2. In practice, we assume that
the shape responses are observed at nv grid points, denoted as t1, . . . , tnv . For the functional
coefficients, B(t) = (β1(t), β2(t)) is a p × 2 matrix that represents the primary effect
associated with X. For the unobserved terms, Λ(t) = (Λ.1(t), Λ.2(t)) is a n × 2 matrix
that represents the functional hidden confounders related to X, η(t) = (η.1(t), η.2(t)) is a
n× 2 matrix, independent of X, representing both subject-specific and location-specific
spatial variability in the shape representations, and ε(t) = (ε.1(t), ε.2(t)) is a n× 2 matrix
including the measurement errors. It is assumed that each row in η(t) and ε(t) is a mutually
independent and identical copy of SP(0, Ση) and SP(0, Σε), respectively. Here, SP(µ, Σ)
denotes a stochastic process with mean function µ(t) and covariance function Σ(s, s′).
Moreover, Σε(t, t′) is in the form of Ωε(t)1(t = t′), where Ωε(t) is a diagonal matrix and
1(·) is an indicator function.

2.3. Estimation Procedure

To estimate the coefficient functions B(t) and functional hidden confounders Λ(t)
in (4), we follow three main steps: (i) orthogonal decomposition of functional hidden
confounders; (ii) rank-q representation of functional hidden confounders; and (iii) bias
correction of the estimated coefficient functions.

(i) Orthogonal decomposition of functional hidden confounders. We apply the orthog-
onal decomposition of Λ.j(t) onto the columns of X and reparametrize (4) as

Ψ.j(t) = Xβ∗j (t) + Λ∗.j(t) + η.j(t) + ε.j(t), (5)

where β∗j (t) = βj(t) + (X>X)−1X>Λ.j(t), Λ∗.j(t) = (In − PX)Λ.j(t), and PX = X(X>X)−1X>.
Then, we can obtain the weighted least squares estimate of β∗j (t) by using the local linear

kernel smoothing method in [26,27]. We let Khβ
(t) = |hβ|−1K(h−1

β t) and zhβ
(t′ − t) =

(1, (t′ − t)/hβ)
>, where K(·) is the kernel function and hβ is the bandwidth matrix. Then,

the WLS estimator of β∗j (t) can be written as

β̂
∗
j (t) = (X>X)−1X>

nv

∑
k=1

ak(hβ, t)Ψj(tk), (6)
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where ak(hβ, t) = (1, 01×d)[∑
nv
k=1 Khβ

(tk− t)zhβ
(tk− t)⊗2]−1Khβ

(tk− t)zhβ
(tk− t). The local

linear estimator we obtain in (6) is a biased estimator. We correct this bias using the pre-
asymptotic substitution method in [27]. We find the bias term by fitting a local cubic with a
pilot bandwidth selected in (6). Moreover, we find the estimate of Λ.j(t). Finally, we can

subtract the estimate (X>X)−1X>Λ̂.j(t) from β̂
∗
j (t) to achieve the unbiased estimator β̂j(t).

(ii) Rank-q representation of functional hidden confounders. In order to estimate
Λ(t), we consider a rank-q representation of Λ∗(t), i.e., ZA(t), where Z is a n× q load-
ing matrix and A(t) = (α1(t), α2(t)) is a q × 2 matrix representing the corresponding
effect. To estimate the loading matrix Z, we first compute the residuals from the first
step as R.j(t) = Ψ.j(t)− Xβ̃j(t) where β̃j(t) is the bias-corrected version of β̂

∗
j (t). Then,

we write the extended residual matrix as a n × 2nv matrix denoted by R̄ = (R.1(t1),
. . . , R.1(tnv), R.2(t1), . . . , R.2(tnv)). Given X and Λ(t), we can write the conditional expecta-
tion of R̄ as [28]

E[R̄ | X, Λ(t)] = ZĀ + op(h2
β), (7)

where Ā = (α1(t1), . . . , α1(tnv), α2(t1), . . . , α2(tnv)). Therefore, the loading matrix Z can
be estimated through the singular value decomposition (SVD) on the extended residual
matrix R̄, i.e., R̄ = U∆V>. U and V represent the left and right singular vectors and
∆ represents the diagonal matrix containing ordered singular values of R̄. The first q
columns of U represented as U1:q are the estimators of linear combinations of columns of
Z [28]. Then, there exists a q× q orthonormal matrix Q such that U1:q = ZQ + op(1) and
Zαj(t) = U1:qδj(t), where δj(t) = Q>αj(t), j = 1, 2.

(iii) Bias correction of the estimated coefficient functions. We treat the residual terms
in Step (ii) as functional responses and derive the estimate of δj(t) through the new
constructed varying coefficient model, i.e., R.j(t) = U1:qδj(t) + η̃.j(t) + ε̃.j(t), where η̃.j
and ε̃.j are defined the same way as η.j and ε.j. For a fixed bandwidth hδ, we can derive the
estimator of δj(t), as U>1:q ∑nv

k=1 ak(hδ, t)R.j(tk), and the bias-corrected version, denoted as

δ̂j(t). Then, we can construct the estimating equation:

XB̃(t) + U1:qD̂(t) = XB(t) + GD̂(t), (8)

where B̃(t) = (β̃1(t), β̃2(t)) and D̂(t) = (δ̂1(t), δ̂2(t)). In addition, assuming that the
row vectors of B(t) and the row vectors of Λ(t) are orthogonal after mean centering,
we can derive the estimator of G as Ĝ = U1:q + X

∫ 1
0 B̃(t)PD̂>(t)dtΩ−1, where Ω =∫ 1

0 D̂(t)PD̂>(t)dt, P = I2 − 12(1>2 12)
−11>2 , and 12 = (1, 1)>. Finally, the bias-corrected

estimator of B(t) is given by

B̂(t) = B̃(t)− (X>X)−1X>ĜD̂(t). (9)

Remark 1. First, to derive the estimated covariance function of η(s), we smooth the individual
functions η(s) via applying the method in [26] on the residuals. Second, to select the optimal
bandwidth in B̂(s) and D̂(s), we use the leave-one-curve-out cross-validation, whereas for the
optimal bandwidth in η̂(s), we use the generalized cross-validation score method [29,30]. Third,
the rank q in Step (ii) is unknown in practice. According to the simulation and empirical studies
in [28], we consider the eigenvalue difference method [31] in our real-data analysis.

2.4. Hypothesis Testing

We consider the hypothesis for coefficients B(t) of Model (4) as

H0 : Cvec(B(t)) = 0 ∀ t ∈ [0, 1] v.s. H1 : Cvec(B(t)) 6= 0 for some t ∈ [0, 1], (10)
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where C is a r× 2p matrix of coefficients with rank r and vec(·) represents the vectorization
function. The Wald global test statistic is then calculated as follows:

Tn =
∫ 1

0
Tn(t)dt, and Tn(t) = ζ>(t)[CΣ̂η(t, t)⊗ (M̂M̂>)C>]−1ζ(t), (11)

where ζ(t) = Cvec(B̂(t)), M̂ = (Ip, 0q×q)(Ŵ>Ŵ)−1Ŵ>, and Ŵ = (X, Ĝ).
Instead of the complicated asymptotic distribution under H1, we consider a wild

bootstrap method discussed in [28] to obtain the null distribution of global test statistic Tn,
which consists of four steps:

1. Fit Model (4) on X and Ψ(tk)
nv
k=1 under H0 and compute all the coefficients B̂(t), Ĝ,

D̂(t), η̂(t), ε̂(t), and the global test statistic Tn.
2. Generate independent random vectors τ(m) and τ(m)(tk) from standard normal dis-

tribution N(0, In) for k = 1, . . . , nv and generate

Ψ(m)(tk) = XB̂(tk) + ĜD̂(tk) + diag(τ(m))η̂(tk) + diag(τ(m)(tk))ε̂(tk). (12)

3. Based on {Ψ(m)(tk)}nv
k=1 from previous step and X, recompute B̂(m)(tk) and the global

test statistic T(m)
n .

4. Repeat Steps 2 and 3 M times to obtain {T(1)
n , . . . , T(M)

n } and calculate the p-value as

p = ∑M
m=1 1(T(m)

n > Tn)/M.

Remark 2. Given the elastic shape representations, the asymptotic properties of the estimated
functions, including B̂(t) and Λ̂(t), the asymptotic distribution of the global test statistic Tn (11)
under the null hypothesis, and its asymptotic power under local alternative hypotheses have been
systematically investigated in our recent work [28]. Due to space limitations, we do not claim
these theoretical results here. Readers who are interested in them can find the assumptions used to
facilitate the technical details and the detailed proof in the Supplementary Material of [28].

3. Case Study
3.1. Data Description and Processing

Data used in the preparation of this article were obtained from the ADNI database
(adni.loni.usc.edu (accessed on 27 September 2023)). The ADNI was launched in 2003 by
the National Institute on Aging, National Institute of Biomedical Imaging and Bioengineer-
ing, Food and Drug Administration, private pharmaceutical companies and non-profit
organizations as a USD 60 million, 5-year public–private partnership. The primary goal
of ADNI is to test whether serial magnetic resonance imaging (MRI), positron emission
tomography, other biological markers, and clinical and neuropsychological assessment can
be combined to measure the progression of mild cognitive impairment (MCI) and early
Alzheimer’s disease (AD). Determination of sensitive and specific markers of very early
AD progression is intended to aid researchers and clinicians in developing new treatments
and monitoring their effectiveness, as well as lessening the time and cost of clinical trials.
The principal investigator of this initiative is Michael W. Weiner, MD, at the VA Medical
Center and University of California, San Francisco. ADNI is the result of efforts of many
coinvestigators from a broad range of academic institutions and private corporations, and
subjects have been recruited from over 50 sites across the U.S. and Canada. The goal was to
recruit 800 subjects, but the initial study (ADNI-1) is followed by ADNI-GO and ADNI-2.
To date, these three protocols have recruited over 1500 adults, ages 55 to 90, to participate
in the research, consisting of cognitively normal older individuals, people with early or
late MCI, and people with early AD. The follow-up duration of each group is specified in
the protocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects originally recruited for ADNI-1
and ADNI-GO had the option to be followed in ADNI-2. For up-to-date information, see
www.adni-info.org (accessed on 27 September 2023).

adni.loni.usc.edu
www.adni-info.org
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We consider n = 707 MRI scans from both normal controls and individuals with mild
cognitive impairment (MCI) or AD in the ADNI-1 study. The scans, which were performed
on a variety of 1.5 Tesla MRI scanners with protocols individualized for each scanner,
include standard T1-weighted images obtained using volumetric three-dimensional sagittal
MPRAGE or equivalent protocols with varying resolutions. To obtain the contour of planar
CC, we use FreeSurfer [32] to process each T1-weighted MRI, including motion correction,
non-parametric non-uniform intensity normalization, affine transform to the MNI305 atlas,
intensity normalization, skull-stripping, and automatic subcortical segmentation. Some
quality control procedures are performed on each output image data. Then, through
package CCSeg [33], each T1-weighted MRI image and tissue segmentation result is used
to extract the planar CC contour data on the midsagittal slice, which contains 100 land-
marks (Figure 1a–b). Given the coordinate functions of landmarks (Figure 1c), we extract
the aligned SRVF shape representation. The resulting aligned SRVFs ψi(t) is shown in
Figure 1d.

(a) (b) (c) (d)

Figure 1. Preprocessing procedures for shape mediator: (a) raw MRI brain images with 2D CC
segmented at the middle sagittal slice; (b) 50 landmarks sampled on the 2D contour of CC with
Li,x and Li,y representing the x and y coordinate of CC respectively; (c) coordinate functions of
landmarks with rotation, translation, and scaling removed; and (d) aligned SRVF representation of
shape mediators.

3.2. Data Analysis

Research indicates that factors such as age, sex, handedness, and educational level can
influence the structure of CC, which is linked to cognitive development [34–37]. Addition-
ally, the APOE4 gene is not only linked to brain structural and functional variations across a
wide age range, but is also recognized as a hereditary risk for declining cognitive ability and
Alzheimer’s disease [38,39]. Given the CC elastic shape responses, we are interested in their
relationship with the demographic and clinical variables such as age, gender, handiness,
education level, APOE-4, and one SNP variant, rs11719939 from chromosome 3, which is
close to the AD-related high-risk gene, ATP2B2 [40,41]. The variable APOE-4 is coded as the
number of alleles (zero, one, and two: zero and two represent the homozygous genotype,
and one represents the heterozygous genotype). In addition, the population stratification is
addressed by including the top two principal components (PCs) computed from the whole
SNP data. Table 1 summarizes the demographic and genetic information of all the subjects.

Table 1. Demographic and genetic information about ADNI data: gender, range of age (RA), handi-
ness, range of education level (REL), APOE-4, and SNP rs11719939.

Variable Male Female

Gender 420 287
RA (years) [54.40, 89.30] [55.10, 90.90]
Handiness (R/L) 386/34 266/21
REL (years) [6, 20] [6, 20]
APOE-4 (0/1/2) 205/169/46 147/107/33
SNP rs11719939 (0/1/2) 234/154/32 163/110/14
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This study aimed to determine the effects of different covariates of interest on the
CC shape alterations in the presence of unobserved confounding factors. We fitted our
model with the real dataset, and estimated the regression coefficients and hidden factors.
In particular, we used an eigenvalue difference method [31] to determine the number of
hidden factors, q, in our model. We employed the wild bootstrap method and generated
500 bootstrap samples to derive the empirical null distribution of Wald’s global test statistic
and calculated the p-value for each regression coefficient function. For comparison, we con-
sidered two competing methods, i.e., the multivariate varying coefficient model (MVCM)
developed in [30] and ComBat [2], which uses empirical Bayes estimates to remove the
site effect.

According to the testing results in Table 2, our method detected significant effects
related to all the covariates of interest, including age, gender, handiness, APOE-4, education
level, two genetic PCs, and the causal SNP rs11719939, on the CC shapes. In particular, our
model detected not only significant effects related to age, gender, and SNP, which are in
agreement with the other two methods, but also the effects related to handiness, APOE-4,
genetic PCs, and education, which were not fully detected at all by MVCM and ComBat.

Table 2. Hypothesis testing of estimated varying coefficients functions β̂(s).

Variable p-Value
Our Method [28] MVCM [30] ComBat [2]

Gender 0.022 * 0.000 * 0.025 *
Age 0.004 * 0.000 * 0.045 *

Handiness 0.016 * 0.880 0.466
APOE-4 0.008 * 0.348 0.364

PC1 0.002 * 0.540 0.340
PC2 0.002 * 0.008 * 0.225

Education 0.004 * 0.170 0.363
SNP rs11719939 0.014 * 0.000 * 0.000 *

*—significant at α = 0.05.

In Table 3, we observed that gender, age, APOE-4, and SNP are significantly correlated
with the first hidden factor, which indicates that the confounding factors are correlated with
primary variables. This could be a potential cause of additional heterogeneity in elastic
shape data. Therefore, this correlation must be accounted for while estimating the varying
coefficient functions of the model.

Table 3. Correlation between hidden factors and primary variables.

Variable Hidden Factors
Factor 1 Factor 2

Gender −0.140 0.007
(0.002) (0.887)

Age −0.113 −0.003
(0.003) (0.934)

Handiness 0.020 −0.001
(0.772) (0.989)

APOE4 −0.109 0.002
(0.011) (0.970)

PC1 −0.041 0.009
(0.271) (0.819)

PC2 0.048 0.0141
(0.199) (0.708)

Education −0.049 −0.001
(0.197) (0.989)

SNP rs11719939 −0.209 0.011
(0.000) (0.794)



Stats 2023, 6 987

In the second part of our analysis, we considered the fivefold cross-validation strategy
and computed the estimation error for the CC shape data using all three methods (Table 4).
Our method outperformed both MVCM and ComBat in terms of both root-mean-squared
error (RMSE) and mean absolute error (MAE), which indicates that our method successfully
detected the potential hidden factors and captured the relationship between the elastic
shape responses and covariates of interest better than the other two methods.

Table 4. Estimation error calculated for the three competing methods.

MAE RMSE

Our method [28] 0.001662 0.001752
MVCM [30] 0.003137 0.003269
ComBat [2] 0.003143 0.003276

4. Discussion

In this paper, we proposed a shape-on-scalar regression model that incorporates
confounder adjustment. In particular, we leveraged the square root velocity function to
extract elastic shape representations, which are embedded within the linear Hilbert space
of square integrable functions. Subsequently, we introduced a shape regression model
aimed at characterizing the intricate relationship between elastic shapes and covariates
of interest, all while effectively managing the challenges posed by imaging heterogeneity.
We developed comprehensive procedures for estimating and making inferences about the
unknown model parameters. Through the real-data analysis, our method demonstrated its
superiority in terms of estimation accuracy when compared to existing approaches.

In our case study on ADNI CC shape data, compared to other competing methods,
i.e., MVCM and ComBat, our method identified a potential significant effect related to
the education level, which is consistent with the existing literature [42], indicating that
having ongoing learning experiences could be a important prevention strategy for cognitive
impairment diseases such as AD. Our method also showed significant effects related to
age, gender, and SNP on CC shape alterations.

Although our method demonstrated its success in the case study on ADNI CC shape
data, there are couple of issues to be addressed. First, as discussed in [28], the key as-
sumption of our method requires the row vectors of B(t) and the row vectors of A(t) to
be orthogonal with respect to the underlying density function p(t) after mean centering.
Actually, this assumption is reasonable but difficult to examine in practice. Therefore, it is
of great importance to improve the performance of our method even if this assumption
does not hold. Second, this paper only investigated the linear relationship between the
shape responses and other observed and/or hidden covariates. However, this assumption
is not reliable when the nonlinear relationship exists in real applications. Therefore, we will
find a scope to explore the nonlinear relationship between the covariates and the elastic
shape response while adjusting for hidden factors.
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