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U N I M O D U L A R  M E A S U R E S  O N  T H E  S P A C E  O F  A L L
R I E M A N N I A N  M A N I F O L D S

M I K L O S  A B E R T  A N D  I A N  B I R I N G E R

A b s t r a c t .  We study unimodular measures on the space M d  of all pointed
Riemannian d-manifolds.     Examples can be constructed from nite volume
manifolds, from measured foliations with Riemannian leaves, and from invari-
ant random subgroups of L ie  groups. Unimodularity is preserved under weak*
limits, and under certain geometric constraints (e.g. bounded geometry) uni-
modular measures can be used to compactify sets of nite volume manifolds.
One can then understand the geometry of manifolds M with large, nite vol-ume
by passing to unimodular limits.

We develop a structure theory for unimodular measures on M d ,  character-
izing them via invariance under a certain geodesic ow, and showing that they
correspond to transverse measures on a foliated ‘desingularization’ of M d .  We
also give a geometric proof of a compactness theorem for unimodular mea-
sures on the space of pointed manifolds with pinched negative curvature, and
characterize unimodular measures supported on hyperbolic 3-manifolds with
nitely generated fundamental group.

1. Int roduc t i on

The focus of this paper is on the class of ‘unimodular’ measures on the space

M d  =  pointed Riemannian d-manifolds (M; p) =pointed isometry;

Throughout the paper, all Riemannian manifolds we consider are connected and
complete. We consider M d  with the smooth topology, where two pointed manifolds
(M; p) and (N ; q) are smoothly close if there are compact subsets of M and N
containing large radius neighborhoods of the base points that are dieomorphic via a
map that is C 1 -close to an isometry, see §A.1.

Let M d  be the space of isometry classes of doubly pointed Riemannian d-
manifolds (M; p; q), considered in the appropriate smooth topology, see §2.

Denit ion 1.1. A  -nite Borel measure  on M d  is unimodular if and only if for every
nonnegative Borel function f  : M 2   !  R  we have:

(1)
( M ; p ) 2 M d

f (M; p; q) dq d =
q 2 M

f (M; q; p) dq d:
( M ; p ) 2 M d         q 2 M

Here, (1) is usually called the mass transport principle or MTP.  One sometimes
considers f  to be a ‘paying function’, where f (M; p; q) is the amount that the point

(M; p) pays to (M; q), and the equation says that the expected income of a -
random element (M; p) 2  M d  is the same as the expected amount paid. Note that
two sides of the mass transport principle can be considered as integrals     f  dl and f

dr for two appropriate ‘left’ and ‘right’ Borel measures l ; r  on M d ,  so  is
unimodular if and only if l  =  r . See the beginning of §2.
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Example 1.2 (Finite volume manifolds). Suppose M is a nite volume1 Riemann-ian
d-manifold, and let M  be the measure on M d  obtained by pushing forward the
Riemannian measure volM under the map

(2) M  !  M d ; p  !  (M; p):

Then both sides of the mass transport principle are equal to the integral of f (M; p; q)
over (p; q) 2  M  M, equipped with the product Riemannian measure, so the
measure M  is unimodular.

More generally, one can construct a nite unimodular measure on M d  from any
Riemannian M that regularly covers a nite volume manifold. The point is that
because of the symmetry given by the action of the deck group, the image of M in
M d  actually looks like the nite volume quotient. See Example 2.4.

Example 1.3 (Measured foliations). Let X  be a foliated space, a separable metriz-
able space X  that is a union of ‘leaves’ that t together locally as the horizontal
factors in a product Rd   Z  for some transversal space Z .  Suppose X  is Riemann-ian,
i.e. the leaves all have Riemannian metrics, and these metrics vary smoothly in the
transverse direction. (See §3 for details.) There is then a Borel2 leaf map X   !
M d ;  x   !  (L x ; x) ;  where L x  is the leaf through x.

Suppose that  is a nite completely invariant measure on X ,  that is, a measure
obtained by integrating the Riemannian measures on the leaves of X  against some
invariant transverse measure, see [35]. The push forward of  under the leaf map is a
unimodular measure on M d ,  see Theorem 1.8.

Example 1.4 (Many transitive manifolds). Let X  be a Riemannian manifold with
transitive isometry group, and note that any base point for X  gives the same
element X  2  Md. In Proposition 2.6, we show that an atomic measure on X  2
M d  is unimodular if and only if Isom(X ) is a unimodular L ie  group. Examples
where Isom(X ) is unimodular include nonpositively curved symmetric spaces, e.g.
Rd ; Hd ; S Ln R=S O(n), and compact transitive manifolds like Sd. An example where
Isom(X ) is non-unimodular is the 3-dimensional Lie group Sol(p; q), where p =  q,
equipped with any left invariant metric3.

Proposition 2.6 is one reason why these measures are called unimodular, al-
though the mass transport principle also has a formal similarity to unimodularity
of topological groups, being an equality of two ‘left’ and ‘right’ measures.

1.1. Motivation. Though this paper rst appeared online in 2016, we have rewrit-ten
the section in 2020 to indicate how this paper ts into the eld currently. As such,
many of the papers referenced below appeared after this one.

There are two main reasons to study unimodular measures. First, the space M d

provides a convenient universal setting in which to view nite volume manifolds,
measured foliations, and innite volume manifolds that have a sucient amount

1If M has innite volume, the push forward measure M  still satises the mass transport
principle, but may not be -nite. For instance, if X  has transitive isometry group then the map X
!  M d  is a constant map, and X  is only -nite if X  has nite volume. On the other hand, if the
isometry group of X  is trivial,       will always be -nite.

2This is Proposition 4.1, where in fact we show that the leaf map is upper semi-continuous in
a certain sense, extending a result of Lessa [68].

3In [28, Lemma 2.6], it is shown that the isometry group is a nite extension of Sol(p; q), which
is not unimodular when p =  q.
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Mi 1 p
3

i  copies + 2
3 R2

F i gu r e  1. Create surfaces Mi by gluing i  copies of some unit volume surface T
end-to-end via a xed gluing map, capping o with two round spheres, each with
volume i, and smoothing the result. Here, M  =vol(Mi) weak* converges to a
convex combination of an atomic measure on the single point R2  in M d ,  and a
probability measure constructed by gluing bi-innitely many copies of T
together and choosing a random base point from, say, the center copy.

of symmetry (e.g. the transitive examples above). More importantly, though, in-
terpreting all these examples as measures on a single universal space allows one to
dene a notion of convergence from one to another through weak* convergence of the
associated measures on M d .  Here, recall that i  !   in the weak* topology (or for
some authors, the weak topology) if f  di ! f  d for every bounded,
continuous function f  : M d   !  R.

An important special case of weak* convergence to keep in mind is when the
measures i  =  M  =vol(Mi), for some sequence of nite volume manifolds (Mi ), as in
Example 1.2. If i  !   in the weak* topology, we say that the sequence (Mi )
Benjamini{Schramm ( B S )  converges to , see e.g. [3]. This is in honor of an
analogous notion introduced by those two authors in graph theory [18]. See also
§1.2 below for more of this history. In some sense, the limit measure  encodes, for
large i, what the geometry of Mi looks like near randomly chosen base points, up to
small metric distortion. As an example, consider Figure 1. The transition between
the spheres and the neck is lost in the weak* limit, since the probability that a
randomly chosen base point will lie near there is negligible, and the small metric
distortion allows R2  to approximate the large radius spheres.

As mentioned in §2, unimodularity is preserved under weak* limits, so in particu-
lar, all BS-limits of nite volume manifolds are unimodular4. So, if one can develop a
robust theory of unimodular measures, one can then try to use this theory to
analyze sequences of nite volume manifolds via their weak* limits, as above.

As an example, let X  be a irreducible symmetric space of noncompact type. An
X-manifold is a quotient M =   nX ,  where   acts freely, properly discontinuously
and isometrically. In recent joint work with Bergeron and Gelander [1], using the
framework developed in this paper we showed:

Theorem 1.5 (Abert, Bergeron, Biringer, Gelander [1]). Suppose that X  is not
a metric scale of H3 . If (Mi ) is any BS-convergent sequence of nite volume X-
manifolds, then for all k the sequence bk (Mi )=vol(Mi ) converges.

Essentially, this means that in the context above, a given limit measure  has
some sort of ‘Betti number’ that is the limit of the volume normalized Betti numbers
of any approximating sequence of Mi’s. It would be interesting to develop an

4The converse is open, and is essentially equivalent to the analogous question for unimodular
random graphs, which generalizes the open question of whether all groups are soc, see [9].
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intrinsic denition of such a Betti number for an arbitrary unimodular measure  on
M d .  Relatedly, an analogous denition has been recently given by Michael Schr•odl
for unimodular random rooted simplicial complexes, see [87]. However, the manifold
case presents additional diculties.

One situation in which there is an existing denition, though, is when the uni-
modular measure  is just an atomic measure X  on the single point X  2  M d .  In
this case, the appropriate invariants are the L2 -Betti numbers ( 2 ) (X ) ,  see e.g. [3] for
denitions. In our 2012 paper with Abert et al [3], we all had previously shown that
if rankR (X )  2, then any sequence of distinct nite volume X-manifolds BS-
converges to X .  Combining this with Theorem 1.5 above gives:

Theorem 1.6 (Corollary 1.4 of [1]). Suppose that rankR (X )  2 and (Mi ) is any
sequence of distinct nite volume X-manifolds. Then for all k 2  N, we have

bk (Mn )=vol(Mn ) !  ( 2 ) (X ) :

This extends earlier work with Nikolov-Raimbault-Samet in [3], and is a uniform
version of Lu•ck’s approximation theorem [74] that applies to all quotients of a
xed symmetric space, not just covers of a single quotient. We stress that it is
necessary in [1] to work geometrically, and so most of that paper is written using
the framework of convergence of measures on M d ,  as developed in this paper.

Subsequent work of Abert{Bergeron{Masson [4] exploits the language of Benjamini-
Schramm convergence of manifolds introduced in this paper to analyze eigenfunc-
tions of the Laplacian for compact Riemannian manifolds. The asymptotic behavior
of eigenfunctions has been studied extensively in the literature. There are two ma-
jor directions of interest: one can study the eigenvalue aspect, where one has a xed
manifold and the energy of the eigenfunction tends to innity, and the level aspect,
where one looks at a covering tower of manifolds (usually coming from a subgroup
chain for an arithmetic lattice) and the energy converges to a xed value. It was
understood in the community that these aspects are related and most theo-rems on
one side tend to nd their counterparts on the other side. Our language of Benjamini-
Schramm convergence now unies the level and eigenvalue aspects. In-deed, for a
covering tower, the limit of eigenfunctions will be an invariant random eigenwave on
the limiting space (usually the symmetric space of the corresponding Lie group). For
a xed manifold, rescaling the Riemannian metric with the energy will produce a
sequence of manifolds and a xed eigenvalue, hence the limiting eigenwave will live
on the standard Euclidean space. The language of Benjamini-Schramm
convergence, in particular, allows one to give the rst mathematically precise
formulation for the famous Berry conjecture in physics, and connects the
conjecture to Quantum Unique Ergodicity. See [4] for details.

1.2. H istory  and related papers. Much of our work is inspired by a recent
program in graph theory, in particular work of Aldous-Lyons [9] and Benjamini-
Schramm [18]. For instance, the term ‘unimodularity’ was previously used in [9],
for measures  on the space

G =  rooted, connected, locally nite graphs (G; p) =automorphism

such that for any Borel function f  on the space of doubly rooted graphs,

(3)
X  

f (G; p; q) dq d =
X  

f (G; q; p) dq d:
( G ; p ) 2 G  q 2V ( G ) ( G ; p ) 2 G  q 2V ( G )
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In fact, this version of the mass transport principle appeared even earlier in [18],
generalizing a concept important in percolation theory [16, 57].

As in Example 1.2, every nite graph G  gives a unimodular measure G  on G, by
pushing forward the counting measure on its vertices under the map

G   !  G; p  !  (G; p):

Similarly, a transitive graph gives a unimodular measure on G if and only if its
automorphism group is unimodular, see [16] and [75, Section 8.2]. One can study
unimodular measures on G that are weak* limits of the G ,  c.f.[6, 18, 80], and
extending results known for nite graphs to arbitrary unimodular measures on G has
recently become a small industry, see e.g. [9, 16, 17, 57].

Ideas similar to ours have also appeared previously in the continuous setting,
even apart from A B B G N R S  [3]. Most directly, Bowen [25] used unimodular mea-
sures on the space of pointed metric measure spaces to bound the Cheeger constants
of hyperbolic 4-manifolds with free fundamental group. In his thesis, Lessa [68], see
also [69, 70], studied measures on M d  that are stationary under Brownian motion,
of which unimodular measures are examples5, and a few of the technical parts of
this paper are similar to parts of his. Namazi-Panka-Souto [80], analyzed weak*-
limits of the measures M  =vol(Mi) for sequences (Mi ) of manifolds that are all
quasi-conformal deformations of a xed closed manifold and that all have bounded
geometry. Also, Vadim Kaimanovich has for some time promoted measured fo-
liations from a viewpoint similar to ours, and we refer the reader to his papers [64,
63, 65] for culture.

1.3. Statements of results. Most of the paper concerns the structure theory of
unimodular measures. The case where  is a unimodular probability measure is of
particular interest: a -random element of M d  is then called a unimodular random
manifold (URM). In this section, we will start by explaining the close relationship
between unimodular measures and completely invariant measures on foliated
spaces, as mentioned in Example 1.3. Then, we will outline the dictionary between
invariant random subgroups and unimodular random locally symmetric spaces. As
an interesting trip to the zoo, a characterization of unimodular random hyperbolic
2 and 3-manifolds with nitely generated fundamental group is given. We then
discuss conditions under which sets of unimodular measures on M d  are weak*
compact, and nish with a discussion of the rather long appendix, where it is shown
that M d  and various related spaces have reasonable topology.

1.3.1. Unimodularity and foliated spaces. As mentioned above, a separable, metriz-
able space X  is a foliated space if it is a union of leaves that t together locally as the
horizontal factors in a product Rd  Z  for some transversal space Z .  We say X  is
Riemannian if the leaves all have Riemannian metrics, and if these metrics vary
smoothly in the transverse direction. See §3 for details.

5On foliated spaces, Lessa’s ‘stationary measures’ correspond to harmonic measures, while our
unimodular measures correspond to completely invariant measures. See §3, [35] and [68]. Also, see
Benjamini{Curien [15] for a corresponding theory of stationary random graphs.
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On such an X ,  let L p  be the leaf through p. A  -nite Borel measure  on X  is
unimodular if for every nonnegative Borel f  : X   X   !  R  we have:

(4) f (p; q) dvolL     d =
p 2 X       q 2 L p

f (q; p) dvolL     d:
p 2 X       q 2 L p

Also, a measure  on X  is called completely invariant if it is obtained by integrating the
Riemannian measures on the leaves of X  against some invariant transverse
measure, see §3 and [35]. We then have:

Theorem 1.7. Suppose that X  is a Riemannian foliated space and  is a -nite
Borel measure on X .  Then the following are equivalent:

1)  is completely invariant,
2)  is unimodular,
3)  lifts uniformly to a measure ~ on the leaf-wise unit tangent bundle T 1 X

that is invariant under leaf-wise geodesic ow.
To  understand the ‘uniform lift’ in 3), take a measure  on X ,  and integrate

against the (round) Riemannian measures on all leaf-wise tangent spheres Tp L  to
get a measure ~ on T 1 X . A  version of this condition will reappear below as an
alternative characterization of unimodularity for measures on M d :  Theorem 1.7 is
proved in §3, where it is restated as Theorem 3.1. Two additional characterizations
of unimodularity are included in the new statement, one of which parallels a well-
known result in graph theory.

In some sense, the space M d  is itself almost foliated, where the ‘leaves’ are the
subsets obtained by xing a manifold M and varying the basepoint p 2  M. One
would like to say that unimodular measures are just completely invariant measures,
with respect to this foliation. However, due to the equivalence relation dening
M d ,  these ‘leaves’ are actually of the form M=Isom(M ), so the foliation is highly
singular, and complete invariance does not make sense.

However, there is a way to make this point of view precise. Recall that if X  is any
Riemannian foliated space, its leaf map takes x  2  X  to the pointed Riemannian
manifold (L x ; x ) ,  where L x  is the leaf through x. We then have:

Theorem 1.8 (Desingularizing M d ) .  If  is a completely invariant probability
measure on a Riemannian foliated space X ,  then  pushes forward under the leaf map
to a unimodular probability measure  on M d .

Conversely, there is a Polish Riemannian foliated space P d  such that any -nite
unimodular measure on M d  is the push forward under the leaf map of some
completely invariant measure on P d . Moreover, for any xed manifold M , the
preimage of f(M; p) j p 2  Mg  M d  under the leaf map is a union of leaves of P d , each
of which is isometric to M .

This theorem indicates an advantage our continuous framework has over graph
theory: although the mass transport principle (3) does indicate a compatibility
between unimodular measures on G and the counting measures on the vertex sets
of xed graphs G, there is no precise statement saying that unimodular measures are
made by locally integrating up these counting measures in analogy with Theorem
1.8. In some sense, the problem is that graphs do not have enough local structure
for this perspective to translate.

Alvarez Lopez and Barral Lijo [72] independently prove a desingularization theo-
rem similar to Theorem 1.8, which they use to show that any manifold with bounded
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geometry can be realized isometrically as a leaf in a compact Riemannian foliated
space. As their goals are topological, rather than measure theoretic, their foliated
space is not set up so that one can lift measures on M d  to the foliated space using
Poisson processes, though, a property that is crucial in our applications.

The idea behind the construction of P d  is simple. Since the problem is that
Riemannian manifolds may have nontrivial isometries, we set P d  to be the set of
isometry classes of triples (M; p; D) where p 2  M is a base point and D   M is a
closed subset such that there is no isometry f  : M  !  M with f ( D )  =  D .  The
leaves are obtained by xing M and D  and varying p, and the leaf map is just the
projection (M; p; D) !  (M; p). However, it takes some work to see that these leaves
t together locally into a product structure Rd  Z :  a brief sketch of this argument is
given in the beginning of §4.3. Assuming this, though, measures on M d  induce
measures on P d  after integrating against a Poisson process on each ber of the leaf
map. See §4.2 for details.

Completely invariant measures on foliated spaces have been well studied, e.g. [33,
46, 52, 51, 53]. So for instance, one can now take a sequence of nite volume man-
ifolds (Mi ), pass to the associated unimodular probability measures M  =vol(Mi),
extract a weak* limit measure , study this  using tools from foliations, and deduce
results about the manifolds Mi.

For those working in foliations, the mass transport principle (1) may seem less
interesting now that we know unimodularity can also be characterized in terms
of complete invariance. However, we would like to stress that often, the M T P  is the
more convenient denition to use. We illustrate this in Theorem 1.12, where we use
the M T P  to give a proof of weak* compactness of the set of unimodular measures
supported on manifolds with pinched negative curvature. For another example,
Biringer-Raimbault [19] have studied the space of ends of a unimodular random
manifold, showing for example that it has either 0; 1 or 2 elements, or is a Cantor
set. This parallels a result of Ghys [53] on the topology of generic leaves of a
measured foliation. Neither of these results quite implies the other, although Ghys’s
result is really more general, as it applies to harmonic measures, and not just
completely invariant ones. However, the M T P  encapsulates a recurrence that makes
the proof in [19] extremely short.

One other reason to prefer unimodularity in our setting is that to talk about com-
plete invariance, one must leave M d ,  passing to an associated foliated space using
the desingularization theorem. On the other hand, the geodesic ow invariance of
Theorem 1.7 can be phrased (more or less) directly within M d .

Theorem 1.9. Suppose that  is a Borel measure on M d .  Then  is unimodular if
and only if its uniform lift ~ on T 1 Md  is geodesic ow invariant.

See §4.2 for the proof. Here, T 1 Md  is the space of isometry classes of rooted
unit tangent bundles (T 1M; p; v), where v 2  T 1M. Each ber T 1M of

T 1 Md   !  M d ;  (M; p; v)  !  (M; p)

comes with a natural Riemannian metric induced by the inner product on TpM,
and we write ! M ; p  for the associated Riemannian measure on Tp M. Then ~ is the
measure on T 1 Md  dened by the equation d~ =  ! M ; p  d: The geodesic ows on
individual T 1M combine to give a continuous ow

gt : T 1 Md   !  T 1 Md
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and this is the geodesic ow referenced in the statement of the theorem.
This theorem is an analogue of a result in graph theory. Let Gd  G be the space of

isometry classes of pointed d-regular graphs. The associated space Ed of d-regular
graphs with a distinguished oriented edge projects onto Gd, where the map replaces
a distinguished edge with its original vertex. For each (G; v) 2  Gd, the uniform
probability measure on the set of d edges originating at v quotients to a probability
measure on the ber over (G; v) in Ed. Integrating these ber measures against
gives a measure ~ on E, and Aldous-Lyons [9] proved that  is unimodular if and
only if ~ is invariant under the map E !  E that switches the orientation of the
distinguished edge.

1.3.2. Unimodular random manifolds and IRSs.  We now focus on unimodular prob-
ability measures  on M d ,  in which case a -random element of M d  is called a
unimodular random manifold (URM). There is a close relationship between URMs
and invariant random subgroups (IRSs), which have been studied in [21, 24, 26, 44,
54, 59, 58, 89].

Let G  be a locally compact, second countable group, and let SubG be the space
of closed subgroups of G, endowed with its Chabauty topology, see A.4.

Denit ion 1.10. An invariant random subgroup ( IRS)  of G  is a random element of a
Borel probability measure  on SubG that is invariant under the conjugation action
of G  on SubG .

When G  is nitely generated, say by a symmetric set S , there is a dictionary
between IRSs of G  and unimodular random S-labeled graphs, or URSGs, which we
will briey explain. An S-labeled graph is a countable directed graph with edges
labeled by elements of S , such that the edges coming out from any given vertex
v have labels in 1-1 correspondence with elements of S , and the same is true for
the labels of edges coming into v. Every subgroup H  <  G  determines an S-
labeled Schreier graph SchS (H nG), whose vertices are right cosets H g and where
each s 2  S  contributes a labeled edge from every coset H g to H gs. Note that
SchS (H nG) comes with a natural base point, the identity coset H .

In a variation of the discussion in §1.2, let GS  be the space of isomorphism classes
of rooted S-labeled graphs. A  URSG is a random element of GS  with respect to a
probability measure that satises the appropriate S-labeled analogue of the mass
transport principle (3). A  random subgroup H  <  G  determines a random rooted
Schreier graph, and conjugation invariance of the distribution of H  is equivalent to
unimodularity of SchS (H nG). So, IRSs of G  exactly correspond to URSGs. See [5]
and [21, §4] for details.

In the continuous setting, IRSs  were rst studied in A B B G N R S  [3]. In analogy
with the above, when a group G  acts on X  by isometries, there should be a dic-
tionary between IRSs  of G  and certain unimodular random X-manifolds. Here, an
X-manifold is just a quotient  nX ,  where   acts freely and properly discontinu-
ously on X  by isometries. Two parts of this dictionary are discussed in §2.8, in the
cases where G  acts transitively, or discretely on X .  The following is a particularly
nice case of our analysis of IRSs of transitive G.

Proposition 1.11 (URMs vs IRSs).  Suppose X  is a simply connected Riemannian
manifold whose isometry group is unimodular and acts transitively. Then there is a
weak*-homeomorphism between the spaces of distributions of discrete, torsion free
IRSs  of Isom(X ) and of unimodular random X-manifolds.
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So, X  could be a non-positively curved symmetric space, for instance Rd ; Hd

or S Ln R=S O(n).  Note that when we say an I R S  or URM has a property like
‘torsion free’ or ‘X ’, this property is to be assumed to be satised almost always.
For instance, the above says that there is a homeomorphism between the space of
conjugation invariant probability measures  on SubG such that -a.e. H  2  SubG is
discrete and torsion free, and the space of unimodular probability measures  on M d

such that -almost every (M; p) is an X-manifold.

1.3.3. Compactness theorems. To  understand sequences of nite volume manifolds,
then, one would naturally like to understand conditions under which sets of uni-
modular probability measures are compact, so that a unimodular weak* limit of
the measures M  =vol(Mi) can be extracted after passing to a subsequence.

By work of Cheeger and Gromov, c.f. [56] and [81, Chapter 10], the subset
of M d  consisting of pointed manifolds (M; p) with bounded geometry is compact.
Here, bounded geometry means that the sectional curvatures of M, and all of their
derivatives, are uniformly bounded above and below, and the injectivity radius at
the base point p is bounded away from zero. See §5. By the Riesz representation
theorem and Alaoglu’s theorem, this implies that the set of unimodular probability
measures supported on manifolds with bounded geometry is weak* compact, since
unimodularity is a weak* closed condition.

Both the curvature bounds and the bound on injectivity radius are necessary
for compactness of pointed manifolds. However, we show that in the presence of
pinched negative curvature, an injectivity radius bound is unnecessary for compact-
ness once we pass to measures:

Theorem 1.12. The set of all unimodular probability measures on M d  that are
concentrated on pointed manifolds with pinched negative curvature and uniform
upper and lower bounds on all derivatives of curvature is weak* compact.

See §5 for a more precise statement. The condition on the derivatives of curvature
is only necessary because we consider M d  with the smooth topology; a topology
of weaker regularity would require weaker assumptions. Essentially, the reason
the injectivity radius assumption is not necessary is because in pinched negative
curvature, the -thin part of a manifold takes up at most some uniform proportion
C ( )  of the total volume, where C  !  0 as  !  0. In fact, Theorem 1.12 boils down to
a precise version of this kind of statement, see the proof of Proposition 5.1, that
still applies to manifolds with innite volume.

We explain in §5 that there is no analogue of Theorem 1.12 in nonpositive curva-
ture, but using work from A B B G N R S  [3], one can show that we still have a weak*
compactness theorem for locally symmetric spaces:

Theorem 1.13. Let X  be a symmetric space of nonpositive curvature with no
Euclidean factors, and let M X   M d  be the subset of pointed X-manifolds. Then the
space of unimodular probability measures on M X  is weak*-compact.

The proof of Theorem 1.13 is algebraic: it uses the dictionary between unimod-
ular measures and IRSs  discussed in the previous section, and arguments related
to Borel’s density theorem, c.f. [49]. We give this proof in §5.2, and also briey
discuss the question of whether there is a universal theorem that generalizes both
Theorems 1.12 and 1.13.
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1.3.4. Hyperbolic 3-manifolds with nitely generated fundamental group, and The
No-Core Principle. Finite volume hyperbolic manifolds have nitely generated 1, [14].
While the converse is not true in general, the question is at least interesting for d-
manifolds M with enough symmetry: is it true that when M =  Hd regularly covers a
nite volume d-manifold and 1M is nitely generated, then M has nite volume?

When d =  2, the answer is yes. Any surface S  with nitely generated funda-
mental group is geometrically nite, see [67, Theorem 4.6.1]. If S  =  H2 regularly
covers a nite volume surface, its limit set is the entire circle @1H2, say by [83,
Theorem 12.2.14], and then geometric niteness implies that S  has nite volume, see
[67, Theorem 4.5.1]. The question is open for d  4.

When d =  3, Thurston’s bered hyperbolization theorem [91] states that the
mapping torus M of a pseudo-Anosov homeomorphism of a surface S  admits a
hyperbolic metric. The fundamental group of M splits as the semidirect product

(5) 1  !  1 S  !  1M  !  Z   !  1;

and the regular cover M corresponding to 1 S is a hyperbolic 3-manifold with
nitely generated fundamental group. However, it is a well-known consequence of the
Tameness Theorem of Agol [7] and Calegari-Gabai [29] and Canary’s covering
theorem [32] that these M are the only examples when d =  3.

A  unimodular random hyperbolic manifold (URHM) is, as should be expected, a
random element of M d  with respect to a unimodular probability measure concen-
trated on pointed hyperbolic d-manifolds. Simple examples include a nite volume
hyperbolic manifold with a randomly chosen base point, and the hyperbolic space
Hd. (See Examples 1.2 and 1.4.)

Any regular cover of a hyperbolic manifold can be considered as a URHM, via
Example 2.4. It turns out that URHMs have enough symmetry that the rigidity
results for regular covers discussed above have analogues for URHMs with nitely
generated fundamental group. For instance, it follows from [3, Proposition 11.3]
that the limit set of a URHM M, with M =  Hd, is always the entire boundary
sphere @1Hd. When d =  2, this means that any URHM with nitely generated 1 has
nite volume, via the same argument as above.

When d =  3, we constructed examples in [3, §12.5] of IRSs  (hence URHMs, by
Proposition 1.11) with nitely generated 1 that are not regular covers of nite
volume manifolds. However, these examples all have the same coarse geometric
structure as the M examples above: they are all doubly degenerate hyperbolic 3-
manifolds homeomorphic to S   R,  for some nite type surface S .     See §6 for
denitions. Here, we show that these are the only examples:

Theorem 1.14. Every unimodular random hyperbolic 3-manifold with nitely gen-
erated fundamental group either is isometric to H3 , has nite volume, or is a doubly
degenerate hyperbolic structure on S   R  for some nite type S .

Here is another informal way to motivate Theorem 1.14. Suppose that M is
a hyperbolic 3-manifold with nite, but large, volume. Randomly choose a point p
2  M and consider a neighborhood U 3  p with some xed radius R ,  which is large,
but say not as large as vol(M ). What can U look like geometrically? On the one
hand, it could be a large embedded ball from H3, while at the other extreme, it
could have very complicated topology, requiring many elements to generate 1U. If



i

i

U N I M O D U L A R  M E A S U R E S  O N  T H E  S P A C E  O F  A L L  R I E M A N N I A N  M A N I F O L D S 11

F i gu r e  2. A  schematic picturing a number of long product regions in hy-
perbolic 3-manifolds. Each is homeomorphic to a product S  [0; 1], for some nite
type surface S , and has bounded area level surfaces. If the product re-gions
lengthen while the complexity of the underlying graph stays bounded, the
associated probability measures M  =vol(Mi) on M d  weak* converge to a
URHM that is a doubly degenerate hyperbolic structure on S   R.

1U can be generated by few elements, though, the geometry of U is more limited:
essentially, it will look like a large piece of an innite volume hyperbolic 3-manifold N
with some small number of ends.

Now, in any suciently large piece an innite volume N , the ends of N  take up a
much larger proportion of volume than the ‘core’ of N  does. So, the probability
that our base point p was randomly chosen to lie inside the core is negligible.
In other words, most choices of p that end up in a neighborhood U with not so
complicated topology will look like they are stuck deep inside an end of an innite
volume hyperbolic 3-manifold. By the geometric classication of ends of hyperbolic
3-manifolds, c.f. [31] and also [32, The Filling Theorem], this means that the point
p will either be contained in a large embedded ball from H3 (when the end is
geometrically nite) or a long product region (when the end is degenerate). See
Figure 2.

Informally, this discussion means that near a randomly chosen point in a hyper-
bolic 3-manifold M with large nite volume, M will look like either

1) a large embedded ball from H3,
2) a region for which the minimal number of 1-generators is ‘very large’,
3) a long product region.

To  relate this back to Theorem 1.14, note that large hyperbolic balls and long
product regions are exactly what one obtains by taking large neighborhoods within
H3 and doubly degenerate hyperbolic structures on S R,  which are the only innite
volume manifolds allowed in the theorem. And if a sequence (Mi ) of nite volume
manifolds with vol(Mi ) !  1  gives a sequence of probability measures M  =vol(Mi)
that weak* converges to a unimodular  on M d ,  the informal local analysis of the
geometry of Mi described above translates exactly into Theorem 1.14. In fact,
in light of the weak* compactness of the set of unimodular probability measures
supported on hyperbolic manifolds, which follows from Theorem 1.12 or Theorem
1.13, one can view Theorem 1.14 as a precise version of the informal statement that
for any large-volume M, the local geometry near a randomly chosen base point is as
described above.

The key idea in the proof of Theorem 1.14 is the following:
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Theorem 1.15 (The No-Core Principle). Suppose that  is a unimodular proba-
bility measure on M d  and that f  : M d   !  f0; 1g is a Borel function. Then for
-almost every element (M; p) 2  M d ,  we have

0 <  volM fq  2  M j f (M; q) =  1g <  1  = )  vol(M ) <  1 :

Geometrically, one should imagine that f (M; p) =  1 when the base point p lies
in a ‘core’ of M. The theorem then says that when (M; p) lies in the support
of a unimodular probability measure, one can only Borel-select a core with nite,
nonzero volume for M when M has nite volume. While the statement above is
very useful|it also is used in Biringer-Raimbault [19]|it is basically an immediate
consequence of the mass transport principle, see §2.1.

Essentially, the proof of Theorem 1.14 is that any hyperbolic 3-manifold with
nitely generated fundamental group has a nite volume core, obtained by chopping o
neighborhoods of its innite volume ends. However, it requires some work to choose
the core in a canonical enough way so that the function f  in the No-Core Principle
is Borel. See §6 for details.

1.3.5. Appendix: the topology of M d  and the Chabauty topology. The paper ends
with a lengthy appendix. We give in §A.1 and A.6 slight extensions of existing com-
pactness and stability results concerning smooth convergence, but most of the ap-
pendix is spent showing M d  and various related spaces are Polish. This is necessary to
justify the use of measure theoretic tools like Rohlin’s disintegration theorem, or
Varadarajan’s compact model theorem (see the proof of Proposition 4.18).

Candel, Alvarez Lopez and Barral Lijo [10] have independently and concurrently
studied the space M d ,  proving that it is Polish and establishing a number of in-
teresting topological properties that are very related to this paper, e.g. to Proposi-
tion 4.1. Their proof was made publicly available before ours, so the result is really
theirs. The two approaches are quite similar, but our proof produces an explicit
metric that we use elsewhere in the paper, and is simpler in some ways, so we still
present it here.

We nd the proofs that these spaces are Polish quite interesting. For instance,
recall that two points (M; p) and (N ; q) in M d  are smoothly close if there is a
dieomorphism f  from a large neighborhood B  3  p to a large neighborhood of q,
such that the metric h; iN on N  pulls back to a metric on B  that is C 1  close to h; iM ,
see §A.1. To  metrize this denition directly, one would have to metrize the C 1

topology on the appropriate space of tensors on M separately for each (M; p) 2  M d ,
and then hope that the choice is canonical enough that the triangle inequality holds
for the induced metric on M d .  This is hard to do, so instead we dene the distance
between (M; p) and (N ; q) by measuring the bilipschitz distortion of the ‘iterated
total derivatives’

D k f  : T kM  !  T k N

on the k-fold iterated tangent bundles T kM =  T (T (T (M )) ); which we con-sider
with the associated ‘iterated Sasaki metrics’. See §A.2.

1.4. P lan  of the paper. Section 2 introduces unimodular measures in detail, and
discusses the No-Core Principle and the dictionary between URMS and IRSs. In
Section 3, we review completely invariant measures on foliated spaces, and prove
Theorem 3.1, which shows that complete invariance is equivalent to unimodularity,
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among other things. Section 4 discusses the foliated structure of M d ,  the desingu-
larization theorem, and the ergodic decomposition of unimodular measures. The
weak* compactness theorems mentioned in the introduction are proved in Section
5, while the characterization of unimodular random hyperbolic 3-manifolds with
nitely generated 1 is the main focus of Section 6. The paper ends with an ap-
pendix concerning the topology of M d  and related spaces.

1.5. Acknowledgments. We would like to thank Nir Avni, Igor Belegradek, Lewis
Bowen, Renato Feres, Etienne Ghys, J .  A. Alvarez Lopez, Juan Souto, Ralf Spatzier
and Shmuel Weinberger for a number of useful discussions. We also thank a referee
for very helpful comments, and for nding a signicant error in the leadup to
Theorem A.10. The second author was partially supported by NSF grant DMS-
1308678.

2. Unimodular  measures on M d

A  rooted Riemannian d-manifold is a pair (M; p) where M is a Riemannian d-
manifold and p 2  M is a basepoint. We assume that all Riemannian manifolds in
this paper are complete and connected. A  doubly rooted manifold is a triple
(M; p; q) where M is a Riemannian d-manifold and p; q 2  M.

Denit ion 2.1. Let M d  and M d  be the spaces of isometry classes of rooted and
doubly rooted Riemannian d-manifolds, endowed with the smooth topology.

Recall that a sequence of rooted Riemannian manifolds (Mi ; pi ) smoothly con-
verges to (M; p) if for every R  >  0, there is a C 1 -embedding

f i  : B M  (p; R)  !  Mi

such that f i (p)  =  pi and f (g M  )  !  gM  in the C 1  topology, where gM      and gM  are
the associated Riemannian metrics. The convergence (Mi ; pi ; qi ) !  (M; p; q) of a
sequence of doubly rooted manifolds is the same, except that we require that f i (q )  =
qi when dened. In §A.2, we show that smooth convergence comes from a Polish
topology on M d .  An analogous statement holds for M d .

Example 2.2. Setting d =  1, M 1  is homeomorphic to (0; 1] ,  since there is a
unique rooted 1-manifold of diameter x  for each 0 <  x   1 .  The space M 1  is then
naturally homeomorphic to the set

S  =  (x; y)  0 <  x  <  1 ;  0  y  x  or x  =  1 ;  0  y <  1  ;

where x  is the diameter of M and y is the distance between the base points p; q 2  M.
Both the left and right projections of M 1  onto M 1  are then the rst coordinate
projection S   !  (0; 1] .

Let  be a -nite Borel measure on M d .  From , we dene two associated Borel
measures l  and r  on M 2 ,  by setting

l (S )  = volM fq  2  M j (M; p; q) 2  Sg d
Z ( M ; p ) 2 M d

r ( S )  = volM fp  2  M j (M; p; q) 2  Sg d;
( M ; q ) 2 M d

whenever S  is a Borel subset of M 2 .  Sometimes, we abbreviate the above as

dl(M; p; q) =  volM (q) d(M; p); dr (M; p; q) =  volM (p) d(M; q):
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Denit ion 2.3. We say  is unimodular if l  =  r . When  is a probability
measure, a -random element of M d  is a unimodular random manifold (URM).

Unimodular measures were rst studied in the context of rooted graphs rather
than rooted Riemannian manifolds (see [16], [57], [9]). In these works, the equality
of l  and r  is phrased via the mass transport principle, which is the denition we gave in
the introduction (Denition 18). Lewis Bowen [25] has previously considered
unimodularity in the general context of metric-measure spaces; however here we
restrict ourselves to the Riemannian setting.

When d =  1, any Borel probability measure on M d  =  ( 0 ; 1 ]  is unimodular, as
the measures l  and r  are obtained by integrating  against twice the Lebesgue
measure on the ber [0; x]  S  over x  2  (0; 1] .

For an alternative denition, note that there is an involution

(6) i  : M 2   !  M 2 ;  i(M; p; q) =  (M; q; p)

and that i ( l )  =  r . It follows that a measure  on M d  is unimodular if and only if
either/both of l  and r  are i-invariant.

As mentioned in the introduction, any nite volume Riemannian d-manifold M
determines a unimodular measure , obtained by pushing forward the Riemannian
volume volM under the map

M  !  M d ;  p !  (M; p):

In this case, the measures l  and r  are both obtained by pushing forward the
product measure volM  volM on M  M to M 2 ;  so  is unimodular. Also,  !  ( l ; r ) is
weak* continuous, so the space of unimodular measures on M d  is closed. So, more
unimodular measures can be constructed as weak* limits.

Here are some other constructions of unimodular measures on M d .

Example 2.4 (Regular covers). Suppose that  : N   !  M is a regular Riemannian
covering map and M has nite volume. Then there is a map

i  : M  !  M d ;  i(p) =  (N; q); where (q) =  p:

Here, the point is that the isometry class of (N ; q) depends only on the projection
p =  (q), since any two q with the same projection dier by a deck transformation. The
push forward of volM under i  is a probability measure  on M d  that is supported
on manifolds isometric to N . For an alternative construction of , choose a
fundamental domain F  for the projection  : N   !  M and push forward the
measure volN =volN (F )  via the map q 2  F   !  (N ; q):

To  see that  is unimodular, let N2  =  N   N= , where   is the group of deck
transformations of , which acts diagonally on N   N . We can identify N2  with F   N ,
and give it the measure volN =volN ( F )   volN . Then the map

N2  =  N   N=   !  N   N=Isom(N )  M 2

is measure preserving, where we consider M d  with l . On N2, the involution
(p; q) !  (q; p) is measure preserving, since for each  2    the composition

F   F   F   N  =  N2   
( p ; q ) ! ( q ; p )

N2  =  F   N

is just given by (x; y) !  (  1(y);  1 (x)). So, as this involution on N2  descends to
(6) on M 2 ,  the measure l  is invariant under (6), so  is unimodular.



d

!

!

e
e

e

e
Z

e

2

U N I M O D U L A R  M E A S U R E S  O N  T H E  S P A C E  O F  A L L  R I E M A N N I A N  M A N I F O L D S 15

Example 2.5 (Restriction to saturated subsets). A  subset B   M d  is saturated if
whenever (M; p) 2  B  and q 2  M, then (M; q) 2  B  as well. Note that saturated Borel
subsets of M d  form a -algebra, S .

If  is unimodular and B  is a saturated Borel subset of M d ,  then j B  is uni-
modular as well, since ( B ) l  and ( B ) r  are just the restrictions of l  =  r  to the set of all
(M; p; q) 2  M 2  with (M; p) 2  B .

Finally, let X  be a complete Riemannian manifold with a transitive isometry
group Isom(X ). Up to rooted isometry, the choice of root in X  is irrelevant, so we
will denote the corresponding point in M d  by X  as well.

Proposition 2.6. If a Riemannian manifold X  has transitive isometry group, the
atomic probability measure X  supported on X  2  M d  is unimodular if and only if
Isom(X ) is a unimodular Lie  group.

Proof. F ix  a point x0 2  X  and let K  <  G  =  Isom(X ) be the stabilizer of x0, so
that we can identify X  =  G = K .  Then ( X ) l  is supported on

X 2  : =  G n X   X

where G  acts diagonally. Since G  acts transitively, the natural map

(7) K n X      
[ x ] ! [ ( x 0 ; x ) ]       

X2 :

is a homeomorphism. With respect to this identication, ( X ) l  is just the push
forward  of the Riemannian measure  on X  to K n X .

Since K n X  =  K n G = K ,  the identication (7) can also be written as

K n G = K  
K g K ! [ ( x 0 ; g ( x 0 ) ) ]  

X2 :

Conjugating, the involution [(p; q)]  !  [(q; p)] on X 2  becomes the inversion map

i  : K n G = K   !  K n G = K ;  i([g]) =  [g 1]:

So, with (6) in mind, we want to show that the natural measure  on K n G = K  is i-
invariant if and only if G  is unimodular.

Integrate  against the (unique) right K-invariant probability measures on the
bers of G   !  G = K ;  this gives a left Haar measure  on G. Then G  is unimodular if and
only if  is invariant under the inversion map

i  : G   !  G; i(g ) =  g 1:

By denition,  can be expressed as an integral

 = K g K  d; K g K 2 K n G = K

where the ber measure K g K  is the unique probability measure on K g K  that is K-
biinvariant. The action of i  : G   !  G  permutes the K g K ,  which implies that  is i-
invariant if and only if the factor measure  is i  invariant.

As semisimple groups are unimodular, their symmetric spaces X  satisfy the as-
sumptions above. One can also see directly that the atomic measure X  is unimod-
ular when X  is a model space of constant curvature, i.e. when X  =  R n ; H n  or S n .
The measures ( X ) l  and ( X ) r  are supported on the subset X 2   M d  consisting of
isometry classes of doubly pointed manifolds (X; p; q). Here, these (X; p; q ) are
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classied up to isometry by d(p; q), which is symmetric in p; q. So, the involution i
in (6) is the identity, and therefore preserves ( X ) l ; ( X ) r .

2.1. T h e  No-Core Pr inc ip le .  This trivial, yet useful, consequence of unimodu-
larity was mentioned in §1.3.4.

Theorem 1.15 (The No-Core Principle). Suppose that  is a unimodular proba-
bility measure on M d  and that f  : M d   !  f0; 1g is a Borel function. Then for
-almost every element (M; p) 2  M d ,  we have

0 <  volM fq  2  M j f (M; q) =  1g <  1  = )  vol(M ) <  1 :

It is very important here that  is a probability measure, and not just -nite.
Otherwise, one could take a xed Riemannian manifold N  with innite volume and
no symmetries, and any nite (nonzero) volume subset B   M, and dene f (M; p) =  1
if there is an isometry M !  N  that takes p into B .  As N  has no symmetries, the
map N   !  M d ;      q  !  (N ; q) is an embedding, so volN pushes forward to a -nite
unimodular measure N  on M d ,  and the pair f  and N  violates the statement of the
theorem.

Proof. If the theorem fails, then for some C  >  0 the set of all (M; p) such that

(8) 0 <  volM fq  2  M j f (M; q) =  1g <  C  and vol(M ) =  1

has positive -measure. This set is saturated and Borel, so we may assume after
restriction and rescaling that  is supported on it, as in Example 2.5.

Well, by unimodularity we know that
Z Z Z Z

f (M; p) dvolM d =
( M ; p ) 2 M d         q 2 M

f (M; q) dvolM d:
( M ; p ) 2 M d         q 2 M

On the right, the integrand is at most C  -almost surely, by (8). So, the right-hand side
is nite. Therefore, the integrand on the left is nite -almost surely. So, for -a.e.
(M; p), we have f (M; p) =  0 by (8). This implies that the left side is zero. So, the
integrand on the right side is zero -a.e., contradicting (8).

2.2. Unimo dularity  and I R S s .  In previous work with Bergeron, Gelander, Nikolov,
Raimbault and Samet, the authors studied the following group theoretic analogue
of URMs, see [2]. Let G  be a locally compact, second countable topological group
and let SubG be the space of closed subgroups of G, endowed with the Chabauty
topology, see §A.4.

Denit ion 2.7. An invariant random subgroup ( IRS)  of G  is a random element of
SubG whose law  is a Borel measure invariant under conjugation by G. (In an abuse
of notation, we will often refer to the law  itself as an IRS.)

Invariant random subgroups supported on discrete groups of unimodular G  sat-
isfy a useful group-theoretic unimodularity property. F ix  a Haar measure  for G. If
H  is a discrete subgroup of G, then  pushes forward locally to a Radon measure H  on
the coset space H nG. Let CosG  be the set of cosets of closed subgroups of G,
endowed with its Chabauty topology.
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Theorem 2.8 (Biringer-Tamuz [21]). Assume G  is unimodular, and  is a Borel
probability measure on SubG such that -a.e. H  2  SubG is discrete. Then  is an I R S  if
and only if for every Borel function f  : CosG   !  R ,  we have

f (H g ) d H (H g ) d(H )  = f (g  1 H ) dH (H g ) d(H ):
Sub G         H n G                                                                              Sub G         H n G

As noted in [21], a more aesthetic version of the equality above is

f (H g ) d H  d = f (g H ) d H  d;
H 2 S u b G         g 2 H n G                                                     H 2 S u b G         g 2 G = H

where H  is the measure on G = H  obtained by locally pushing forward . In other
words, the ‘right’ measure obtained on CosG  by viewing it as the space of right
cosets and then integrating the natural invariant measures on H n G  against  is the
same as the analogous ‘left’ measure on CosG . The version given in the theorem is
that which we will use here, though.

Suppose now that our unimodular G  acts isometrically and transitively with
compact stabilizers on a Riemannian d-manifold X ,  and write X  =  G = K ,  where K  is
a compact subgroup of G. A  (G; X )-manifold is a quotient H n X ,  where H  <  G  acts
freely and properly discontinuously. Let

Subdf =  f H  2  SubG j H  acts freely and properly discontinuously on X g;

and let M ( G ; X )   M d  be the space of all pointed (G; X )-manifolds.

Proposition 2.9 (URM vs. IRS,  transitive case). The continuous map

 : Subdf  !  M ( G ; X ) ;  ( H )  =  (H nX; [id])

induces a (weak* continuous) map
o n o

 :     IRSs   of G  with (SubG )  =  1      !      URMs  with ( M ( G ; X ) )  =  1 :

If X  is simply connected and G  =  Isom(X ) is the full isometry group of X ,  then
is a weak* homeomorphism.

Recall that a unimodular random manifold (URM) is a random element of a uni-
modular probability measure  on M d .  However, we routinely abuse terminology by
calling measures IRSs, and we will similarly call  itself a URM. Note that  is
surjective, but is not in general injective, since conjugating H  by an element of K
does not change its image. Continuity of  follows from Proposition 3.10 and
Lemma 3.7 of [3].

Proof. F ix  a Haar measure  on G  normalized so that   =  vol , where  : G   !  G = K
=  X  is the projection. If H  2  Subdf and H  : H n G  !  H n X  is the natural projection,
it follows that ( H ) H  =  volH nX :

Unimodularity of the image. Let  be an I R S  with (Subdf ) =  1. We must show that
the measures () l  and () r  in Denition 2.3 are equal. So, let f  : M d   !  R  be a Borel
function. We then dene a new function

f  : Cosdf  !  R;  f (H g )  =  f (H nX; [id]; [g]);

where Cosdf is the set of cosets of subgroups H  2  SubG
df . We then compute:

f  d()l  =  M 2 f (H nX; [id]; [g ]) dvolH nX  d()
( H n X ; [ i d ] ) 2 M d         [ g ] 2 H n X
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Z Z
= f (H g )  d H  d;

ZH 2 S u b G  Z H g 2 H n G

= f ((g  1 H g)g  1 ) dH d;
ZH 2 S u b G        

 
H g 2 H n G

= f (g  1H gnX; [id]; [g 1]) dvolH nX d()
Z ( H n X ; [ i d ] ) 2 M d  

Z[g ] 2 H n X

=
Z( H n X ; [ i d ] ) 2 M d

f (H nX; [g]; [id]) dvolH nX  d()
[ g ] 2 H n X

= f  d()r : M 2

Here, the rst equation is the denition of d()l , keeping in mind that it is enough to
integrate over rooted manifolds of the form (H nX; [id]). The second and forth
equations follow from the normalization of the Haar measure, while the third is
Theorem 2.8. The fth equation reects the fact that (H nX; [g]; [id]) and (g
1H gnX; [id]; [g 1]) are isometric as doubly rooted manifolds.

The case of the full isometry group. Assume now that X  is simply connected and
G  =  Isom(X ) is the full isometry group of X .

We rst analyze the bers of  : Subdf  !  M ( G ; X ) .  Conjugate subgroups of G
give isometric X-quotients, and if two subgroups H; H 0 2  SubG

df  are conjugate by
an element of K ,  then the pointed manifolds (H nX; [id]) and (H 0 nX; [id]) are
isometric. Conversely, as K  is the full group of isometries of X  xing [id], any
based isometry of quotients lifts to a K-conjugacy of subgroups, so we have:

(9) bers of  : Subdf  !  M ( G ; X ) !      K-conjugacy classes in Subdf :

Injectivity. Let  is an I R S  with (SubG
df )  =  1. By Rohlin’s disintegration theorem

(see [88, Theorem 6.2]),  disintegrates as an integral

 = ( M ;p)  d();
( M ; p ) 2 M ( G ; X )

where ( M ; p)  is a Borel probability measure on the preimage  1(M; p). The K -action
by conjugation on Subdf leaves the -bers invariant (9) and preserves , so it must
preserve -a.e. ber measure (M ;p) . As each -ber is a K-homogeneous space, each ( M ;p)
is just the push forward of the unique Haar probability measure on K .  Therefore,
can be recovered by integrating the canonical measures ( M ;p)  against . So,  is
injective.

Surjectivity. If  is an URM with ( M ( G ; X ) )  =  1, dene a measure on SubG by

(10)  = ( M ;p)  d;
( M ; p ) 2 M ( G ; X )

where as above each ( M ;p)  is the unique K-invariant probability measure on  1(M; p).
Then ()  =  , and we claim that  is an IRS.

Our strategy will be to use the unimodularity of  to establish the equality in
Theorem 2.8 (the mass transport principle for IRSs). Consider the map

2 : CosG
df   !  M ( G ; X ) ;  2 (H g ) =  (H nX; [id]; [g]);
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where M ( G ; X )  is the space of doubly rooted X-manifolds. The bers of 2 are
exactly the K   K -orbits ( H g ) K K  in CosG

df  , where the action is dened as

(11) K   K  y  CosG ; (k; k0)  H g : =  (kH k 1)kgk0:

We dene (M ;p;q )  to be the unique K   K-invariant probability measure on the ber
1(M; p; q), i.e. the push forward of the Haar measure on K   K  under the conjugation
action.

Claim 2.10. For (M; p) 2  M ( G ; X ) ,  we have H  d( M ; p ) (H ) =  (M ;p;q )  dvolM (q):

We will prove the claim below, but rst we use it to prove that  is an IRS,  by
deriving the equality in Theorem 2.8 from the unimodularity of . Suppose that f
: CosG

df   !  R  is a Borel function, and dene a new function

(2 )f  : M ( G ; X )   !  R;  (2)f (M; p; q) : = f (H g) d(M ;p;q ) :
H g 2 2       (M ;p;q )

We rst compute the left side of the equality in Theorem 2.8.

f (H g ) d H (H g ) d(H )
Z SubG        

 
H n G Z

=
Z ( M ; p ) 2 M d  

Z H 2  Z (M ;p)
f (H g )  dH (H g ) d( M ; p )  d

H n G

=
Z ( M ; p ) 2 M d         q 2 M

f (H g )  d(M ;p;q ) dvolM d
H g 2      1 (M ;p;q )

= ( )  f  d
( G ; X )
2

and using a similar argument, we compute the right side:

f (g  1 H ) d H (H g ) d(H )
Z SubG        

 
H n G Z

= f (g  1 H )  d(M ;p;q ) dvolM d
Z ( M ; p ) 2 M d  

Zq 2 M  ZH g 2      1 (M ;p;q )

=
Z ( M ; p ) 2 M d         q 2 M

f (H g )  d(M ;q ;p) dvolM d
H g 2      1 (M ;q ;p)

= ( )  f  d :
( G ; X )
2

So, the unimodularity of  implies that  is an IRS.

Weak* homeomorphism. Finally, recall that (10) denes an inverse for . Weak*
continuity of the inverse will follow if we show that the map

M ( G ; X )   !  P (SubG ); (M; p)  !  ( M ; p)

is continuous, where P (SubG ) is the space of Borel probability measures on SubG ,
considered with the weak* topology. However, ( M ; p)  is the unique K-invariant
measure on  1(M; p), and if (Mi ; pi ) !  (M; p), we can pass to a subsequence so
that ( M  ;p )  converges. The limit must be supported on  1(M; p), and is K-
invariant since its approximates are, so must be (M ;p) .

Finally, we promised to prove Claim 2.10 during the proof above:
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Proof of Claim 2.10. Let (M; p; q) 2  M ( G ; X )  and let H g 2  CosG  such that 2 (H g) =
(M; p; q). By (11), we have a commutative diagram

K   K

l

K   K  N K ( H )   K

(k ;k 0 )  ! ( k H k      1 )kg k 0

CosG

r

[(k ;k 0 )] ! k H k      1

SubG ;

where r  : CosG   !  SubG ; (H g )  =  H .  As we had previously dened ( M ;p)  as the
K-invariant probability measure on H K   SubG , the diagram shows that

(r )(( M ;p;q ) ) =  (M ;p) :
The Haar probability measure on K  K  disintegrates under l  as an integral of

invariant probability measures on the cosets of N K ( H ) K  against the pushforward
measure on K   K =  K ( H )   K.  Here, the coset (k ; 1)N K (H )   K  has a measure invariant
under its stabilizer, which is N K (k H k  1 ) K .  This disintegration pushes forward to a
r-disintegration of (M ;p;q ) :

(12) (M ;p;q )  =  
F 2 S u b G  

(M ;p;q )  d(M ;p) ;

where (M ;p;q )  =  0 unless F  is a conjugate of H ,  in which case (M ;p;q )  is an invariant
probability measure on the N K ( F )   K -orbit in CosG  obtained by intersecting

(M; p; q) with F nG.
Now x (M; p) 2  M ( G ; X ) ,  let H  2   1(M; p) and x an isometric identication of

(H nG=K; [id]) with (M; p). The bers of the composition

H n G M

H g [g] 2  H n G = K

M ( G ; X )

(H nG=K; [id]; [g]):

are exactly the N K ( H )   K -orbits in H nG. As H  is invariant under the action of
N K ( H )   K ,  it disintegrates as an integral of invariant probability measures on these
orbits against its pushforward under the composition. Under the rst map, H  pushes
forward to volM , so we may write instead:

(13) H  =  
q 2 M  

(M ;p;q )  dvolM :

Combining Equations (12) and (13), we can now prove the claim:

Sub G  

H  d(M ;p) =  
ZSubG         M  

(M ;p;q )  dvolM (q) d(M ;p) =

ZM      

 

Sub G  
(M ;p;q )  d(M ;p) dvolM (q)

= (M ;p;q )  dvolM (q):  M

We now construct URMs from IRSs  of discrete groups. Suppose that G  is a
discrete group that acts freely and properly discontinuously on a Riemannian d-
manifold X  and that the quotient G n X  has nite volume. There is a map

 an I R S  of G       !       a probability measure on M ( G ; X ) ;
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where a -random element of M d  has the form (H nX; [x]),  where we rst take x  2  X
to be an arbitrary lift of a random point in G n X  and then choose H  2  SubG -
randomly. The conjugation invariance of  makes the measure  well-dened despite
the arbitrary choice of lift. Alternatively, consider

B  =  (SubG  X ) =  ; where (H ; x)   !  ( H  1;   x):

Then B  is a SubG-bundle over G n X ,  and each of its bers has an identication with
SubG that is canonical up to conjugation. So, as  is conjugation invariant there is a
well-dened probability measure B  on B  obtained as the integral of  on each ber
against the (normalized) Riemannian volume of G n X .  The map

SubG  X   !  M d ;  (H ; x)   !  (H nX; [x])

factors through the  -action to a map B   !  M d ,  and  is the push forward of B
under this map.

Proposition 2.11 ( I R S  = )  URM, discrete case). If  is an I R S  of SubG , then
is an URM.

Proof. Pick a Borel fundamental domain D   X ,  i.e. a Borel subset such that
1) vo l X (D  \  g D )  =  0 for every g 2  G,
2) vo l X ( X  n [ g 2 G g D )  =  0.

It follows that volX  = g 2 G  g(volD ) and moreover that if H  2  SubG , then

(14) volH n X  = (  g)(volD );
H g 2 H n G

where  : X   !  H n X  is the quotient map. We let ^ be the push forward to M d

of   volD under the function

SubG  D   !  M d ; (H ; x)   !  (H nX; [x]):

This ^ is the scale by vol X (D )  of our  above. For simplicity of notation, we show
that ^ is unimodular instead.

We must show that ^l =  ^r , so let f  : M 2   !  R  be a Borel function. We lift f
to a function f  : CosG   !  R  by letting

f (H g )  = f  ( H n X ;  [x]; [gy] ) dvol2 ;
( x ; y ) 2 D

Note that [gy] 2  H n X  only depends on the coset H g. We now compute:

f  d^l

Z M 2 Z
= f  ( H n X ;  [x]; [y] ) dvolX=H  d^

Z ( H n X ; [ x ] ) 2 M d         [ y ] 2 H n XZ
(15) = f  ( H n X ;  [x]; [gy] ) dvolD d H  d^

Z
( H n X ; [ x ] ) 2 M d  

H g 2 H n G       x 2 D

= f  ( H n X ;  [x]; [gy] ) dvol2 d H  d H 2 S u b G  H g 2 H n G       ( x ; y ) 2 D 2

=
X

f (H g )  d H  d H 2 S u b G

H g 2 H n G
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(16) =  
Z X

f ((g  1 H g)g  1) d H  d

Z
H 2 S u b G  H g 2 H n G  

Z
= f  g 1 H g nX; [x]; [g 1y] dvol2 d H  d

Z
H 2 S u b G  H g 2 H n G  

Z
( x ; y ) 2 D 2

(17) = f  ( H n X ;  [gx]; [y] ) dvol2 d H  d

Z
H 2 S u b G  H g 2 H n G       ( x ; y ) 2 D 2

(18) =
Z ( H n X ; [ y ] ) 2 M d

f  ( H n X ;  [x]; [y] ) dvolX=H  d^
[ x ] 2 H n X

= f  d^r : M 2

Above, (15) and (18) follow from (14), while (16) is Proposition 2.8. Line (17) uses
the fact that g 1 H g nX; [x]; [g 1y] and ( H n X ;  [gx]; [y] ) are isometric as doubly
rooted manifolds.

3. Measures on Riemannian f o l i at e d  spaces

A  foliated space with tangential dimension d is a separable metrizable space X
that has an atlas of charts of the form

 : U  !  L   Z ;

where each L   Rd  is open and each Z  is a separable, metrizable space. Tran-sition
maps must preserve and be smooth in the horizontal direction, with partial
derivatives that are continuous in the transverse direction. The horizontal bers
piece together to form the leaves of X .  See [34] and [79] for details. A  foliated
space X  is Riemannian if each of its leaves has a smooth, complete Riemannian
metric, and if these metrics vary smoothly in the transverse direction, in the sense
that the charts  can be chosen so that if tn !  t 2  Z ,  the induced Riemannian metrics
gt      on L  converge smoothly to gt.

We are interested in measures on a Riemannian foliated space X  that are formed
by integrating vol against a ‘transverse measure’. To  this end, suppose that U =
f(U; )g is a countable atlas of charts as above and let Z  =  [ Z  be the as-sociated
‘transverse space’. An invariant transverse measure on X  is a -nite measure on
Z  that is invariant under the holonomy groupoid of U. Here, the holo-nomy groupoid
is that generated by homeomorphisms between an open subset of some Z  and an
open subset of some Z  that are dened by following the leaves of the foliation (see
[34]). The reader can verify that if U and U0 are countable atlases associated to
a foliated space X ,  there is a 1-1 correspondence between the invariant transverse
measures of U and those of U0.

If  is an invariant transverse measure on a Riemannian foliated space X ,  one can
locally integrate the Riemannian measure vol against  to give a measure  on X ,
specied by writing d =  vol d. For a precise denition, let  : U  !  L   Z  be a foliated
chart and dene a measure  on U by the formula

( E )  = vol
 

E  \   1 ( L   x )
 
d: x 2 Z
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Then if f f g  is a partition of unity subordinate to our atlas, we dene

 = f   :
Using holonomy invariance, one can check that the measure  does not depend on
the chosen partition of unity.

Measures  on a Riemannian foliated space X  satisfying d =  vol d for some  are
usually called completely invariant. Actually, complete invariance just ensures that
when  is disintegrated locally along the leaves of the foliation, Lebesgue measure
is recovered in the tangent direction; that is, a transverse measure  is
automatically holonomy invariant whenever the measure vol d on the ambient
space is well-dened (see [40]).

Theorem 3.1. Suppose that X  is a Riemannian foliated space and  is a -nite
Borel measure on X .  Then the following are equivalent:

1)  is completely invariant.
2)  is unimodular, as dened in Equation (4) of §1.3.
3)  lifts uniformly to a measure ~ on the unit tangent bundle T 1 X  that is

invariant under geodesic ow, see (19) below.
If the leaves of X  have bounded geometry6, then 1) {  3) are equivalent to

4) div(Y ) d =  0 for every vector eld Y on X  with integrable leaf-wise
divergence.

5) f  g d = f  g d for all continuous functions f ; g : X   !  R  that are
C 2  on each leaf of X .

The meaning of 3) was explained in the introduction, but briey, the leaf-wise
unit tangent bundle T 1 X maps onto X ,  and the bers T 1 X  are round spheres. If ! p

is the Riemannian measure on the ber Tx X ,  then we can dene

(19) d~ =  ! p  d;
so d~ is a measure on T 1 X . The geodesic ows on the unit tangent bundles of the
leaves of X  then piece together to a well-dened geodesic ow on T 1 X , and 3) says that
this ow leaves the measure ~ invariant.

As discussed in the introduction, this result may be particularly interesting to
those familiar with unimodularity in graph theory. Condition 3) is similar to the
‘involution invariance’ characterization of unimodularity of Proposition 2.2 in [9].
Also, in analogy with 5), the ‘graphings’ of [50] can be characterized via the self
adjointness of their Laplacian. See [60] for one direction; the other direction follows
from the arguments in [73, Proposition 18.49].

The equivalence 1) ,  4) is well-known as a consequence of work of Lucy Garnett
[51], and a version with slightly dierent hypotheses on the foliated space appears in a
recent paper of Catuogno{Ledesma{Runo [36]. However, we include the very brief
proof below.

Proof of 1) = )  2). Suppose that d =  vol d for some . Let i  :

Ui  !  L i   Z i ;  i  =  1; 2;

6This condition is needed only in 5) = )  1), in order to invoke a theorem of Garnett [51].
I t  means that there is some uniform K  such that every point x  2  X  lies in a smooth coordinate
patch for its leaf that has derivatives up to order 3 bounded by K ,  see [51].
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be two foliated charts for X  and assume that there is a homeomorphism  : Z 1   !  Z 2
in the holonomy pseudogroup. We rst check that r  =  l  on the set X  ; ;  X   X  dened
by

X 1 ; 2 ;  =  f(x1 ; x2 ) 2  U1  U2 j i (x i )  =  (l i ; zi ) where (z1) =  z2g: For a

subset S   X 1 ; 2 ; ,  we then calculate

 (S )  = 1 (x; y) dvol dvol d

Z z 1 2 Z 1  Z x 2 1  
1 ( L 1 f z 1 g )  Z y 2 2  

1 ( L 2 ( z 1 ) )

=
z 2 2 Z 2

=  r (S );

1 (x; y) dvol dvol d ()
y 2 2  

1 ( L 2 f z 2 g )      x 2 1  
1 ( L 1 f      1 ( z 2 ) g )

Above, ()  follows from a change of variables, the invariance of  under the holo-nomy
pseudogroup and Fubini’s Theorem. Now, both of the measures r  and l  are
supported on the equivalence relation R   X  X  of the foliation. However, we claim
that R  can be covered by a countable number of the Borel subsets X  ; ;, which will
prove the claim. First, the separability of X  guarantees that X  X  can be covered by
a countable number of open sets U1  U2 with i  : Ui  !  L i   Z i  foliated charts. If
a pair of points with coordinates (l i ; zi ) 2  L i   Z i ;  i  =  1; 2 determines an element of
(U1 U 2 ) \ R ;  then z2 =  (z1) for some holonomy map . The set of germs of holonomy
maps taking a given z1 2  Z 1  into Z 2  is countable, so as Z 1  is separable, a countable
number of domains and ranges of holonomy maps suce to cover (U1  U2) \  R .

Proof of 2) = )  3). Suppose  is a unimodular measure on X  and let ~ be the
induced measure on the foliated space T 1 X . Each leaf of T 1 X  is the unit tangent
bundle of a leaf of X  and the tangential Riemannian metric is the Sasaki metric.
The Riemannian volume on each leaf of T 1 X is then the berwise product of vol with
the Lebesgue measures ! x  on the tangent spheres T 1 X .

First, note that ~ is unimodular. For T 1 X  T 1 X bers over X   X  and d~l =  d ! y  d ! x
dl while d~r =  d ! y  d ! x  dr ; so the fact that l  =  r  implies that ~l =  ~r . Geodesic
ow t lifts to a map t =  (t ; id) on T 1 X  T 1 X ; as Liouville measure is geodesic ow
invariant, the measure ~r is clearly t-invariant. As ~ is unimodular, this implies
that ~l is t-invariant. But under the rst coordinate projection T 1 X  T 1 X  !  T 1 X ,
~l pushes forward to ~ and t  descends to t , so it follows that ~ is t  invariant.

Before proving that 3) = )  1), we need the following lemma.

Lemma 3.2. Suppose that U is an open subset of a Riemannian manifold M and
denote the geodesic ow on T 1M by gt . Let  be a Borel measure on U and let d~
=  ! p  d be the lifted measure on T 1U , as in (19). Suppose that for all Borel subsets
S   T 1U and all t 2  R  with gt (S )  T 1U we have ~(gt (S )) =  ~(S ). Then  is a scale of
the Riemannian measure on U .

The rst part of this proof was shown to us by Nir Avni.
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Proof. We rst prove that  is absolutely continuous with respect to the Riemann-ian
measure  on U, so let S   U be a set of -measure zero, and let S  be the set of all pairs
(p; v) 2  T 1U where p 2  S . After subdividing S  into countably many pieces, we may
assume that there is some  >  0 such that for all p 2  S , we have B (p; )  U and  <
inj (p), where inj (p) is the injectivity radius of M at p.

Choose a probability measure  supported in (0; ) that is absolutely continuous
with respect to Lebesgue measure. For each p 2  S , dene a map

p : T 1U  (0; )  !  T 1U; p(v; t) =  gt(v);

Note that as B (p; )  U the image of the map does in fact lie in U. We then dene a
measure p on U via the formula

p =  (  p )(!p   );

where  : T 1U  !  U is the projection map. As  <  inj (p), the map   p is a
dieomorphism onto its image, so the pushforward p is absolutely continuous

with respect to the Riemannian measure  on U. Then we have
Z

(20) (S )  =  ~(S ) = ~(g t (S )) d
Zt2(0;)  Z Z

=
t 2 (0 ; )      p 2 U

Z Z
v 2 T 1 U  

1g     t ( S )  d!p  dd Z

=
p 2 U t 2 (0 ; ) v 2 T p  U  

1g     t ( S )  d!p  d d

Z
= ! p    f(v; t) j gt (v) 2  S g d

Zp2U

(21) = p (S ) d
Zp2U

(22) = 0 d     =      0:
p 2 U

Here, (20) comes from the gt-invariance of ~ and the fact that  is a probability
measure. Equation (21) follows since S  consists of all unit tangent vectors lying
above points of S  and the projection  is injective on the image of p. Finally,
equation (22) is just the fact that p is absolutely continuous to the Riemannian
measure  on U, with respect to which S  has measure 0. This shows that  is
absolutely continuous with respect to , which also implies that ~ is absolutely
continuous with respect to the Liouville measure .

To  show that  is a scalar multiple of ; consider the commutative triangle

d ~

T 1U d R  ;

d  d

U
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where d~ and d are the Radon-Nikodym derivatives. Since any two points p; q
in U can be joined by a geodesic in M, there are unit tangent vectors (p; v) and
(q; w) with gt(p; v) =  (q; w) for some t. But since both ~ and  are geodesic ow
invariant,

d
(p) =  

d~
(p; v) =  

d~
(q; w) =  

d
(q):

It follows that  is a scalar multiple of .

Proof of 3) = )  1). Let  : U  !  L Z  be a foliated chart for X .  The restriction jU

then disintegrates as djU =  z  d; where
  is the pushforward of  under the projection L   Z   !  Z ,  and
each z  is a Borel probability measure on L   fzg.

The map z !  z  is Borel, in the sense that for any Borel B   L   Z  we have that z !
z ( B )  is Borel.

Consider now the foliated chart  : T 1U  !  T 1 L  Z  for T 1 X . The lifted
measure d~ =  ! p  d then disintegrates as ! ( z ; l ) d z  d. As ~ is invariant under the
geodesic ow gt : T 1 X  !  T 1 X , it follows that for -almost all z 2  Z ,  the measure
! ( z ; l ) d z  is invariant under the geodesic ow of Lfz g,  regarded as an open subset of its
leaf in X .  Thus, by Lemma 3.2, the probability measure z  =  vol

 
( L f z g ) vol z  for -almost

all z 2  Z .  Since this is true within every U, there is a holonomy invariant transverse
measure 0, dened locally by 0 =  volz (L  fzg), with  =  vol d0: This proves the claim.

Proof of 1 = )  4. Assume that d =  vol d and that Y is a continuous vector-eld on X
with integrable divergence on each leaf. Decomposing Y using a partition of unity,
we may assume that Y is supported within some compact subset of the domain of a
foliated chart  : U  !  L   Z .  Then

div(Y ) d =
X Z z 2 Z

div(Y ) dvolz d
L f z g

= 0 d =  0;
z 2 Z

by the divergence theorem applied to each leaf L   fzg.

Proof of 4) = )  5). We compute: 
Z

f   g d = f   div(rg ) d X

Z X

= d iv ( f rg )       h r f ; r g i d
Z X

=       h r f ; r g i d ;
X

by condition 4). As this is symmetric in f  and g, condition 5) follows.
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Proof of 5) = )  1). It follows immediately from 5) that 
R     

f  d =  0 for every
continuous f  : X   !  R  that is C 2  on each leaf of X .  In the terminology of Garnett
[51],  is harmonic. Using the bounded geometry condition, Garnett proves that in
every foliated chart  : U  !  L   Z ,  a harmonic measure  disintegrates as d =
h(l; z) dvolz d(z), where h is a positive leaf-wise harmonic function and  is a measure
on the transverse space Z .  We must show that h(; z) is constant for -almost every
z.

If f ; g 2  C ( X )  are continuous functions supported in some compact subset of U
that are C 2  on each plaque L   fzg, we have by 5) that

f   g  h dvolz d = f   g  h dvolz d z 2 Z

L f z g                                                           Z z 2 Z  Z L f z g

= f   (g  h) dvolz d z 2 Z
L f z g

As f  is arbitrary, this implies that g  h =  (g  h) on -almost every plaque L
fzg. As g is arbitrary, h(; z) must be constant for -a.e. z.

4. The fo l i at e d  s t ru c t u r e  o f  M d

Let M d  be the space of isometry classes of pointed Riemannian manifolds (M; p),
equipped with the smooth topology. The space M d  is separable and completely
metrizable {  we refer the reader to the appendix §A.1 for a detailed introduction
to the smooth topology and a proof of this result.

4.1. Regu lar i ty  of the leaf map. When X  is a d-dimensional Riemannian foli-
ated space, there is a ‘leaf map’

L  : X   !  M d ;  L ( x )  =  (L x ; x) ;
dened by mapping each point x  to the isometry class of the pointed manifold
(L x ; x ) ,  where L x  is the leaf of X  containing x. We claim:

Proposition 4.1 (The leaf map is Borel). If U  M d  is open, then L  1(U ) =
[ i 2 N O i  \  C i ;  where each Oi is open and each C i  is closed in X .

In [68, Lemma 2.8], Lessa showed that the leaf map is measurable when the
Borel -algebra of X  is completed with respect to any Borel probability measure on
X .  The proof is a general argument that any construction in a Lebesgue space that
does not use the axiom of choice is measurable, and uses the existence of an
inaccessible cardinal. He remarks that a more direct investigation of the regularity
of L  can probably be performed, which is what we do here. We should also mention
that Alvarez Lopez and Candel [71] study the leaf map from a foliated space into the
Gromov-Hausdor space of pointed metric spaces, and have observed, for instance,
that it is continuous on the union of leaves without holonomy. See also [10], where
together with Barral Lijo, they study the leaf map into M d .

The key to proving Proposition 4.1 is the following slight extension of a result
of Lessa [68, Theorems 4.1 & 4.3], which we prove in the appendix.

Theorem A.19. Suppose X  is a d-dimensional Riemannian foliated space in which x i

!  x  is a convergent sequence of points. Then L ( x i )  is pre-compact in M d ,  and every
accumulation point is a pointed Riemannian cover of L ( x ) .
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There is a partial order  on M d ,  where (N ; q)  (M; p) whenever (N ; q) is a
pointed Riemannian cover of (M; p). With respect to , Theorem A.19 asserts an
‘upper semi-continuity’ of the leaf map. The degree of regularity of L  indicated in
Proposition 4.1 is exactly that of upper semicontinuous maps of between ordered
spaces, so to get the same conclusion in our setting we must show a compatibility
between  and the smooth topology on M d :

Lemma 4.2. Every point (M; p) 2  M d  has a basis of neighborhoods U such that
the following properties hold for each U 2  U:

1) there is no (N ; q)  (M; p) such that (N ; q) 2  @U,
2) if (N 0; q0)  (N ; q)  (M; p) and (N 0; q0) 2  U , then (N ; q) 2  U .

Proof. In §A.2, we dene the open kth-order (R; )-neighborhood of (M; p),

NR;1;(M; p);

to be the set of all (N ; q) such that there is an embedding f  : B M  (p; R)  !  N
with f (p)  =  q such that D k f  : T kU  !  T k N is locally 0-bilipschitz with respect to
the iterated Sasaki metrics on the 1-neighborhood of the zero section in T kU ,
where 1 <  0 <  . Any sequence of these neighborhoods is a basis around (M; p) as
long as  !  1 and R; k !  1 ,  and we will show that when ; R; k are chosen
appropriately then these neighborhoods satisfy the conditions of the lemma.

The subset C  M d  of pointed covers of (M; p) is compact: if R  >  0 is given the
uniform geometry bounds on B (p; R)   M lift to any cover, see Denition A.3, so
Theorem A.4 gives pre-compactness of C  M d ,  and C is closed in M d  since Arzela-
Ascoli allows one to take a limit of covering maps. Now x some R  >  0. If (Ni ; q i )  2
C is a convergent sequence, the isometry type of B ( q i ; R )   N i  is eventually
constant. So by compactness, the R-ball around the base point takes on only nitely
many isometry types within C.

Arzela-Ascoli’s theorem implies that when forming the closure of NR;(M; p), we
just allow 0 =  . So, the boundaries @N k      (M; p) are disjoint for distinct values of
. As there only nitely many isometry types of, say, 2R-balls around the base point in
pointed covers of (M; p), there can be only nitely many  <  2 such that there is a
cover of (M; p) in @N k      (M; p). So, the rst condition in the lemma is satised as long
as we choose  <  2 to avoid these points.

To  illustrate which neighborhoods N k       (M; p) satises the second condition of
the lemma, we need the following:

Claim 4.3. Fix (M; p) 2  M d .  Then for all R  in an open, full measure subset of
R > 0 ,  there is some  >  1 such that whenever

0 : (N 0; q0)  !  (M; p)

is a pointed Riemannian covering and

f  : B (p; R)   !  N 0

is a locally -bilipschitz embedding with f (p)  =  q0, then 0 is injective on f (B (p; R)) .

Proof. If not, there is a sequence indexed by i  such that i  !  1, but i
: (Ni ; q i )   !  (M; p)

is not injective on f i (B (p; R)) .  In the limit, we obtain a Riemannian cover
0 : (N 0; q0) ! ( M ; p ) ;
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such that there is a pointed isometry

f  : B (p; R)   !  B (q 0 ; R)  N 0;

but where 0 is not injective on B(q 0 ; R): Here, the non-injectivity persists in the
limit since the distance between points of (N 0; q0) with the same projection to
(M; p) is bounded below by the injectivity radius of (M; p), which is positive on the
compact subset of (M; p) in which we’re interested.

The map 0  f  : B (p; R)   !  M is an isometry xing p, so it extends to an
embedding F  : B (p; R)   !  M. As long as R  is a (generalized) regular value for
the (nonsmooth) function d(p; ) on M, a full measure open condition [84], the
inclusion B (p; R)  , !  B (p; R)  is a homotopy equivalence, see [38, Isotopy Lemma
1.4]. So in this case, the map F  takes 1 (B (p; R)) =  1 (B (p; R))  into the 0-image

of 1(N 0; q0). Hence F  lifts to an isometry B (p; R)   !  B (q 0 ; R)  N 0, by the
lifting criterion. Since F  is an embedding, this contradicts that 0 is non-injective

on B(q 0 ; R).

As long as ; R  are chosen according to Claim 4.3, N k       (M; p) satises the second
condition of the lemma. For if

(N 0; q0)  (N ; q)  (M; p); (N 0; q0) 2  NR;(M ; p);

then there is a map f  : B (p; R)   !  N 0 as above, so 0 : (N 0; q0)  !  (M; p) is
injective on f (B (p; R)) .  In particular, the covering map

 : (N 0; q0)  !  (N ; q)

is also injective there, so the composition

  f  : B (p; R)   !  N 0

is an embedding. As   f  inherits the same Sasaki-bilipschitz bounds that f  has,
this shows that (N ; q) 2  N k       (M; p) as well.

Therefore, for any k, almost every R  >  0, and  suciently close to 1, the neigh-
borhood NR ;(M ; p) satises both conditions of the lemma. As these neighborhoods
form a basis for the topology of M d  at (M; p), we are done.

Using the lemma, we now complete the proof of Proposition 4.1. Recall that X
is a d-dimensional Riemannian foliated space and

L  : X   !  M d ;  x  !  ( L x ; x )

is the leaf map. We want to show that for each open U  M d ,  the preimage L
1(U ) =  [ i 2 N O i  \  C i ;  where each Oi is open and each C i  is closed in X .

It suces to check this when U is chosen as in Lemma 4.2. If L  1(U ) does not
have the form [ i 2 N O i  \  C i ;  there is a point x  2  L  1(U ) and a sequence

x i  2  L  1(U ) n L  1(U ); x i  !  x  2  L  1(U ):

Passing to a subsequence, we may assume by Theorem A.19 that

L ( x i )  !  (N ; q)  L (x ) :
Note that as L ( x i )  2= U for all i, we have (N ; q) 2= U as well.

Each x i  is the limit of some sequence (y i ; j )  in L  1(U ), and Theorem A.19 implies
that after passing to a subsequence, we have that for each i,

L (y i ; j )  !  (Z i ; z i )   L ( x i )  as j  !  1 :
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Now xing R  >  0, since the manifolds L ( x i )  converge in M d ,  the R-balls around
their base points have uniformly bounded geometry, as in Denition A.3. These
geometry bounds lift to pointed covers, so are inherited by the (Zi ; z i ).  So by
Theorem A.4, after passing to a subsequence we may assume that

(Zi ; z i )  !  (N 0; q0) 2  M d :

Moreover, as (Z i ; z i )   L ( x i )  for each i, we have

(N 0; q0) =  lim(Zi ; zi )  l im L(x i )  =  (N; q);
simply by taking a limit of the covering maps. Remembering now that (Z i ; z i )  was
dened as the limit of L (y i ; j )  as j  !  1 ,  if we choose for each i  some large j  =  j ( i )  and
abbreviate yi =  yi ; j ( i ) ,  then

L(y i )  !  (N 0; q0)

as well. However, by construction we have L (y i )  2  U, so (N 0; q0) 2  U.
The rst part of Lemma 4.2 implies that (N 0; q0) 2  U, and then the second part

shows (N ; q) 2  U. This is a contradiction, as we said above that (N ; q) 2= U.

4.2. Resolving singularities in  M d .  n this section, we will assume that d  2. We
saw in Example 2.2 that M 1  =  ( 0 ; 1 ]  is completely understood; the reader is
encouraged to think through the proofs of our results when d =  1 on his/her own.

M d  is not a naturally foliated space: although the images of the maps

M  !  M d ;  p !  (M; p)

partition M d  as would the leaves of a foliation, these maps are not always in-
jective and their images may not be manifolds. However, the following theorem,
discussed in §1, shows that there is a way to desingularize M d  so that the theory
of unimodular measures becomes that of completely invariant measures.

Theorem 1.8 (Desingularizing M d ) .  If  is a completely invariant probability
measure on a Riemannian foliated space X ,  then  pushes forward under the leaf map
to a unimodular probability measure  on M d .

Conversely, there is a Polish Riemannian foliated space P d  such that any -nite
unimodular measure on M d  is the push forward under the leaf map of some
completely invariant measure on P d . Moreover, for any xed manifold M , the
preimage of f(M; p) j p 2  Mg  M d  under the leaf map is a union of leaves of P d , each
of which is isometric to M .

As a corollary of this and Theorem 3.1, we have the following theorem, which
we also discussed in the introduction.

Theorem 1.9. A  -nite Borel measure on M d  is unimodular if and only if the
lifted measure ~ on T 1 Md  is geodesic ow invariant.

Proof. By Theorem 1.8,  is the push forward of a completely invariant measure  on
a Riemannian foliated space  : X   !  M d .  (Taking X  =  P d .) By Theorem 3.1, the
induced measure ~ on T 1 X is invariant under geodesic ow. Now, the leafwise
derivative D  : T 1 X   !  T 1 M d  is geodesic ow equivariant, so the push forward
measure D ~ =  ~ is geodesic ow invariant.

The rst assertion of Theorem 1.8 is easy to prove. If

R  =  f(x; y ) 2  X   X  j x; y lie on the same leafg;
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then the measures l ; r  on X   X  are supported on R  and push forward to l ; r  under
the natural map R   !  M d :  By Theorem 3.1, l  =  r , so l  =  r .

The idea for the ‘conversely’ statement is to use Poisson processes to obstruct
the symmetries of these manifolds, converting M d  into a foliated space P d . To
do this, we will recall some background on Poisson processes, dene P d  and show how
to translate between measures on M d  and on P d , and then verify that P d  is a
Riemannian foliated space.

If M is a Riemannian d-manifold, the Poisson process of M is the unique prob-
ability measure M  on the space of locally nite subsets D   M such that

1) if A1; : : : ; An are disjoint Borel subsets of M, the random variables that
record the sizes of the intersections D  \  A i  are independent,

2) if A   M is Borel, the size of D  \  A  is a random variable having a Poisson
distribution with expectation volM (A).

For a nite volume subset A   M and n 2  N, we have (cf. [41, Example 7.1(a)])
for ( x  ; : : : ;x  ) 2 A n ;  we have D \ A = f x  ; : : : ;x  g; n

given that D \ A  has n  elements. M

In other words, if D  is chosen randomly, the elements of D  \  A  are distributed
within A  independently according to volM .

We refer the reader to [41] for more information on Poisson processes. In this
text, they are not introduced on Riemannian manifolds, but for measures on Rd

that are absolutely continuous with respect to Lebesgue measure. However, as the
Poisson process behaves naturally under restriction and disjoint union, it is ‘local’,
and can be dened naturally for manifolds. In fact, the Poisson process really only
depends on the Riemannian measure on M, and not on the topology of M. Since
M is isomorphic as a measure space to the (possibly innite) interval (0; vol(M )), see
[85], one really only needs to understand the usual Poisson process on R + ,  as that of
an interval is just its restriction.

When M is a Riemannian d-manifold, let F M  be its orthonormal frame bundle,
the bundle in which the ber over p 2  M is the set of orthonormal bases for TpM. If
we regard F M  with the Sasaki-Mok metric [78], then

1) when f  : M !  M is an isometry, so is its derivative D f  : F M  !  F M ,
2) the Riemannian measure volF M  is obtained by integrating the Haar prob-

ability measure on each ber Fp M =  O(d) against volM .
Lemma 4.4. If M is a Riemannian d-manifold, d  2, then Isom(M ) acts es-
sentially freely, with respect to the Poisson measure F M  , on the set of nonempty
locally nite subsets of F M .

The subset ;   F M  is xed by Isom(M ) and has F M  -probability7 e v o l F M  . So
if M has nite volume, we must exclude ;  in the statement of the lemma.

Also, if M =  S 1, then after choosing an orientation, every subset fe1; e2g  F M ,
where e1; e2 have opposite orientations, is stabilized by an involution of M. Since
S 1 is compact, two-element subsets of F S 1  appear with positive F S 1  -probability, so
the statement of the lemma fails for 1-manifolds.

Proof. The Lie group Isom(M ) acts freely on F M , so any nonempty subset D
F M  that is stabilized by a nontrivial element g 2  Isom(M ) has at least two points.

7Via the measure isomorphism F M   !  (0; vol(F M )), this is just the probability that there
are no points in the interval (0; vol(F M )), under the usual Poisson process on R + .
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As the action is proper, its orbits are properly embedded submanifolds, so unless
one is a union of components of F M , all orbits have volF M  -measure zero. In this
case, the volF M  -probability of selecting two points from the same orbit is zero, so
F M  -a.e. D   F M  has trivial stabilizer, by Equation (23).

So, we may assume from now there is an orbit of Isom(M )  F M  that is a union
of components of F M . (The frame bundle F M  has either 1 or 2 components,
depending on whether M is orientable.) Then Isom(M ) acts transitively on 2-planes
in T M, so M has constant sectional curvature. As Isom(M ) also acts transitively
on T M, M is either S d ; RPd ; Rd or Hd.

If D   F M  is stabilized by some nontrivial g 2  Isom(M ), it has at least two
points e1; e2, and we can consider the images g(e1); g(e2). Either e1; e2 are ex-
changed by g, or one is sent to the other, which is sent to something new, or both ele-
ments are sent to new elements of D .  As the elements of a random D  are distributed
according to volF M  , by (23), it suces to prove that for (e1; : : : ; e4) 2  F M 4 , the
following are volF M  -measure zero conditions:

1) g(e1) =  e2; g(e2) =  e1, for some g 2  Isom(M ),
2) d(e1; e2) =  d(e2; e3),
3) d(e1; e2) =  d(e3; e4).

An isometry that exchanges two frames must be an involution, since its square
xes a frame. So, for 1) we want to show that the probability of selecting frames
e1; e2 2  F M  that are exchanged by an involution is zero. The point is that in
each of the cases M =  S d ; RPd ; Rd or Hd, an involution exchanging p; q 2  M
leaves invariant some geodesic  : [0; 1]  !  M joining p; q, and then exchanges
 0(0) 2  TpM with 0(1) 2  TqM. So, after xing a frame e1 2  F Mp , the frames in F Mq
that are images of e1 under involutions form a subset of F Mq  of dimension at most
that of O(d   1), which has zero Haar measure inside of F Mq  =  O(d). Integrating
over q, we have that for a xed e1, the probability that a frame e2 2  F M  is the image of
e1 under an involution is zero. Integrating over e1 nishes the proof of part 1).

For 2), note that for a xed e2 2  F M , the function

d(e2; ) : F M   !  R

pushes forward volF M  to a measure on R  that is absolutely continuous with respect
to Lebesgue measure {  its RN-derivative at x  2  R  is the (dim(F M )  1)-dimensional
volume of the metric sphere around e2 of radius x. So, if e1 and e3 are chosen
against volF M  , the distances d(e1; e2) and d(e2; e3) will be distributed according to a
measure absolutely continuous to Lebesgue measure on R2 , so will almost never
agree. The proof that 3) is a measure zero condition is similar.

We now show how to convert M d  into a foliated space by introducing Poisson
processes on the frame bundles of each Riemannian d-manifold. Let

M  a complete Riemannian d-manifold,
a l l p 2 M ;  and D F M  a closed subset

where (M; p; D)  (M 0; p0; D0) if there is an isometry  : M  !  M with (p) =  p0 whose
derivative d takes D  to D0. There is a Polish smooth-Chabauty topology on P d

obtained from the smooth topology on M d  and the Chabauty topology on the
subsets D ,  see §A.5. Now consider the subset

P d  =  f(M ; p; D) 2  P a l l  j @ an isometry  : M  !  M with d(D )  =  Dg:
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The subset P d  is G, since P d      n P d =  [ n 2 N F n ;  where F n  is the set of all (M; p; D)
such that there is an isometry  : M !  M with

d(D ) =  D  and 1=n  dM  (p; (p))  n;

here, F n  is closed by the Arzela Ascoli theorem. Hence, by Alexandrov’s theorem,
P d  is a Polish space. Note that P d  is dense in P d  , since any Riemannian manifold
can be perturbed to have no nontrivial isometries.

Theorem 4.5. P d  has the structure of a Polish Riemannian foliated space, where
(M; p; D) and (M 0; p0; D0) lie in the same leaf when there is an isometry

 : M  !  M0; d(D )  =  D0:

Assuming Theorem 4.5 for a moment, let’s indicate how to transform a unimod-
ular measure  on M d  into a completely invariant measure on P d , which will nish the
proof of Theorem 1.8. Each ber of the projection

 : P a l l   !  M d ;  (M; p; D)  !  (M; p)

is identied with a set of of closed subsets of F M , and this identication is unique up to
isometry. The Poisson process on F M  (with respect to the natural volume, e.g. that
induced by the Sasaki-Mok metric) induces a measure ( M ; p)  on  1(M; p), supported on
the Borel set of locally nite subsets. We call this measure the framed Poisson process
on that ber, and by Lemma 4.4 we have

( M ;p ) (P d ) =  1      e v o l F M  >  0

for each (M; p) 2  M d .  Moreover, the map

M d   !  M(P d ) ;  (M; p)  !  ( M ; p)

is continuous, where M ( P d )  is the space of Borel measures on P d , considered with
the weak topology. (This follows from weak* continuity of the Poisson process
associated to a space with a measure  as the measure varies in the weak* topology,
which is a consequence of (23).)

So, given a measure  on M d ,  we dene a measure ^ on P d  by

(24) ^ = ( M ;p) d:
( M ; p ) 2 M d

The push forward of ^ under the projection to M d  is clearly , so we must only
check that ^ is completely invariant.

Suppose that R   P d   P d  is the leaf equivalence relation of P d , i.e. the set of all
pairs ((M; p; D); (M 0; p0; D0)) such that there is an isometry  : M  !  M0 with d(D )
=  D0. Each such pair determines a tuple (M 0; (p); p0; D0), a doubly rooted manifold
together with a closed subset of its frame bundle, that is unique up to isometry.
So, there is a map

R   !  M 2 ;  ((M; p; D); (M 0; p0; D0))  !  (M 0; (p); p0);

where the ber over (M; p; q) 2  M d  is canonical identied (up to isometry of M )
with the set of closed subsets of F M  on which Isom(M ) acts freely. From the
construction of ^, the measures ^l and ^r on R  are obtained by integrating
(rescaled) Poisson processes on each ber against l  and r . So, if l  =  r , then ^l =  ^r ,
implying ^ is completely invariant by Theorem 3.1.
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4.3. T h e  proof of Theorem 4.5. The goal is to cover P d  by open sets U, together
with homeomorphisms

h : Rd   Z   !  U;
where Z  =  Z (U )  is separable and metrizable, with transition maps

t : Rd   Z   !  Rd   Z0; t(x; z) =  (t1(x; z); t2(z));

where t1(x; z) is smooth in x, and where t1; t2 and all the partial derivatives @ t1 (x;z )

are continuous on Rd   Z .  We also want the leaves of the foliation to be obtained by
xing M and D   M, and letting the base point p 2  M vary.

The construction of the charts will require some work |  in outline, the idea
is as follows. Given X  2  P d , we show that on any small neighborhood U 3  X ,
there is an equivalence relation  whose equivalence classes are obtained by taking
some (M; p; D) and making slight variations of the base point p. Eventually, these
equivalence classes will be the plaques h(Rd fzg), and the quotient space U=  will be
the transverse space Z .  That is, we will have a homeomorphism h to complete the
following commutative diagram:

Rd   Z h U

Z U=

Of course, this cannot be done without a careful choice of U. It is not hard to
choose U so that each -equivalence class is a small disc of base points in some
manifold M with a distinguished closed subset D .  Shrinking U, we show that one
can construct a continuously varying family of base frames, one for each of these
M. Then, we use the Riemannian exponential maps associated to these frames to
parameterize the -classes, which allows us to identify them with Rd  in a way that is
transversely continuous.

Most of the proof involves constructing the base frames. Essentially, this is just a
framed version of the following, which we can discuss now without introducing more
notation. Given our neighborhood U of X  2  P d , there is a section s : U=  !  U for
the projection map with s([X ]) =  X .  Briey, the idea for this is as follows. F ix  a
metric d on P d , and for each -class E, set

E0 =  fp  2  E j d(p; X )  2d(E ; X )g:
The point s(E ) 2  E is then dened to be the ‘circumcenter’ of E0, when we regard E0
as a small subset inside of a Riemannian M as above. (In what follows, this
argument will be done for base frames, and the notation will be dierent.)

Before starting the proof in earnest, we record the following two lemmas, which
should convince the reader that such a foliated structure is likely.

Lemma 4.6 (Leaf inclusions). Suppose that X  =  (M; p; D) 2  P d , and dene L

: M  !  P d ; L ( q )  =  (M; q; D):

Then L  is a continuous injection, so the restriction of L  to any precompact subset
of M is a homeomorphism onto its image.

Proof. For continuity of L ,  note that if q; q0 2  Rd  and jq   q0j =  , there is a
dieomorphism f  of Rd  taking q to q0, such that
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1) f  is supported in a 2-ball around q,
2) the kth partial derivatives of f  are all bounded by some C (k; ), where

C (k; ) !  0 as  !  0.
For instance, one can just x  any bump function taking the origin to (1; 0; : : : ; 0)
that is supported in a 2-ball around the origin, and conjugate it using appropriate
Euclidean similarities. So if q; q0 2  M are close, we can choose an Rd-chart around
them and transfer such an f  to M to give an almost isometric map verifying that
(M; q; D) and (M; q0; D) are close in P d .

Injectivity of L  comes from the denition of P d , which requires that there are no
nontrivial isometries of the pair (M; D). The statement about compact subsets of M
follows from point set topology, as P d  is Hausdor.

We optimistically call the image of L  the leaf through X  2  P d , and write

L X  : =  L (M )  P d :

Via L ,  we will from now on regard L X  as a smooth Riemannian d-manifold that is
topologically embedded (non-properly) in the space P d . (The distance function on a
leaf L X  will usually be written as d L      .) Under this identication, the point p
becomes X  and the subset D   F M  becomes a distinguished subset of the frame
bundle of L X .  Note that the natural (manifold) topology on L X  is not the subspace
topology induced from the inclusion L X  , !  P d .

Lemma 4.7 (Chabauty convergence of leaves). Suppose X i  !  X  in P d . Then
1) for every point Y 2  L X ,  there is a sequence Yi 2  L X      with Yi !  Y in P d

and d L X  (X i ; Y i )  !  d L X  (X ; Y ).
2) if Yi 2  L X i      with d L X  (X i ; Y i )  <  1 ,  then after passing to a subsequence we

have Yi !  Y 2  L X ,  and d L X i  
(X i ; Y i )  !  d L X  (X ; Y ).

Note that there may be sequences Yi 2  L X       that converge in P d , but where
d L X i  

(X i ; Y i )  !  1 ,  so the statements about distance above have content.

Proof. By denition of the convergence X i  !  X ,  see §A.5, after conjugating by the
leaf inclusions, there are almost isometric maps

(25) f i  : L X L X i  ;

with f i ( X )  =  X i  and where the derivatives D f i  pull back the distinguished subsets
of the frame bundles L X       to a sequence that Chabauty converges to the distin-
guished subset of L X .  (Here, means that f i  is dened on some ball around
the base point, where the domains exhaust L X  as i  !  1 ,  see A.5.)

For 1), the sequence Yi =  f i (Y  ) is dened for large i  and converges to Y in P d : one
can use the f i  in the denition of convergence. For 2), the sequence f (Yi )
is dened for large i, and is pre-compact in L X  by the condition on distances. So,
after passing to a subsequence, it converges to some point Y 2  L X ,  and we will
have Yi !  Y in P d  as well, again using the f i  in the denition of convergence.

4.3.1. Constructing the equivalence relation. For any  >  0, dene a relation  on P d

by letting
X   Y if     Y 2  L X  and d L X  (X ; Y )  :

Note that  is reexive and symmetric, but we only have

X   Y and Y  Z  = )  X  +  Z ;
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rather than transitivity for a particular . In particular, the equivalence class of X
with respect to the transitive closure of  is exactly L X .

However, each  is transitive on suciently small subsets of P d .

Lemma 4.8. If O 2  P d , then for xed ;  >  0, there is a neighborhood U 3  O on which
the relations  and  agree. Hence, if U is chosen so that = 2  on U , then  is an
equivalence relation on U .

Proof. Assuming this is not the case for some  <  , let X i  and Yi be sequences in P d

that converge to O, with X i   Yi ; but X i   Yi : Since X i   Yi , the distance d L      (X ; Y )
<  1 .      So, Lemma 4.7 2) applies, and we must have d L X i  

(X i ; Y i )  !  d L O  (O; O)
=  0, violating that d L X i  

(X i ; Y i )    for all i.

From now on, we assume that all our neighborhoods U are small enough so that
1 =2 , in which case 1 is an equivalence relation.

Lemma 4.9. The quotient topology on U= 1 is separable and metrizable.

Proof. Separability of U= 1 is immediate, as U is separable. Metrizability of U= 1 can
be proved in the same way that we prove it for P d  in Section A.5. The only
dierence is that when comparing two triples (M; p; D) and (M 0; p; D0), we now let our
maps f  : B M  (p; R)  !  M0 take p to any point within an -neighborhood of p0.
Ordinarily, such exibility would make it hard to establish a triangle inequality, but if
U is suciently small, then such a map that realizes the distance between (M; p; D)
and (M 0; p; D0) will have small distortion, and using a limiting argument as in
Lemma 4.8, one can show that in fact f (p)  must be (arbitrarily) close to p0, so that
the compositon of two such maps still takes base points within  of base points.

4.3.2. A  section of base frames. We describe here how to construct, for each equiv-
alence class in U= 1, a base frame for the corresponding M. To  make a precise
statement, we need a framed version of our space P d . Dene

M  a complete Riemannian d-manifold,
e 2 F M ;  and D F M  a closed subset

such that 9  an isometry f : M ! M ;  D f ( D ) = D

There is a natural Polish topology on F P d ,  coming from the framed smooth topol-
ogy on the pairs (M; e) and the Chabauty topology on the subsets D ;  compare with
Section A.5. We denote the natural projection by

 : F P d   !  P d :

Lemmas 4.6 and 4.7 have framed analogues. If X  =  (M; e; D) 2  F P d ;  then

L  : F M   !  F P d ;  L(e0 ) =  (M; e0; D)

is a continuous injection, and via L  we will view its image L X   F P d  as (the frame
bundle of ) a smooth Riemannian manifold. Moreover, if

X i  =  (Mi ; ei ; Di ) !  X  =  (M; e; D)

in F P d ,  then by denition, see §A.5, there are almost isometric maps

f i  : M Mi
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such that the derivatives D f i  map e to ei , and pull back ( D i )  to a sequence of
subsets of F M  that Chabauty converges to D .  Identifying frame bundles with the
corresponding leaves in F P d  as above, these derivatives become maps

(26) F i  : L X L X i

These maps are almost isometric, in the sense that if L X  and L X      are equipped
with the Sasaki-Mok metrics gi induced by the Riemannian metrics on Mi and M,
see [78], then we have F (g i )  !  g in the C 1 -topology. Using the F i ,  one can prove a
framed analogue of Lemma 4.7:

Lemma 4.10 (Chabauty convergence of leaves). If X i  !  X  in F P d ,  then
1) for every point Y 2  L X ,  there is a sequence Yi 2  L X      with Yi !  Y in F P d

and d L X  (X i ; Y i )  !  d L X  (X ; Y ).
2) if Yi 2  L X i      with d L X  (X i ; Y i )  <  1 ,  then after passing to a subsequence we

have Yi !  Y 2  L X ,  and d L X i  
(X i ; Y i )  !  d L X  (X ; Y ).

Finally, the relation  on P d  pulls back under  to a relation on F P d ,  which we
will abusively call 1 as well. On small subsets V  F P d ,  1 is an equivalence relation on
V, just as in the previous section.

Lemma 4.11. Every F  2  F P d  has a neighborhood V on which there is a continuous
map s : V  !  F P d  with s(F )  =  F  that is constant on 1-equivalence classes and
satises s ( X )  1 X  for all X  2  V.

So, s gives a continuous section for the map V  !  V= 1 near F .

The proof of Lemma 4.11 will occupy the rest of the section. The idea is as
follows. We rst select a distinguished subset of each equivalence class, essentially
consisting of those points whose distances to F  are at most twice the minimum
distance to F  in that equivalence class. We then show that these subsets vary
continuously with the equivalence class.     The desired section is constructed by
always choosing the ‘circumcenter’ of the distinguished subset.

F ix  a metric d F Pd  on F P d  and suppose V is a metric ball around F .  Dene

 : V  !  R;  ( X )  =  inf fd F P d  (X 0 ; F ) j X 0  2  V; X 0  
1 X g:

Each  -equivalence class in V is pre-compact in F P d ,  since it is the image of a pre-
compact subset under a continuous map F M   !  F P d  from the frame bundle of
some manifold M. And if X  2  V, the metric ball V contains all points of F P d  that
are closer to F  than X .  So, the inmum is always achieved.

Claim 4.12. The map  is continuous.

Proof. Suppose that in V we have

X i  =  (Mi ; ei ; Di ) !  X  =  (M; e; D)

and that X 0  
1 X i  realize the inmums dening ( X i ) .  We can assume that sup dL X

(X i ; X 0 )   2, so after passing to a subsequence, Lemma 4.10 2) implies that X 0

converges in F P d  to a point X 0  2  L X .  However,

d F Pd  (F ; X 0 )  =  l im dF P d  (F ; X 0 )   l im d F P d  ( F ; X )  =  d F Pd  (F ; X ) ;
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V

X
δ ( X )

2δ (X )
F

X 0

� A X 0

F i gu r e  3. Each A X   [X ]   V is drawn in red.

so as V is a metric ball around F  that contains X ,  we have X 0  2  V. So, X 0  can be
used in the denition of ( X ) ,  implying that

l im (X i )  =  l im dF P d  ( F ; X i )  =  d F P d  (F ; X 0 )   ( X ) :

The reverse inequality is proved similarly: we assume that X 0  
1 X  realizes the

inmum dening ( X ) ,  then we reroot the X i  using Lemma 4.10 1) to produce
elements X 0  2  V with X i  1 X 0  and X 0  !  X 0 , and use the continuity of the
distance function d F P d  .

Moving toward the denition of the map s, we rst dene a map that selects a
small subset of each 1-equivalence class in V. If X  1 F ,  set

A X  =  fF g:
Otherwise, if X   F  dene

A X  =  Y
 
2

 
V

  
Y

 
1

 
X

 
and

 
d F Pd  (Y;

 
F )

 
<

 
2 ( X )

  
 F P d :

Note that by continuity of d F P d       and positivity of ( X ) ,  the set A X  is always
nonempty. (However, if X  1 F  then ( X )  =  0, so this latter denition of A X  would
give the empty set, which is the reason we set A X  =  f F g  in that case.) Moreover,
A X  is compact: for if X  =  (M; e; D) and

L  : F M   !  F P d ;  L(e0 ) =  (M; e0; D)

is the framed analogue of the leaf inclusion map of Lemma 4.6, then the conditions
L(e0 ) 1 X  and d F P d  (L(e0 ); F ) <  2 ( X )  dene a pre-compact subset of M, whose
closure is the (compact) preimage L ( A X ) .

Claim 4.13 (Chabauty continuity of X  !  A X ) .  After possibly shrinking V , we
have that if X i  !  X  in V , then A X       !  A X  in the Chabauty topology: every
accumulation point in F P d  of a sequence Z i  2  A X      lies in A X ,  and every point of A X
is the limit of a sequence Z i  2  A X i  .

Figure 3 indicates two issues related to this continuity.
1) The shape of V may be a problem: in the gure, the indicated point of A X 0

cannot be approached from ‘below’ within the red subsets. This is resolved
by shrinking V .
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2) It is important to dene A X  as the closure of a set dened by a strict
inequality, as opposed to a set dened by a non-strict inequality. For the
leftmost point in the gure that is equivalent to X  has distance exactly
2 ( X )  from F ,  but cannot be approached from above by red points.

Proof. Pick V0 small enough so that for each X  2  V0, the closed 2(X )-ball around X
2  F P d  is contained in the interior of V. This is possible since ( X )  !  0 as X  !  F .
Note that with V0 so chosen, the condition that Y 2  V, rather than just in F P d ,  is
superuous in the denition of A  .

Assume that X i  !  X  in V0. The fact that every accumulation point in F P d  of
a sequence Z i  2  A X      lies in A X  follows immediately from Lemma 4.10 2) and the
continuity of d F P d  and .

If Y 2  A X ,  pick a sequence Yi 1 X  with d F P d  (Yi ; F ) <  2 ( X )  such that Yi

!  Y , as in the denition of A X .  Passing to subsequences of ( X i )  and (Yi ) and
using Lemma 4.10 2), pick for each i  some Z i  1 X i  with

(27) d F Pd  (Y i ; Z i )  <  
i  

:

Note that we can assume Z i  2  V0, simply because the latter is open. As d F Pd  and
are continuous on F P  , for large i  we have

d F Pd  ( Z i ; X i )  <  ( X i ) ;

so Z i  2  A X i  . But Z i  !  Y , so we are done.

The goal now is dene a map s : V  !  F P d  by taking s ( X )  to be the ‘circum-
center’ of A X ,  in the following sense.

Lemma 4.14 (Circumcenters). Let M be a Riemannian manifold, let p 2  M and
R  =  inj (p). Suppose that the sectional curvature of M is bounded above by  on
B (p; R),  and let R0 =  minfR; 16

pg. If A   B (p; R0 ), the function

(28) q 2  M  !  supfdM (q; a) j a 2  Ag

has a unique minimizer (A)  2  M , called the circumcenter of A .

Here, inj (p) is the injectivity radius of M at p, and the notation for (A)
reects that it is the center of a minimal radius ball containing A.

Proof. As A   B (p; D )  is pre-compact, the supremum above is always realized on the
closure of A. Also, pre-compactness implies that the function (28) is continuous and
proper, so it must have at least one minimum.

Suppose q1 =  q2 both realize the minimum, which we’ll say is D ,  and let q
be the midpoint of the unique minimal geodesic connecting q1; q2. Since D  is the
minimum, there must be some point a 2  A  with

d(q; a)  D :

By denition of D ,  we also have

d(qi ; a)  D for i  =  1; 2:
In other words, we have a triangle (q1; a; q2) in M where the distance from a to the
midpoint q of q1q2 is at least both d(a; q1) and d(a; q2). Note also that because A
B(p; R0 ), we have q1; q2 2  B(p; 2R0 ), so all side lengths of our triangle are at most
4R0  4

p :
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a

Mκ

q1 q q2

F i gu r e  4. A  triangle on a sphere in which a midpoint-vertex distance is the
same as the adjacent side lengths. This happens only if the side lengths are
at least half the diameter of the sphere.

We claim this is impossible. A  theorem of Alexandrov, see [27, 1A.6], implies
that distances between points in the triangle (q1; a; q2) are at most those in a
‘comparison triangle’ with the same side lengths in the model space M with con-
stant curvature . (Here is where we use that R0 is less than the injectivity radius at
p.) In particular, d(q; a) is at most the corresponding midpoint-vertex distance of
the comparison triangle. And in M, midpoint-vertex distances are always less than
the maxima of the adjacent side lengths, unless M is a sphere and some side
of the triangle has length at least half the diameter of the sphere, i.e. at least 2

p,
see Figure 4. But our triangle has side lengths at most 4

p.

Claim 4.15. After possibly shrinking V , there is a well-dened, continuous map s

: V  !  F P d ;  s ( X )  =  ( A X ) ;

where  is the circumcenter map on L X ,  as in Lemma 4.14.

This will nish the proof of Lemma 4.11, for as dened above, s is constant on 1-
equivalence classes and X  1 s(X ) .  So, it remains to prove the claim.

Proof. Given  >  0, we can choose V small enough such that for every X  2  V, the
1-equivalence class [X ]   L X  has d L      -diameter at most . (The argument is almost
the same as that used to prove Lemma 4.8.) As injectivity radius and sectional
curvature near the base point vary continuously in F M d ,  we can assume that V is
small enough so that by Lemma 4.14, each subset [X ]   L X  has a well-dened
circumcenter. On such a neighborhood V, the map in the statement of the claim is
well-dened.

For continuity, suppose that X i  !  X  in V. Let

F i  : L X L X i

be the almost isometric maps of (26). Combining (the proof of ) Lemma 4.10 and
Claim 4.13, we have

(29) F i  
1 ( A X i  )  !  A X
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in the Chabauty topology on closed subsets of L  . As these sets are all contained
in a compact subset of L X ,  Chabauty convergence means that F  1 ( A X  )  and A X  are
contained in -neighborhoods of each other, with  !  0 as i  !  1 .

We need to show that if pi =  ( A X i  )  is the circumcenter in L X i  , then

F i  
1 (pi ) !  ( A X ) ;

the corresponding circumcenter in L X .  After passing to a subsequence, the points
F (pi ) converge to a point p 2  L X .  If R i  is the minimum radius of a closed
ball around pi that contains A X i  , then as the F i  are almost isometric, the sets
F (B (p i ; R i ) )  Chabauty converge to a ball B (p; R)   A X ,  where R i  !  R .  But A
cannot be contained in a ball with radius less than R ,  since then a slight
enlargement of such a ball would contain F  1 ( A X  )  for large i, contradicting the
fact that R i  !  R .  So, p is a circumcenter for A X .

4.3.3. Constructing the charts. Let us recall our setup. We have the two spaces
M  a complete Riemannian d-manifold,

p 2 M ;  and D M  a closed subset
such that 9  an isometry f : M ! M ;  f ( D) = D

M  a complete Riemannian d-manifold,
e 2 F M ;  and D F M  a closed subset

such that 9  an isometry f : M ! M ;  D f ( D ) = D

together with the projection map  : F P d   !  P d . The relevant smooth-Chabauty
topologies are discussed in §A.5. Note that  is an open map: for if (M; p; D) and
(M 0; p0; D0) are close in P d , there is a (locally dened) almost isometric map f
between them that takes p to p0, and then given e 2  F Mp  we have that (M; e; D)
and (M 0 ; Df (e); D0 ) are close in F P d .

Choose a point O 2  P d , and a point F  2  F P d  with ( F )  =  O. Let V be a
neighborhood of F  that is small enough so that Lemma 4.11 applies, and so that
U =  (V ) satises the assumptions of Lemma 4.8. Since the equivalence relation 1 on
V is a -pullback, Lemma 4.11 gives a continuous map

s : U= 1  !  F P d

such that (s([X ])) 1 X  for all X  2  U. We dene a chart h :

Rd   U= 1 !  P d ;

as follows. Each Z  2  F P d  gives an exponential map

expZ  : Rd   !  L ( Z )   P d ;

where if Z  =  (M; e; D) then exp     is the exponential map of M, with respect to the
frame e 2  F M , but composed with the leaf inclusions of Lemma 4.6, so that it can
be considered as a map into L ( Z )   P d . Then

h(v; [X ]) : =  exps([X ]) (v):

Since injectivity radius at the base point varies continuously in P d , after possibly
shrinking V we may x  0 <   <  4 such that for each X  2  U, the map

(30) exps([X ] )  : B (0; 2)  !  L s ( [ X ] )

is a dieomorphism onto its image. We claim:

Claim 4.16. h : B (0; )  U= 1  !  P d  is a homeomorphism onto its image.
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Proof. For convenience, we work with the closed ball B (0; ). We’ll show that

h : B (0; )  U= 1  !  P d

is a continuous, proper injection. As P d  is Chabauty, this will imply that h is a
homeomorphism onto its image.

Injectivity follows immediately from the denition of : the reason 2 appears in
(30) is to ensure the exponential maps stay injective on the closed balls B (0; ).

For continuity, remember that h(v; [X ]) =  exps([X ]) (v ) and note that

exp : F P d   Rd   !  P d ; (Z; v )  !  expZ (v)

is continuous, since the Riemannian exponential map varies smoothly when the
metric is varied smoothly, a consequence of the smooth variation of solutions to
smoothly varying families of ODEs. Hence, h is continuous.

We now claim that h is proper. Assume that (vi ; [Xi ])  is a sequence in B (0; )  U=
1, and that h(vi ; [Xi ]) !  Y 2  P d . As

d L X i       
X i ; h(vi ; [X i ] )  <  ;

Lemma 4.7 2) implies that ( X i )  has a subsequence that converges to some X  2  P d .
By compactness, vi has a subsequence that converges to some v 2  B(0; ), so the
sequence (vi ; [Xi ])  is pre-compact in B (0; )  U= 1.

We now want to show that the set of all maps h constructed as above is a foliated
atlas for P d . The key is the following lemma:

Lemma 4.17. Suppose that U and  are chosen to be small enough so that 1 is an
equivalence relation on the image h(B (0; )  U= 1). Then if

(v; [X ]); (w; [Y ]) 2  B (0; )  U= 1; we

have that [X ]  =  [Y ] ( )  h(v; [X ]) 1 h(w; [Y ]):

Proof. The forward direction is immediate, since if s([X ]) =  (M; e; D) then h(v; [X ]) =
(M; expe (v); D) and h(w; [Y ]) =  (M; expe(w); D). Since  <  1 ; we have v; w 2
B  0; . So dM  (exp (v); exp (w)) <  1, as desired.

Conversely, suppose h(v; [X ]) 1 h(w; [Y ]). Then

X  1 (s([X ])) 1 h(v; [X ]) 1 h(w; [Y ]) 1 (s([Y ])) 1 Y:

Lemma 4.17 implies that transition maps between the charts h have the form

t : B   U= 1 !  B0  U0= 1; t(v; [X ]) =  (t1 (v; [X ]); t2 ([X ]));

where B ; B 0 are neighborhoods of the origin in Rd  and U; U0 are open in P d . Fur-
thermore, for each xed [X ], the map v !  t1 (v; [X ]) is a transition map between two
exponential maps for the same Riemannian manifold M, but taken with respect to
dierent base frames. So, t1 is smooth in v. As X  varies in P d , the Riemannian
manifolds M vary smoothly, and the base frames vary continuously, so the v-partial
derivatives of t1 also vary continuously.

Therefore, P d  is a foliated space. The charts h : B (0; )  U= 1  !  P d  above are
chosen exactly so that when [X i ]  !  [X ]  in U= 1, the pullback metrics g X      on B (0; )
converge in the C 1  topology to gX .  The point is just that if a sequence of framed
manifolds converges in the framed smooth topology, then the almost isometric
maps of Equation (45) in §A.3 can be chosen to almost commute with the
exponential maps in the small neighborhoods of the base frames. Finally, by
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Lemma 4.17, the leaf equivalence relation of P d  is generated by 1, so leaves are
obtained as promised by xing (M ; D) and varying the base point p 2  M.

4.4. Application: an ergodic decomposition theorem. A  unimodular prob-
ability measure  on M d  is ergodic if whenever B  is saturated and Borel, either ( B )
=  0 or ( B )  =  1. Here, we use the desingularization theorem (Theorem 1.8) to show
that any unimodular probability measure on M d  can be expressed as an integral of
ergodic such measures.

Ergodic decomposition theorems are usually proved in one of two ways. Phrased
in our context, one of the usual approaches is to disintegrate  with respect to
the -algebra of saturated subsets, see [48], and then prove that the conditional
measures are ergodic. The other approach uses that ergodic probability measures
are the extreme points of the convex set of all unimodular probability measures,
and then appeals to Choquet’s theorem [82].

Neither of these approaches quite applies to unimodular measures on M d  in
full generality. For the rst approach, the usual way to prove that the conditional
measures are ergodic is to appeal to a pointwise ergodic theorem. While Garnett [51]
has proved a foliated ergodic theorem with respect to Brownian motion |  this
could be applied in our setting using Theorem 1.8 |  her theory requires that
the leaves of the foliation have uniformly bound geometry. The problem with the
second approach is that to our knowledge, there is currently no version of Choquet’s
theorem that applies in this generality. Namely, the original requires that the convex
set in question be compact, see [82], and more general versions such as Edgar’s [43]
require separability assumptions and that the underlying Banach space has the
Radon-Nikodym property.

Our approach is to use Theorem 1.8 to reduce the problem to an ergodic de-
composition theorem for Polish foliated spaces, and then to reduce that to a de-
composition theorem for measures on a complete transversal. Essentially, if one
traces through all the arguments in the referenced papers, in particular in [55], the
argument does boil down to Choquet’s theorem, but considering measures on the
transversal allows one to use Varadarajan’s compact model theorem [92, Theorem
3.2] (or rather, the easier countable case thereof) to reduce everything to the case
of an ergodic decomposition for a countable group acting by continuous maps on a
compact metric space, which is a setup that Choquet’s theorem [82] can handle.

Proposition 4.18 (Ergodic decomposition). Let  be a unimodular Borel probabil-ity
measure on M d .  Then there is a standard probability space ( X ; )  and a family f x  j
x  2  X g  of ergodic unimodular Borel probability measures on M d  such that for every
Borel B   M d ,  the map x  !   ( B )  is Borel and

Z
( B )  = x (B ) d:

Proof. Let P d  be the Polish foliated space dened in Theorem 1.8. We say that a
completely invariant probability measure  on P d  is ergodic if every Borel, leaf-
saturated subset has measure 0 or 1. The leaf map of Proposition 4.1 pushes forward
(ergodic) completely invariant measures on P d  to (ergodic) unimodular measures
on M d .  In light of Theorem 1.8, it then suces to show that for every completely
invariant Borel probability measure  on P d , there is a standard probability space
( X ; )  and a family f x  j x  2  X g  of ergodic completely invariant Borel probability
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measures on P d  such that for every Borel B   P d , the map x  !  x ( B )  is Borel
and Z

( B )  = x (B ) d:

Choose a complete Borel transversal T for the foliated space P d , i.e. a Borel
subset that intersects each leaf in a nonempty countable set, and assume T is a
Polish space. (The existence of such a T follows from the fact that P d  is Polish, and
from the foliated structure.) The leaf equivalence relation restricts to an equivalence
relation  on T with countable equivalence classes, and T with its Borel -algebra is a
standard Borel space. So by Feldman-Moore [45],  is the orbit equivalence relation
of some Borel action G   T of a countable group G.

The measure  is the result of integrating the Riemannian measures on the leaves
of P d  against a holonomy invariant transverse measure  on T . Since the action of
the holonomy groupoid generates  and preserves , the action G   T above must also
preserve , by Corollary 1 of [45].

We now apply the ergodic decomposition of Greschonig-Schmidt [55] to the trans-
verse measure . They show that there is a standard probability space ( X ; )  and a
family f x  j x  2  X g  of G-ergodic Borel probability measures on T such that for every
Borel B   T , the map x  !  x ( B )  is Borel and

( B )  = x (B ) d:

Integrating each x  against the Riemannian measures on the leaves of P d  gives a
completely invariant measure x  on P d , and it follows that for every Borel B   P d , the
map x  !  x ( B )  is Borel and

Z
( B )  = x (B ) d:

5. Compactness theorems

Cheeger-Gromov’s C1;1-compactness theorem [56] states that for every c;  >  0,
the set of pointed Riemannian d-manifolds (M; p) such that

1) j K M  ()j  c for every 2-plane , 2)
injM (p)   >  0

is precompact with respect to Lipschitz convergence, and that the limits are C1;1-
manifolds, Riemannian manifolds where the metric tensor is only Lipschitz. Here,
K M  is the sectional curvature tensor and inj (p) is the injectivity radius of M at
p. Variants of this theorem, see e.g. [81, Chapter 10], ensure greater regularity of
the limits when the derivatives of K M  are bounded. For instance, if we x some
sequence (c j )  in R  and replace 1) by

1’) j r j K M  j  cj , for all j  2  N [  f0g,
then the space of pointed Riemannian d-manifolds (M; p) satisfying 1’) and 2) is
compact in the smooth topology, i.e. as a subset of M d ,  see Lessa [68, Theorem
4.11]. We also discuss a similar compactness theorem in §A.1.

By the Riesz representation theorem and Alaoglu’s theorem, the set of Borel
probability measures on a compact metric space is weak* compact, so in particular
we have weak* compactness for probability measures supported on the space of
pointed manifold satisfying 1’) and 2) above. As unimodularity is weak* closed,
this also gives compactness for unimodular probability measures.
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For the Cheeger-Gromov compactness theorems, a lower bound on injectivity
radius at the base point is necessary, as no sequence (Mi ; pi ) with inj (pi ) !  0
can converge in the smooth (or even lipschitz) topology. In this section, however,
we prove that for manifolds with pinched negative curvature, a condition on the
injectivity radius is not necessary if we are only interested in the weak* compactness
of the space of unimodular probability measures.

More precisely, xing a; b >  0 and a sequence cj  2  R,  let M d  M d  be the
set of all pointed d-manifolds (M; p) satisfying 1’) and

3)  a2  K M  ()   b2 <  0 for every 2-plane ,
and let M P N C ; i n j  be the subset of all (M; p) that satisfy 1’), 2) and 3). The
former space M P N C  is not compact, but even so we have:

Theorem 1.12 (Compactness in pinched negative curvature). The space of uni-
modular probability measures on M P N C  is compact in the weak topology.

The point is that the -thin part of a manifold M with pinched negative curvature
only takes up a uniformly small proportion of its volume. More precisely,

Proposition 5.1 (Thick at the basepoint). If  is a unimodular probability measure
on M P N C  and  >  0, there is some C  =  C(; d; a; b) such that

 l i m ! 0  C  =  0,
 ( M P N C ; i n j )   1      C :

Since each M P N C ; i n j  is compact, Prokhorov’s theorem [23, IX.65] implies that the
set of unimodular probability measures on M d is weak* precompact in the
space of all probability measures, and therefore compact since unimodularity is a
closed condition. So, Theorem 1.12 follows from Proposition 5.1. In fact, since any
sequence (Mi ; pi ) 2  M d such that inj (pi ) !  0 must diverge, Theorem 1.12
and Proposition 5.1 are formally equivalent.

We defer the proof of Proposition 5.1 to the next section, and nish here with
some remarks about Theorem 1.12. First, as in the compactness theorems for
pointed manifolds, control on the derivatives of sectional curvature is not necessary
if one is willing to consider limits that are measures supported on C1;1-Riemannian
manifolds, and where the convergence is Lipschitz. The derivative bounds in 1’) do
not factor into the proof of Proposition 5.1, and are used only when appealing to
the compactness of M d . (See [81, Ch 10].)

Second, suppose that Mi is a sequence of nite volume Riemannian manifolds
and i  !  0 is a sequence such that

(31)
vol((Mi )< i  )

vol Mi

where (M i ) <       is the i-thin part of Mi, i.e. the set of points with injectivity
radius less than i . Then the corresponding unimodular probability measures
(i =vol(Mi )), see §2, form a sequence with no convergent subsequence. So for
example, a uniform lower bound on curvature is required in Theorem 1.12, since
when the metric on a closed hyperbolic surface is scaled by 1=i, the whole manifold
will be i-thin for some i  !  0. A  similar argument shows that there is no analogue of
Theorem 1.12 for at manifolds.
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Example 5.2. The uniform negative upper bound curvature is also necessary. To
see this, construct Riemannian surfaces S i  by cutting a hyperbolic surface along a
closed geodesic with length i  !  0, and inserting a at annulus A i  with boundary
length i  and width 1=i in between. The surfaces S i  have bounded volume, and the i-
thin part of S i  has volume at least some constant, so (31) holds. The metrics on the
S i  can then be perturbed so that the metric is smooth everywhere, and slightly
negative on the annuli A i ,  without aecting (31).

Although there is no general analogue of Theorem 1.12 in nonpositive curvature,
there is a similar compactness result for nonpositively curved locally symmetric
spaces. In §5.2, we will give an algebraic proof of this, and will also indicate how our
geometric arguments might be adapted to this setting. We will also discuss the
possibility of a universal theorem that implies both Theorem 1.12 and its locally
symmetric analogue.

5.1. T h e  proof of Proposition 5.1. The idea is simple. One needs to show that
in a manifold with pinched negative curvatures, the -thin part takes up a small
proportion of the volume when  is small. Then one transfers this estimate to
using unimodularity. Of course, our manifolds and their thin parts may have
innite volume, so one needs a local version of ‘small proportion’ that is robust
enough to work in this setting. More precisely, we will show how to push volume
from the -thin part into a region near the boundary of the 0-thin part, where 0 is the
Margulis constant, without incurring a large Radon-Nikodym derivative.

Before starting the proof in earnest, we record the following facts, which should
be well known to those familiar with the literature.

Lemma 5.3. Let M be a simply connected Riemannian d-manifold with curvature
 a2  K M   0. Below, all geodesics have unit speed.

1) If ;  are geodesics that intersect at (0) =  (0) with angle , then

d((t); (t))   
sinh(at)

:

2) If ;  are geodesics that both intersect a geodesic  orthogonally at (0) and
(0), and dt (0); dt (0) are parallel vectors along , then

d((t); (t))  d((0); (0)) cosh(at):

3) If  2  @1M and ;  are geodesics such that (0) and (0) lie on a common
horosphere around  and l i m t !  1  (t) =  l i m t !  1  (t) =  ,

d ((t); (t))  d((0); (0)) eat ;

4) Given ; T >  0, there is some  =  (; T; a) >  0 such that if ;  are
geodesics and d((t); (t))   for all t 2  [0; 1], then

d((t); (t))  ; 8t 2  [0; T ]:

Proof. 1) is an immediate consequence of Toponogov’s theorem. 2) follows from
Berger’s extension of Rauch’s comparison theorem [39, Theorem 1.34], by inter-
polating between  and  by a one parameter family of geodesics s (t) such that ds  j t =0
is a parallel vector eld along :
For 3), let  be a triangle in the model space H2 

a 2  with curvature  a2, chosen with
one ideal vertex  and so that the other two vertices lie on a common horocycle
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<  δ
α(0)

<  δ 1

β(0)

α(t)

α(1)
α

p

β(1) β

β(t)

F i gu r e  5. Above, d((1); p) <   by convexity of the distance function. Then
d((1); p) <  2, so applying Toponogov’s theorem to the blue triangle gives an
explicit upper bound for d((t); (t)) that depends only on ; t and a. This upper
bound is that which one gets in H2     

2  , so goes to zero as  !  0. So for small , we
have d((t); (t))   for t  T .

centered at , at a distance of d((t); (t)) from each other. Parametrize the innite sides
of  by arc length using ;  : (  1 ; t ]   !  H  a 2  . By Toponogov’s theorem8, d((0); (0))
d((0); (0)). If  is the geodesic in H  a 2       from (0) to (0), we can ow every point
on  away from  a distance of t to produce a path t from (t) to (t). In the upper half
plane model for H2     

2      with  =  1 ,  the path t is created by dividing all the y-
coordinates of the points on  by eat . Hence, length(t) =  eat length(). This gives the
estimate

d((t); (t)) =  d((t); (t))  d((0); (0))eat  d((0); (0))eat :

For 4), see Figure 5.

Proof of Proposition 5.1. Let 0 be the Margulis constant for manifolds M with
curvature bounds  a2  K M  ()   b2 <  0, and let M be the universal cover of M. If 0
<    0, and M is such a manifold, consider the set M <  of all points p 2  M with inj
(p) <  . By the Margulis lemma, see [12, §10], the components N  of M <  come in two
types.

1) Margulis tubes. N  is the quotient of a tubular neighborhood N   M of a
geodesic ~ in M by an innite cyclic group   of hyperbolic-type isometries
that stabilize . Hence, N  is a tubular neighborhood of a closed geodesic in
M, which we call its core geodesic.

2) Cusp neighborhoods. N  is the quotient of an open set N   M by a virtually
nilpotent group   of parabolic isometries that all have a common xed point  2
@1M.

In both cases, the closure of N  is a codimension-0 submanifold of M that has
piecewise-smooth boundary. To  see this, given any compact set K   M, proper
discontinuity implies that N  \  K  is a nite union of sets of the form

Ug \  K ;  where Ug =  f x  2  M j d(x; g(x)) <  g;

8This ideal version of Toponogov’s theorem follows the usual one since  is a limit of com-
parison triangles associated to (t); (t); (T ), as T  !   1 :  For T  < <  0, these triangles will be almost
isosceles (since (t); (t) lie on a common horosphere) which implies that the limit triangle in H      a 2  will

have two vertices on a horocycle centered at the other vertex.
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and the g are deck transformations. So, it suces to show that the frontier @Ug of each
Ug is a smooth submanifold. But @Ug is cut out by the equation d(x; g(x)) =  , and we
claim that  is a regular value for x  !  d(x; g(x)).

As M is a simply connected manifold with negative curvature, it is uniquely
geodesic, so the distance function of M is smooth o the diagonal. But g has no xed
points, so this means that the map x  !  d(x; g(x)) is smooth. Suppose that x  2  M is
a critical point for this map, and let  : [0; D]  !  M be the geodesic from x  to g(x).
As we start to move along  from x, the distance d(x; g(x)) is constant to rst order.
So, by the rst variational formula, dg(0(0)) =  0(D). Hence, the biinnite geodesic
extending  is invariant under g. This would mean that  is the axis of minimal
displacement for g, which is impossible since g translates points on  by , but has
translation length on M less than .

Let M       be the subset obtained from M <  by removing the core geodesics of
all Margulis tubes, let @M< be the boundary of the closure of M<, and dene M

and @M<     similarly. Note that there is a natural foliation of M by (the
interiors of ) geodesics with one endpoint on @M< , and where the other end either
terminates at an orthogonal intersection with the core of a Margulis tube, or is a
geodesic ray exiting a cusp9. We will call these geodesic leaves.

Claim 5.4. There is some C  =  C (; d; a), with C  !  1  as  !  0, such that the
distance along any geodesic leaf from @M< to @M<0     is at least C .

Proof. Fixing some R  >  0, we want to show that if  is suciently small, then the
distance along any geodesic leaf from @M< to @M<     is at least R .

This is easiest to show for components N   @M< that are neighborhoods of
cusps. If N   M is a component of the preimage of N , the geodesic leaves of N  lift to
geodesic rays in N  that limit to a point  2  @1M. If x  2  N , there is some deck
transformation g that is parabolic with g() =   and d(x; g(x)) <  :

Let  be the unit speed geodesic in M with (0) =  x  and l i m t !  1  (t) =  : The
image  =  g   is also a geodesic limiting to , and for all t, the points (t) and (t) lie on a
common horosphere centered at . By Lemma 5.3 3),

a t
(32) d ((t); (t))   

a 
:

So as long as t <  C  : =  1 log( a0 ), the element g will move (t) at most 0. So, the
distance along  from @M< to @M<     is at least C .

Now consider a component of M < 0      that is a Margulis tube with core geodesic
c, which we lift to a neighborhood N  of a geodesic c~ in M. Let   be the group
of deck transformations stabilizing N . Here, all the non-identity elements   act as
nontrivial translations along c~, coupled with the action of some element of O(d      1)
in the orthogonal direction. We claim

(?) Given C  >  0, there is some  >  0 such that when the length of
the core geodesic c is less than , we have d(c; @M<0 )   C :

9In the universal cover M, the normal exponential map exp : N   !  M is a dieomorphism
for any geodesic . For a given g, the displacement function x  !  d(x; g (x))  is convex along (the
orthogonal) geodesics, so each Ug from before is a star-shaped neighborhood of . The picture is
similar for cusp neighborhoods, except that now we consider the foliation of M by geodesics with
one endpoint at some p 2  @1M .
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radius 1

gM  ( ‘(t)) ∂M<

∂M< 0

‘(t)

R  −  t

1 −  e − ( R − t )

F i gu r e  6. The denition of the map gM  , pictured in a Margulis tube in
dimension 3. Note that the image of gM  lies in a radius 1 neighborhood of
@M<0 :

To  prove this, rst use Lemma 5.3 1) to choose some  >  0 small enough ( =
a0=(2 sinh(a)) works) so that any two geodesic rays 1(t); 2(t) in M that intersect at
t =  0 with an angle at most  satisfy

(33) d(1(t); 2(t))  0=2; for all t  C :
Since O(d   1) is compact, there is some n 2  N such that any A  2  O(d   1) has a
power A k  with k =  k (A)  n that is close enough to the identity so that

\(Ak (v ); v )  <  ; for all v 2  Rd  1:

Finally, using Lemma 5.3 2), let  >  0 be small enough so that any two geodesic rays
1(t); 2(t) in Hd that start out perpendicular to a third geodesic, parallel to each
other and at distance at most  from each other, must also satisfy (33). (For
instance, take  =  2 cosh(a) :) Now take  =  n .

If g 2    is any isometry with translational part less than , then for some k  n, the
isometry gk has translational part at most  and rotates vectors orthogonal to the
core geodesic c by at most an angle of . From this, we see that gk has dis-
placement at most 0 everywhere on the C-neighborhood of c~. So in any component of
M <  , the distance from the core curve c to the boundary @M<      is at least C
whenever the core has length less than , proving (?).

To  complete the proof of the claim, given C  >  0 we choose  as in (?), but using
C + 1  instead of C .  Using Lemma 5.3 4), we may also assume that  is small enough

so that any two geodesics 1(t); 2(t) in M satisfy

(34) d(1(t); 2(t))  ; 8t 2  [0; 1]     = )      d(1(t); 2(t))  0; 8t 2  [0; C +  1]:
We want to show that the distance from @M< to @M<      is at least C .  If the

distance from the core c to @M< is less than 1, then we are done since we know by
(?) that d(c; @M< )   C  +  1. So, we may assume that the distance from the core to
@M< is at least 1.

If ‘  is a geodesic leaf in M < 0  , parameterized by arc length so that ‘(1) is on the
boundary @M<, there are two lifts 1; 2 of ‘  in N   M with d(1(t); 2(t))   throughout
the preimage of M<, so for all t 2  [0; 1]. Therefore, (34) implies that the injectivity
radius along ‘  stays less than 0 for all t 2  [0; C +  1], i.e. for at least a length of C  after
exiting M<.

We now dene a map
gM  : M <   !  M < 0
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as follows. If ‘  is a geodesic leaf, parameterized by arc length so that ‘(0) is on the
core, suppose that ‘ ( R )  2  @M< and ‘ ( R 0  )  2  @M<0 . Then dene

gM  ( ‘(t))  =  ‘ ( R 0       1 +  eb(t R ) ) :
In other words, gM  is constructed to map M      to a 1-neighborhood of @M< , as

shown in Figure 6. This gM  is a piecewise smooth homeomorphism onto its image,
since R  and R 0  are piecewise smooth functions of the point ‘(t)  2  M<.

Claim 5.5. At every point p where gM  is smooth, we have

j det dgM (p)j  D () ;

for some D ( )  that tends to innity as  !  0.

Here, the determinant is calculated with respect to orthonormal bases in the two
relevant tangent spaces, and so measures the volume distortion of gM  .

Proof. First, note that at p =  ‘(t0 ), the map gM  stretches lengths in the direction
of ‘  by a factor of  d ( R           1 +  eb(t R ) ) j t = t      =  beb(t0  R ) .

Assume now that we are working within a component of @M<     that is a Margulis
tube with core geodesic c. Given a point p at which gM  is smooth, let ‘ s (t)  be a
one parameter family of geodesic leaves satisfying:

1) ‘0 (t0 ) =  p and j ds ‘s (t0 )j =  1.
2) j dt ‘s (t)j =  1 for all s; t, and ‘ s (0)  2  c for all s,

The path s !  ‘s (t0 ) passes through p at s =  0 and moves along the boundary
@B(c; t) of the radius t0-neighborhood of c in M, orthogonally to the leaves. Its
image under gM  is just the path s !  ‘ s ( R 0       1 +  ea(t 0  R ) ) .

The equation J (t )  =  ds ‘ s (t)js = 0  denes a Jacobi eld along ‘0 , and

dgM (J (t) )  =  J ( R 0       1 +  eb(t R ) ) :

As the path s !  ‘s (t0 ) lies in @B(c; t0), and B(c; t0)  M is convex, Warner’s
extension of the Rauch comparison theorem [94, Theorem 4.3 (b)] implies that for
t  t0 we have10 jJ (t)j  cosh(b(t      t0)): So in particular,

j J ( R 0       1 +  eb(t0  R ) ) j   cosh(b(R0      1 +  eb(t0  R )       t0))

 
2

eb(R 0   1 t 0 )

 
2

eb((R 0   R )  1) eb(R t0 ) :

10Here, cosh(b( t      t 0 ) )  is the length of a Jacobi eld in H 2  
b2 obtained by dierentiating a unit speed

geodesic variation s (t), where s  !  s (t0 )  is also a unit speed geodesic, and is perpendicular to all the
geodesics t !  s (t). Warner’s theorem requires the sectional curvatures in M to be less than those
in the comparison space, the two Jacobi elds to have the same length at t =  t0, and the path s  !
‘ s ( t0 )  to lie in a codimension one submanifold S  orthogonal to ‘ s ( t )  all of
whose principal curvatures are larger than those of a corresponding submanifold S 0 containing
s !  s (t0 ). In our case, both Jacobi elds have length one at t =  t0. Convexity implies that the
principal curvatures of S  =  @B(c; t0) are nonnegative, when calculated with respect to the
outward normal d t  ‘ s ( t ) j t = t 0  , so they are larger than those of the geodesic s  !  s (t0 ), which are
zero.
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As jJ (t0 )j =  1, this means that dgM scales the length of J (t0 ) by at least a factor of
1 eb((R0

  R )  1) eb(R t0 ) . But above, J (t0 ) can be taken to be any vector in T Mp
orthogonal to ‘ ,  by choosing the variation ‘ s  appropriately. So,

j det dgM (p)j  beb(t0  R )   
1

eb((R 0   R )  1) eb(R t0 )
d 1

 
2d 1 e

b ( ( R 0   R )  1) : =  D () ;

a constant that tends to innity as  !  0, by Claim 5.4. The argument for a
component of @M<     that is a neighborhood of a cusp is almost exactly the same.
Instead of parameterizing the geodesic variations ‘ s  so that for constant t0, the
path s !  ‘s (t0 ) lies along a metric sphere around the core of the Margulis tube, we
parameterize so that s !  ‘s (t0 ) is contained in a horosphere. Horospheres are C 2

[61] and convex [42], so one can still apply Warner’s comparison theorem.

We now use unimodularity to nish the proof of Proposition 5.1. Let M P N C ; 2
be the space of all isometry classes of doubly pointed d-manifolds (M; p; q) with
pinched negative curvature  a2  K M    b2 <  0 and geometry bounds as in 1’) at
the beginning of the section. Dene a Borel function F  : M P N C ; 2   !  R +  via

(
j det dgM (p)j if p 2  M <  and d(gM (p); q)  1 0
otherwise

Using Claim 5.4, x  some  <  0 with C ( )   1. By denition, the image of gM  lies in a
radius 1 neighborhood of @M , so the injectivity radius at every gM  (p) is at least .
Setting V (; ) to be the volume of a radius  ball in the d-dimensional model space of
constant curvature , we have that the volume of a ball of radius 1 around each gM  (p)
satises

V (;  b2)  vol(BM  (gM  (p); 1)  V (1;  a2):

So, using this and (5.5), we compute:
Z

j det dgM (p)j vol(BM  (gM  (p); 1))
<                

(
M

; p ) 2 M P N
C ; i n

j
<                    

D ( )
Z 

V (;  b2)

= F (M; p; q) dvol d
( M ; p ) 2 M P N C ; i n j <         q 2 M

(35) Z Z
=  

D ()V (;  b2) 
Z

( M ; p ) 2 M P N C ; i n j <  Z
q 2 M  

F (M; q; p) dvol d

=  
D ()V (;  b2) ( M ; p ) 2 M P N C ; i n j <         q 2 M < \ g      1 ( B M  (p;1)) 

j det dgM (q)j dvol d (36)

Z
 
D ()V (;  b2) ( M ; p ) 2 M P N C ; i n j <  

vol(BM  (p; 1)) d V (1;

a2)
D ()V (;  b2)
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where here M P N C ; i n j <  is the set of all (M; p) 2  M P N C  where in j M  (p) <  .
Equation (35) is unimodularity, while (36) is just the change of variables formula.
The last line goes to zero as  !  0, which proves Proposition 5.1.

5.2. Lo cal ly  symmetric spaces. Let X  be a symmetric space of nonpositive
curvature with no Euclidean factors, and let G  =  Isom(X ). An X-manifold is a
quotient X =  , where   <  G  is discrete and torsion free. Let M X   M d  be the subset
of pointed X-manifolds.

Theorem 1.13 (Compactness for locally symmetric spaces). The space of unimod-
ular probability measures on M X  is weak*-compact.

By Proposition 2.9, there is a dictionary between unimodular measures on M X

and discrete, torsion free invariant random subgroups of G. The space of all invari-
ant random subgroups of G  is compact, since the Chabauty topology on the set of
closed subgroups of any locally compact group is compact. As G  is semi-simple,
c.f. [62], it suces to prove the following proposition:

Proposition 5.6. For IRSs  in a semi-simple Lie  group G,  ‘discrete’ is a closed
condition. For discrete subgroups H  <  G,  ‘torsion-free’ is a closed condition.

Note that unlike the second sentence, the rst is true only on the level of IRSs,
since there are always discrete, cyclic subgroups of G  that limit in the Chabauty
topology to subgroups isomorphic to R.

Lemma 5.7. If G  is a semi-simple Lie  group, every connected I R S  H   G  is a
normal subgroup of the identity component G   G.

Proof. If H  <  G  is any ergodic connected IRS,  the Lie algebra h is a random k-
dimensional subspace of g, for some k, and the distribution of h is invariant under
the adjoint action of G  on the Grassmannian Gr(k; g). Since G  has no nontrivial
compact quotients, applying the arguments of [49, Lemmas 2,3] to Gr(k; g) instead
of the projective space P (g), we see that the distribution of h is concentrated on
Ad G-invariant subspaces of g.

Proof of Proposition 5.6. Any subgroup H   G  that is a Chabauty limit of discrete
groups has a nilpotent identity component, c.f. [90, Theorem 4.1.7]. So, any I R S
that is a limit of discrete IRSs  also as this property. However, a semi-simple Lie
group does not have any nontrivial nilpotent normal subgroups, so Lemma 5.7
implies that a limit of discrete IRSs is discrete.

Next, we show that ‘torsion-free’ is a closed condition within the space of discrete
H  <  G. For suppose H n  !  H  are discrete and the only torsion is in the limit, and
take 1 =   2  H  with k  =  1. Picking n  2  H n  that converge to , the sequence (k )
consists of nontrivial elements converging to 1. Aiming for a contradiction,
choose open balls B1 ; B2 ;  3  1 in G  with B i   B i + 1 .  Exponentiating the k  by
appropriate powers determined using exponential coordinates, it follows that for
any xed i, and large enough n, there is an element of H n  inside B i  r  B i + 1 .  This
contradicts discreteness of H .

Using the same arguments as in the paragraph after the statement of Proposition
5.1, Theorem 1.13 is equivalent to the following:

Proposition 5.8. If  is a unimodular probability measure on M X  and  >  0,
there is some C  =  C ( ; X )  such that



X

X
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 l i m ! 0  C  =  0,
 ( M i n j )   1      C ;

where M i n j  be the set of pointed X-manifolds (M; p) such that injM (p)  .

While the algebraic proof of Theorem 1.13 is quite direct, it is natural to ask
whether there is a geometric proof of Proposition 5.8. In particular, why is it true
for locally symmetric spaces when it fails for general spaces of nonpositive, or even
unpinched negative, curvature? (See Example 5.2.)

The biggest dierence is that when X  is a non-positively curved symmetric space
without Euclidean factors, its Ricci curvature is bounded away from zero, and hence
the same is true for any X-manifold. (In contrast, the surfaces of Example 5.2 have
points where the Ricci curvature is arbitrarily close to zero.) Specically, the Ricci
curvature tensor of X  =  G = K  is a constant negative multiple of the Killing form on
g [11, Theorem B.24], so is negative denite. There is then some constant b =
b ( X )  >  0 such that

(37) Ric(v; v)   b2=(d      1); 8v 2  T 1 X;

since X  is homogenous. Here, d is dimension, and we prefer to write the upper
bound as above since then it follows that every v is contained in a 2-plane with
sectional curvature at most  b2. We ask:

Question 5.9. Consider the space Md (a; b; cj ) of all (M; p) 2  M d  with
1’) j r j K M  j  c j  for all j  2  N [  f0g;
3’)  a2  K M  ()  0, and Ric(v; v)   b2, for every 2-plane  and unit vector v

2  T Mp,
where Ric is the Ricci curvature. Is the set of unimodular probability measures on
Md (a; b; cj ) weak* compact? More concretely, does condition 3’) imply a uniform
bound C  =  C (; a; b; d) on the proportion of volume that the -thin part occupies in
(say) a nite volume (M; p) 2  M(a; b; cj ),  with C  !  0 as  !  0?

A  proof of such a compactness result would be possible, for instance, if one could
prove (say, for Hadamard manifolds) that an upper bound on Ricci curvature gives
volume comparison results analogous to those given by Bishop-Gromov, see [81,
Lemma 7.1.4], for Ricci lower bounds.

We do expect that our proof in pinched negative curvature can be adapted to the
locally symmetric setting|that is, to give a geometric proof of Proposition 5 . 8 |
without proving the volume comparison results mentioned above. Much of the
argument goes through unchanged, although it becomes more subtle to develop an
analogue of the foliation by geodesic leaves when the curvature is only nonpositive.

6. Unimodular  random hyperbol ic  manifolds

Recall that the limit set of a subgroup   of Isom(Hd ) is the subset of @Hd
 =  S d 1

consisting of all accumulation points at innity of any orbit of  Hd. In [3], it is
shown that if  is an invariant random subgroup of Isom(Hd ) without an atom at the
identity, then the limit set of H   Isom(Hd ) must have full limit set -almost surely.
In two dimensions, this has the following corollary:

Corol lary 6.1. Any unimodular random hyperbolic surface with nitely generated
fundamental group is either H2 or has nite volume.
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As usual, the translation between IRSs and URHSs is through Proposition 2.9.
Recall that a unimodular random manifold is a random element of M d  whose law is
a unimodular probability measure, and is hyperbolic if its law is supported on
hyperbolic manifolds. For those allergic to probabilistic language, the statement
of the corollary is that if  is a unimodular measure on H 2  then -a.e. pointed
hyperbolic surface (S; p) with nitely generated 1 is either isometric to H2 or has nite
volume.

There is an alternative way to prove Corollary 6.1, using the No-Core Principle
(Theorem 1.15). Recall that the convex core of a hyperbolic surface S  is the smallest
convex subsurface whose inclusion is a homotopy equivalence. When S  has nitely
generated fundamental group, its convex core is compact. Alternatively, the ends
of S  are geometrically either innite volume ares or nite volume cusps. Here, a are
is cut o by a closed geodesic, and is isometric to half of the quotient of H2 by the
group generated by a single isometry of hyperbolic type. The convex core of S  is
obtained by chopping o all ares at the bounding closed geodesics. See [14] for
details.

Dene a function f  : H 2   !  f0; 1g by setting f (S; p) =  1 whenever p is in the open
radius 1 neighborhood of the convex core of S . We claim f  1(1) is open, so that f  is
Borel. If f (S; p) =  1, then p lies at distance less than 1 from some closed geodesic
in S , by density of closed geodesics in the convex core. Using the almost isometric
maps dening the smooth topology, see §A.1,  can be transferred to a closed (1 +  )-
quasigeodesic in any nearby (S0; p0) and then tightened to a closed geodesic 0 using
the Morse Lemma [27, Theorem 1.7, pg 401]. This geodesic 0 is contained in the
convex core of S0, and will lie at a distance less than 1 from p as long as (S0; p0)
(S; p).

So, by Theorem 1.15, we have for -a.e. (S; p) that

0 <  volS fq 2  M j f (S; q ) =  1g <  1  = )  vol(S ) <  1 :

As a hyperbolic surface with nitely generated 1 either is H2 or has a nite volume
core, this proves Corollary 6.1.

As explained in the introduction, there are examples of unimodular random
hyperbolic 3-manifolds with nitely generated fundamental group other than H3 and
nite volume manifolds, e.g. cyclic covers M of closed hyperbolic 3-manifolds M
bering over the circle. We now show that in 3-dimensions, every URHM with nitely
generated 1 looks coarsely like such M. To  do this, though, we need to recall some
background about the geometry of ends.

Suppose that M is a hyperbolic 3-manifold with nitely generated fundamental
group. Then M is homeomorphic to the interior of a compact 3-manifold, by the
Tameness Theorem of Agol [7] and Calegari-Gabai [29]. Each end E of M then has a
neighborhood that is a topological product S  (0 ; 1 ) ,  for some closed surface S , and
can be classied geometrically according to its relationship with the convex core of M.
Here, the convex core of M is the smallest convex submanifold of M whose inclusion
is a homotopy equivalence. When M has no cusps11, work of Bonahon [22] and
Canary [31] implies that either E has a neighborhood disjoint from the convex core,
in which case we call it a convex cocompact end, or it has a neighborhood

11In general, cusps may split the topological ends of M into ‘geometric ends’ with smaller
genus, which have a similar classication. See [76].
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completely contained in the convex core, in which case E is degenerate. See [66] for
more details.

A  cyclic cover M of a mapping torus is homeomorphic to S   R,  and both of
its two ends are degenerate|the convex core of M is the entire manifold. In
A B B G N R S  [3, §12.5], we constructed more general examples of IRSs that give
doubly degenerate unimodular random hyperbolic structures on S R;  for instance,
our examples do not cover any nite volume 3-manifold.

Theorem 1.14. Every unimodular random hyperbolic 3-manifold with nitely gen-
erated fundamental group either is isometric to H3 , has nite volume, or is a doubly
degenerate hyperbolic structure on S   R  for some nite type surface S .

The proof is another application of the No-Core Principle, and the idea is that
any innite volume hyperbolic 3-manifold that is not H3 and is not a doubly degen-

erate hyperbolic structure on S   R  has a geometrically dened ‘core’. Intuitively, the
core should just be obtained by cutting o the ends of the manifold, but the dif-cult
part is doing this in a canonical enough way that for as (M; p) varies through H3 ,

the condition that p lies in the core is Borel. For simplicity, we’ll rst prove
Theorem 1.14 only for manifolds with no cusps, and then at the end we will make

some brief comments about the modications needed to extend to the general case.
F ix  once and for all some  >  0 less than the Margulis constant and let M be

a hyperbolic 3-manifold with no cusps. The -electric distance between two points p; q
in M is the inmum over all smooth paths  joining p; q of the length of the
intersection of  with M, the -thick part of M. Given R  >  0, an R-core for M is a
compact 3-dimensional submanifold N   M such that

1) the diameter of N  is less than R ,
2) N  is contained in an open radius 1 neighborhood of the convex core of M,

3) the component E   M r  N  facing each component S   @N is a neighbor-
hood of an end that is homeomorphic to S   R,

4) if E ,  as in 3), is a neighborhood of a convex cocompact end of M, then E
lies completely outside the convex core of M,

5) if E ,  as in 3), is a neighborhood of a degenerate end of M and p 2  E  has -
electric distance more than R  from N , there is a level surface  in E  =  S   R
that passes through p and has -electric diameter less than R .

Here, a level surface of S  R  is any embedded surface isotopic to a ber S  ftg. The
point of the denition above is that N  is a small-diameter ‘core’ for M, obtained
topologically by chopping o the ends of M. Conditions 2), 4) and 5) require that
convex cocompact ends are chopped o near the convex core boundary, and the
removed neighborhoods of degenerate ends have cross-sections with small electric
diameter.

Every hyperbolic 3-manifold with nitely generated 1 and no cusps, that is not
isometric to H3, has an R-core for some R  >  0. Namely, the Tameness Theorem
gives such an N  satisfying 1) and 3) for some R .  The complement of the convex
core of M consists of product neighborhoods of the convex cocompact ends [30,
II.1.3], so we may pick N  to satisfy 2) and 4). Finally, Canary’s Filling Theorem
[32] states that there is a neighborhood E  of each degenerate end of M such that E  is
homeomorphic to S   R  and is exhausted by the images of simplicial hyperbolic
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surfaces12 in the homotopy class of the ber, on which no essential simple closed
curves of length less than  are null-homotopic in M. By the Bounded Diameter
Lemma [32, Lemma 4.5], such surfaces have -electric diameter bounded above by
some constant depending only on  and (S ). So increasing R  and enlarging N , we have
5) using Freedman-Hass-Scott [47] to replace the simplicial hyperbolic surfaces by
embedded level surfaces, compare with [20, Corollary 3.5].

Proposition 6.2 (Borel-parametrized cores). Suppose M =  H3 is a hyperbolic 3-
manifold with nitely generated fundamental group and no cusps, let R  >  0 and
C R (M )  be the union of all R-cores of M . Then:

1) Unless M is a doubly degenerate hyperbolic metric on S   R ,  for some
closed surface S ,  the subset C R (M )   M has nite, nonzero volume for
suciently large R .

2) If we set C R (M )  =  ;  for all other (M; p) 2  H 3 ,  the subset C R   H 3

consisting of all (M; p) with p 2  C R (M )  is Borel.

Both conditions 4) and 5) in the denition of an R-core are necessary for the ‘nite
volume’ part of this proposition. Condition 4) is needed in order to prevent a
sequence of R-cores from exiting the degenerate end of a hyperbolic 3-manifold
homeomorphic to S R  that has one convex cocompact end and one degenerate end.
Less obviously, condition 5) is needed to prevent a sequence of R-cores from exiting
a hyperbolic 3-manifold homeomorphic to the interior of a handlebody whose single
end is degenerate. Here, the point is to express the interior of the handlebody as
S  R,  where S  is a closed, orientable surface with a single puncture, and then take
appropriate ‘cores’ of the form S   [t   1; t +  1], where S  is obtained from S  by
truncating its cusp.

Deferring the proof, let’s understand how Proposition 6.2 implies Theorem 1.14
in the no-cusp case. Suppose  is a unimodular measure on H3 , and apply the
No-Core Principle (Theorem 1.15) to the characteristic function of each CR . We
obtain that for each R  >  0, the following holds for -a.e. (M; p):

0 <  vol CR (M ) <  1  = )  vol M <  1 :

Taking a countable union of measure zero sets, we have for -a.e. (M; p) that 0

<  vol CR (M ) <  1  for some R  2  N = ) vol M <  1 :

So by Proposition 6.2, we have that -a.e. (M; p) with nitely generated funda-
mental group and no cusps is either nite volume (i.e. closed), H3 or a doubly
degenerate hyperbolic 3-manifold homeomorphic to S   R.

6.0.1. Proof of Proposition 6.2. We rst prove 1), so assume that M has nitely
generated 1, no cusps and is not isometric to H3. As mentioned above, M admits an
R-core for some R .  So, for large R  the subset C R (M )  has nonzero volume. Our goal
is to show that C R (M )  is always bounded in M, so always has nite volume.

Suppose on the contrary that there is a sequence C i  of R-cores of M that exits
an end E of M. By condition 2) in the denition, R-cores lie near the convex core, so E
is a degenerate end of M. Increasing R  if necessary, pick a neighborhood E  of E
that is homeomorphic to a product S   R  and is exhausted by level surfaces with -
electric diameter at most R .

12A simplicial hyperbolic surface is a map from a triangulated surface that is totally geodesic
on each triangle, and where the total angle around each vertex is at least 2, [32].
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We claim that M is a doubly degenerate hyperbolic structure on S   R.  For large
i, the -electric distance from C i   E  to the frontier of E  is at least 6R. This electric
distance is realized by a path  in some component D   M r  C i .  Then D  =  S0 R  for
some closed surface S0, and since  is contained in the convex core of M, this D  cannot
be a neighborhood of a convex cocompact end by condition 4) in the denition of an R-
core. So, by condition 5), there are surfaces 0 ; 0  M that are level surfaces of D  =  S 0 R,
have -electric diameter less than R ,  and which pass through points on  at -electric
distance R  and 5R, respectively, from C i .  These surfaces must then be disjoint, so
they bound a submanifold N  homeomorphic to S0 [0; 1]. However, we can also pick
a level surface  in E  =  S  R  with -electric diameter less than R  that passes through a
point on  at -electric distance 3R from C i .  This   N  =  S0  [0; 1], and is
incompressible since it is incompressible in E ,  which contains N . Therefore, by
Waldhausen’s Cobordism Theorem [93],  is a level surface of N , which in turn
means that 0 and 0 both bound product neighborhoods of degenerate ends of M on
both sides, one contained in D  and the other in E .  Hence, M is a doubly degenerate
hyperbolic metric on S   R.

For the second part of the proposition, we need to show that a Borel subset of
H 3  is dened if we require (M; p) to satisfy the following three conditions:

(A)  M has no cusps,
(B)  1M is nitely generated,
( C )  p lies in an R-core of M.

We’ll rst show that (A)  and (B)  each dene Borel subsets, and deal with ( C )
afterwards. Note that ( C )  doesn’t make sense on its own, since R-cores are only
dened for manifolds with nitely generated 1 and no cusps.

To  see that (A)  denes a Borel set, we check that for each R  >  0 and small
>  0, the set of all (M; p) where there is a cuspidal -thin part at distance at most R
from p is closed, and then take a union over R  2  N. For if (Mi ; pi ) !  ( M 1 ; p 1 ) ,  we
can write Mi =  H3= i  in such a way that  i  !   1  in the Chabauty topology on
subgroups of PSL 2 C,  and the points pi are all projections of a xed p~ 2  H3, see [76,
Chapter 7]. Cuspidal -thin parts at distance at most R  from pi 2  Mi then give
elements 1 =  i  2   i  such that

1) jtr i j =  2 for all i,
2) there are points x~ i  2  H3 with d(x~i ; p~)  R  and d(x~i ; i (x~i ))  2.

After passing to a subsequence, x~ i  !  x~ 1  2  H3 and i  !  1  2   1 ,  where
d(x~1 ; p~)  R  and jtr 1 j  =  2. Passing to the quotient, we have a cuspidal -thin
part at distance at most R  from p 1  2  M 1 .

To  prove that (B)  is a Borel condition, we use:

Lemma 6.3. Fix a compact 3-manifold N0 , a Riemannian metric on N0 , and a
constant  >  1. Let S  be the set of all (M; p) 2  H 3  that admit a smooth embedding f
: N0 , !  M such that

1) the iterated derivative maps D k f  : T k N0  !  T kM are locally -bilipschitz
on the 1-neighborhood of the zero section in T k N0 , for k =  0; 1; 2,

2) the image N  =  f (N 0 )  contains p,
3) each component of M r  N  is homeomorphic to S   R ,  for some closed

surface S .

Then S  is a Borel subset of H3 .
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See §A.2 for details about iterated derivatives. The point of 1) is the following,
though. As shown in at the end of the proof of Theorem A.10, bounds on iterated
total derivatives up to order 2 give bounds in xed local coordinates for the C2-
norm of f .  So by Arzela-Ascoli, if f i  : N0 , !  M is a sequence of embeddings
satisfying 1) and 2), then after passing to a subsequence we may assume that f i

converges in the C1-topology to some C1-embedding f  : N0  !  M. Working in
normal-bundle coordinates in a regular neighborhood of @f (N0), we can then move
any f i  (with i  large) by a small C1-isotopy so that the image agrees with f (N0 ).
In particular, the images of all such f i  dier by small isotopies.

Proof of Lemma 6.3. We’ll write S  for the set of all (M; p) admitting an embedding
as above. F ix  R  >  0 and consider the set S R  of all (M; p) such that there is an
embedding N0 , !  M satisfying 1) and 2), and also a compact submanifold N 0  M that
contains the radius R-ball around p, and where every component of N 0 r int(N )  is
homeomorphic to S   [0; 1] for some closed surface S . This S R  is open in the smooth
topology, since the approximate isometries dening the smooth topology (see §A.1)
allow us to transfer compact submanifolds of (M; p) to nearby (N; q), with small
metric distortion.

We claim that S  =  \ R S R ,  which will imply S  is Borel. The forward inclusion is
obvious, so assume (M; p) is in the intersection. Then there is a sequence R i  !  1
such that if f i  : N0 , !  M, N i  and N 0 are the corresponding embeddings and
submanifolds, we have N 0  N 0  . Passing to a subsequence, we may assume by 1) and
2) that the embeddings f i  : N0 , !  M all dier by small isotopies. Hence, the
complement of int(N1 ), say, in every N 0 is a union of topological products S   [0; 1].
Consequently, each N 0 r  int(N 0) is also a union of products S   [0; 1], so
taking a union over i, the components of M r N 1  are homeomorphic to S R .

To  prove (B)  denes a Borel set, apply the lemma and take a union over the
countably many homeomorphism types of compact 3-manifolds N0, over a count-
able dense subset of the space of Riemannian metrics on a given N0, and over  2  N.
This proves that a Borel subset is dened by the condition that there is a subman-
ifold N   M containing p whose complementary components are homeomorphic to
products S R.  By the Tameness Theorem, this is equivalent to 1M being nitely
generated.

The proof that ( C )  denes a Borel set uses a more complicated version of
Lemma 6.3, but the argument is very similar. Fixing a compact 3-manifold N0, a
Riemannian metric on N0, and a constant  >  1, let S  be the set of all (M; p) 2  H 3  with
no cusps and nitely generated 1, that admit a smooth embedding N0 , !  M satisfying
1) and 2) of Lemma 6.3, and whose image is an R-core of M.

We claim that S  is Borel. To  that end, x  T >  0 and consider the set S T  of all
(M; p) with nitely generated 1 and no cusps, satisfying the following conditions. We
require that there is an embedding N0 , !  M with bilipschitz constant less than ,
whose image N  contains p and satises

1) the diameter of N  is less than R ,
2) N  is contained in an open radius 1 neighborhood of the convex core of M.

We also require that N  is contained in a compact submanifold N 0  M whose
interior contains the closed radius T ball around N , such that

3) each component E  of N 0 n int(N ) is homeomorphic to S   [0; 1], for some
closed surface S ,
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4) if a component E  of N 0 n int(N ) intersects the convex core of M, then
through each point p 2  E  that lies more than an -electric distance of R
from M n E , there is a level surface  in E  =  S  [0; 1] that passes through p that
has -electric diameter less than R .

We now claim that S T  is Borel. As we have shown above, the conditions that M
has no cusps, and that 1M is nitely generated are both Borel. Furthermore, the
approximate isometries dening the smooth topology (see §A.1) allow us to transfer
compact submanifolds of (M; p) to nearby (N; q), with small metric distortion. So,
the existence of an embedding N0 , !  M as above that satises 1) and 3) is an open
condition.

To  deal with the other conditions, let N  >  0 and let H 3  be the set of all (M; p) 2
H 3  where the injectivity radius of (M; p) is bounded above by N  throughout the
convex core of M. Each H 3      is a closed subset of H3 , and the convex core of M
varies continuously as (M; p) varies within H 3  , by [77, Proposition 2.4]. Using this
and the previous paragraph, one can see that 2) and 4) are also open conditions
within H 3  , so S T  \  H 3      is a Borel subset of H 3      for all N . As any hyperbolic
3-manifold with nitely generated 1 has an upper bound for the injectivity radius over
its convex core, [32, Corollary A], this expresses S T  as a union of Borel sets, so S T  is
Borel.

We claim that S  =  \ T  S T  , which will imply S  is Borel. The forward inclusion is
obvious, so assume (M; p) is in the intersection. Arguing as in the proof of Lemma
6.3, we may assume that we have a xed embedding f  : N0 , !  M satisfying 1) and
2), and a sequence Ti !  1  such that there are N 0 whose interiors contain the closed
Ti-ball around N  =  f (N 0 )  and satisfy 3) and 4). Again as in the proof of Lemma
6.3, the complementary components of N  are all homeomorphic to products S   R.  But
then conditions 3) and 4) in the denition of an R-core follow for N  from condition
4) above. For if a component of M r  N  intersects the convex core, it must have
the necessary level surfaces with bounded electric diameter (and is a neighborhood
of a degenerate end). Otherwise, we have condition 4) in the denition of an R-core.

This proves that S  is Borel, which proves ( C )  is a Borel condition, and Proposi-
tion 6.2 follows.

6.0.2. The case with cusps. In the presence of cusps, the proof is the same, but
more complicated. When M has nitely generated 1, the topological ends of M may
be split by cusps into ‘geometric ends’. More precisely, xing  >  0 we let Mnp be the
manifold with boundary that is the complement of the cuspidal -thin part of M. Then
the topological ends of Mnp are called geometrically nite or degenerate depending on
whether they have neighborhoods disjoint from, or contained in, the convex core
of M. The denition of an R-core is basically the same, except that M should be
replaced by Mnp, complementary components should now be homeomorphic to S
R,  where S  is a surface with boundary, and the  dening electric distance should be
chosen smaller than that dening Mnp.

Proposition 6.2 should now allow cusps, and exclude in 1) products S R,  where S
is a nite type surface. Its proof is the same, as long as one keeps track of the
relationship between the new denition of R-cores and Mnp. However, the increase
in the already formidable amount of notation will be unpalatable.
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Appendix A. Spaces o f  Riemannian manifolds

In this appendix, we discuss the smooth topology on the space of pointed Rie-
mannian manifolds, and related topologies on similar spaces.

A.1. Smooth convergence and compactness theorems. As introduced in the
introduction, let M d  be the set of isometry classes of connected, complete, pointed
Riemannian manifolds (M; p).

Remark A.1.  The class of all pointed manifolds is not a set. However, every
connected manifold has at most the cardinality of the continuum, so one can discuss
M d  rigorously by only considering manifolds whose underlying sets are identied
with subsets of R .  The same trick works in all the related spaces below, so we will
make no more mention of set theoretic technicalities.

A  sequence of pointed Riemannian manifolds (Mi ; pi ) Ck-converges to (M; p) if
there is a sequence of C k-embeddings

(38) f i  : B (p; R i )   !  Mi

with R i  !  1  and f i (p)  =  pi , such that f g i  !  g in the C k-topology, where gi; g are
the Riemannian metrics on Mi; M . Here, Ck-convergence of tensors is dened locally:
in each pre-compact coordinate patch, the coordinates of the tensors and all their
derivatives up to order k should converge uniformly. Note that each metric f g i  is only
partially dened on M, but their domains of denition exhaust M, so it still makes
sense to say that f g i  !  g on all of M. We say that (Mi ; pi ) !  (M; p) smoothly if the
convergence is C k  for all k 2  N.

Whether the convergence is C k  or smooth, we will call such an ( f i )  a sequence of
almost isometric maps witnessing the convergence Mi !  M. When the particular
radii R i  do not matter, we will denote our partially dened maps by

f i  : M Mi;
where the notation indicates that each f i  is only partially dened on M, but any
point p 2  M is in the domain of f i  for all large i.

Of course, another way to dene Ck-convergence would be to require that for
every xed radius R  >  0, there is a sequence of maps f i  : B (p; R)   !  Mi satisfying the
properties above. To  translate between the two denitions, we can restrict the f i  in
(38) from Ri -balls to R-balls, or in the other direction, we can take a diagonal
sequence where R  increases with i. Most of the time, we will use the ‘xed R ’
perspective in this appendix.

In some references, e.g. Petersen [81, §10.3.2], R  is xed and the maps f i  are
dened on open sets containing B (p; R)  and their images are required to contain
B (p i ; R )   Mi. Such restrictions on the image of the f i  do not change the re-
sulting Ck-topology, though, since for large i  the maps f i  are locally 2-bilipschitz
embeddings, and we can appeal to the following Lemma.

Lemma A.2.  Suppose M; N are complete Riemannian d-manifolds, p 2  M . If
f  : B (p; R)   !  N  is a smooth locally -bilipschitz embedding,

f (B (p; R) )   B (f (p); R=):

Proof. F ix  a point q 2  B (f (p) ; R=)  and let  : [0; 1]  !  N  be a length-minimizing
geodesic with (0) =  f (p)  and (1) =  q. Let

T =  ft  j 9 t : [0; t]  !  B (p; R)  with t (0) =  p; f   t  =  j[0;t]g  [0; 1]:
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The set T is a subinterval of [0; 1] that contains 0. It is open in [0; 1], since f  is a
local dieomorphism. We claim that it is also closed. First, as f  is a local
dieomorphism the lifts t  are unique if they exist, so if t 2  [0; 1] is a limit point of T
then the limiting lifts patch together to give

 : [0; t)  !  R;  (0) =  p; f    =  j[0;t) :

The path  is itself locally -bilipschitz, so its image is contained within the compact
subset B (p; d(f (p); q))  B (p; R).  From this and the fact that it is locally bilips-chitz,
can be continuously extended to a map [0; t]  !  R.  This map must lift , so t 2  T .
Therefore, T =  [0; 1], implying in particular that q =  (1) 2  f (B (p; R)) .

One reason that these convergence notions are useful is that sequences of mani-
folds with ‘uniformly bounded geometry’ have convergent subsequences.

Denit ion A.3.  Suppose that M is a complete C k -Riemannian manifold. A  subset A
M has C k-bounded geometry if for some xed r; ; L >  0 there is a system of
coordinate charts

s  : B R d  (0; r)  !  Us  M
with the following properties:

1) for every p 2  A, the ball B (p; )  Us for some s, 2)
s  is locally L-bilipschitz,
3) all coordinates of the metric tensor (g ) i j  have C k -norm at most L ,  4)
the transition maps  1  t  have C k+1 -norm at most L .

A  sequence of subsets A i   Mi of complete Riemannian manifolds has uniformly
Ck-bounded geometry if the constants r; ; L  can be chosen independently of i.

The conditions above are a simplication of those given by Petersen [81, pp. 289,
297] that are sucient for the following theorem.

Theorem A.4.  Suppose that (Mi ; pi ) is a sequence of complete pointed C k -Riemannian
manifolds and that for some xed R  >  0 the balls B (p i ; R )   Mi have uniformly Ck-
bounded geometry. Then there is a complete pointed C k  1-Riemannian manifold
(M; p) and, for suciently large i ,  embeddings

f i  : B (p; R      1)  !  Mi

with f i (p)  =  pi such that f g i  !  g in the C k  1-topology on B (p; R      1), where gi; g
are the Riemannian metrics on Mi; M .

In other words, if the balls B (p i ; R )  2  Mi have uniformly Ck-bounded geometry,
there is a subsequence on which we see C k  1-convergence of the (Mi ; pi ), at least
within a distance of R    1 from the base points. This is a version of Cheeger’s
compactness theorem [81, Ch. 10, Thm. 3.3] for R-balls {  Cheeger’s theorem usually
requires uniform geometry bounds over the entire manifolds and then gives a fully
convergent subsequence.

Proof of Theorem A.4. The theorem is not implied by the statement of Cheeger’s
compactness theorem given in [81, Ch. 10, Thm. 3.3], since the latter requires
uniform C k  bounds over the entire manifolds (Mi ; pi ), but the proof is the same.

The ideas to take a subsequential Gromov-Hausdor limit ( X ; x )  of the balls B M

(pi ; R), which exists by the uniform geometry bounds. An atlas of C k  1-charts for X
is obtained as a limit of the charts for B M i  (p i ; R) with uniformly C k-bounded
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geometry, and then one shows that the convergence is C k  1 in addition to Gromov-
Hausdor. Then choose a complete pointed Riemannian manifold (M; p) such that
B (p; R       1)  M and B ( x ; R       1)  X  are isometric.

The details are entirely the same as those of [81, Ch. 10, Thm. 3.3].

Theorem A.4 also gives a strong version of Cheeger’s theorem in which the uni-
form geometry bounds may depend on the distance to the base point:

Corol lary A.5.  Let (Mi ; pi ) be a sequence of complete pointed Riemannian mani-
folds such that for every R  >  0 and k 2  N, the balls B (p i ; R )   Mi have uniformly Ck-
bounded geometry, where the bounds may depend on R; k but not on i .  Then
(Mi ; pi ) has a smoothly convergent subsequence.

Proof. Applying a diagonal argument and passing to a subsequence, we may as-
sume that for every k 2  N, there is a complete pointed C k  1-Riemannian manifold
(Lk ; q k )  and, for suciently large i, embeddings

f i ; k  : B (p; k      1)  !  Mi

with f i (q k )  =  pi such that f g i  !  gk in the C k  1-topology on B (p; R   1), where
gi ; gk are the Riemannian metrics on Mi; M .

By Arzela-Ascoli’s theorem, for each k there is a pointed isometry

B L k  (qk ; k      1)  !  B L k + 1  (qk +1 ; k      1):

So, the direct limit of the system

B L 2  (q2; 1)  !  B L 3  (q3; 2)  !  B L 4  (q4; 3)  !

is a complete pointed C 1 -Riemannian manifold to which (Mi ; pi ) smoothly con-
verges.

A.2. Metr izabi l i ty  of M d  in  the smooth topology. The goal here is to show
that smooth convergence on M d  is induced by a Polish topology. As mentioned
in the introduction, this result was established independently and concurrently by
Candel, Alvarez Lopez and Barral Lijo [10]. Their paper became available earlier than
ours, so the theorem is certainly theirs. The two approaches use the same key
idea, encoding partial derivatives of a metric in iterated Sasaki metrics, but ours
produces an explicit metric that will be used elsewhere in the paper, namely in
§A.5. Our approach is also a bit simpler, since we use metric neighborhoods of the
zero section in iterated tangent bundles instead of the iteratively dened
neighborhoods in [10].

Suppose M is a manifold with a Riemannian metric g. Sasaki [86] introduced a
Riemannian metric g1 on the tangent bundle T M. If (x1; : : : ; xd) is a coordinate
system for some U  M, let

(x; v) =  (x1; : : : ; xd; v1; : : : ; vd)

be the induced coordinates on T U, where vi =  D x i .  At a point (x; v) 2  T U, the
Sasaki metric g1 is given as follows, see [86, p. 342]: for 1  i ; j   d,

(g 1 )i j  =  g i j  +
X

g i  j vv 1;;;d

(39) (g1 )i ( d + j )  =  j i v  1d
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(g 1 ) (d + i )  ( d + j )  =  gi j :

Here,  k a j  and        are the Christoel symbols of g of the rst and second kind, and
all the metric data on the right sides of the equations are taken at x  2  U.

The k-fold iterated tangent bundle of a manifold M is the manifold

T kM =  T (T (T (M )) ):

Any smooth map f  of manifolds induces a smooth map of iterated tangent bundles,
the iterated total derivative D k f ,  and if M has a Riemannian metric g then T kM
inherits the k-fold iterated Sasaki metric gk . Note that

T kM  !  T k 1M  !    !  T M  !  M

is a sequence of vector bundles, so for each i  we have a zero section

: T i 1M  !  T iM:

Dene the zero section of the ber bundle T kM  !  M to be the iteration k

: M  !  T kM:

We now show that the iterated Sasaki metric gk encodes all order  k derivatives of
g. We will state this in a strong way that will be useful in Corollary A.7, but
the point is that partial derivatives of the g i j  can be written in terms of the g.

Lemma A.6.  Suppose g is a Riemannian metric on an open subset U  Rd  and let g1

be the Sasaki metric on T U .     Fix coordinates (x1; : : : ; xd) on U and let
(x1; : : : ; xd; v1; : : : ; vd) be the induced coordinates on T U , where vi =  D x i .

For every x  =  (x1; : : : ; xd) 2  U and indices ; i; j 2  f1; : : : ; dg, we have

(40) g i j (x)  =  g( i + d ) ( j + d ) (x; v );  8v 2  TxU

(41) @gij (x) =  t  (g i ( d + j )  +  gj (d+i) )(x; 0; : : : ; 
t 

; : : : ; 0); 8t >  0:
t h  place

Now x k, and iterate the above construction to give a system of coordinates on
T k U . For any compact C   U and any open neighborhood O  k ( C )  in T k U , any
partial derivative @ ;:::; g i j (x)  with x  2  C ,  0  l  k can be represented as a linear
combination

(42) @1;:::;l g i j (x)  = tn  g n n  (vn ) n

where vn 2  O and 1  n ; n   kd. Here, vn ; n ; n ; tn are determined just by the indices
1; : : : ; l ; i; j and the choices of C; U , and not by the metric g.

Proof. The k =  1 case follows from (39), using the identity  j i  +   i j  =  @gij. For
(42), rst choose some t >  1 such that for all x  2  C ,  the point

(x; 0; : : : ; 
t 

; : : : ; 0) 2  O:
t h  place

Then (42) is proved inductively: every time a successive partial derivative of is
taken, one can instead consider the appropriate linear combination of entries of
the next Sasaki metric, given in (40). One takes at most k of these derivatives,
and then uses (41) to encode the resulting data in the kth iterated Sasaki metric,
instead of a previous one.
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It will follow that Ck-convergence of metrics gi is equivalent to C0-convergence of
the Sasaki metrics gk . Here, recall that Ck-convergence means uniform convergence
on compact sets of all derivatives up to order k. In fact, slightly more is true.

Corol lary A.7.  Fix k 2  N. Suppose that gi; g are Riemannian metrics on some
manifold M , and let gk ; gk be the induced Sasaki metrics on T kM . Then the fol-
lowing are equivalent:

1) gi !  g in the Ck-topology on M ,
2) gk !  gk in the C0-topology on T kM ,
3) for any compact C   M , there is some open set O  T kM containing

k ( C )  such that gk !  gk uniformly on K .

Proof. Covering M with a locally nite set of coordinate charts, it suces to prove the
Corollary when M is an open subset of R n .  So, we will feel free to use the
coordinate expressions in (39) and Lemma A.6 below without comment.

For (1) implies (2), x  a compact subset K   T kM . The Ck-convergence gi !  g
implies that all derivatives up to order k of gi converge to those of g, uniformly
on the projection of K  into M. In particular, when computing each successive
Sasaki metric, the Christoel symbols in (39) converge. Since K  is compact, all
coordinates v; v from (39) that are relevant in the construction of gk are bounded. It
follows that gk !  gk uniformly on K .

Since C0-convergence is by denition uniform convergence on compact sets, the
implication (2) = )  (3) is obvious, taking O to be any such open subset that has
compact closure in T kM .

It remains to prove (3) = )  (1): Given a compact subset C   M, let O be as in
(3). For each x  2  M, we can use (42) to write the partial derivatives of each gi as
linear combinations of entries of the gk , evaluated at points of O, where then
particular linear combination is independent of i, and also works for g. These linear
combinations converge uniformly, by our assumption, so gi !  g in the C k-topology
as desired.

The advantage of using convergence of Sasaki metrics instead of C k  convergence
is that it is easier to metrize, since two Sasaki metrics can then be compared by
analyzing the minimal distortion of a bilipschitz map between them. Now, it is
not the case that when two metrics on M are C k-close, the associated metrics on
T kM are bilipschitz. (We thank a referee for rst bringing this to our attention.)
For instance, looking at (39), if two metrics are C1-close then their Christoel
symbols are close, but the expression given for the Sasaki metric also includes the
coordinates v; v, which can be arbitrarily large13. To  x  this, we only look at the
bilipschitz distortion on subsets of T kM in which the coordinates v; v are
bounded. Namely, for each r  >  0 and k 2  N, let

Z k (M )  T kM

13One can also see this issue when calculating D 2 f ,  where f  : R   !  R  is a map between open
subsets of R  that is C 2-close to the identity. On T 2 R,  the map D 2 f  has the form

(x; v; w)  !  x; f 0 (x)v ; f
f

0 (x)v f 0 (x)w;

where here v 2  T R x  =  R  and w 2  T ( T R ) ( x ; v )  =  R2 . The term f 00 (x)v can be arbitrarily large, so
D 2 f  is only bilipschitz if f 00 (x)  0.
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be the radius-r neighborhood of the zero section k (M ), with respect to the k-fold
iterated Sasaki metric. Then we have:

Corol lary A.8.  Suppose that (Mn ; pn ) 2  M d ,  where n =  1; 2; : : :. Then (Mn ; pn )
converges C k  to (M; p) 2  M d  if and only if for every R  >  0, we have that for
suciently large n, there are smooth embeddings

f n  : B M  (p; R)  !  Mn

with fn (p)  =  pn such that for some r  >  0, the iterated total derivatives

D k f n  : T k B M  (p; R)  !  T k Mn

are locally n-bilipschitz embeddings on Z r  : =  Z r
 ( B M  (p; R)), with n  !  1.

Proof. Let g and gn be the metrics on M and Mn. The point is to show that the
condition that D k f n  is locally n-bilipschitz on Z r ,  with n  !  1, is equivalent to the
condition that f g n  !  g in the Ck-topology. First, note that

(D k f n ) g k  =  ( f n g n ) k  ;

where gk is the Sasaki metric on T k Mn and (f gn )k  is the Sasaki metric on
T k B M  (p; R) corresponding to f gn . So, D k f n  is locally n-bilipschitz on Z r  exactly
when

(43) id : ( B M  (p; R); g k )  !  ( B M  (p; R); (f gn )k )

is locally n-bilipschitz on Z r .
The ‘only if ’ direction then follows from our previous work, since if the map (43)

is locally n-bilipschitz on Z r
 (M ) with n  !  1, then

(f n g n ) k  !  gk

uniformly on Z r ,  implying that f g n  converges C k  to g by Corollary A.7.
The ‘if ’ direction is also easy. Suppose that f g n  !  g in the Ck-topology. Then

Corollary A.7 implies that ( f gn )k  !  gk in the C 0  topology. The ball B M  (p; R) has
compact closure in M, so the set Z r  has compact closure in T kM . Hence, ( f gn )k

!  gk uniformly on Z r ,  implying that the identity map in (43) is locally n-
bilipschitz with n  !  1.

Finally, we record for later use the following fact.

Fac t  A.9.  Fix  >  1, k 2  N and r  >  0.     Suppose that f  : M  !  N  is a smooth
map of Riemannian manifolds and that D k f  is locally -bilipschitz when restricted
to some neighborhood of the zero section k (M )  T k M , for instance the neighborhoods
Z r

 (M ) above. Then the map f  is itself locally -bilipschitz.

Proof. Let x  2  M, set v0 : =  x  and set v i =  i (x),  for i  =  1; : : : ; k. For each i, we
have isometric embeddings

 : T i Mv i      1   !  T ((T i M )vi      1  ) v i  , !  T i + 1 Mv i  ;

which satisfy the commutative diagram

T i Mv i      1

D
i f

T i + 1 Mv i

D i + 1 f       ;

T i N D i      1 f ( v i      1 ) T i + 1 N D i f ( v i )
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dening  similarly on N . The commutativity is just the statement that a linear map
is its own derivative, and the fact that  is an isometric embedding is immediate from
the denition of the Sasaki metric. Composing, we have a diagram

T Mx
k

T k + 1 Mv k

D f D k + 1 f       ;

T N f ( x )          
k             

T k + 1 N D k f ( v
k
)

so if the linear map D k + 1 f  is -bilipschitz, so must be D f .

Corollary A.8 suggests a description of a basis of neighborhoods around a point
(M; p) 2  M d .  We dene the kth-order (R; r; )-neighborhood of (M; p), written

NR;r ;(M; p);

to be the set of all (N ; q) such that there is a smooth embedding

f  : B M  (p; R)  !  N

with f (p)  =  q such that D k f  : T k U  !  T k N is locally -bilipschitz with respect to
the iterated Sasaki metrics on Z k ( B M  (p; R)). Note that NR ; r; (M ; p) is a closed
neighborhood of (M; p). By Arzela-Ascoli, its interior is the open neighborhood

NR ; r ;(M ; p)

that is dened similarly, except that we require D k f  to be locally 0-bilipschitz for
some 0 <  .

Theorem A.10. M d  has the structure of a Polish space (a complete, separable
metric space), in which convergence is smooth convergence.

Proof. For each R  >  0 and k 2  N, dene a function d R ; k  : M d   M d   !  R  by

dR ; k  ((M; p); (N; q)) =  inf flog  j (N ; q) 2  NR=;1=;(M; p)g:

Each d R ; k  satises an (asymmetric) triangle inequality. For suppose we have
(M; p); (N; q); (Z; z) 2  M d  and basepoint respecting embeddings

f  : B M  (p; R=)  !  N ; g : B N  (q ; R=)  !  Z

such that D k f  and D k g  are locally -bilipschitz and locally -bilipschitz embed-
dings, respectively, when restricted to the sets

Z 1 = (B M  (p; R=))  T kM; Z 1 = ( B N  (q ; R=))  T k N : By Fact

A.9, the map f  is also a locally -bilipschitz embedding, so

f B M p;  B N q; ;

and since D k f  is -bilipschitz,
D k f  Z 1 = ( ) (B M  (p; R=()))  Z 1 = ( B N  (q; R=)):

Therefore, the composition g f  : B M  (p; )   !  N  is dened and the map D k (g f )  is
locally ()-bilipschitz on Z 1 = ( ) (B M  (p; R=()): So,

dR ; k  ((M; p); (Z; z))  inf log
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=  inf log  +  inf log

=  d R ; k  ((M; p); (N; q)) +  dR ; k  ((N ; q); (Z; z )) :

The subsets of M d  dened for each (M; p) 2  M d ,  R  >  0, k 2  N,  >  0 by

dR ; k  ((M; p); )  <

form a basis for a smooth topology on M d  that induces smooth convergence, by
Lemma A.8. Although the dR ; k  are not symmetric, the reversed inequalities

dR ; k  ( ; (M; p)) <

dene a basis for the same topology, as Lemma A.2 allows the relevant locally
bilipschitz maps to be inverted at the expense of decreasing R .  So, the smooth
topology is generated by the family of pseudo-metrics

dR ; k  : M d   M d   !  R;  dR;k (x; y ) =  dR;k (x; y ) +  dR;k (y ; x):

As the topology on M d  induced by a particular pseudo-metric dR ; k  becomes
ner if R; k are increased, it suces to consider only dk ;k for k 2  N. Therefore, the
following is a metric on M d  that induces the smooth topology:

D  : M d   M d   !  R;  D
 

x; y
 
=  

X
2  k  minfdk;k (x; y); 1g:
k = 1

We now show that M d  is separable. An element (M; p) 2  M d  is a limit of closed
Riemannian manifolds: for instance, we can exhaust M by a sequence of compact
submanifolds with boundary, double each of these and extend the Riemannian
metric on one side arbitrarily to the other. So, it suces to construct a countable
subset of M d  that accumulates onto every closed manifold in M d .

There are only countably many dieomorphism types of closed manifolds: this is
a consequence of Cheeger’s niteness theorem [37], for instance. So, it suces to
show that the space M ( M )  of isometry classes of pointed closed Riemannian
manifolds in the dieomorphism class of some xed M is separable in the smooth
topology. This space M ( M )  is a continuous image of the product of M with the
space of Riemannian metrics on M, with the smooth topology on tensors. The
manifold M is separable, and so is the space of Riemannian metrics on M, by
the Weierstrass approximation theorem. So, their product is separable, implying
M ( M )  is too, nishing the proof.

Finally, we want to show that ( M d ; D )  is complete, so let (Mi ; pi ) be a Cauchy
sequence. We claim that for every R  >  0 and k 2  N, the balls

B (p i ; R )   Mi

have uniformly Ck-bounded geometry, in the sense of Denition A.3. Corollary A.5
will then imply that (Mi ; pi ) has a smoothly convergent subsequence, which will
nish the proof.

It suces to show that there are arbitrarily large R; k for which the balls

B (p i ; R )   Mi

have uniformly Ck-bounded geometry. So, x  some k 2  N. Since (Mi ; pi ) is D-
Cauchy and D  =        j = 1  2 j  minfdj;j ; 1g; the dk;k-diameter of the tail of (Mi ; pi )
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can be made arbitrarily small. In other words, there is some (M; p) 2  M d  such
that for suciently large i,

dk ;k (M; p); (Mi; pi ) <  log 2:

This means that for each large i  there is a pointed, smooth embedding

f i  : B M  (p; k)  !  Mi

such that D k f i  is locally 2-bilipschitz on Z  : =  Z k  ( B M  (p; k=2)). By Lemma A.2,
2

f ( B M  (p; k=2))  B M i  (pi ; k=4):

By precompactness, the ball B M  (p; k=2      1)  M has Ck-bounded geometry, in the
sense of Denition A.3, for some constants r; ; L. We will use the maps f i  to translate
this to uniform Ck-geometry bounds for the balls

B M i  (p i ; R)  Mi; where R  : =  (k      1)=4:
Let s  : B   !  Us  M be nitely many coordinate charts as in Denition A.3, where B
is a ball around the origin in Rd , and by shrinking B  assume that Us  B M  (p; k) for
all s. Dene

i ; s  : B   !  Ui;s   Mi; i ; s  =  f i   s      8i; s:

It is now straightforward to verify that 1) {  4) of Denition A.3 are satised for the
subsets B M  (pi ; R)  Mi by the charts i ;s , with modied constants. As the maps f i  : B M
(p; R)  !  Mi are locally 2-bilipschitz, the i ; s  are locally 2L-bilipschitz, so by Lemma
A.2 the =2-ball around every q 2  B M  (p; R0) is contained in some Ui;s , as R0 =  ( R
1)=2. The transition maps of 4) are unchanged by the composition, so it remains to
prove condition 3). The argument for here is like an eective version of (3) = )  (1)
in Corollary A.7. F ix  some s, and let O =  D k  1 (Z )   T k B , where Z   T kM is the
precompact subset dened above on which f i  is locally 2-bilipschitz. By Lemma
A.6, each partial derivative of a Riemannian metric g on B  can be expressed as some
xed linear combination

(44) @1;:::;l g i j (x)  = tn  g n n  (vn ) n

of coecients of the metric gk on T k B , where vn 2  O and the linear combination
depends only on the partial derivative taken and the neighborhood O, not the metric
g. So, let gM  and gi be the metrics on M and Mi, respectively. By assumption,
the coecients of the metric gM  have bounded C k  norm, so since O  T k B  is
precompact, the construction of the Sasaki metric implies that all the coecients of
(gM  )k  =  (D k )g k     

 are bounded on O. But since D k f i  is 2-bilipschitz on Z ,  the
metrics gk     and (D k f )g k  dier by a factor of at most 2 on Z ,  and hence the coecients
of the metric

( ( f i   s )g i )k  =  ( D k i  ) ( (D k f )g k )

are also bounded on O. Equation (44) then implies that all partial derivatives of
the metric ( f i   s )gi  are bounded, which proves condition (3).

This shows that for all k 2  N, the balls B (pi ; (k   1)=2)  Mi have uniformly Ck-
bounded geometry. (We showed this explicitly for large i, but the initial nitely many
terms only contribute a bounded increase to the constants.) So, Corollary A.5
implies that (Mi ; pi ) has a smoothly convergent subsequence.
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A.3. Vectored and framed manifolds. It is often convenient to supplement the
basepoint of a pointed manifold (M; p) with additional local data: for instance, a
unit vector or an orthonormal basis for TpM. An orthonormal basis for TpM is
called a frame for M at p, and we let F M   !  M be the bundle of all frames for
M.

A  vectored Riemannian manifold is a pair (M; v), where v 2  T M is a unit
vector, and a framed Riemannian manifold is a pair (M; f ), where f  2  F M  is
some (orthonormal) frame. We dene

1 d vectored, connected, complete
Riemannian d-manifolds ( M ; v )

d framed, connected, complete
Riemannian d-manifolds ( M ; f )

where in both cases we consider vectored (framed) manifolds up to vectored (framed)
isometry. Smooth convergence of vectored Riemannian manifolds is dened as fol-
lows: we say that (Mi ; vi ) !  (M; v) if for every R  >  0 there is an open set U
B (p; R)  and, for suciently large i, embeddings

(45) f i  : U  !  Mi

with D f i (v )  =  vi such that and f g i  !  g on U in the C 1 -topology, where gi; g are
the Riemannian metrics on Mi; M ; an analogous denition gives a notion of smooth
convergence on F M d .  We then have:

Theorem A.11. T 1 Md  and F M d  both admit complete, separable metrics that
topologize smooth convergence, and such that the natural maps

F M d   !  T 1 Md   !  M d

dened by taking a frame to its rst element, and a vector to its basepoint, are
quotient maps.

The proof is identical to the work done earlier in this section. In particular, one
can still reinterpret smooth convergence through locally bilipschitz maps of iterated
tangent bundles, as long as these maps respect the obvious lifts of the base vectors
or frames of the original manifolds. Also, all compactness arguments still apply
since we have chosen unit vectors and orthonormal frames.

A.4. T h e  Chabauty  topology. Suppose M is a proper metric space and let
C(M ) be the space of closed subsets of M. The Chabauty topology on C(M ) is that
generated by subsets of the form

(46) f C  2  C(M ) j C  \  K  =  ;g; f C  2  C(M ) j C  \  U =  ;g;

where K   M is compact and U  M is open. It is also called the Fel l topology by
analysts. Convergence can be characterized as follows:

Proposition A.12 (Prop E.12, [14]). A  sequence ( C i )  in C(M ) converges to C  2
C(M ) in the Chabauty topology if and only if

1) if x i      2  C i      and x i      !  x  2  M , where i j  !  1 ,  then x  2  C .
2) if x  2  C ,  then there exist x i  2  C i  such that x i  !  x .

The Chabauty topology is compact, separable and metrizable [14, Lemma E.1.1].
When M is compact, it is induced by the Hausdor metric on C (M ), where the
distance between closed subsets C1 ; C2  M as dened as

dHaus (C1 ; C2 ) =  inf f j C1   N(C2 )  and C2   N(C1 )g:
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For noncompact M, the Chabauty topology is almost, but not quite, induced by
taking the Hausdor topology on all compact subsets of M. Namely, x  a base point
p 2  M. If A   M is closed and R  >  0, set

A R  =  A  \  B (p; R);

and then dene a pseudo-metric d     on C(M ) by setting
n o

d R (A; B )  =  min 1; dHaus (AR ; BR ) ;

where dHaus is the Hausdor metric of the compact subset B (p; R)   M.
The family of pseudo-metrics f d R  j R  >  0g does not determine the Chabauty

topology, since if x i  !  x  is a convergent sequence of points with d(x; p) =  R
and d(xi ; p) >  R  for all i, then fx i g  !  fxg  in the Chabauty topology, but
d R (fx i g; fxg)  =  1 for all i.

We now describe how to taper down d R  near the boundary of B (p; R)  so that
even when points converge into @B(p; R) from outside, d R  does not jump in the
limit. The idea is to view the Hausdor distance on closed subsets of B (p; R)  as a
special case of a distance dusc on upper semicontinuous (u.s.c.) functions

; g : B (p; R)   !  [0; 1]:

Closed subsets A ; B  have u.s.c. characteristic functions 1A ; 1B . The advantage of
functions is that 1 A (x)  and 1 B (x )  can be scaled to converge to zero as x  !  @B(p; R),
so that near @B(p; R), the contribution to distance is negligible.

To  dene a metric on u.s.c. functions, we use an idea of Beer [13]. Given a
compact metric space K  and a function  : K   !  [0; 1], let

H ( )  =  f(x; s) j s  (x)g  K   [0; 1]

be the hypograph of . The distance between functions ; : K   !  [0; 1] is

dusc(; )  : =  dHaus (H ( ) ; H (  )) ;

where dHaus is the Hausdor metric on K   [0; 1], considered with the product
metric d((x; s); (y; t)) =  d(x; y) +  d(s; t). Note that if A ; B   K  are closed,

dusc(1A ; 1B ) =  min 1; dHaus (A ; B )  :

F ix  a function  : K   !  [0; 1], and dene a new metric dHaus on C ( K )  via

dHaus (A; B ) =  dusc ( H (   1 A ) ; H (   1B )) :

So in words, we are just taking the Hausdor distance between A; B ,  but are scaling
down the importance of dierent parts of the sets as dictated by .

Lemma A.13. Suppose ; : K   !  [0; 1] are u.s.c. functions, that  is -lipschitz,
and that (x)   C  (x) .  Then dH a u s   maxfC;  +  1gdHaus :

Note that the lipschitz condition is necessary for any sort of inequality. For
instance, if  approximates 1 f x g  and =  1 is constant, we can make

1  dHaus (fxg; fyg) > >  dHaus (fxg; fyg)  0

by taking y  x  and the approximation   1 f x g  suciently close.
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Proof. Suppose that H (       1A )  and H (       1 B )  are -close in the Hausdor metric. We
want to show H ( 1 A )  and H ( 1 B )  are (maxfC; + 1g )-close, i.e. that the two sets are
each contained in (maxfC;  +  1g  )-neighborhoods of each other.

Let x  2  A. It suces to show that there is some (y; t) 2  H (   1 B )  with

(47) d((x; (x)); (y; t))   maxfC;  +  1g:

For the same estimate will also work with (x)  replaced by any s <  (x), so H (
1A )  is contained in a C-neighborhood of H (   1B ). The proof of the other inclusion is
the same, switching the roles of A; B .

We know that there is some (y; t) 2  H (       1 B )  with d((x; (x)); (y; t))  : If t =
0, then (x)   , implying (x)   C ,  and d((x; (x)); (x; 0))  C ;  which proves
(47). So, assume t =  0. In this case, y 2  B  and d(x; y)  . Since  is -lipschitz,
j(x)      (y)j  . Hence,

d((x; (x)); (y; (y)))  (1 +  ):

We now return to the problem of constructing a metric for the Chabauty topology
on C(M ), for a proper metric space M. F ix  a point p 2  M and for each R  >  0,
dene a pseudometric d     on C(M ) by

(
R  d(p;x)

(48) d R  =  dHaus; where R ( x )  =
0

R
d(p; x)  R :

Note that d R  induces the Hausdor topology on the set of compact subsets of the
open ball B (p; R),  but cannot tell apart subsets of M r  B (p; R).  Also, earlier we
only dened our modied Hausdor metrics d for K  compact, while M is not
compact. However, since R ( x )  =  0 when d(p; x)  R ,  one can consider the above
construction as taking place within K  =  B (p; R).

Proposition A.14. The Chabauty topology on C(M ) is induced by the family of
pseudo-metrics dR ,  for R  2  ( 0 ; 1 ) .

By Lemma A.13, we have d R   2dR0  whenever 1  R   R0, since R  is 1-lipschitz and R 0

R .  This implies the Chabauty topology is induced by any family d R  with R i  !
1 ,  although this is also clear from the proof below.

Proof. Assume that A i  !  A  in the Chabauty topology. Fixing R ,  we want to show
that the hypographs H ( R   1 A  )  Hausdor converge to H ( R   1A ).

First, suppose that (x; t) 2  H ( R   1A ). If t =  0, we have (x; t) 2  H ( R   1 A  )  for all i. If
t =  0, then p 2  A  \  B (p; R),  so by Chabauty convergence, x  =  limi x i  for some
sequence x i  2  A i .  So, (x; t) is a limit of points (xi ; t i )  2  H ( R   1 A  ).

Next, suppose (x; t) is the limit of some sequence ( x i j  ; t i j  )  2  H ( R  1 A i      ). Again, if
t =  0 then (x; t) 2  H ( R   1A )  automatically, so we are done. Otherwise, we can
assume after passing to a further subsequence that ti     =  0 for all i j .  In this case,
each x i      2  A i ,  so x  =  lim xi     2  A. Hence (x; t) 2  H ( R   1A ).

Finally, we must show that if ( A i )  does not converge to A  in the Chabauty
topology, then there is some R  with d R (A i ; A)  !  0. There are two cases. Assume
rst that x  2  A  is not the limit of any sequence x i  2  A i .  Taking R  >  d(p; x), we
see that (x ; R   1 A (x))  2  H ( R   1A )  is not the limit of any sequence of points in the
hypographs H ( R   1 A i  ), so we have d R (A i ; A)  !  0. Similarly, if there
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is some sequence x i       2  A i       that converges to a point outside of A, the points
( x i j  ; R   1 A i j  

( x i j  ) )  will converge to a point outside of H ( R   1A ).

Finally, for use in the next section, we prove:

Corol lary A.15. Suppose that f  : B M  (p1 ; R1 )  !  M2 is a locally -bilipschitz
embedding with R 1   1, and f (p1 ) =  p2. Then for any R 2   R1 ; we have

d ( f  1 (C ); f  1 (D ))   d (C ; D );  8C ; D 2  C(M ):
Note that R 2   R 1  implies f

 
B M 1  (p1 ; R1 )

 
 B M 2  (p1; R2).

Proof. The two sides of the inequality are dHaus (C; D), i  =  1; 2, where

1 : M2  !  [0; 1]; 1 (x2 ) =
R 1  d(p1 ;x 1 ) x2 =  f (x1 ); x1

;
2 B

;  
(p1; R1);

R 2  d(p2 ;x 2 )

2 : M2  !  [0; 1]; 2 (x2 ) =
0

R 2

x2 2  B M 2  (p1; R2):

Since f  is -lipschitz, we have d(p2; x2)  d(p1; x1) if f (x1 )  =  x2. Conversely, suppose
is a path in M2 joining x2 to p2. The preimage f  1 () is either a path from x1 to p1,
or is a union of paths, the last of which is a path from @BM (p1 ; R1 ) to p1. In either
case, the length of f  1 () is at least d(p; x1), so the length of  is at least d(p; x1), as f
is locally -bilipschitz. This shows

(49) d(p1; x1)  d(p2; x2)  d(p1; x1):
Note that it may not be true that f  is globally -bilipschitz, e.g. if f  is the

inclusion of an interval of length :999 into a circle of length 1, but (49) holds in this
case because one of the two points is the center of the interval.

It follows from (49) that 1 is -lipschitz. Moreover, since R 2   R1 ,

1 (x2 )  
R 1       d(p1; x1) 

 
R 1       d(p2; x2) 

 2 (x2 ) 
1 1

for all x2 2  B M  (p1; R2). So 1=2  1. Therefore, the hypotheses of Lemma A.13 are
satised with the constant , which proves the corollary.

A.5. T h e  smooth-Chabauty topology. In this section we combine the smooth
topology of §A.2 with the Chabauty topology of §A.4. Consider the set

d M  a complete, connected Riemannian
d-manifold, p 2 M ;  and C M  a closed subset

where (M1; p1; C1)  (M2; p2; C2) if there is an isometry M1  !  M2 with p1 !  p2
and C1  !  C2 . We say that (Mi ; pi ; Ci ) !  (M; p; C ) in the smooth-Chabauty
topology if for large i  there are embeddings

(50) f i  : B M  (p; Ri )   !  Mi

with f i (p)  =  pi such that R i  !  1  and the following two conditions hold:
1) f g i  !  g in the C 1 -topology, where gi; g are the Riemannian metrics on

M ; M, and
2) f i  

1 (C i )  !  C  in the Chabauty topology on closed subsets of M.
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Note that the metrics f g i  are only partially dened, but they are dened on larger and
larger subsets of M as i  !  1 .  So as C 1-convergence of metrics is checked on
compact sets, the convergence in 1) still makes sense. As in §A.1, we call ( f i )  a
sequence of almost isometric maps witnessing the convergence (Mi ; pi ; Ci ) !
(M; p; C). Also, when the R i  do not matter, we will again write

f i  : M Mi

to indicate that the maps f i  are partially dened, but that their domains of deni-tion
exhaust M. (This notation will be mostly used in the body of the paper, not in this
appendix.)

We now show how to construct a quasi-metric that induces the smooth{Chabauty
topology. Here, a quasi-metric on a set X  is a nonnegative, symmetric function
d : X  X   !  R  that vanishes exactly on the diagonal and for some K   1 satises the
quasi-triangle inequality

d(x1 ; x3 )  K (d(x1 ; x2 ) +  d(x2; x3)); 8x1; x2; x3 2  X :

Examples of quasi-metrics include powers d =   of metrics , and a theorem of Frink,
c.f. [8], implies that for every quasi-metric d, there is an honest metric  on X  such
that  1   d=  K  for some   1 and K  >  0. The added exibility in the quasi-triangle
inequality makes it much easier to construct quasi-metrics than metrics, and yet
Frink’s theorem shows that essentially, one can do as much with the former as with
the latter.

Given points X i  =  (Mi ; pi ; Ci ) 2  C Md , i  =  1; 2, dene

d R ; k (X 1 ; X 2 )  =  minf1; inf flog  +  gg;

where the inmum is taken over all ;  such that there is a smooth embedding f  :
B M 1  (p1 ; R=)  !  M2 with f (p1 ) =  p2 such that

1) D k f  : T k B M  (p1 ; R=)  !  T kM2 is locally -bilipschitz on the subset
Z 1 = (B M 1  (p1 ; R=)  T kM1 with respect to the iterated Sasaki metric ,

2) dR =(C1 ; f  1 (C2 ))  , where dR= is as in Proposition A.14.
Note that if  and 0 are at least e =  2:718 : : :, the 1 realizes the minimum dening
dR;k . So, everywhere below, we will always assume ; 0 <  e:

The functions dR ; k  are not symmetric, so later on we will symmetrize them.
However, they are already ‘quasi-symmetric’:

Lemma A.16. If R  >  0, k 2  N and X i  =  (Mi ; pi ; Ci ) 2  C M d  for i  =  1; 2,

d R ; k (X 2 ; X 1 )   e dR ; k (X1 ; X2 ):

Proof. Suppose d R ; k (X 1 ; X 2 )  <  log  +  , where the sum is that in the denition of
dR;k , and choose f  : B M  (p1 ; R=)  !  M2 as above realizing this inequality.
Applying Lemma A.2, the inverse map is dened on the domain

f  1 : B M 2  (p2 ; R=2)  !  M1;

and of course is locally -bilipschitz. Note that the iterated derivative of f  1 is
( D k f )  1, which is locally -bilipschitz on D k f ( Z ) ,  where

Z  =  Z 1 = (B M 1  (p1 ; R=)  T kM1:

14Here, recall that Z k ( M )  is the r-neighborhood of the zero section in T k (M ).
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And since D k f  is locally -bilipschitz, we have

D k f ( Z )   Z1= 2  ( B M 2  (p2; R=2);

so D k f  1 is locally -bilipschitz We have
dR= 2  (C2 ;

 
f  1 1 (C1 ))  =  dR= 2  (C2 ; f (C1 ))

 d R =(f  1 (C2 ); C1 )

where the rst inequality uses Corollary A.15. The lemma follows as  <  e:

We now prove a quasi-triangle inequality:

Lemma A.17. If R   e2; k 2  N and X i  =  (Mi ; pi ; Ci ) 2  C M d  for i  =  1; 2; 3,

d R ; k (X 1 ; X 3 )   e(d R ; k (X1 ; X2 )  +  d R ; k (X2 ; X3 )) :

Proof. Suppose d R ; k (X 1 ; X 2 )  <  log +  and d R ; k (X 2 ; X 3 )  <  log + ,  where these sums
are those in the denition of dR;k , and choose

f  : B M 1  (p1 ; R=)  !  M2; g : B M 2  (p2 ; R=)  !  M3 as

above realizing these inequalities. The composition

g  f  : B M 1  (p1 ; R=())  !  M3

is dened, since f  is itself -lipschitz, by Corollary A.7. The iterated total derivative
D k (g   f )  : T k B M  (p1 ; R=())  !  T kM3 is also locally -bilipschitz on the

appropriate domain, so we just need to deal with condition 2). But
dR=( )

 
C1 ; (g  f )  1 (C3 )

 dR=( )  C1 ; f  1 (C2 ) +  dR=( )  f  1 (C2 ); (g  f )  1 (C3 ) (51)

 2 dR= C1 ; f  1 (C2 ) +  dR= C2; g 1 (C3 ))

 2 +    e ( +

) :

Here, the rst term of (51) comes from the comment after the statement of Propo-
sition A.14, and the second term comes from Corollary A.15. This nishes the
proof, since then d R ; k (X 1 ; X 3 )   log() +  e ( +  )   e(log  +   +  log  +  )   e(d R ; k (X1 ; X2 )  +
dR ; k (X2 ; X3 )) .

One now proceeds as in the proof of Theoreom A.10 to construct a quasi-metric
D  on C M d  that induces the smooth-Chabauty topology:

D ( X ; Y  ) =  
X  

 k  (dk ; k (X ; Y ) +  dk ;k (Y ; X )) ;
k = 9

where 9 >  e2 is chosen because of Lemma A.17. Note that the quasi-symmetry
lemma (Lemma A.16) implies that symmetrizing does not change the topology
induced by dR ;k . Now as mentioned above, Frink’s theorem, c.f. [8], implies that
there is a metric  on C M d  with

K  
 
D

=   K ;  for some   1 ; K  >  0: 
This

allows us to prove:



 1

^  1 1 1

1

a l l
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Theorem A.18. C M d  is a Polish space.

Proof. The denition of a Cauchy sequence extends verbatim to quasi-metrics, and we
claim that the quasi-metric D  is complete. If X i  =  (Mi ; pi ; Ci ) is a D-Cauchy
sequence, the sequence of pointed manifolds (Mi ; pi ) is Cauchy for the complete
metric, also called D ,  introduced in the proof of Theorem A.10. Hence, we can
assume (Mi ; pi ) !  (M; p) in the smooth topology.

F ix  sequences R n  !  1 ; n  !  1 and kn !  1 .  Then for each n, we have that for
all i   I n  there are maps

f n ; i  : B M  (p; Rn )  !  Mi

with fn ; i (p1 ) =  p2 such that D k n
 f n ; i  is locally n-bilipschitz on an appropriate

neighborhood of the zero section in T kM . Because the Chabauty topology is com-
pact, we can pass to a subsequence in n such that

(52) f n ; I n  
C I n  !  C  2  C(M );

and passing to a further subsequence15 we may assume that

(53) d R n  ( f n ; I n  
C I n  ; C )   

n
; and d k n ; R n  ( X i ; X j )   

n 
when i ; j   I n ;

where d R ; k  is as in Proposition A.17 and the second part of (53) uses that ( X i )  is
D-Cauchy. Now set X  =  (M; p; C ). Then for each n and i   I n ,  we have

d k n ; R n  ( X ; X i )   d k n ; R n  ( X ; X I n  )  +  d k n ; R n  ( X I n  ; X i )

 (log n  +  1=n) +  
n

:

This converges to zero with n, so X i  !  X  in C Md . In other words, D  is a complete
quasi-metric. But Cauchy sequences for D  are the same as Cauchy sequences for
, so this means that  is a complete metric on C Md .

Separability of C M d  follows from separability of M d :  we can choose an element
from a countable dense subset of C M d  by rst choosing a pointed manifold (M; p)
from a countable dense subset of M d  and then choosing a nite subset C   M that lies
within a xed countable dense subset of M.

There are a number of variants of C Md : one could substitute pointed manifolds
with vectored or framed manifolds, or require the distinguished closed subset to lie
in either the unit tangent bundle or the frame bundle. (See the space P d      introduced
in §4.2, for instance, which is the space of pointed manifolds with distinguished
closed subsets of the frame bundle.) The techniques above apply just as easily to
all these situations, so we will feel free to use their metrizability without comment
in the text.

15We are performing a bit of sleight-of-hand here in order to tame the proliferation of indices.
Namely, we are passing to a subsequence in n, but then also replacing the R n  and k n  with
sequences that goes to innity more slowly. The convergence in (52) alone would not be enough to
conclude the rst part of (53), otherwise, for instance.
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A.6. A  stabil ity result for Riemannian foliated spaces. This section is de-
voted to the following stability result for leaves of Riemannian foliated spaces. It is a
slight strengthening of Theorem 4.3 (see also Theorem 4.1) from Lessa [68], which
requires that X  is compact, and implies a number of classical results on foliations,
such as the Reeb local stability theorem, see [68].

Theorem A.19. Suppose X  is a d-dimensional Riemannian foliated space in which x i

!  x  is a convergent sequence of points. Then ( L x  ; x i )  is pre-compact in M d ,  and
every accumulation point is a pointed Riemannian cover of (L x ; x ) .

Moreover, if (M; p) is such an accumulation point, it is covered by the holonomy
cover (Lh ol ; x~) of (L x ; x) :  that is, there is are covering maps

(Lh o l ; x~)  !  (M; p)  !  (L x ; x ) ;

where the composition of the two is the holonomy covering.

Recall that the holonomy cover of a pointed leaf ( L ; x )  is the pointed cover
corresponding to the subgroup of 1 (L; x)  consisting of all loops on L  with trivial
holonomy. The last part of Theorem A.19 will never be used in this paper, but we
think it is worth including in the theorem statement for future reference.

Before giving the proof, we note the following:

Lemma A.20. Let X  be a Riemannian foliated space and let R  >  0. Suppose that
x i  !  x  2  X  and for each i ,  we have a point yi 2  L x i      with

lim sup d L       (x i ; yi )  R :
i ! 1

Then there is a subsequence of (yi ) that converges to a point y 2  L x  with

d L x  (x; y)  R :

Proof. There is some  >  0 with the following property: for every z in the ball
B ( x ; R )   L x ,  there is a foliated chart  : Rd   T  !  X  with (0; s) =  z and

dt     [ 1; 1]d; Rd  n [ 2; 2]d        8t 2  T;

where dt is the Riemannian metric on Rd  induced from that on (Rd   ftg). This is
a simple consequence of the relative compactness of B (x ; R) .

If R  <  , then pick such a foliated chart with (0; s) =  x. For large i, we have x i

2  ([ 1; 1]d  T ) and d L x i  
(x i ; yi )  <  , so it follows that

yi =  (ai ; ti ); where ai 2  [ 2; 2]d; ti !  s;

and extracting a convergent subsequence of (ai ) proves the claim.
Most likely R   , though. In this case, construct a new sequence by choosing zi

2  L x i  along a geodesic from x i  to yi so that

d L x i  
(x i ; z i )  =  =2; lim sup dL      (zi ; yi )  R       =2:

i ! 1

Passing to a subsequence, (zi ) converges, so we may replace (x i )  with (zi ), thus
substituting R  with R       =2. The proof concludes by induction.

We now prove the theorem.

Proof of Theorem A.19. Given R  >  0 and k 2  N, the R-balls around the base
points x i  within the leaves L x      have uniformly Ck-bounded geometry, in the sense
of Denition A.3 in the appendix. For by compactness, this is true of the R-ball
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around x  2  L x ,  and for large i  the coordinate charts of Denition A.3 can be
transferred to L x      with arbitrarily small distortion via the vertical projections in
local ow boxes, see Lemma A.20. Compare also with Lemma 4.34 of Lessa [68], in
which similar arguments are used. It follows from Theorem A.5 that ( L x  ; x i )  is pre-
compact in M d .

Suppose now that x i  !  x  in X  and ( L x  ; x i )  !  (M; p) smoothly. From the
smooth convergence, it follows that for every R  >  0 we have maps

f i  : B (p; R)   !  L x i   X ;  f (p)  =  x i ;

that are locally bilipschitz with distortion constants converging to 1. We claim:

Claim A.21. After passing to a subsequence, the maps f i  converge to a local isom-
etry f  : B (p; R)   !  L x  with f (p)  =  x .

Proof. The rst step is to construct a metric on X  with respect to which the maps f i

are uniformly lipschitz, and the second is to show that the images of the f i  are
contained in some compact subset of X ,  so that Arzela-Ascoli applies.

In [68, Lemma 4.33], Lessa shows that any compact Riemannian foliated space X
admits a metric d that is adapted to the leafwise Riemannian structure: i.e. when
x; y lie on the same leaf, their leafwise distance is at least d(x; y). The idea is to
rst construct pseudo-metrics on X  that vanish outside of a given foliated chart Rd

T  !  X ,  by combining the leafwise metrics dt with the distance dT in T . Then,
one covers X  with a nite number of such charts, and sums the resulting pseudo-
metrics to give an adapted metric on X .

In our situation, X  may not be (even locally) compact, so this method fails to
produce an adapted metric. However, as B ( x ; R )   L x  is relatively compact, the
same argument does give a pseudo metric d on X  such that

1) if x; y lie on the same leaf, their leafwise distance is at least d(x; y),
2) there is a neighborhood U  X  of the ball B ( x ; R )   L x  such that d

restricts to a metric on the closure of U.
As the maps f i  : B (p; R)   !  L x        X  are locally bilipschitz with distortion

constants converging to 1, they are uniformly lipschitz with respect to the adapted
pseudo-metric d. Lemma A.20 implies that f  (B (p; R))   U for large i  and that

K  =  B ( x ; R )  [  
[

f i ( B ( p ; R ) )
i

is compact, so the intersection of K  \  U is a compact metric space that contains
f i (B (p; R ) )  for large i. By Arzela-Ascoli’s theorem, f i  converges after passing to
a subsequence. The limit is a local isometry f  : B (p; R)   !  L x  with f (p)  =  x,
proving Claim A.21, and therefore Theorem A.19.

Using Claim A.21, a diagonal argument now gives a local isometry

f  : M  !  L x ;  f (p)  =  x

dened on all of M. As M and L x  are both complete, connected Riemannian
manifolds, this f  is a Riemannian covering map. The fact that L h o l   !  L x  factors
through M is exactly the same as in [68], see the last 3 paragraphs of the proof of
Theorem 4.3.
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