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Abstract

Our relationship with technology is constantly evolving, and how we use technology in
disasters has evolved even faster. Understanding how to utilize human interactions with
technology and the limitations of those interactions will be a crucial building block to con-
textualizing crisis data. The impact of geographic scale on behavioral change analyses is an
unexplored facet of our ability to identify relative severities of crisis situations, magnitudes
of localized crises, and total durations of disaster impacts. Within this paper, we aggregate
Twitter and hurricane damage data across a wide range of geographic scales and assess the
impact of increasing scale on both the recognition of extreme behaviors and the correla-
tion between activity and damage. The power-law relationships identified between many
of these variables indicate a direct, definable scalar dependence of social media aggrega-
tion analyses, and these relationships can be used to inform more intelligent, equitable, and
actionable social media usage in emergency response.
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1 Background

As the supply of data from humans-as-sensors continues to increase, understanding individ-
ual data streams in the context of our multi-layered and multi-networked society is becom-
ing more difficult. Social media is increasingly looked to as a potential source of additional
information in the notoriously information-scarce environment of crises (Reuter and Kauf-
hold 2018) for increasing hyper-local situational awareness and improving localized crisis
response. The crisis informatics field has continued to flourish and expand alongside the
seemingly ever-increasing quantities of available social media data and methods of analyz-
ing that data. As a result, the applications for social media on situational awareness during
crises has expanded to include event detection (Sakaki et al. 2010), resource availability
and need (Choe et al. 2017), and mobility monitoring (Wang and Taylor 2016a). Analyti-
cal methods range from sieving individual posts for information (Ashktorab et al. 2014), to
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analyzing geographic changes in sentiment and behavior for informing gestalt-level deci-
sions (Jongman et al. 2015; Kryvasheyeu et al. 2016).

The big data revolution has clearly opened a vast area of possibilities for crisis response
(Qadir et al. 2016). One of the greatest strengths of the field is the diversity it contains and
the range of techniques available for the processing of this ever-increasing and changing
pool of data. Applications developed in the field are being used by international aid organi-
zations (Imran et al. 2014), and strides are being made for local response implementations
of social media analysis as well (Tapia and Moore 2014). That said, the range of diversity
of applications and methods can also impede the process of building a solid foundation.
Researchers both external and internal to crisis informatics have noted criticism of social
media applications’ limits with respect to data bias, social inequality, and lack of confirmed
validity (Imran et al. 2015; Jiang 2018).

More data is available; however, big data are not complete data. There has been a con-
sistent call for us to critically interrogate the assumptions and capabilities of big data in
the context of our political and urban usage (Boyd and Crawford 2012). As the reach and
amount of available data increase, holes in that data become both less obvious due to the
existing volume and yet more harmful due to the increasing prevalence of that data’s use
(Morstatter and Liu 2017). Social media, especially when used for crisis response, is not
exempt from this call. This is especially true in the case of crisis response, where informa-
tion availability alone can tip the scales of resource distribution. To ensure more equitable
and intelligent use of social media data in crisis response, researchers need to understand
the social, spatial, and sociospatial limitations of that data. One critical piece of that under-
standing is understanding the non-conventional geographic scale at which social media
data are capable of identifying disasters, and how much information is gained or lost by
varying that arbitrary geographic scale.

Geographic scale (referring to the spatial extent of a geographic area under study—i.e.,
smaller scale refers to a smaller geographic area; not to be mistaken for scale in cartogra-
phy, which is a representative fraction) is less important in analyses sifting through indi-
vidual posts, but it becomes more relevant when determining the likelihood of each of
those posts appearing in a specific place and time. Spatiotemporally aggregated data can
be key to identifying an expected baseline level of activity (Toepke 2018); identifying the
proportions of a population represented by that Tweet (Mislove et al. 2011); monitoring
human mobility during and after crises (Wang and Taylor 2016a); identifying drop-offs
in activity alongside spikes in activity (Samuels et al. 2020); detecting urban emergencies
through geographic and semantic clustering (Wang and Taylor 2019); and ultimately pro-
viding a social lens through which the social benefits or ramifications can be, at a mini-
mum, glimpsed (Shelton et al. 2015).

Aggregate behaviors in real-time can be used to analyze relative disaster severity and
magnitude (Zhang et al. 2016, Chen et al. 2020). As is often echoed in the literature (Wang
and Taylor 2017, Wang and Taylor 2016a), disasters are not disasters because of high wind
speeds or unprecedented amounts of flooding; disasters are disasters because of how they
interrupt and, sometimes, forever change a society’s functions. Disasters are inherently
social and, ultimately, defined by societal vulnerabilities. The impacts and vulnerabilities
associated with a disaster need to be defined in multiple dimensions, with an emphasis on
social norm disruptions (Guan and Chen 2014). Spatiotemporal aggregation, then, can give
us the pre- and post-impact phase reference points called for by Guan and Chen (2014).

However, we currently lack an understanding of the scale at which to generate these
reference points. Previous research, particularly focusing on social disruptions, has iden-
tified the existence of a scalar dependence on the correlation between hurricane damage
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and Twitter activity fluctuations (Shelton et al. 2014), but did not further investigate it.
Research into the spatial biases of social media during disasters has identified a power law
relationship between the number of people in cities and the number of Tweets generated
in those cities during a disaster. However, the authors note the need for information on
how these patterns vary at different spatial scales (beyond the city and super-neighborhood
scales) (Fan et al. 2020). As power law relationships have been often identified in social
networks, understanding the prevalence of scale-independent behaviors within the con-
text of disasters is necessary to understand the intrinsic biases of social media informa-
tion. Additionally, subsequent calls for further research highlight how understanding the
scalar dependencies of social media data will improve our reference for the data’s place in
geographic, temporal, and social space (Jessop et al. 2008), thus improving our total under-
standing of the social significance of Twitter activity trends.

A massive disaster such as a hurricane or an earthquake is composed of hundreds of
small ones: flooded neighborhoods, downed overhead power transmission lines, and trees
thrown through roofs by gale-force winds (Wurman and Kosiba 2018). These disasters hap-
pen to more than individuals, but less than the whole of society. Disasters of varying mag-
nitudes can happen to small neighborhoods, along vast swathes of a river, or through power
outages across a city. If a 911 call can recognize a disaster happening to an individual, at
what scale can social media recognize and triage emergencies affecting more than individ-
uals? Is it limited to disasters occurring to thousands of people, or can it also identify disas-
ters affecting smaller groups? The more we understand the capacity of humans-as-sensors
to identify the location, relative severity, and magnitude of the localized disaster, the more
useful social media will be to emergency response (Raue et al. 2013). Understanding how
scale impacts the recognition of behavior will also enable us to reduce the obfuscation of
any minority behaviors occurring at small scales that are drowned out by those happening
at larger ones (Chen et al. 2013).

Within this paper, we analyze and present the scalar dependencies of aggregate social
media analyses. We focus primarily on the ability of social media to identify localized
disasters, i.e., to distinguish groups or areas that are being impacted by the disaster more
extremely than the broad geographic region. The connection between social media activity
and the presence of extreme danger or disaster has been noted in several pieces of litera-
ture (Guan and Chen 2014; Kryvasheyeu et al. 2015), and we are specifically testing the
scalar dependencies of that connection. In order to do this, we test at different scales (1)
the power of social media (Twitter) activity to identify distinct clusters of similar behavior,
(2) how much behavior is identified as non-normal or extreme during a disaster, and (3)
how the strength of the correlation between Twitter activity and hurricane damage var-
ies. Understanding the shape of the relationships between these three factors and changing
scale will improve our understanding of how to maximize the benefits of decreasing scale
(more specificity of place) while minimizing the costs (less confidence in correlations).
These assessments are codified in the following hypotheses:

H1 The distribution of changes in social media behavior and the identification of behavio-
ral clusters are statistically distinct at smaller scales.

In order to assess this hypothesis, we qualitatively investigated the statistical distribution
of Twitter representation (Tweets per person) across the Houston Metropolitan Area using
each of the spatial nets (see Fig. 1 and Sect. 2.3). We secondarily quantitatively investi-
gated the scale at which the distributions of Twitter representation cannot be statistically
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Fig.1 (Left) Spatial net consisting of 1 km? hexagons across Houston. (Right) Spatial net consisting of 80
km? hexagons across Houston

distinguished between increasing spatial aggregation scales for both steady and perturbed
state days.

Provided that some aspects of Twitter behavior are scale dependent, we should be able
to use the dependency to identify how scale affects crisis-relevant analyses. Most of social
media crisis analyses operate on the assumption that humans affected by crisis will change
their behavior, and increasing amounts of evidence show that hurricanes produce localized
crises at a small scale (Lieberman-Cribbin et al. 2017; Wurman and Kosiba 2018). In order
to be useful to crisis managers who need specific and localized information, we should
understand the smallest scale at which in-crisis behavior changes are identifiable and the
potential information value trade-offs of decreasing or increasing the scale of analysis. This
leads to our second hypothesis:

H2 The identification of crisis-induced, extremely high or extremely low amounts of non-
normal Twitter activity is scale-dependent.

For this second hypothesis, we quantitatively assess the percentages of areas that have
deviated from their steady state norms during Hurricane Harvey. The assumption of crisis
informatics is that disasters break the ability of society to function normally (Guan and
Chen 2014). How social media identifies and codifies those breaks in normal functioning
is important to understand for trying to identify small-scale crises in a sea of larger crises.
We also need to understand if the aforementioned connection between social media activ-
ity and hurricane damage is more or less consistent for identifying those small-scale crises.
This leads us to our third hypothesis:

H3 The strength of the correlation between Twitter activity and infrastructural damage is
scale-dependent.

For this, we test previously identified correlations between Twitter activity deviations
and records of hurricane damage at increasing spatial scales. Knowing how scale affects
correlation strength, and therefore how it affects how confident we can be that activity is
indicative of a disaster, is important for communicating with emergency managers.
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These quantitative comparisons of the representative capabilities of aggregation tech-
niques will also inform future tools and algorithms that seek a real-time metric for human
need expressed through social media. To address these hypotheses, we chose to focus our
efforts on the city of Houston, Texas circa Hurricane Harvey. With a population greater
than 2.3 million people (U.S. Census Bureau 2016), the city of Houston had a large hurri-
cane-affected population that, based on our analysis of Gulf-based city Tweeting behavior,
also had a substantial number of affected Twitter-users.

2 Methods
2.1 Twitter data

All of the geolocated Twitter data for the greater metropolitan area of Houston for seven
weeks prior to and one week following Hurricane Harvey’s landfall were streamed by the
authors through the Twitter API (Wang and Taylor 2016b, Roesslein 2020). Hurricane
Harvey made its first landfall in Houston on August 25th in the evening; the hurricane
then pivoted and returned on August 27th to deposit torrential, record-breaking rains. For
our analysis, we defined our perturbed state—the period of time during which non-normal
behavior would be expected—as one day prior to the first landfall through the week fol-
lowing landfall (August 24th-September 1st). To identify non-normal behavior, we needed
to select a steady state to act as our baseline for “normal” behavior. We defined this steady
state as the period from July 15th to August 16th, following prior research describing the
time period length necessary to generate a sufficiently stable analysis (Toepke 2018a); a
longer period would increase the influence of both seasonality and population flux. The
steady state behavior has a left-leaning lognormal distribution, matching prior findings
(Zaman et al. 2014). We also allowed for a transitionary state, during which the hurri-
cane would broadly impact Twitter posting behavior through anticipation of harm but not
through actual hurricane damage or events. This state is defined as the period from the day
Harvey was identified as a tropical storm through the day before our perturbed state begins
(August 17"-August 23rd).

With respect to important dates, it should be noted that Houston experienced the most
infrastructural damage and flooding on August 27th and not when Hurricane Harvey first
made landfall. As such, many of the following analyses focus on behaviors identified on
August 27th. The sets of steady state and perturbed state Tweets were temporally aggre-
gated by day, transformed into individual points through ArcGIS, and plotted using their
latitude and longitude attribute information in ArcGIS. The Zip Code Tabulation Areas
(ZCTAs) and 2010 census tract shapefiles were downloaded from the Harris County GIS
data portal (Harris County 2019).

2.2 Population data

The census data and census tracts are not at a sufficiently fine resolution to enable under-
standing of the nuances of neighborhood-scale behavior during a crisis. The tracts further
from the city center can be as large as 1500 km?, so we need to find a method of increasing
the resolution of the population data. The geographic information science field has his-
torically utilized National Land Cover Database (NLCD) data to increase the granularity
of census data with substantial accuracy (Reibel and Agrawal 2007). The NLCD contains
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Table 1 Multiple linear

NLCD Class Constrained
regression results for the NLCD s 0;())tril:nffﬁlnreno del
land class types and the census coefficient
data

Open area 0.071

Low intensity NA

Medium intensity 1.79

High intensity NA

Rest NA

All Coefficients are subject to a non-negative constraint (Inter-
cept=2973.72)

a raster file with 30 meter (m) by 30 m cells that have been classified, through satellite
imagery, as one of 16 classes. The classification includes four classes of developed land:
open space, low intensity, medium intensity, and high intensity. These classifications are
determined using the amount of water-permeable and water-impermeable land; thus, the
“open space” designation does not necessarily describe areas with no people, but rather
areas with a relatively smaller (<20%) amount of concrete-covered land, like suburbs. The
raster cells from the 2011 dataset that were classified as “developed” were extracted and
clipped to the greater metropolitan Houston Area. Using ArcGIS’ Raster to Point function,
each of the raster cells were transformed into points located at the center of each cell and
spatially joined by count into the census tracts for Houston. Using the counts of each type
of NLCD class and the population record for each census tract, a multiple linear regression
analysis was performed to determine the expected contribution of each type of land type to
the tract’s population (Bian and Wilmot 2015). The model is presented as:

Pop, = f,+ p,OpenSpace, + p,LowInt, + p;MedInt, + f,HighInt, + fsRest+ €
)
For estimating the parameters, Pop, is the population for a given census tract ¢; OpenS-
pace, is the number of NLCD cells described as “Open Space (Developed)” within the
census tract; Lowlnt, is the number of cells described as “Low Intensity (Developed)”;
MedInt, is the number of cells described as “Medium Intensity (Developed)”; Highlnt, is
the number described as “High Intensity (Developed)”, and Rest, is the accumulated num-
ber of cells with other labels. Note that, since population cannot be negative, we added
non-negative constraints on f,, f,, f5, f,;, and fs. The results of the regression analysis are
presented in Table 1. The model has an adjusted R-squared of 0.65. This model is used to
estimate population at smaller geographical scales such as spatial nets defined in the next
section. The five coefficients explained above are aggregated to assigned weighted popula-
tion to each cell.

2.3 Spatial nets

A common method of aggregation, particularly when social factors are considered, is to
use census tracts or ZCTAs (Grubesic and Matisziw 2006). Although this gives arguably
the most accurate nighttime population of the aggregated areas, their boundaries can be
of widely varying shapes and sizes, and their jurisdictions are strongly influenced by the
boundaries of socially biased fragmentations. These social factors can contribute to data

@ Springer



Natural Hazards (2022) 112:545-564 551

bias, and the size and shape differences can contribute to the Modifiable Area Unit Prob-
lem (MAUP) (Jelinski and Wu 1996; Grubesic and Matisziw 2006). As such, we chose
to create our own spatial nets of varying scales and to include the ZCTA boundaries for
comparison.

With the social media data temporally aggregated and mapped and the population data
spatially disaggregated, we designed twelve spatial nets within which to aggregate the
population data and the Twitter stream for each day. These spatial nets are composed of
a series of interlocking shapefiles that cover the greater Houston area. One of these nets
consists of the Houston ZCTA zones; the others were composed of uniformly shaped, tiled
hexagons. As many of the problems identified with using manmade boundaries for spatial
aggregation are related to their varying sizes and shapes, we wanted to develop a spatial
net design that could be deployed across a large area, regardless of country of interest, and
could be scaled according to the intended research design. This has the advantage over
ZCTAs, which vary in size and shape. The ZCTAs within Houston alone, for instance,
range in size from 0.16 square kilometers (km?) to 677.20 km?.

We generated the spatial nets of equally sized and shaped hexagonal polygons through
ArcGIS’ Generate Tessellation function. Hexagons are better suited for tiling large geo-
spatial areas because they reduce edge effects that can be exacerbated by intersecting rec-
tangles and are more scalable on a curved surface like the globe (Carr et al. 1992; Polis-
ciuc et al. 2016). The eleven hexagonal nets consist of hexagons that have square areas of,
respectively, 0.25 km?, 0.5 km?, 0.75km?, 1 km?, 5 km?, 10 km?, 15 km?, 20 km?, 35 km?,
50 km?, and 80 km?. These areas were chosen following the guidelines listed in the Spatial
Association of Scalable Hexagons described by Potter et al., which suggests choosing sizes
that closely mimic the behavior that is being studied or the sampling size, or the spatial
dependence of the data (Potter et al. 2016). As such, these sizes mimic the range of sizes
of Houston census tracts and the spatial spread of the Twitter data. With respect to the
upper limit of 80 km?, we determined from the stated interests of emergency management
personnel that information on areas larger than that scale provided very little actionable or
useful information in terms of aid distribution or the presence of local disasters. A com-
parison between the 1 km* and 80 km? nets is shown in Fig. 1 for a scalar reference.

We summed the number of Twitter posts for each day and the population values of
each of the NLCD points within each polygon of each net. Following the methods listed
in Kryvasheyeu et al. (2016), polygons that did not contain at least one Tweet per day dur-
ing either the steady state or perturbed state were removed. For validation purposes with
respect to the hurricane damage, we additionally plotted the Federal Emergency Manage-
ment Agency building level damage assessments (FEMA damage assessments) collected in
the days following Hurricane Harvey. These assessments are geolocated and the buildings
they reference are classified as “Affected”, “Minorly Affected”, “Majorly Affected”, and
“Destroyed”. We converted this ordinal scale of damage into a numerical ordinal scale,
for which “Affected” is classified as a “1” and “Destroyed” is classified as a “4”. For each
polygon of each net, we additionally calculated the total number of damage assessments
performed and the maximum and average assigned damage value of the polygons.

2.4 Analytical methods

H1 The distribution of changes in social media behavior and the identification of behavio-
ral clusters is statistically distinct at smaller scales.
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In order to identify the scalar interval of aggregation at which the distribution of Tweets per
person changes significantly, we created empirical cumulative density functions (CDFs) of
the Twitter activity per person for each net on a daily basis. These intra-net CDFs consisted
of all of the Twitter representation values identified on a single day in all of the polygons
of the net. We produced thirteen CDFs for five days of the steady state and for each day of
the perturbed state. We then used the Kolmogorov—Smirnov II test on each pair of CDFs to
test the likelihood that the CDFs were produced from the same parent distribution (Massey
1951).

H2 The identification of crisis-induced, extremely high or extremely low amounts of
Twitter activity is scale-dependent.

In order to understand the distribution of perturbed state Twitter posting counts that
were either much higher or much lower than the “normal” behavior observed in the steady
state, we used cumulative distribution functions (CDFs) to compare perturbed state Twitter
activity to the steady state Twitter activity. We used the steady state post counts for each of
the spatial nets to generate a series of CDFs. These CDFs represented the distribution of
Twitter activity for a single area across each day of the steady state period. For instance, for
a given area A within the 10 km? net, we created a CDF from all of area A’s steady state
Twitter activity counts by day. We then took the perturbed state Twitter activity on a given
day, such as August 27th, and used the generated steady state CDF of activity to determine
what percentage of steady state days had produced less than the number of Twitter posts
produced on August 27th in area A. For instance, a result of 0.90 would indicate that the
perturbed state activity on August 27th was higher than the activity produced on 90% of
the days in the steady state, and a result of 0.10 would indicate that the perturbed state
activity was only higher than 10% of days in the steady state.

We used each CDF to assess, for each area and each day of the perturbed state, the
cumulative likelihood of observing a certain number of Tweets in that area on that day. We
categorized this likelihood as being normal, non-normal, or extreme. Although, as stated,
we are most interested in extreme values, we included an analysis of non-normal to provide
a reference for the impact of how the threshold of “extreme” amounts of activity is defined.
Using empirical rule values (v+Co, where C=1,2,3, v is the population mean, and ¢ is
the population standard deviation), non-normal social media behavior was defined as being
less than 16% of steady state values or greater than 84% of steady state values. Extreme
social media behavior was defined as being less than 5% of steady state values or greater
than 95% of steady state values. To identify the effect of scale on observing extreme (and
non-normal) values and so understand the prevalence and significance of activity bursts,
clustering, or drop-offs, we took the distribution of the likelihood of observing the per-
turbed state Twitter activity and analyzed the distributions of those probabilities across nets
and days of the perturbed state.

H3 The strength of the correlation between Twitter activity and infrastructural damage is
scale-dependent.

Finally, to assess how scalar aggregation affects the previously identified correlation

between non-normal Twitter activity and hurricane damage, we applied the statistical test
for Kendall’s rank coefficient to the Twitter activity per person within each area and the
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average FEMA building level assessment designation recorded within each area (Kendall
1938). These values were determined on a daily basis and compared across spatial nets.

3 Results

H1 The distribution of changes in social media behavior and the identification of behavio-
ral clusters is statistically distinct at smaller scales.

The comparisons of the Kolmogorov—Smirnov II test results are depicted in Fig. 2. The
null hypothesis for the test is that the two populations are drawn from the same population.
With larger p-values (distribution pairs with p-values greater than 0.05 are displayed as
gray squares), the less certain we are that we can reject the null hypothesis.

The top two figures show the results of two days of the steady state, August 8th and
August 12th (Fig. 2a-b), and the bottom two figures show the results of two days of the

HEX80 HEXSO HEX35 HEX20 HEX1S HEX10 HEXS HEX1 HEX7SO HEXS00 HEX250

HEX80 HEXSO HEX35 HEX20 HEX1S HEX10 HEXS HEX1 HEXTS(

HEX250 HEXS00 HEXTS0 HEXL HEXS HEXIO HEXIS HEX20 HEX3S HEXSO HEXSO HEX250 HEXS00 HEXTSO HEXL HEXS HEXIO HEXIS HEX20 HEX3S HEXSO HEX8O

(a) Augos (b)Aug12

HEXS0 HEXS0 HEX35 HEX20 HEX1S HEX10 HEXS HEX1 HEX7SO HEXS00 HEX250
HEXS0 HEXSO HEX35 HEX20 HEX1S HEX10 HEXS HEX1 HEX7SO HEXS00 HEX250

HEX250 HEXS00 HEXTS0 HEXL HEXS HEXI0 HEX1S HEX20 HEX3S HEXSO HEX8O HEX250 HEXS00 HEX7S0 HEXL HEXS HEXI0 HEX1S HEX20 HEX3S HEXSO HEX8O

(c)avg2s (d)Aug-27

Fig.2 a-d Comparison of the p values, showing that the spatial nets have distinct daily distributions using
the Kolmogorov—Smirnov II test. The census tracts net is represented in the furthest left column and bottom
row. The top two figures were created from steady state values (August 8th and August 12th), and the bot-
tom two figures were created from perturbed state values (August 26th and August 27th). Teal color repre-
sents statistical significant (p <0.05)
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perturbed state, August 26th and August 27th (Fig. 2c-d). It should be noted that the
CDF and statistical test results for the census tracts are on the outermost edge of the
figures, and those results, interestingly, are not equivalent to either the very small nets
or the very large ones. Across each set of tests, the larger nets’ distributions are more
similar to each other, and nets that are more similar to each other in size also have more
similar distributions. Apart from those trends, both of the steady state graphs show the
significant decrease in the certainty that the spatial nets’ CDFs are from distinct distri-
butions between Skm?* and 10km?. This pattern of 5-10km? spatial trends breaks during
the perturbed state, in which small-scale areas begin to behave more similarly to each
other. This opened window in the smaller spatial scales exists from August 26th through
September 1st, although it diminishes in size beyond August 29th. It is largest on the
day of maximum damage from rainfall, August 27th.

H2 The identification of crisis-induced, extremely high or extremely low amounts of Twit-
ter activity is scale-dependent.

In order to understand the distribution of perturbed state values that were either much
higher or much lower than the “normal” social media behavior observed in the steady
state, we used CDFs to compare perturbed state values to the steady state values. For
instance, for a given area A, within the 10 km? net, we estimated a CDF from all of that
area’s steady state values. We then took the perturbed state Twitter activity on a given
day and used the CDF to determine what percentage of steady state values were lower
than that perturbed state value. For instance, a value of 0.90 would indicate that the per-
turbed state value was higher than 90% of the steady state values. We then determined
the distribution of those probabilities and compared them across scales to identify the
effect on scale on the prevalence of extreme or non-normal values.

We quantitatively assessed the percentage of values on the day of maximum rainfall
and damage, August 27th, which exhibited non-normal or extreme social media behav-
ior. Non-normal behavior was defined as being one standard deviation from the mean,
i.e., less than 16% of steady state values or greater than 84% of steady state values.
Extreme social media behavior was defined as being less than 5% of steady state values
or greater than 95% of steady state values. We additionally included the percentage of
areas that exhibited normal Twitter activity, within the central 68% of observed Twitter
activity, on both Figures 3 and 4 for comparison.

The percentage of areas identified with each of those kinds of social media inter-
actions compared to the size of the spatial nets are compared in Fig. 3 and Fig. 4. To
define the relationships between each set of variables, we used the method of maximum
likelihood to estimate a scaling exponent for a power law relationship. That is we esti-
mate a discrete power law probability defined as follows (Gillespie 2014):

x—(I
)= —>
f( ) é(av-xmin) (2)

g(a’xmin) = 2 (n + xmin)
n=1
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Relationships between Less-than-Normal Activity and Scale

08-

06-

Threshold value
® Non-Normal (<16%)
@ Extreme (<5%)

0.4-

Normal

02-

Percentage of Area Exhibiting Non-Normal or Extreme Behavior

0 20 40 60 80
Size of Areal Aggregation (km?)

Fig.3 Comparison of the percentages of areas exhibiting non-normal or extremely low Twitter activity
behavior between spatial nets, fit to discrete power law distributions

Relationships between Greater-than-normal Activity and Scale

Threshold value
Non-Normal (>84%)
@ Extreme (>95%)

Normal

Percentage of Area Exhibiting Non-Normal or Extreme Behavior
:

é 2‘0 4'0 E‘D 8'0
Size of Areal Aggregation (kmz)

Fig.4 Comparison of the percentages of areas exhibiting non-normal or extremely high Twitter activity
behavior between spatial nets, fit to discrete power law distributions

Here x represents the geographic scale, and f(x) denotes the predicted variable (i.e., the
percent of areas with extremely high or low numbers of Tweets, the correlation coefficient
between Tweets and FEMA damage ratings, or the percentage of geographic area excluded
from analysis) (Stumpf and Porter 2012). The minimum x value, x,,;,, (geographic scale)
was determined by minimizing the Kolmogorov—Smirnov test statistic, and the goodness
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of fit of the estimated parameters for these relationships were assessed using the Kolmogo-
rov—Smirnov test (Clauset et al. 2009). Although there are too few data points to more
positively confirm the presence of a power law relationship, the Kolmogorov—Smirnov
test statistics show that the data distributions for each of the tested relationships could
be derived from a power law distribution. Vuong’s test was used to compare the relative
distance between the sample distributions, the estimated power law distributions, and log-
normal distributions estimated from the same data (Vuong 1989). The estimated discrete
power law parameter, the minimum x values, the Kolmogorov—Smirnov test statistics, the
Kolmogorov—Smirnov test results, and the Vuong test results are presented in Table 2.

Of most importance for applications, the relationship between increasing geographic
scale and the identification of extremely low social media interaction is negative, while the
relationship between scale and the identification of extremely high social media interac-
tion is positive. The inclusion of non-normal activity analysis was provided as a reference
for the impact of the threshold at which the amount of activity could be interpreted as
“extreme”. We see the impact of increasing the boundary for the classification from out-
side the central 68% to outside of the central 95% in the identification of non-normal and
extreme perturbed state activity for both sets of behavior trends. Decreasing the threshold
at which an observed behavior is classified as noteworthy obviously increases the number
of noteworthy observations; however, this effect is slightly larger for the extremely high
values, and the effect is more profound at higher scales (greater than 40 km?).

The difference between the percentage of areas identified as exhibiting extreme at the
smaller scales is much larger (approximately 80% for scales less than 0.5 km?) than the
percentage identified at the larger scales (approximately 53%). The geographic coverage of
those areas, however, is quite similar due to the increased removal of areas without Twit-
ter activity at the smaller scale. By excluding from analysis all areas that did not have a
single Tweet across the steady state period or a single Tweet across the perturbed state, this
resulted in a substantial amount of geographic coverage reduction in the smaller scales. We
identified a logarithmic increase in excluded area with decreasing scale. For example, 56%
of Houston was excluded in the 0.25 km? net, 48% was excluded from the 1 km? net, and
only 19% was excluded from the 20 km? net. This relationship is represented in Fig. 5.

H3 The strength of the correlation between Twitter activity and infrastructural damage is
scale-dependent.

Table 2 Results of the maximum likelihood estimation of sample distribution fit to power laws

Variable a Xpmin K-S test Vuong’s test

Extremely high activity 1.93 10000m? 0.23* Lognormal More Likely
Non-normally high activity 191 10000m? 0.23* Lognormal More Likely
Non-normally low activity 1.43 250m? 0.17* Power Law More Likely
Extremely low activity 1.47 250m? 0.16* Power Law More Likely
% of area removed 1.49 250m? 0.16* Power Law More Likely

“p<0.05 for the Kolmogorov—Smirnov test statistic’s null hypothesis (that the sample distribution was
drawn from a power law distribution) could not be rejected
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Power Law Relationship between Excluded Areas and Scale

Percentage of Area Exhibiting Zero Steady or Perturbed State Activity

0 20 4 60 80

Size of Areal Aggregation (km?)

Fig.5 The relationship between the percentage of the total study area (the greater metropolitan area of
Houston) excluded from the analysis on account of not having sufficient Twitter activity, as defined in
Sect. 2.3, and the geographic scale at which the data was aggregated
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Fig.6 Kendall Rank Correlation Coefficient strength between Twitter Activity per person and the average
FEMA building damage assessment rating within each area

The relationship between scalar aggregation and the strength of the correlation
between Twitter activity on August 27th and hurricane damage is presented in Fig. 6.
This data also shows a direct proportionality between the scale of aggregation and the
strength of human social media behavior signals in the analysis. To quantify this, we
also fit the data to a continuous power law relation, commonly defined as: f(x) = fx”.
It should be noted that each value is significant except for that of the 35 km? net, which
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was excluded from the model fitting due to its lack of statistical significance (p =0.11).
The correlation strength increases sharply until the 10 km? scalar aggregation with no
apparent sacrifice of statistical significance.

4 Discussion

First and foremost, the analyses presented herein show that the stories data tell differ
when read at different scales. With any scalar analysis, we would expect more variation
at smaller scales across time and between areas. There is an expected tradeoff between
certainty at large scales and specificity at small scales. The crisis community has rec-
ognized this; however, the effect of scale on the ability of social media to (H1) iden-
tify distinct clusters of geographic social media interaction changes, (H2) identify non-
normal or extreme social media behaviors, and (H3) provide statistical confidence that
social media behavior changes indicate danger had not been explored. Within our three
analyses, we have identified the precise relationship between scale and social media sig-
nal behavior in the hopes of making the crisis informatics community more aware of
how scale can influence multiple facets of the findings of social media analytics.

In addressing H1, the steady distribution of Twitter activity observed within spa-
tial nets of an area greater than 10 km? is not statistically distinct from the distribution
observed in another spatial net greater than 10 km?. The inverse is also true; nets smaller
than 5 km? are not as likely to be from the same distribution as each other. This con-
firms the existence of social and place-related social norms occurring at scales smaller
than 5 km?; i.e., in the broader scheme of human activity, most locations and events
occupy a geographic space smaller than 5 km?, so smaller scale analyses incorporate
spatial segments that contain different locations and events. With analyses that compute
a spatial relationship across those segments, the produced answer may not accurately
reflect any of the spatial constituents. At the 10 km? scale, the highs and lows of activity
are averaged across more data, minimizing the impact of the grouped extremes. Even at
the 0.25 km? scale, the analysis identifies different distributions of activity and bursting
than those from the 0.5 km? scale.

This clear cut-off of statistical difference disappears during a crisis state, however.
People within 0.5-5 km? begin behaving in more similar ways, and, during the day
of maximum rainfall and damage, the difference between the distributions at most of
the smaller scales decreases substantially. This confirms research showing hurricanes
impacting cities differently at small scales due to small vortices and flooding suscepti-
bility. It is likely that this sudden homogenizing of social media behavior at the 0.5-5
km? is indicative of the average effect of distinct, human-impacting hurricane phenom-
ena. The similarity of social media behaviors at these scales during a disaster may also
be indicative of reduced population mobility or infrastructure limitations.

With respect to our second hypothesis, the percentage of extreme social media
behavior in a crisis state and the strength of the correlation between extreme behavior
and hurricane damage are both definably dependent on geographic scale. We identify
and define the effect of geographic scale on the identification of extreme social media
behaviors, and we show clearly that the effect is different for different extreme behav-
iors. When we assessed the distribution of the likelihood of seeing each value in the per-
turbed state using the empirical cumulative distribution function generated in the steady
state, we found that the smallest scales are likely to define the majority of active areas as
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having either very low or very high activity. Few perturbed state values lie close to the
average of the steady state. If the purpose of social media analysis is to identify areas
with higher or lower severity, this indiscriminate binning of most values as “extreme”
would not be ideal. The consistency across the perturbed state does, however, note a
reliably consistent categorization of specific areas into extremes. This is the inverse of
the social media behavior observed at the larger spatial scales, which has a wide variety
of probabilities of the occurrence of values, and yet varies drastically from day to day of
the perturbed state.

The effect of geographic scale on variability in data distributions is reinforced by
the relationships between aggregation scale and each representation of Twitter behav-
ior assessed above. In our data, we have identified six possible power law distributions,
although three of them are more likely to truly be drawn from a power law distribution
than the others. Power law distributions have attracted a large amount of attention in almost
every field, ranging from microbiology to economics. They have been suggested as being
present in nearly every natural system, although the statistical confirmation of the real-
ity of such a claim has been questioned (Stumpf and Porter 2012). In the realm of social
behavior and social networks, power law relationships have been shown to develop due to
growth and preferential attachment (Barabasi and Albert 1999). The prevalence of those
two features in human networks has contributed to the identification of many social power
law relationships, such as the famous “rich-get-richer” phenomenon (Newman 2005). In
seeking a theoretical reason for our observations, we propose that the flux of people into
urban centers could easily account for growth, and preferential attachment could be due to
how social media-using demographics more commonly flock to urban centers with similar
types of people (Shelton et al. 2015).

Recent work in social media has also identified additional power law relationships
between the population size of city centers and the number of different types of Tweets
generated within (Fan et al. 2020). Those results, which stem from the number of people
in specific cities, and our results, which stem from the number of people within geographic
scales, seem to indicate that growth and preferential attachment are present in the rela-
tive spatial clustering of those who want and are able to use social media more during a
disaster. Because of these qualities, despite continuous growth in urban populations and
social media users, the network of users specifically using social media during a disaster is
organizing itself into a scale-free clustered network. This phenomenon may affect the rela-
tive ability of areas with greater numbers of social media users to receive more resources
during a disaster purely due to the concentration of their voices.

In our data, we show that the number of identified extremely low events decreases
exponentially with increasing scale, and the number of identified extremely high events
increases exponentially with increasing scale. This increased identification of non-nor-
mal social media interaction at increased scales suggests the need to apply more stringent
thresholds for activity marked as abnormally or extremely high at larger spatial scales. That
said, the many decreased values identified at the smaller scale call for more stringent meth-
ods of investigation into these areas that are suddenly silent. In terms of sudden silence,
previous research has identified that drop-offs in Twitter activity are also correlated with
damage and theorized that those drop-offs are caused by social vulnerabilities more than
social media behavioral choices (Samuels and Taylor 2020). Increased scales minimize the
potential for a social media analysis to identify these drop-offs as extreme events, a factor
that needs to be considered and addressed in social media applications.

In applying these to future analyses, we also show the influence of the MAUP on the
use of ZCTAs in crisis informatics. ZCTAs vary widely in size and shape; the ones within

@ Springer



560 Natural Hazards (2022) 112:545-564

Houston, for instance, range in size from 0.16 km” to 677.20 km”. This variance in size and
socially constrained boundaries has been substantially critiqued in the field of critical GIS
(Jelinski and Wu 1996; Saib et al. 2014). Across all analyses, the distributions appear clos-
est to the values for the 5 km? net. As the average size of the census tracts for the area is
approximately 7 km?, this suggests that the potential spatial biases of census tracts in terms
of Twitter representation may be more directly related to the tracts’ geographic size and
less their socially constructed boundaries. The variances in the sizes of the ZCTAs is an
additional variable that, as we have shown, has a significant effect on the analytical results
of an analysis.

As for the third hypothesis, concerning the relationship between these extreme val-
ues and hurricane damage, there have been multiple remarks in the literature regarding
an expected relationship. Shelton et al. (2014) identified a discrepancy in correlation val-
ues at varying scales, noting the apparent necessity of including scale as a factor in any
analysis comparing Twitter activity and hurricane damage. County-scale and state-scale
correlations have been found to be moderately strong (Guan and Chen 2014; Shelton et al.
2014; Kryvasheyeu et al. 2016); however, each author notes the influence of scale on their
analyses. Guan and Chen hypothesize that “moving upward on the scale is likely associ-
ated with a larger amount of disruptions at a higher level of severity”, which would lead to
a stronger, more significant “disaster” signal. Within our analysis, we are able to show the
likelihood of a power law relationship between increasing analytical scale and the strength
of the correlation between damage and Twitter activity. This relationship shows that we
can be more confident in social media activity behaviors indicating a local hazard when we
look at larger spatial scales.

Ultimately, the certainty involved in whether extreme social media behaviors function
as good indicators of hurricane damage is dependent on geographic scale, showing once
again that the tradeoff for geographic specificity is certainty of the identification of hur-
ricane damage, and analyses performed at the census tract or county level need to incorpo-
rate the analysis’ scale into their explanations of their findings.

5 Limitations and future work
5.1 NLCD data

Although one of the first uses of NLCD data was to estimate populations distributions on
a fine scale, and despite its storied history in population estimation, it is still a fallible met-
ric. In our case, two out of the five developed areas are considered “irrelevant”. Addition-
ally, census data is limited to the “nighttime” population, i.e., where people sleep (home).
Based on the Tweet text, we find that most people stayed home during the worst of the
hurricane, and thus this nighttime population may double as hurricane-time population.
We were incapable of incorporating evacuation dynamics for the hurricane, but evacuation
orders were not widely issued for Houston. Evacuation likely had less impact on popula-
tion dynamics for Houston than for areas more often affected by hurricanes.

5.2 Hurricane-specific Tweeting

Many studies in the field filter for Tweets that are directly related to the hurricane through
text analysis. This limits the application of steady state versus perturbed state analysis, as
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no one was Tweeting about Hurricane Harvey before it formed in the Gulf. We addition-
ally wanted to incorporate areas Tweeting in a “business-as-usual” fashion during the hur-
ricane. As such, using hurricane/disaster-specific Tweets was not possible, and our analysis
undoubtedly incorporated some Twitter bots (Yang et al. 2019). We manually filtered some
of the bots based on keywords (i.e., “jobs”, “FloodWatch”) determined through manual
application of the OSoMe tool BotOrNot (Indiana University 2018). Furthermore, as the
bots are likely unaffected by the hurricane, their activity changes would be normalized to
zero, thus minimizing their effect on our analyses. Further research is necessary into the
influence of Twitter bots on the Twitter distributions and analyses specific to disasters.

5.3 Power law relationships

A scale-free stationary state is difficult to prove. Criticisms of abundant labeling of power
law dynamics require statistical tests that our data cannot satisfy, i.e., independent and
dependent variables that range more than two orders of magnitude each (Stumpf and Porter
2012). Additionally, many statistical tests for the goodness of fit of power law distribu-
tions for binned data additionally require a longer tail than our data provides (Virkar and
Clauset 2014). We have followed the statistical suggestions put forward by fervent critics
of the search for power laws (Clauset et al. 2009) as well as we could. We, therefore, fit a
discrete version of power law by maximizing the likelihood and perform two statistical
tests, Vuong’s and Kolmogorov-Smirnov, to determine whether the distribution tends to be
a lognormal or power law. Future research may explore this hypothesis by either increas-
ing the number of geo-scales (expansion of scaling sample size) or consider extending the
statistical tests to other exponential families.

Lastly, no two disasters are the same, either in terms of the damage caused or in terms
of the affected society. The generalizability of the potential power law relationships and the
distributions of Twitter activity to other cities and other disasters should be investigated.

6 Conclusion

Spatial scale does not constitute geography alone; it is directly tied to a wide variety of
demographic, infrastructural, and analytical variances. Accounting for these confounding
factors is a necessary component of crisis analytics. Within our paper, we hope to have pro-
vided a roadmap for crisis informatics researchers using social media to better understand
how the chosen scale of their analysis will affect their results. Many of the potential power
law relationships identified in this paper indicate an exponential tradeoff between the geo-
graphic specificity of smaller scales and the statistical certainty that an identified social
media behavior represents an endangered population. Crises within a disaster context hap-
pen to individuals and communities; it is important to work toward using social media data
(in addition to other forms of data generated by humans-as-sensors such as 311-Data) to
improve our ability to correctly assess the severity and magnitude of an identified emer-
gency. Both of those factors depend on geographic scale relative to the surrounding areas
and that area’s own history. Future research should investigate different facets of scaling
across alternative sources of data in analyses of crisis response and examine how various
scales may relate to applications in practice. How we ascertain and contextualize our data,
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then, is heavily influenced by how we structure our analysis, and we need to be wary of
what dependencies might be tipping the scales.
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