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Nonlinear Energy Transfer of a
Spar-Floater System Using the
Inerter Pendulum Vibration
Absorber

The inerter pendulum vibration absorber (IPVA) is integrated between a spar and an
annulus floater using a ball-screw mechanism to study its wave energy conversion potential.
Hydrodynamic stiffness, added mass, and radiation damping effects on the spar-floater
system are characterized using the boundary element method. It is found that a 1:2 internal
resonance via a period-doubling bifurcation in the system is responsible for nonlinear
energy transfer between the spar-floater system and the pendulum vibration absorber.
This nonlinear energy transfer occurs when the primary harmonic solution of the system
becomes unstable due to the 1:2 internal resonance phenomenon. The focus of this paper
is to analyze this 1:2 internal resonance phenomenon near the first natural frequency of
the system. The IPVA system when integrated with the spar-floater system is shown to out-
perform a linear coupling between the spar and the floater both in terms of the response
amplitude operator (RAO) of the spar and one measure of the energy conversion potential
of the system. Finally, experiments are performed on the IPVA system integrated with
single-degree-of-freedom system (without any hydrodynamic effects) to observe the 1:2
internal resonance phenomenon and the nonlinear energy transfer between the primary
mass and the pendulum vibration absorber. It is shown experimentally that the IPVA
system outperforms a linear benchmark in terms of vibration suppression due to the

energy transfer phenomenon. [DOL: 10.1115/1.4063199]
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1 Introduction

Although modern wave energy conversion technology has been
studied as early as the 1940s, the oil crisis of 1973 had a major
impact on the need for renewable energy. This crisis led to programs
on wave energy utilization and its potential to create power by
various European nations. Further, in the last few years, research
interest in wave energy conversion has increased in North American
countries [1]. It is estimated that the annual average wave power
incident on the ocean-facing coastlines of North America is over
400 GW (assuming 100% efficiency, which is about 80% electricity
consumption for the entire continent [2]). Despite the enormous
resources, the cost of using existing wave energy converters
(WECs) to generate electricity is higher than solar and wind
energy conversion technologies. According to estimates, the leve-
lized cost of energy of wave energy devices (around 570$/MWh)
is significantly larger than that of onshore wind or solar photovol-
taic energy (=~30$/MWh) [3,4]. Costs of installation, mooring/
foundation, operation, and maintenance account for 40-50% of
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wave energy project life costs [5]. Integration of wave energy con-
verters with already present offshore floating platforms has been
shown considerable interest to save the costs of the project [6].
Recently, the oil and gas industry has been investigating the feasi-
bility of converting mature offshore platforms into renewable
energy hubs by mounting WECs to the platforms [7]. The WECs
can directly supply electricity to the platforms to further lower the
cost of wave energy [8].

Offshore floating platforms are worldwide operating in deep water
areas for oil and gas production [9] and providing the foundation for
floating wind turbines [10]. Specifically, spar platforms establish the
buoyancy and stability on a long and slender cylinder that goes deep
below the water surface, thereby having good hydrodynamic
response/stability and large water depths (600-2500m for oil spar
platforms in the Gulf of Mexico [11]). As the wave energy resources
are more abundant in deep water than in shallow water, it is reason-
able to integrate WECs and spar platforms. Thus far, several research-
ers have studied the integration of a spar platform and different types
of heaving WECs [12-15]. Heaving WECs refer to a wave energy
production system consisting of a floater which primarily moves in
heave relative to either a fixed reference (sea bed) or a reacting
body (spar, for example) in such a way that the relative heave
motion drives a power take-off (PTO) unit for electricity. Existing
numerical studies [12,15] suggest that such integration can lead to
a 7-30% capture width ratio (hydrodynamic efficiency) of wave
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energy production, which is comparable with existing heaving WECs
[16]. According to the scaling law in Ref. [16], heaving WECs of a
larger diameter would have a higher capture width ratio. A typical
spar platform in the Gulf of Mexico, e.g., the Horn Mountain, has
a diameter of 30 m (Bureau of Safety and Environmental Enforce-
ment data [11]). If the spar-WEC integration in Refs. [12,15] was
scaled up to this diameter, the peak mean wave power in operational
conditions would be 2.4-10 MW (current floating wind turbines have
5-MW wind power).

Although showing promising results, such integration does not
assure good hydrodynamic response of the platform. Past studies
have shown that the integration with heaving WECs amplifies the
platform heave and pitch motion [12-14], and even causes
Mathieu instability [17], which would aggravate fatigue of the
mooring and riser systems and even lead to failure of the whole
system [18,19]. This deterioration of hydrodynamic response and
stability can be explained as follows. Generally speaking, a spar
platform has a 20-30s heave natural period [20,21] which is far
away from typical incident wave periods (5-10s [22]) to avoid
large heave resonant response. On the other hand, traditional
heaving WECsSs operate based on the basic principle of linear reso-
nance, thereby having a natural period in heave close to a typical
wave period to generate large heave resonant response and hence
high-efficiency wave power production [23]. When a heaving
WEC is integrated with a platform, this large heave resonant
response can give rise to large platform heave/pitch motions. To
solve this problem, many solutions have been proposed. Meng
et al. [24] used active control in co-located offshore wind-wave
systems, where actively altering the wave field with a WEC array
by using model predictive control before being incident on a float-
ing offshore wind turbine can result in both motion reduction and
reliable energy conversion. On the other hand, there has been a
focus on exploiting the internal resonance phenomenon to achieve
simultaneous vibration suppression and energy conversion. One
such class of systems, known as autoparametric vibration absorbers,
due to the existence of an energy transfer phenomenon between a
primary system and a pendulum vibration absorber, has been
studied for simultaneous vibration suppression and energy conver-
sion [25-28]. This energy transfer phenomenon in autoparametric
systems can be achieved using internal resonance [29,30], and
thus, systems with internal resonance are getting attention for simul-
taneous vibration suppression and energy conversion.

Recently, Gupta and Tai performed a pilot study on using an
inerter pendulum vibration absorber (IPVA [31]) to extract wave
energy from a spar where the IPVA is mounted between the spar
and a fixed reference [32]. A major finding is that the IPVA can
have resonant responses via 1:2 internal resonance through which
the vibration energy of the spar transfers to the pendulum of the

spar heave xq (b)

(a)

IPVA. After integrating with an electromagnetic generator, the
IPVA can capture large wave energy production while achieving
a good hydrodynamic response of the spar. Motivated by the prom-
ising results, this work aims at studying the effect of applying the
IPVA to a spar-floater system that is commonly considered as a
benchmark model for the integration of the spar and heaving
WECs [12,17,14]. As a first attempt, the IPVA system is not inte-
grated with an electromagnetic generator in this work. As such,
this work can focus on investigating how the mechanical energy
of the spar transfers to the IPVA system through internal resonance
without the involvement of electrical energy. In short, the major
contributions of this work are two-fold. First, it provides a
method to achieve vibration suppression of floating spar platforms
when integrated with heaving WECs, which holds the potential to
achieve effective wave energy conversion without compromising
the platform stability. Second, it presents not only a theoretical anal-
ysis but experimental evidences to verify the method.

The remainder of this work is organized as follows. Section 2
talks about the design, analysis, and performance of the IPVA-
based spar-floater system. Section 3 discusses the experiments per-
formed on the single-degree-of-freedom “dry” IPVA system, with
focus on nonlinear energy transfer between the primary system
and the pendulum vibration absorber. Finally, Sec. 4 summarizes
the main findings and concludes this study.

2 TPVA-Based Spar-Floater System

This section describes the design, analysis, and performance of
the IPVA-based spar-floater system.

2.1 Design of the System. Figure 1(a) shows a spar and an
annular floater floating in water. For simplicity, the spar and floater
are constrained such that they can only move in the heaving (x) direc-
tion relative to the waterline. Figure 1(b) shows the IPVA system con-
sisting of a lead screw, a carrier, and a pendulum vibration absorber.
The nut of the lead screw is fixed to the floater while the screw is sup-
ported by a thrust bearing that is fixed to the spar through a housing.
As aresult, the relative heaving displacement x; — x; is converted into
the angular displacement 6 through x; — x, = R, where R = L/2x, and
L is the screw lead. The carrier is fixed to the screw such that they
have the same angular displacement (0). The pendulum pivots on a
point of the carrier which is located at a distance of R, from the
carrier center. The pendulum has length r and an angular displace-
ment ¢ with respect to the screw. Figure 1(c) shows the mathematical
model of the system where k; and k, denote the hydrostatic stiffness
in heave of the spar and the floater, respectively, and M; and M,
denote the mass of the spar and the floater, respectively. Furthermore,

IPVA
nut fixed hydrostatic
. fl .
wave [ ey to tloater F . stiffness 1;1
i ¢ waterline nut motion 9 T_ i _T 1
3 nut-—» X1 — X2 i
- floater a
heave x, =
screw > i IPVA
« housing fixed F c
t A
0 9] o spar 92f ~ %2
pendulum
hydrostatic
carrier Rp T stiffness k,

Fig. 1 Ocean wave energy harvesting design
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Fig. 2 ansys aawa model for calculation of hydrodynamic
coefficients

the wave motion generates hydrodynamic forces Fy ; and F 5, excit-
ing the spar and the floater, respectively. Linear wave theory is
assumed for the current analysis, and the derivation of the hydrody-
namic coefficients on the system, along with the equation of
motion is discussed in the next section.
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2.2 Equations of Motion. To facilitate deriving the equations
of motion, the following coordinate transformation is employed:

X2 =Rl//

0 =R(0+y) M
Euler-Lagrange mechanics is used to derive the equations of
motion. The kinetic and potential energy of the system are deter-
mined, followed by the hydrodynamic coefficients of the system.
Finally, the virtual work due to the forces applied to the system is
derived and the equations of motion are normalized.

First, the sum of the kinetic energy of the spar, floater, and the
IPVA system, and the sum of the potential energy of the spar and
floater are given by

1 ,. .21 2 1 1.2
T= EJ,,(¢9 +¢) +§me9 + Em[e (r2 +2rR, cos ¢ + Rﬁ)
. . 1 . 1
+P20" + 2000 + Ry cos )| + S M1 (RO + Rir) +5 MRy
1 1
V= zkl (RO + Ry)* + Esz%,ﬂ )

where T and V are kinetic and potential energy respectively. Here
Jpse and J,, are the moments of inertia of the ball-screw-carrier
assembly and of the pendulum respectively. Further, m denotes
the mass of the pendulum. Next, the hydrodynamic coefficients of
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Fig. 3 (a) Added mass, (b) radiation damping, and (c) diffraction and Froude—Krylov forces for spar and floater
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the spar and the floater subject to incident regular waves are deter-
mined by the linear wave theory, which assumes that the fluid is
inviscid and irrotational [33]. Based on the linear wave theory,
the hydrodynamic force on the spar and the floater consists of
three components: Froude—Krylov force, diffraction force, and radi-
ation force. The first term corresponds to the undisturbed incident
wave field without the present of spar-floater system, whereas the
diffracted force is the result of modification in the incident wave
field due to presence of the spar-floater system, and the radiation
force results from the oscillations in the spar-floater system.

The Froude—Krylov and diffraction forces together give rise to
the excitation force while the radiation force gives rise to the
added mass and radiation damping [22,33], which can be repre-
sented by the well-known Cummins’ equation [34]

kg i(6)xi(t — 6)do + yFi(1),
o=0

Fg’,‘ = _Aoo,iii - J l = 1, 2 (3)
where y is the wave amplitude, F,; is the incoming wave force, f; = yF;
is the excitation (Froude—Krylov and diffraction) force, and F; is the
excitation force per wave amplitude. Here Fy;, and as a consequence
F;, are assumed to be sinusoidal with angular frequency Q equal to
the angular frequency of the incoming wave. The radiation impulse
response kernel, kg (o) and the radiation infinite-frequency added
mass, A, are related to the radiation frequency-dependent damping
and added mass Bg(€2) and Ag «€2), through Ogilvie’s relations [35]

Bri(Q) = jm kri(o)cos(Qo)do, i=1,2
o=0 . (4)
ARi(Q) =Agi — o jg=okRYi(6) sin(Qo)do, i=1,2
and
Awi = él_fgo AR,i(€2) ®)

The hydrodynamic coefficients Ag(€2) and Bg (L), Froude—Krylov
and diffraction forces fi(¢) are determined using ANsys aQwA. For the
calculation of the hydrodynamic coefficients, the spar-floater system
was modeled together but was not coupled physically, though they
influenced each other’s hydrodynamics. A convergence test was per-
formed like previously illustrated in Ref. [32] to match the published
results in Ref. [36]. After verifying the ansys model, the same
setting is adopted to simulate the spar-floater system for the rest of
the paper. The height of the spar is taken as 1.06 m with a draft of
0.96 m (the height of the spar below the surface of the water), and a
diameter of 0.16 m, which is the 1:100 reduced sparD model with

hand, is an annulus with a depth of 0.02m with inner diameter of
0.317m and outer diameter of 0.595 m. Figure 2 shows the mesh of
the system used for analysis and Fig. 3 shows the added mass, radiation
damping, and excitation force obtained using ansys for both the spar
and the floater. Table 1 shows the physical properties of both the spar-
floater system (obtained via ANSYs AQwa) and the ball-screw transmis-
sion chosen for this study. All the data in SI units.

Next, let’s look at the virtual work due to various forces on the
system. The total virtual work in the system is

OW = 6Wyyr + Wrp + 6Wg + 6Wp (6)

where 6Wyy, 6Wrp, 6Wp, and 6Wy, are the virtual works due to
the added mass, radiation damping, excitation force, and mechani-
cal damping, respectively, and are calculated as follows:

SWanr = —Awo1 (0 + )R (80 + ) — Aoy RAjirSy
Wrp =— [ J R%k1(0)(0(t — o) +yr(t — o))do-i| (66 + 5y)
0

- Umszz(a)yy(t - a)da:| Sy ™
0

SWr = Rf1 (66 + y) + R,y
SWp = —cR*0560 — c,pd¢p

Using these equations, the 6, ¢, and y contributions due to virtual
work into the equations of motion can be obtained. After substitut-
ing the kinetic and potential energy and the virtual work, and using
the following normalization parameters:

Jr M1 r /(1 kz
=—, =— =—, o = —_—, wH = —,
’7g M1R2 HF M, n Rp 0=4/ M, 2 =1 M,
WlRi Q [0}
Hr = , W=—, Wp=—, T=wol,
M| R2 ([ON) wo
c ¢ d0 fi
527’ §p=7p29 ()’zi’ .fe,lz 2 bl
2600M1 2w0M1 R dr w()MlR
fz Aoo 1 Aoo 2
=—, = s == 8
fe,2 (u%MlR /’leo,l Ml /’leo,Z M] ( )
the following equations of motion are obtained:
Mx” +Cx' + Kx+ R(x")=F )

water depth of 3m described in Ref. [37]. The floater, on the other =~ where
Iy + Hpse + iy + iy + 21, COS 4+ 1+ facg L+t My + 107 H, + 1, COS )
M= L+ pacot Hr+ T+ o) + Hace 0
Hp + 17 p, + N, COS ¢ 0 Hy + 1 H,
26 0 O 1 1 0
C=|0 0 0], K=|1 l+uya? 0
0 0 2, 0 0 0
e +2nu,0' ¢ sin g + qu, ¢ sin b
F= fer +fen
—nu, 0 sin
j K1 <i> [6"(1 —-s)+y'(r— s)]ds 9
1 0 \®o
R = — b © Y X =
M} j K1 (i> [0z =) +y/'(z = 9)]ds + J K2 (i> y'(r = s)ds Y
0 @o @o ¢

0
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Table 1 Parameters for spar-floater system

Parameter Value
M, 19.46
M, 4.08
ky 198.79
ky 2001.04
R 0.0672
Al 1.078
Awn 12.418

Note: All the data in SI units.

2.3 Period-Doubling Bifurcation in the IPVA System. Fol-
lowing the idea laid out in the previous work by the authors
[31,32], the boundary of parametric instability where the primary
harmonic solution of the system becomes unstable can be obtained.
To that end, the harmonic balance analysis with the modified alter-
nating frequency time (AFT) method and Floquet theory are used as
elaborated in Ref. [32].

As has been reported previously in Refs. [31,32], the instability in
the primary solutions for the system due to period-doubling bifurca-
tions gives rise to additional terms in the ball screw () and pendu-
lum’s response (¢), referred to as secondary solutions (with

. w o
harmonics of frequency ) where w denotes the wave excitation fre-

quency) in the system. This period-doubling bifurcation gives rise
to 1:2 internal resonance in the system. We use the bifurcation
tracking algorithm developed in Ref. [31] with modified AFT
method proposed in Ref. [32] to obtain the period-doubling bifurca-
tion boundary. The boundary in Fig. 4 shows the wave height on the
y-axis and wave frequency on the x-axis. Like the results in Refs.
[31,32], below this boundary, the primary harmonic solution is
stable and above this boundary, the period of the solution
doubles. To verity this behavior, the hydrodynamic response with
three wave heights (x 1, X2, and %3, x3 not shown), corresponding
to 4.5cm, 5.4 cm, and 12 cm at a frequency of 0.44 Hz, is simulated
by using the explicit Runge—Kutta (4,5) integration method. The
integration kernel is evaluated using an impulse to state-space con-
verter function described in Refs. [32,38]. Figures 5, 6, and 7 show
the response of the pendulum (¢) and the fast Fourier transform
(FFT) of the response of the pendulum, and the ball-screw system
(0). Note that @ represents the frequency of oscillation normalized
with respect to the wave frequency, which means that @=1 corre-

1
sponds to the primary component of the solution, and @ = 3 repre-

R @ .
sents oscillation of angular frequency 7 @ being the wave

excitation frequency. As can be observed from these figures,

(a)25
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i
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Fig. 4 Stability boundary for the primary harmonics of the
system for
=02, 1=03, £=0.05 &, =0.02, u, =0.039, p,,c=0.1

below the stability boundary the solution is strictly primary,
whereas at point x2, the motion of the pendulum (along with the

. . @ . L.
ball screw) contains harmonics of frequency > in addition to the

primary harmonics. If we further increase the wave height to
point x3, the time series of the pendulum’s motion shows intermit-
tent rotation and oscillation, whereas the FFT shows the motion of
the pendulum (and the ball screw) consisting of many frequencies,
showing non-periodic behavior. This observation has been recorded
previously by the authors in Ref. [31], and the response can be
attributed to a cascade of period-doubling bifurcation which even-
tually can lead to chaotic-like motions in the system, as evident
from response at point 3. It has been noted previously in this
work that the crossing of the period-doubling bifurcation boundary
results in energy transfer between the primary (spar-floater) system
and the pendulum vibration absorber. To demonstrate this, we fix
a wave height, say 5.5 cm (which is above the instability boundary
for a frequency range from approximately 0.42-0.465Hz, as
marked by vertical dashed lines in Fig. 4), and look at the frequency
response of the proposed system.

2.4 Nonlinear Energy Transfer and Energy Harvesting
Potential. As mentioned in the previous section, for the wave
height of 5.5 cm, we expect an energy transfer between the spar-
floater system and the pendulum for the specified frequency
range. To benchmark this system, we use a linear system defined
as the system with the pendulum locked such that its first natural

b)4n0 L ‘ ]
(b)10 — FFTof0

~— ~FFTot¢

102

FFT

10

10 : : : : :
0 0.5 1 1.5 2 25 3

Fig. 5 (a) Time series and (b) FFT of the pendulum motion at point x1
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Fig. 6 (a) Time series and (b) FFT of the pendulum motion at point x2

frequency matches the resonant frequency of the IPVA system
(given by the frequency corresponding to the lowest wave height
in the stability boundary; see Fig. 4). We perform direct numerical
simulation for both the IPVA and the linear system using the
explicit Runge—Kutta (4,5) integration method (implemented in
MATLAB’s ode45), with integration kernel evaluated using an
impulse to state-space converter [32,38]. Fixing the wave height
to 5.5 cm, we calculate the response amplitude operator (RAO) of
the spar for both the IPVA and the linear system, defined by the
response of the spar divided by the wave height. Figure 8(a)
shows the comparison of the RAO between the IPVA and the
linear system. The range for the secondary resonance is marked
by vertical dash-dot lines. Figure 8(b) shows the values of motion

of the ball screw (92) and the pendulum (4’)2) of the IPVA system,

and the motion of the ball screw (92) for the linear system. In the
literature, ball screw and pendulum angular motions are used to
drive electrical generators for wave energy production and the elec-
trical power is proportional to the angular velocities squared,
[32,39,40], for example. Therefore, the angular velocities squared
are used to examine the energy conversion potential in this work.
As can be seen in Figs. 8(a) and 8(b), the linear system sacrifices
the spar’s response for the resonant ball-screw angular motion. The
IPVA system, on the other hand, has a significant smaller RAO in
comparison with the linear system. It can be readily seen that till
around the frequency 0.4 Hz, the ball-screw motion of the linear
system and the IPVA system closely follow each other in amplitude.

-100

-150

-200 - 1

0.8 0.9 1 1.1 1.2
T %10%

However, the solution starts to deviate around 0.4Hz due to
increase in motion of the pendulum, and soon around 0.42 Hz, in
the range corresponding to the secondary solutions (marked by
dash-dot lines in the figure) in the IPVA system, the energy transfer
from the primary system to the pendulum begins. Hence, it is
evident that the energy in the ball-screw transfers to the pendulum
due to internal resonance, resulting in suppression of the spar
motion and pumping of the pendulum’s kinetic energy. From
Fig. 8(b), it can be clearly seen that the motion of the linear
system is better than the IPVA system if the we consider the
motion of the pendulum alone for the IPVA system. However, if
we use the difference between the angular motion of the pendulum
and the ball screw, the motion of the IPVA system is significantly
higher than the linear system. This is because it has been observed
that the ball screw and the pendulum motion are generally out of
phase for the IPVA system [31,32]. A mechanism that converts
the difference of angular motions into one angular motion to
drive a generator can be readily achieved using a planetary gear
setup; see Ref. [32]. This mechanism justifies the use of the
angular motion difference to examine the energy conversion poten-
tial. Note that since the pendulum is locked for the linear system,
there is effectively no pendulum damping in the linear system’s
equation of motion. Therefore, it is worth investigating how the
pendulum damping can affect the angular motions in the IPVA
system (while the linear system stays the same).

To study the effect of pendulum’s damping on the performance
of the IPVA system, we calculate the 1:2 internal resonance or

(b) 10* i
—FFT of 6
——~FFTof ¢

. jm“ i ]
F \!‘ Ul' ‘“ ‘M\‘wj“h{y‘w@, “‘ i o ‘ ‘ '
- e AL

10

10 ‘ ‘ ‘ ‘ '
0 0.5 1 15 2 2.5 3

Fig. 7 (a) Time series and (b) FFT of the pendulum motion at point x3
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Fig. 8 The frequency responses of the linear and the IPVA system: (a) comparison between motion of spar for IPVA and linear
system for the parameters mentioned in Fig. 4 with &, = 0.02, (b) comparison of energies in the IPVA system for the parameters men-
tioned in Fig. 4 with &, =0.02, (c) comparison between motion of spar for IPVA and linear system for the parameters mentioned in

Fig. 4 with &, =0.01, and (d) comparison of energies in the IPVA system for the parameters mentioned in Fig. 4 with £, =0.01

period-doubling bifurcation boundary for the IPVA system with a
different damping value, taken as &,=0.01. This boundary is
shown in Fig. 9(d) as a part of parametric studies (to be discussed
later). It can be seen that the stability boundary for the case of £, =
0.01 is significantly lower than &, = 0.02 shown in Fig. 4. Therefore,
we choose a wave height of 2.5 cm to perform the numerical fre-
quency response analysis for the case of £, =0.01. The frequency
response is shown in Figs. 8(c) and 8(d). We can observe a
similar energy transfer phenomenon and vibration suppression in
the spar’s RAO. However 12n this case, motion value of the IPVA
defined in terms of (9 - ¢) is around three times higher than the
linear system compared to the case of £,=0.02, where the same
motion is around 1.5 times higher. Another thing worth mentioning
is that the RAO of the spar for &,=0.01 is higher than that of &, =
0.02, though it still outperforms the linear system. Next, let us look
at the effects of system parameters on the stability boundary.

2.5 Parametric Studies. To analyze the effects of various
system parameters on the stability boundary of internal resonance
(period-doubling bifurcation), we vary the following parameters
U, 1, & and &, while keeping the other parameters fixed at their
values mentioned in Fig. 4. First, we see the effect of y, on the sta-

bility boundary. Recall that 4, is the mass amplification factor in the
mR?
_r

system given by y, = YR

As the u, value increases, we see the

Journal of Vibration and Acoustics

wave height required to cross the internal boundary decreases as
evident from Fig. 9(a). Therefore to control the wave height
required to cross the boundary, one can readily change the value

R
of ;” which is the ratio of the distance of the pendulum pivot
point with respect to the carrier over the effective radius of the ball-

screw system. Next, the effect of #, defined by RL where r is the

P
length of the pendulum, on stability boundary is analyzed. As
observed from Fig. 9(b), for larger values of 7, the wave height
required to cross the boundary for a given frequency decreases.
Figures 9(c) and 9(d) show the effect of mechanical and pendulum
damping respectively on the stability boundary. It can be observed
that the wave height required to reach 1:2 internal resonance
increases with increase in both the mechanical and pendulum
damping value. The next section discusses the experimental verifi-
cation for the IPVA system.

3 Experimental Analysis

To verity the analysis performed, experiments consisting of a
“dry” IPVA (without any hydrodynamic effects on the system) inte-
grated with a single-degree-of-freedom system are conducted. As
has been demonstrated previously, the dry system also shows the
internal resonance phenomenon [31], and it can be explained as
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follows. The hydrodynamic effects on the system add a frequency-
dependent mass, damping, and a force to the system. If we fix a fre-
quency value—then the mass, the stiffness, and the damping matrix
can be calculated at that frequency value, and a force can be
obtained corresponding to the boundary point of the internal reso-
nance boundary. This boundary can be obtained for all the fre-
quency values as explained. Now, if the mass, stiffness, and
damping matrix do not change with frequency, we can still obtain
a force corresponding to internal resonance boundary at a specified
frequency, and do the procedure for all the frequencies to obtain an
internal resonance boundary. Thus, in principle, the internal reso-
nance boundary for the dry system can be obtained. Although it
maybe different than the system with hydrodynamic effects, the
boundary will still exist. Thus, the aim of the experiments is to
verify the energy transfer between the primary system and the pen-
dulum vibration absorber and the secondary resonance phenome-
non of the IPVA (harmonics of frequency w/2). An experimental
setup is created by integrating a single-degree-of-freedom system
with the IPVA system as shown in Fig. 10. Table 2 shows the
description of labels for various components of the experimental
setup. The top plate, marked by plate A, supports the primary
mass. The base plate system contains three plates, plates B, C,
and D. Plate D is directly connected to the shaker, whereas the
nut of the ball-screw system connects plate attached to the plate
B. Note that the plates B, C, and D are rigidly connected. A

051005-8 / Vol. 145, OCTOBER 2023

coupler connects the ball-screw system with the carrier which
hosts the pendulum. The eight springs are connected between the
primary mass system and the base plate system. Therefore, due to
the excitation of the base plate system, the top plate system starts
moving. The relative motion between the top plate and the base
plate system drives the screw (as the nut is fixed to the base plate
system), i.e.,

where x is the motion of plate A and y is the motion of plate D. The
pendulum is free to rotate and is connected to the carrier by a ball
bearing. A shaker (APS 113) excites the base plate by controlling
the motion of the plate D and is driven by a spectral analyzer and
controller (Spider 80x) using an amplifier. There is an accelerometer
connected to the base plate for closed-loop control of the shaker,
and an accelerometer is connected to the top plate to monitor the
motion of the top plate system. An encoder is mounted on the pen-
dulum shaft to measure the motion of the pendulum using a micro-
controller (US Digital).

3.1 Equations of Motion for the Experimental Setup. The
equations of motion of the experimental system can be directly
derived from Eq. (9), converting the forced excitation into base
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Fig. 10 Experimental setup

excitation (of the shaker) and removing the floater. To obtain this
equation of motion, we assume perfect transmission by the ball-

Table 2 Labels depicting the different parts of the experimental
setup

Label Description

Accelerometer signal conditioner
Spectral analyzer and controller
Shaker signal amplifier

Top plate

Ball-screw mounting plate
Middle plate

Lower plate

Top added mass

Ball-screw system

Pendulum

Carrier

Encoder data acquisition box
Shaker

ST IraQmmgaw e w s —

screw system. Thus, the resultant equation of motion is given by
MX + Cx+Kx + GX, X, X)=F (10)

where

M- [ 1 py + 7 + 20, €OS () + ppse + 1y, + 17 + 1,77 COS ()

Hy + 17+ i, 08 ()

K_lo (’:—25 0
_[o 0}’ Tloo2 0

F _ ( _.))// . )
—1p,sign(¢)

T,
with X =[6, ¢]T and 1 = M—Ij;T where Tris the friction between the

shaft of the pendulum and its bearing. Here, x is the motion of the
top plate, y is the motion of the shaker, € is the rotation of the carrier,
R, is the location of the shaft of the pendulum with respect to the
center of the ball-screw system, &, is the damping coefficient of

the pendulum defined by &, = being the damping

—7 ¢
M wORZ’ p
between the pendulum’s shaft and ball bearing. M is the mass of
the top plate (the primary structure), Jys includes the inertia of
carrier, ball screw, coupler, and encoder and J, is the moment of
inertia of the pendulum system with respect to its center of mass.
We assume theoretical values for all the inertia, masses, transmis-
sion ratio, springs, and lengths in the system. Therefore, the
values of m, R,, M, R, Jp, Jps, k, r, and wo are assumed to be
known; see Table 3. This leaves ¢ and ¢, to be experimentally iden-
tified, which is discussed next.

3.2 Obtaining the Mechanical Damping ¢. The mechanical
damping value c is obtained by removing the pendulum from the
experimental setup and obtaining its frequency response function
(FRF). The measured FRF and theoretical FRF are correlated with
each other to obtain the mechanical damping value. The linear
system without the pendulum has the following equation of motion:

M+ kx + ck =My + ¢y + ky (12)
where
B= M1t ty)e i = 22 (13)
sc) > SC MR2

Journal of Vibration and Acoustics

Hp + 1,1 }
_ —20'¢) sin () — ¢’ sin ()
G (11)
/’tr’]( 0/2 sin (¢) )

X . Y .
Using x = — €' and y = — ¢’ where X and Y denote the displace-
@ a)

ment amplitude of the base plate and the top plate respectively, and
defining r = 3, we obtain
[20)]

X ppert = 2mp 4487+ 14
- 2
Yo (e + 1) = 22 (e =285 + 1) + 1

MATLAB’s “fit” function is used to fit the data and obtain the value of
Hpse> W0, and c. We found that the value of ;s and @, were close to
the theoretical values, and therefore theoretical values of yy,,. and g
are chosen for the analysis of experiments.

3.3 Obtaining the Pendulum Damping c,. To obtain the pen-
dulum damping, the pendulum and carrier were removed from the

Table 3 Experimental parameters for the IPVA system

Parameter Value
& 0.00418
£ 0.242
Wy 4.072

n 0.371
@o 96.98 rad/s
Mg 0.0029
Ty 0.0014N
Hp 0.388
Hbsc 8294
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Fig. 11 Stability boundary of energy transfer corresponding to
the experimental setup

ball-screw system and fixed it rigidly to the ground. The pendulum
was given some initial rotational velocity and the free rotational
behavior of the pendulum was observed as it came to a stop. It
was observed that damping alone is insufficient to capture the
effects of the energy dissipation in the pendulum, so a friction
term was considered in the analysis of the interaction between the
shaft of the pendulum and its bearing. The rotation of the pendulum
can be modeled using the following equation of motion:

(Jy +mr*)p +cpp+ Ty =0 (15)
This Eq. (15) is integrated with respect to time to obtain
(Jp +m?) (b — &) + cp(dy — ) + TrAL=0 (16

where At is the time it took for pendulum to stop, subscripts i and f
on ¢ and ¢ denote the initial and final values of ¢ and ¢ respec-
tively. Clearly, ¢f =0 as the pendulum comes to a full stop. The
equation can be solved to obtain c,. The experimental parameters
are tabulated in Table 3 for ready reference.

3.4 Experimental Verification. In this section, the simulation
model is verified with the experiments. First, the stability boundary
is obtained and shown in Fig. 11 using the theoretical and fitted
parameters shown in Table 3. Since it is known that there should

(a)u5 | A /r\

oaf| | /

s IAAAAAS

0,2*\

T
| \ n / \ |

T

01+

476 478 48 482 484 486 488 49

t(s)

49.2 494

be vibration suppression above the stability boundary, an accelera-
tion value of 0.2 g is used to run the experiments, which is well
above the stability boundary for a range of frequencies. Before
observing the experimental results and comparing them to the
linear system, a few points need to be stated:

(1) The ball-screw system is assumed to be 100% efficient, with
no loss in transmission;

(2) The effects of accelerometer cables on the system are
neglected, and the encoder cable is assumed to only contrib-
ute to mechanical damping and moment of inertia of the ball-
SCrew system;

(3) The springs are modeled to be linear for the analytical
analysis.

3.5 Verification of the Internal Resonance. Previously, it
was defined that the secondary solutions are those solutions

. . . @ .
which contain harmonics of frequency ) when the excitation fre-

quency is w. As has been reported in Ref. [31], internal resonance
is required for the energy transfer to occur between the primary
system and the pendulum vibration absorber and thus suppressing
the vibrations of the primary system. To observe the secondary res-
onance of the system, experiments are performed on the IPVA
system by fixing a frequency and increasing base acceleration
value such that the secondary resonance is found. For this particular
case, an excitation acceleration amplitude of 0.2 g and an excitation
frequency of 4.16 Hz led to the secondary resonance, which means
that the response of the system at this excitation frequency and
acceleration amplitude will have harmonics of frequency half the
excitation frequency (2.08 Hz), along with the excitation frequency
(4.16 Hz). As can be seen from Fig. 12(a), the motion of the pendu-

lum measured by the encoder shows harmonics of frequency % (=

2.08 Hz) as evident from the time series of the pendulum’s motion
and the FFT shown in Fig. 12(b). Moreover, it can be observed that

3
harmonics of frequency 760 and 2w also show up in the motion of

the pendulum.

3.6 Comparison With the Linear System. Next, the IPVA
system is compared with the linear system to benchmark its vibra-
tion suppression capabilities. For this, the base excitation accelera-
tion is fixed at 0.2g. The linear system is chosen by fixing the
system’s pendulum at an angle such that the natural frequency of
the linear system is equal to the resonant frequency of the IPVA
system. Ten frequency points are chosen for which the experiments
are run on the IPVA system to get the root-mean-squared (RMS)

(b) T T T r. T T 1 T
10k . X 4.13295 1
X 2.05659 Y 15.3356
Y 8.70668
I X 6.18954 X 8.2659
Y 1.18961 Y 1.31328
100 L
©
k)
E
107
102 F 1
0 1 2 3 4 5 6 7 8

Frequency (Hz)

Fig. 12 (a) Time series and (b) measured FFT of the pendulum motion
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Fig. 14 Frequency response of 6 and ¢ for the IPVA and the linear system (where applicable) at 0.21 g base excitation accel-
eration: (a) comparison between experimental # RMS value for linear and the IPVA system and (b) experimental frequency

response RMS of the pendulum for the IPVA system

values of the amplitude of ball-screw rotation (d) and pendulum’s
motion (¢), and obtain the mean and standard deviations for both
the rotations. Similar experiments are performed for the linear
system by converting the frequency response function between
the acceleration of the top plate A and the input base acceleration
from the shaker’s to RMS data for @ for the same ten frequencies
as the IPVA system. Sixteen frequency response function were
experimentally calculated to obtain these RMS € values for the
linear system. These RMS values are plotted against each other
for comparison in Fig. 13(a). The “Linear LB” and “Linear UB”
labels show lower bound and the upper bound of the RMS values
of @ for the linear system as calculated from the frequency response
function, and error bars are plotted for the ball-screw motion () for
the IPVA system. Figure 13(b) shows the motion of the pendulum
observed experimentally. It is clear that the RMS values for € do
not follow a resonance-like behavior for the range of frequencies
show, whereas the linear system does. This verifies that there is non-
linear energy transfer between the ball screw (the primary mass
motion), and the pendulum as cross-verified from the energy
pumping in the pendulum, see Fig. 13(b). Next, the case when
the base excitation acceleration is 0.21 g is taken. As shown in

Journal of Vibration and Acoustics

Figs. 14(a) and 14(b), we see results similar to that of 0.2 g base
acceleration. However, the pendulum has more energy in this case
compared to 0.2 g excitation due to a saturation-like phenomenon,
where the motion of the primary system (6) does not increase signif-
icantly even though the excitation acceleration is increased. This
has also been observed in a numerical study by the authors [31].

4 Conclusion

This study analyzes the incorporation of the IPVA system [31]
into a heaving spar-floater system to study the energy transfer
between the spar-floater system and the pendulum vibration
absorber. The hydrodynamic response and wave energy conversion
potential of the integrated system when the wave frequency is near
the spar resonance frequency are investigated using numerical fre-
quency response simulations. A harmonic balance method is used
to determine the boundary of period-doubling bifurcation in the
parameter plane of wave height and wave frequency. According
to the boundary, one can determine a combination of the wave
height and frequency such that 1:2 internal resonance occurs to
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the IPVA system. It is observed that this 1:2 internal resonance is
associated with a nonlinear energy transfer phenomenon similar
to that observed in Refs. [31,32]. It is also shown that because of
this energy transfer phenomenon, the IPVA-PTO system achieves
alower maximum RAO, and a higher energy transfer potential com-
pared to the linear benchmark, when the relative angular motion
between the ball-screw and the pendulum is used as a measure of
energy conversion potential. The effect of the pendulum damping
is also characterized in the IPVA system, since it is the only param-
eter which is missing from the linear benchmark. It is found that for
lower pendulum damping, a lower wave height is required to
achieve the energy transfer phenomenon and the angular motions
of the IPVA system are significantly higher than the linear
system, although the RAO value also increases compared to the
higher pendulum damping case. Parametric studies showing the
effects of various system parameters on the 1:2 internal resonance
boundary were also shown in this study. Finally, experiments inte-
grating the IPVA system with a single-degree-of-freedom spring
mass system were performed. The secondary resonance which cor-
responds to the crossing of 1:2 internal resonance boundary was
experimentally shown in the IPVA system. Furthermore, it was
observed for two different acceleration values, that above the
period-doubling bifurcation boundary (1:2 internal resonance
boundary), the motion of the primary system was suppressed, and
its energy transferred to the pendulum vibration absorber.
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