

UNIMODULAR MEASURES ON THE SPACE OF ALL RIEMANNIAN MANIFOLDS

MIKLOS ABERT AND IAN BIRINGER

Abstract. We study unimodular measures on the space M^d of all pointed Riemannian d -manifolds. Examples can be constructed from finite volume manifolds, from measured foliations with Riemannian leaves, and from invariant random subgroups of Lie groups. Unimodularity is preserved under weak* limits, and under certain geometric constraints (e.g. bounded geometry) unimodular measures can be used to compactify sets of finite volume manifolds. One can then understand the geometry of manifolds M with large, finite volume by passing to unimodular limits.

We develop a structure theory for unimodular measures on M^d , characterizing them via invariance under a certain geodesic flow, and showing that they correspond to transverse measures on a foliated ‘desingularization’ of M^d . We also give a geometric proof of a compactness theorem for unimodular measures on the space of pointed manifolds with pinched negative curvature, and characterize unimodular measures supported on hyperbolic 3-manifolds with finitely generated fundamental group.

1. Introduction

The focus of this paper is on the class of ‘unimodular’ measures on the space

$$M^d = \text{pointed Riemannian } d\text{-manifolds } (M; p) \text{ =pointed isometry;}$$

Throughout the paper, all Riemannian manifolds we consider are connected and complete. We consider M^d with the smooth topology, where two pointed manifolds $(M; p)$ and $(N; q)$ are smoothly close if there are compact subsets of M and N containing large radius neighborhoods of the base points that are diffeomorphic via a map that is C^1 -close to an isometry, see §A.1.

Let M_2^d be the space of isometry classes of doubly pointed Riemannian d -manifolds $(M; p; q)$, considered in the appropriate smooth topology, see §2.

Definition 1.1. A finite Borel measure on M^d is unimodular if and only if for every nonnegative Borel function $f : M_2^d \rightarrow \mathbb{R}$ we have:

$$(1) \quad \int_{(M; p) \in M^d} \int_{q \in M} f(M; p; q) dq d(M; p) = \int_{(M; p) \in M^d} \int_{q \in M} f(M; q; p) dq d(M; p)$$

Here, (1) is usually called the mass transport principle or MTP. One sometimes considers f to be a ‘paying function’, where $f(M; p; q)$ is the amount that the point $(M; p)$ pays to $(M; q)$, and the equation says that the expected income of a random element $(M; p) \in M^d$ is the same as the expected amount paid. Note that two sides of the mass transport principle can be considered as integrals $\int f d\mu$ and $\int f d\nu$ for two appropriate ‘left’ and ‘right’ Borel measures μ, ν on M_2^d , so μ is unimodular if and only if $\mu = \nu$. See the beginning of §2.

Example 1.2 (Finite volume manifolds). Suppose M is a finite volume¹ Riemannian d -manifold, and let μ_M be the measure on M^d obtained by pushing forward the Riemannian measure vol_M under the map

$$(2) \quad M \rightarrow M^d; \quad p \mapsto (M; p):$$

Then both sides of the mass transport principle are equal to the integral of $f(M; p; q)$ over $(p; q) \in M \times M$, equipped with the product Riemannian measure, so the measure μ_M is unimodular.

More generally, one can construct a finite unimodular measure on M^d from any Riemannian M that regularly covers a finite volume manifold. The point is that because of the symmetry given by the action of the deck group, the image of M in M^d actually looks like the finite volume quotient. See Example 2.4.

Example 1.3 (Measured foliations). Let X be a foliated space, a separable metrizable space X that is a union of ‘leaves’ that tile together locally as the horizontal factors in a product $R^d \times Z$ for some transversal space Z . Suppose X is Riemannian, i.e. the leaves all have Riemannian metrics, and these metrics vary smoothly in the transverse direction. (See §3 for details.) There is then a Borel² leaf map $X \rightarrow M^d; x \mapsto (L_x; x)$; where L_x is the leaf through x .

Suppose that μ is a finite completely invariant measure on X , that is, a measure obtained by integrating the Riemannian measures on the leaves of X against some invariant transverse measure, see [35]. The push forward of μ under the leaf map is a unimodular measure on M^d , see Theorem 1.8.

Example 1.4 (Many transitive manifolds). Let X be a Riemannian manifold with transitive isometry group, and note that any base point for X gives the same element $X \in M^d$. In Proposition 2.6, we show that an atomic measure on $X \in M^d$ is unimodular if and only if $\text{Isom}(X)$ is a unimodular Lie group. Examples where $\text{Isom}(X)$ is unimodular include nonpositively curved symmetric spaces, e.g. $R^d; H^d; SL_n R = SO(n)$, and compact transitive manifolds like S^d . An example where $\text{Isom}(X)$ is non-unimodular is the 3-dimensional Lie group $\text{Sol}(p; q)$, where $p = q$, equipped with any left invariant metric³.

Proposition 2.6 is one reason why these measures are called unimodular, although the mass transport principle also has a formal similarity to unimodularity of topological groups, being an equality of two ‘left’ and ‘right’ measures.

1.1. Motivation. Though this paper first appeared online in 2016, we have rewritten the section in 2020 to indicate how this paper fits into the field currently. As such, many of the papers referenced below appeared after this one.

There are two main reasons to study unimodular measures. First, the space M^d provides a convenient universal setting in which to view finite volume manifolds, measured foliations, and infinite volume manifolds that have a sufficient amount

¹If M has infinite volume, the push forward measure μ_M still satisfies the mass transport principle, but may not be finite. For instance, if X has transitive isometry group then the map $X \rightarrow M^d$ is a constant map, and x is only finite if X has finite volume. On the other hand, if the isometry group of X is trivial, x will always be finite.

²This is Proposition 4.1, where in fact we show that the leaf map is upper semi-continuous in a certain sense, extending a result of Lessa [68].

³In [28, Lemma 2.6], it is shown that the isometry group is a finite extension of $\text{Sol}(p; q)$, which is not unimodular when $p = q$.

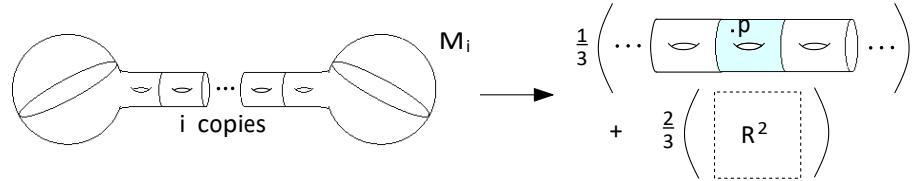


Figure 1. Create surfaces M_i by gluing i copies of some unit volume surface T end-to-end via a fixed gluing map, capping off with two round spheres, each with volume i , and smoothing the result. Here, $\mu_i = \text{vol}(M_i)$ weak* converges to a convex combination of an atomic measure on the single point R^2 in M^d , and a probability measure constructed by gluing bi-infinitely many copies of T together and choosing a random base point from, say, the center copy.

of symmetry (e.g. the transitive examples above). More importantly, though, interpreting all these examples as measures on a single universal space allows one to define a notion of convergence from one to another through weak* convergence of the associated measures on M^d . Here, recall that $i \rightarrow \infty$ in the weak* topology (or for some authors, the weak topology) if $\int f d\mu_i \rightarrow \int f d\mu$ for every bounded, continuous function $f : M^d \rightarrow \mathbb{R}$.

An important special case of weak* convergence to keep in mind is when the measures $\mu_i = \text{vol}(M_i)$, for some sequence of finite volume manifolds (M_i) , as in Example 1.2. If $\mu_i \rightarrow \mu$ in the weak* topology, we say that the sequence (M_i) Benjamini-Schramm (BS) converges to μ , see e.g. [3]. This is in honor of an analogous notion introduced by those two authors in graph theory [18]. See also §1.2 below for more of this history. In some sense, the limit measure encodes, for large i , what the geometry of M_i looks like near randomly chosen base points, up to small metric distortion. As an example, consider Figure 1. The transition between the spheres and the neck is lost in the weak* limit, since the probability that a randomly chosen base point will lie near there is negligible, and the small metric distortion allows R^2 to approximate the large radius spheres.

As mentioned in §2, unimodularity is preserved under weak* limits, so in particular, all BS-limits of finite volume manifolds are unimodular⁴. So, if one can develop a robust theory of unimodular measures, one can then try to use this theory to analyze sequences of finite volume manifolds via their weak* limits, as above.

As an example, let X be a irreducible symmetric space of noncompact type. An X -manifold is a quotient $M = \Gamma \backslash X$, where Γ acts freely, properly discontinuously and isometrically. In recent joint work with Bergeron and Gelander [1], using the framework developed in this paper we showed:

Theorem 1.5 (Abert, Bergeron, Biringer, Gelander [1]). Suppose that X is not a metric scale of H^3 . If (M_i) is any BS-convergent sequence of finite volume X -manifolds, then for all k the sequence $b_k(M_i) = \text{vol}(M_i)$ converges.

Essentially, this means that in the context above, a given limit measure has some sort of ‘Betti number’ that is the limit of the volume normalized Betti numbers of any approximating sequence of M_i ’s. It would be interesting to develop an

⁴The converse is open, and is essentially equivalent to the analogous question for unimodular random graphs, which generalizes the open question of whether all groups are sofic, see [9].

intrinsic denition of such a Betti number for an arbitrary unimodular measure on M^d . Relatedly, an analogous denition has been recently given by Michael Schrödl for unimodular random rooted simplicial complexes, see [87]. However, the manifold case presents additional diculties.

One situation in which there is an existing denition, though, is when the unimodular measure is just an atomic measure x on the single point $X \subset M^d$. In this case, the appropriate invariants are the L^2 -Betti numbers $\binom{2}{k}(X)$, see e.g. [3] for denitions. In our 2012 paper with Abert et al [3], we all had previously shown that if $\text{rank}_R(X) \geq 2$, then any sequence of distinct nite volume X -manifolds BS -converges to x . Combining this with Theorem 1.5 above gives:

Theorem 1.6 (Corollary 1.4 of [1]). Suppose that $\text{rank}_R(X) \geq 2$ and (M_i) is any sequence of distinct nite volume X -manifolds. Then for all $k \in \mathbb{N}$, we have

$$b_k(M_n) = \text{vol}(M_n) \cdot \binom{2}{k}(X):$$

This extends earlier work with Nikolov-Raimbault-Samet in [3], and is a uniform version of Luck's approximation theorem [74] that applies to all quotients of a xed symmetric space, not just covers of a single quotient. We stress that it is necessary in [1] to work geometrically, and so most of that paper is written using the framework of convergence of measures on M^d , as developed in this paper.

Subsequent work of Abert{Bergeron{Masson [4] exploits the language of Benjamini-Schramm convergence of manifolds introduced in this paper to analyze eigenfunctions of the Laplacian for compact Riemannian manifolds. The asymptotic behavior of eigenfunctions has been studied extensively in the literature. There are two major directions of interest: one can study the eigenvalue aspect, where one has a xed manifold and the energy of the eigenfunction tends to innity, and the level aspect, where one looks at a covering tower of manifolds (usually coming from a subgroup chain for an arithmetic lattice) and the energy converges to a xed value. It was understood in the community that these aspects are related and most theorems on one side tend to nd their counterparts on the other side. Our language of Benjamini-Schramm convergence now unies the level and eigenvalue aspects. In-deed, for a covering tower, the limit of eigenfunctions will be an invariant random eigenwave on the limiting space (usually the symmetric space of the corresponding Lie group). For a xed manifold, rescaling the Riemannian metric with the energy will produce a sequence of manifolds and a xed eigenvalue, hence the limiting eigenwave will live on the standard Euclidean space. The language of Benjamini-Schramm convergence, in particular, allows one to give the rst mathematically precise formulation for the famous Berry conjecture in physics, and connects the conjecture to Quantum Unique Ergodicity. See [4] for details.

1.2. History and related papers. Much of our work is inspired by a recent program in graph theory, in particular work of Aldous-Lyons [9] and Benjamini-Schramm [18]. For instance, the term 'unimodularity' was previously used in [9], for measures on the space

$$(3) \quad \begin{aligned} G = & \text{ rooted, connected, locally nite graphs } (G; p) = \text{automorphism} \\ \text{such that for any Borel function } f \text{ on the space of doubly rooted graphs,} \\ & \int_{Z^G} \int_X f(G; p; q) dq d = \int_{(G; p)^{2G}} \int_{q \in V(G)} f(G; q; p) dq d: \end{aligned}$$

In fact, this version of the mass transport principle appeared even earlier in [18], generalizing a concept important in percolation theory [16, 57].

As in Example 1.2, every finite graph G gives a unimodular measure μ_G on G , by pushing forward the counting measure on its vertices under the map

$$G \ni p \mapsto (G; p)$$

Similarly, a transitive graph gives a unimodular measure on G if and only if its automorphism group is unimodular, see [16] and [75, Section 8.2]. One can study unimodular measures on G that are weak* limits of the μ_G , c.f.[6, 18, 80], and extending results known for finite graphs to arbitrary unimodular measures on G has recently become a small industry, see e.g. [9, 16, 17, 57].

Ideas similar to ours have also appeared previously in the continuous setting, even apart from ABBGNRS [3]. Most directly, Bowen [25] used unimodular measures on the space of pointed metric measure spaces to bound the Cheeger constants of hyperbolic 4-manifolds with free fundamental group. In his thesis, Lessa [68], see also [69, 70], studied measures on M^d that are stationary under Brownian motion, of which unimodular measures are examples⁵, and a few of the technical parts of this paper are similar to parts of his. Namazi-Panka-Souto [80], analyzed weak*-limits of the measures $\mu_M = \text{Vol}(M_i)$ for sequences (M_i) of manifolds that are all quasi-conformal deformations of a fixed closed manifold and that all have bounded geometry. Also, Vadim Kaimanovich has for some time promoted measured foliations from a viewpoint similar to ours, and we refer the reader to his papers [64, 63, 65] for culture.

1.3. Statements of results. Most of the paper concerns the structure theory of unimodular measures. The case where μ is a unimodular probability measure is of particular interest: a μ -random element of M^d is then called a unimodular random manifold (URM). In this section, we will start by explaining the close relationship between unimodular measures and completely invariant measures on foliated spaces, as mentioned in Example 1.3. Then, we will outline the dictionary between invariant random subgroups and unimodular random locally symmetric spaces. As an interesting trip to the zoo, a characterization of unimodular random hyperbolic 2 and 3-manifolds with finitely generated fundamental group is given. We then discuss conditions under which sets of unimodular measures on M^d are weak* compact, and finish with a discussion of the rather long appendix, where it is shown that M^d and various related spaces have reasonable topology.

1.3.1. Unimodularity and foliated spaces. As mentioned above, a separable, metrizable space X is a foliated space if it is a union of leaves that fit together locally as the horizontal factors in a product $R^d \times Z$ for some transversal space Z . We say X is Riemannian if the leaves all have Riemannian metrics, and if these metrics vary smoothly in the transverse direction. See §3 for details.

⁵On foliated spaces, Lessa's 'stationary measures' correspond to harmonic measures, while our unimodular measures correspond to completely invariant measures. See §3, [35] and [68]. Also, see Benjamini-Curien [15] for a corresponding theory of stationary random graphs.

On such an X , let L_p be the leaf through p . A σ -finite Borel measure on X is unimodular if for every nonnegative Borel $f : X \times X \rightarrow \mathbb{R}$ we have:

$$(4) \quad \int_{p \in X} \int_{q \in L_p} f(p; q) d\text{vol}_{L_p} d = \int_{p \in X} \int_{q \in L_p} f(q; p) d\text{vol}_{L_p} d.$$

Also, a measure on X is called completely invariant if it is obtained by integrating the Riemannian measures on the leaves of X against some invariant transverse measure, see §3 and [35]. We then have:

Theorem 1.7. Suppose that X is a Riemannian foliated space and σ is a σ -finite Borel measure on X . Then the following are equivalent:

- 1) is completely invariant,
- 2) is unimodular,
- 3) lifts uniformly to a measure $\tilde{\sigma}$ on the leaf-wise unit tangent bundle $T^1 X$ that is invariant under leaf-wise geodesic flow.

To understand the ‘uniform lift’ in 3), take a measure σ on X , and integrate against the (round) Riemannian measures on all leaf-wise tangent spheres $T_p^1 L$ to get a measure $\tilde{\sigma}$ on $T^1 X$. A version of this condition will reappear below as an alternative characterization of unimodularity for measures on M^d : Theorem 1.7 is proved in §3, where it is restated as Theorem 3.1. Two additional characterizations of unimodularity are included in the new statement, one of which parallels a well-known result in graph theory.

In some sense, the space M^d is itself almost foliated, where the ‘leaves’ are the subsets obtained by fixing a manifold M and varying the basepoint $p \in M$. One would like to say that unimodular measures are just completely invariant measures, with respect to this foliation. However, due to the equivalence relation defining M^d , these ‘leaves’ are actually of the form $M = \text{Isom}(M)$, so the foliation is highly singular, and complete invariance does not make sense.

However, there is a way to make this point of view precise. Recall that if X is any Riemannian foliated space, its leaf map takes $x \in X$ to the pointed Riemannian manifold $(L_x; x)$, where L_x is the leaf through x . We then have:

Theorem 1.8 (Desingularizing M^d). If σ is a completely invariant probability measure on a Riemannian foliated space X , then pushes forward under the leaf map to a unimodular probability measure on M^d .

Conversely, there is a Polish Riemannian foliated space P^d such that any σ -finite unimodular measure on M^d is the push forward under the leaf map of some completely invariant measure on P^d . Moreover, for any fixed manifold M , the preimage of $f(M; p) \in \mathbb{P}^d$ under the leaf map is a union of leaves of P^d , each of which is isometric to M .

This theorem indicates an advantage our continuous framework has over graph theory: although the mass transport principle (3) does indicate a compatibility between unimodular measures on G and the counting measures on the vertex sets of fixed graphs G , there is no precise statement saying that unimodular measures are made by locally integrating up these counting measures in analogy with Theorem 1.8. In some sense, the problem is that graphs do not have enough local structure for this perspective to translate.

Alvarez Lopez and Barral Lijo [72] independently prove a desingularization theorem similar to Theorem 1.8, which they use to show that any manifold with bounded

geometry can be realized isometrically as a leaf in a compact Riemannian foliated space. As their goals are topological, rather than measure theoretic, their foliated space is not set up so that one can lift measures on M^d to the foliated space using Poisson processes, though, a property that is crucial in our applications.

The idea behind the construction of P^d is simple. Since the problem is that Riemannian manifolds may have nontrivial isometries, we set P^d to be the set of isometry classes of triples $(M; p; D)$ where $p \in M$ is a base point and $D \subset M$ is a closed subset such that there is no isometry $f : M \rightarrow M$ with $f(D) = D$. The leaves are obtained by fixing M and D and varying p , and the leaf map is just the projection $(M; p; D) \mapsto (M; p)$. However, it takes some work to see that these leaves fit together locally into a product structure $R^d \times Z$: a brief sketch of this argument is given in the beginning of §4.3. Assuming this, though, measures on M^d induce measures on P^d after integrating against a Poisson process on each fiber of the leaf map. See §4.2 for details.

Completely invariant measures on foliated spaces have been well studied, e.g. [33, 46, 52, 51, 53]. So for instance, one can now take a sequence of finite volume manifolds (M_i) , pass to the associated unimodular probability measures $\mu_i = \text{vol}(M_i)$, extract a weak* limit measure, study this using tools from foliations, and deduce results about the manifolds M_i .

For those working in foliations, the mass transport principle (1) may seem less interesting now that we know unimodularity can also be characterized in terms of complete invariance. However, we would like to stress that often, the MTP is the more convenient definition to use. We illustrate this in Theorem 1.12, where we use the MTP to give a proof of weak* compactness of the set of unimodular measures supported on manifolds with pinched negative curvature. For another example, Biringer-Raimbault [19] have studied the space of ends of a unimodular random manifold, showing for example that it has either 0; 1 or 2 elements, or is a Cantor set. This parallels a result of Ghys [53] on the topology of generic leaves of a measured foliation. Neither of these results quite implies the other, although Ghys's result is really more general, as it applies to harmonic measures, and not just completely invariant ones. However, the MTP encapsulates a recurrence that makes the proof in [19] extremely short.

One other reason to prefer unimodularity in our setting is that to talk about complete invariance, one must leave M^d , passing to an associated foliated space using the desingularization theorem. On the other hand, the geodesic flow invariance of Theorem 1.7 can be phrased (more or less) directly within M^d .

Theorem 1.9. Suppose that μ is a Borel measure on M^d . Then μ is unimodular if and only if its uniform lift $\tilde{\mu}$ on $T^1 M^d$ is geodesic flow invariant.

See §4.2 for the proof. Here, $T^1 M^d$ is the space of isometry classes of rooted unit tangent bundles $(T^1 M; p; v)$, where $v \in T_p^1 M$. Each fiber $T_p^1 M$ of

$$T^1 M^d \rightarrow M^d; (M; p; v) \mapsto (M; p)$$

comes with a natural Riemannian metric induced by the inner product on $T_p M$, and we write $\mu_{M; p}$ for the associated Riemannian measure on $T_p^1 M$. Then $\tilde{\mu}$ is the measure on $T^1 M^d$ defined by the equation $d\tilde{\mu} = \mu_{M; p} \otimes d$: The geodesic flows on individual $T^1 M$ combine to give a continuous flow

$$g_t : T^1 M^d \rightarrow T^1 M^d$$

and this is the geodesic ω referenced in the statement of the theorem.

This theorem is an analogue of a result in graph theory. Let $G_d \subset G$ be the space of isometry classes of pointed d -regular graphs. The associated space E_d of d -regular graphs with a distinguished oriented edge projects onto G_d , where the map replaces a distinguished edge with its original vertex. For each $(G; v) \in G_d$, the uniform probability measure on the set of d edges originating at v quotients to a probability measure on the fiber over $(G; v)$ in E_d . Integrating these fiber measures against E gives a measure \sim on E , and Aldous-Lyons [9] proved that \sim is unimodular if and only if \sim is invariant under the map $E \rightarrow E$ that switches the orientation of the distinguished edge.

1.3.2. Unimodular random manifolds and IRSs. We now focus on unimodular probability measures on M^d , in which case a ω -random element of M^d is called a unimodular random manifold (URM). There is a close relationship between URMs and invariant random subgroups (IRSSs), which have been studied in [21, 24, 26, 44, 54, 59, 58, 89].

Let G be a locally compact, second countable group, and let Sub_G be the space of closed subgroups of G , endowed with its Chabauty topology, see A.4.

Definition 1.10. An invariant random subgroup (IRS) of G is a random element of a Borel probability measure on Sub_G that is invariant under the conjugation action of G on Sub_G .

When G is nicely generated, say by a symmetric set S , there is a dictionary between IRSs of G and unimodular random S -labeled graphs, or URSGs, which we will briefly explain. An S -labeled graph is a countable directed graph with edges labeled by elements of S , such that the edges coming out from any given vertex v have labels in 1-1 correspondence with elements of S , and the same is true for the labels of edges coming into v . Every subgroup $H < G$ determines an S -labeled Schreier graph $\text{Sch}_S(H \backslash G)$, whose vertices are right cosets Hg and where each $s \in S$ contributes a labeled edge from every coset Hg to Hgs . Note that $\text{Sch}_S(H \backslash G)$ comes with a natural base point, the identity coset H .

In a variation of the discussion in §1.2, let G_S be the space of isomorphism classes of rooted S -labeled graphs. A URSG is a random element of G_S with respect to a probability measure that satisfies the appropriate S -labeled analogue of the mass transport principle (3). A random subgroup $H < G$ determines a random rooted Schreier graph, and conjugation invariance of the distribution of H is equivalent to unimodularity of $\text{Sch}_S(H \backslash G)$. So, IRSs of G exactly correspond to URSGs. See [5] and [21, §4] for details.

In the continuous setting, IRSs were first studied in ABBGNRS [3]. In analogy with the above, when a group G acts on X by isometries, there should be a dictionary between IRSs of G and certain unimodular random X -manifolds. Here, an X -manifold is just a quotient nX , where n acts freely and properly discontinuously on X by isometries. Two parts of this dictionary are discussed in §2.8, in the cases where G acts transitively, or discretely on X . The following is a particularly nice case of our analysis of IRSs of transitive G .

Proposition 1.11 (URMs vs IRSs). Suppose X is a simply connected Riemannian manifold whose isometry group is unimodular and acts transitively. Then there is a weak*-homeomorphism between the spaces of distributions of discrete, torsion free IRSs of $\text{Isom}(X)$ and of unimodular random X -manifolds.

So, X could be a non-positively curved symmetric space, for instance \mathbb{R}^d ; H^d or $SL_n \mathbb{R} = SO(n)$. Note that when we say an IRS or URM has a property like ‘torsion free’ or ‘ X ’, this property is to be assumed to be satisfied almost always. For instance, the above says that there is a homeomorphism between the space of conjugation invariant probability measures on Sub_G such that -a.e. $H \in Sub_G$ is discrete and torsion free, and the space of unimodular probability measures on M^d such that -almost every $(M; p)$ is an X -manifold.

1.3.3. Compactness theorems. To understand sequences of finite volume manifolds, then, one would naturally like to understand conditions under which sets of unimodular probability measures are compact, so that a unimodular weak* limit of the measures $M = \text{vol}(M_i)$ can be extracted after passing to a subsequence.

By work of Cheeger and Gromov, c.f. [56] and [81, Chapter 10], the subset of M^d consisting of pointed manifolds $(M; p)$ with bounded geometry is compact. Here, bounded geometry means that the sectional curvatures of M , and all of their derivatives, are uniformly bounded above and below, and the injectivity radius at the base point p is bounded away from zero. See §5. By the Riesz representation theorem and Alaoglu’s theorem, this implies that the set of unimodular probability measures supported on manifolds with bounded geometry is weak* compact, since unimodularity is a weak* closed condition.

Both the curvature bounds and the bound on injectivity radius are necessary for compactness of pointed manifolds. However, we show that in the presence of pinched negative curvature, an injectivity radius bound is unnecessary for compactness once we pass to measures:

Theorem 1.12. The set of all unimodular probability measures on M^d that are concentrated on pointed manifolds with pinched negative curvature and uniform upper and lower bounds on all derivatives of curvature is weak* compact.

See §5 for a more precise statement. The condition on the derivatives of curvature is only necessary because we consider M^d with the smooth topology; a topology of weaker regularity would require weaker assumptions. Essentially, the reason the injectivity radius assumption is not necessary is because in pinched negative curvature, the ϵ -thin part of a manifold takes up at most some uniform proportion $C(\epsilon)$ of the total volume, where $C \rightarrow 0$ as $\epsilon \rightarrow 0$. In fact, Theorem 1.12 boils down to a precise version of this kind of statement, see the proof of Proposition 5.1, that still applies to manifolds with infinite volume.

We explain in §5 that there is no analogue of Theorem 1.12 in nonpositive curvature, but using work from ABBGNRS [3], one can show that we still have a weak* compactness theorem for locally symmetric spaces:

Theorem 1.13. Let X be a symmetric space of nonpositive curvature with no Euclidean factors, and let $M^X \subset M^d$ be the subset of pointed X -manifolds. Then the space of unimodular probability measures on M^X is weak*-compact.

The proof of Theorem 1.13 is algebraic: it uses the dictionary between unimodular measures and IRSs discussed in the previous section, and arguments related to Borel’s density theorem, c.f. [49]. We give this proof in §5.2, and also briefly discuss the question of whether there is a universal theorem that generalizes both Theorems 1.12 and 1.13.

1.3.4. Hyperbolic 3-manifolds with nitely generated fundamental group, and The No-Core Principle. Finite volume hyperbolic manifolds have nitely generated ${}_1$, [14]. While the converse is not true in general, the question is at least interesting for d -manifolds M with enough symmetry: is it true that when $M = H^d$ regularly covers a nite volume d -manifold and ${}_1M$ is nitely generated, then M has nite volume?

When $d = 2$, the answer is yes. Any surface S with nitely generated fundamental group is geometrically nite, see [67, Theorem 4.6.1]. If $S = H^2$ regularly covers a nite volume surface, its limit set is the entire circle $@_1H^2$, say by [83, Theorem 12.2.14], and then geometric niteness implies that S has nite volume, see [67, Theorem 4.5.1]. The question is open for $d > 4$.

When $d = 3$, Thurston's bered hyperbolization theorem [91] states that the mapping torus M of a pseudo-Anosov homeomorphism of a surface S admits a hyperbolic metric. The fundamental group of M splits as the semidirect product

$$(5) \quad 1 \rightarrow {}_1S \rightarrow {}_1M \rightarrow \mathbb{Z} \rightarrow 1;$$

and the regular cover \hat{M} corresponding to ${}_1S$ is a hyperbolic 3-manifold with nitely generated fundamental group. However, it is a well-known consequence of the Tameness Theorem of Agol [7] and Calegari-Gabai [29] and Canary's covering theorem [32] that these \hat{M} are the only examples when $d = 3$.

A unimodular random hyperbolic manifold (URHM) is, as should be expected, a random element of M^d with respect to a unimodular probability measure concentrated on pointed hyperbolic d -manifolds. Simple examples include a nite volume hyperbolic manifold with a randomly chosen base point, and the hyperbolic space H^d . (See Examples 1.2 and 1.4.)

Any regular cover of a hyperbolic manifold can be considered as a URHM, via Example 2.4. It turns out that URHMs have enough symmetry that the rigidity results for regular covers discussed above have analogues for URHMs with nitely generated fundamental group. For instance, it follows from [3, Proposition 11.3] that the limit set of a URHM M , with $M = H^d$, is always the entire boundary sphere $@_1H^d$. When $d = 2$, this means that any URHM with nitely generated ${}_1$ has nite volume, via the same argument as above.

When $d = 3$, we constructed examples in [3, §12.5] of IRSs (hence URHMs, by Proposition 1.11) with nitely generated ${}_1$ that are not regular covers of nite volume manifolds. However, these examples all have the same coarse geometric structure as the \hat{M} examples above: they are all doubly degenerate hyperbolic 3-manifolds homeomorphic to $S \times R$, for some nite type surface S . See §6 for denitions. Here, we show that these are the only examples:

Theorem 1.14. Every unimodular random hyperbolic 3-manifold with nitely generated fundamental group either is isometric to H^3 , has nite volume, or is a doubly degenerate hyperbolic structure on $S \times R$ for some nite type S .

Here is another informal way to motivate Theorem 1.14. Suppose that M is a hyperbolic 3-manifold with nite, but large, volume. Randomly choose a point $p \in M$ and consider a neighborhood $U \ni p$ with some xed radius R , which is large, but say not as large as $\text{vol}(M)$. What can U look like geometrically? On the one hand, it could be a large embedded ball from H^3 , while at the other extreme, it could have very complicated topology, requiring many elements to generate ${}_1U$. If

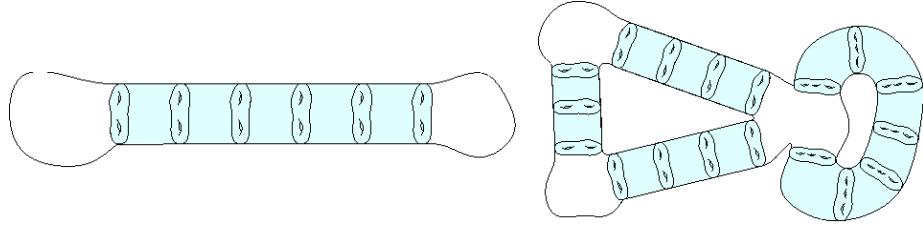


Figure 2. A schematic picturing a number of long product regions in hyperbolic 3-manifolds. Each is homeomorphic to a product $S [0; 1]$, for some finite type surface S , and has bounded area level surfaces. If the product regions lengthen while the complexity of the underlying graph stays bounded, the associated probability measures $_{M_i} = \text{vol}(M_i)$ on M^d weak* converge to a URHM that is a doubly degenerate hyperbolic structure on $S \times R$.

$_{M_i}$ can be generated by few elements, though, the geometry of U is more limited: essentially, it will look like a large piece of an infinite volume hyperbolic 3-manifold N with some small number of ends.

Now, in any sufficiently large piece an infinite volume N , the ends of N take up a much larger proportion of volume than the ‘core’ of N does. So, the probability that our base point p was randomly chosen to lie inside the core is negligible. In other words, most choices of p that end up in a neighborhood U with not so complicated topology will look like they are stuck deep inside an end of an infinite volume hyperbolic 3-manifold. By the geometric classification of ends of hyperbolic 3-manifolds, c.f. [31] and also [32, The Filling Theorem], this means that the point p will either be contained in a large embedded ball from H^3 (when the end is geometrically finite) or a long product region (when the end is degenerate). See Figure 2.

Informally, this discussion means that near a randomly chosen point in a hyperbolic 3-manifold M with large finite volume, M will look like either

- 1) a large embedded ball from H^3 ,
- 2) a region for which the minimal number of $_{M_i}$ -generators is ‘very large’,
- 3) a long product region.

To relate this back to Theorem 1.14, note that large hyperbolic balls and long product regions are exactly what one obtains by taking large neighborhoods within H^3 and doubly degenerate hyperbolic structures on $S \times R$, which are the only infinite volume manifolds allowed in the theorem. And if a sequence (M_i) of finite volume manifolds with $\text{vol}(M_i) \rightarrow 1$ gives a sequence of probability measures $_{M_i} = \text{vol}(M_i)$ that weak* converges to a unimodular on M^d , the informal local analysis of the geometry of M_i described above translates exactly into Theorem 1.14. In fact, in light of the weak* compactness of the set of unimodular probability measures supported on hyperbolic manifolds, which follows from Theorem 1.12 or Theorem 1.13, one can view Theorem 1.14 as a precise version of the informal statement that for any large-volume M , the local geometry near a randomly chosen base point is as described above.

The key idea in the proof of Theorem 1.14 is the following:

Theorem 1.15 (The No-Core Principle). Suppose that μ is a unimodular probability measure on M^d and that $f : M^d \rightarrow f_0; 1g$ is a Borel function. Then for μ -almost every element $(M; p) \in M^d$, we have

$$0 < \text{vol}_M f(q) \leq f(M; q) = 1 \iff \text{vol}(M) < 1.$$

Geometrically, one should imagine that $f(M; p) = 1$ when the base point p lies in a ‘core’ of M . The theorem then says that when $(M; p)$ lies in the support of a unimodular probability measure, one can only Borel-select a core with finite, nonzero volume for M when M has finite volume. While the statement above is very useful (it also is used in Biringer-Raimbault [19]), it is basically an immediate consequence of the mass transport principle, see §2.1.

Essentially, the proof of Theorem 1.14 is that any hyperbolic 3-manifold with finitely generated fundamental group has a finite volume core, obtained by chopping off neighborhoods of its infinite volume ends. However, it requires some work to choose the core in a canonical enough way so that the function f in the No-Core Principle is Borel. See §6 for details.

1.3.5. Appendix: the topology of M^d and the Chabauty topology. The paper ends with a lengthy appendix. We give in §A.1 and A.6 slight extensions of existing compactness and stability results concerning smooth convergence, but most of the appendix is spent showing M^d and various related spaces are Polish. This is necessary to justify the use of measure theoretic tools like Rohlin’s disintegration theorem, or Varadarajan’s compact model theorem (see the proof of Proposition 4.18).

Candel, Alvarez López and Barral Lijo [10] have independently and concurrently studied the space M^d , proving that it is Polish and establishing a number of interesting topological properties that are very related to this paper, e.g. to Proposition 4.1. Their proof was made publicly available before ours, so the result is really theirs. The two approaches are quite similar, but our proof produces an explicit metric that we use elsewhere in the paper, and is simpler in some ways, so we still present it here.

We find the proofs that these spaces are Polish quite interesting. For instance, recall that two points $(M; p)$ and $(N; q)$ in M^d are smoothly close if there is a diffeomorphism f from a large neighborhood $B \ni p$ to a large neighborhood of q , such that the metric $h; i_N$ on N pulls back to a metric on B that is C^1 close to $h; i_M$, see §A.1. To metrize this definition directly, one would have to metrize the C^1 topology on the appropriate space of tensors on M separately for each $(M; p) \in M^d$, and then hope that the choice is canonical enough that the triangle inequality holds for the induced metric on M^d . This is hard to do, so instead we define the distance between $(M; p)$ and $(N; q)$ by measuring the bilipschitz distortion of the ‘iterated total derivatives’

$$D^k f : T^k M \rightarrow T^k N$$

on the k -fold iterated tangent bundles $T^k M = T(T(T(M)))$; which we consider with the associated ‘iterated Sasaki metrics’. See §A.2.

1.4. Plan of the paper. Section 2 introduces unimodular measures in detail, and discusses the No-Core Principle and the dictionary between URMS and IRSs. In Section 3, we review completely invariant measures on foliated spaces, and prove Theorem 3.1, which shows that complete invariance is equivalent to unimodularity,

among other things. Section 4 discusses the foliated structure of M^d , the desingularization theorem, and the ergodic decomposition of unimodular measures. The weak* compactness theorems mentioned in the introduction are proved in Section 5, while the characterization of unimodular random hyperbolic 3-manifolds with nitely generated π_1 is the main focus of Section 6. The paper ends with an appendix concerning the topology of M^d and related spaces.

1.5. Acknowledgments. We would like to thank Nir Avni, Igor Belegradek, Lewis Bowen, Renato Feres, Etienne Ghys, J. A. Alvarez Lopez, Juan Souto, Ralf Spatzier and Shmuel Weinberger for a number of useful discussions. We also thank a referee for very helpful comments, and for nding a significant error in the leadup to Theorem A.10. The second author was partially supported by NSF grant DMS-1308678.

2. Unimodular measures on M^d

A rooted Riemannian d -manifold is a pair $(M; p)$ where M is a Riemannian d -manifold and $p \in M$ is a basepoint. We assume that all Riemannian manifolds in this paper are complete and connected. A doubly rooted manifold is a triple $(M; p; q)$ where M is a Riemannian d -manifold and $p, q \in M$.

Denition 2.1. Let M^d and M^d be the spaces of isometry classes of rooted and doubly rooted Riemannian d -manifolds, endowed with the smooth topology.

Recall that a sequence of rooted Riemannian manifolds $(M_i; p_i)$ smoothly converges to $(M; p)$ if for every $R > 0$, there is a C^1 -embedding

$$f_i : B_M(p; R) \rightarrow M_i$$

such that $f_i(p) = p_i$ and $f_i(g_M) \rightarrow g_{M_i}$ in the C^1 topology, where g_M and g_{M_i} are the associated Riemannian metrics. The convergence $(M_i; p_i; q_i) \rightarrow (M; p; q)$ of a sequence of doubly rooted manifolds is the same, except that we require that $f_i(q) = q_i$ when dened. In §A.2, we show that smooth convergence comes from a Polish topology on M^d . An analogous statement holds for M^d . ²

Example 2.2. Setting $d = 1$, M^1 is homeomorphic to $(0; 1]$, since there is a unique rooted 1-manifold of diameter x for each $0 < x \leq 1$. The space M_2^1 is then naturally homeomorphic to the set

$$S = \{(x; y) \mid 0 < x < 1; 0 \leq y \leq x \text{ or } x \leq 1; 0 \leq y < 1\};$$

where x is the diameter of M and y is the distance between the base points $p; q \in M$. Both the left and right projections of M_2^1 onto M^1 are then therst coordinate projection $S \rightarrow (0; 1]$.

Let μ be a -nite Borel measure on M^d . From , we dene two associated Borel measures μ_l and μ_r on M_2^d by setting

$$\begin{aligned} \mu_l(S) &= \frac{\text{vol}_M f q \in M \mid (M; p; q) \in S \text{ and }}{Z^{(M; p) \times M^d}} \\ \mu_r(S) &= \frac{\text{vol}_M f p \in M \mid (M; p; q) \in S \text{ and }}{Z^{(M; q) \times M^d}} \end{aligned}$$

whenever S is a Borel subset of M_2^d . Sometimes, we abbreviate the above as

$$d_l(M; p; q) = \text{vol}_M(q) d(M; p); \quad d_r(M; p; q) = \text{vol}_M(p) d(M; q);$$

Denition 2.3. We say ι is unimodular if $\iota = r$. When ι is a probability measure, a ι -random element of M^d is a unimodular random manifold (URM).

Unimodular measures were rst studied in the context of rooted graphs rather than rooted Riemannian manifolds (see [16], [57], [9]). In these works, the equality of ι and r is phrased via the mass transport principle, which is the denition we gave in the introduction (Denition 18). Lewis Bowen [25] has previously considered unimodularity in the general context of metric-measure spaces; however here we restrict ourselves to the Riemannian setting.

When $d = 1$, any Borel probability measure on $M^d = (0; 1]$ is unimodular, as the measures ι and r are obtained by integrating against twice the Lebesgue measure on the ber $[0; x] \times$ over $x \in (0; 1]$.

For an alternative denition, note that there is an involution

$$(6) \quad \iota : M_2^d \rightarrow M_2^d; \quad \iota(M; p; q) = (M; q; p)$$

and that $\iota(\iota) = r$. It follows that a measure on M^d is unimodular if and only if either/both of ι and r are ι -invariant.

As mentioned in the introduction, any nite volume Riemannian d -manifold M determines a unimodular measure ι , obtained by pushing forward the Riemannian volume vol_M under the map

$$M \rightarrow M^d; \quad p \mapsto (M; p):$$

In this case, the measures ι and r are both obtained by pushing forward the product measure $\text{vol}_M \otimes \text{vol}_M$ on $M \times M$ to M^d ; so ι is unimodular. Also, ι is weak* continuous, so the space of unimodular measures on M^d is closed. So, more unimodular measures can be constructed as weak* limits.

Here are some other constructions of unimodular measures on M^d .

Example 2.4 (Regular covers). Suppose that $\pi : N \rightarrow M$ is a regular Riemannian covering map and M has nite volume. Then there is a map

$$\iota : M \rightarrow M^d; \quad \iota(p) = (N; q); \quad \text{where } (q) = p:$$

Here, the point is that the isometry class of $(N; q)$ depends only on the projection $p = (q)$, since any two q with the same projection dier by a deck transformation. The push forward of vol_M under ι is a probability measure on M^d that is supported on manifolds isometric to N . For an alternative construction of ι , choose a fundamental domain F for the projection $\pi : N \rightarrow M$ and push forward the measure $\text{vol}_N = \text{vol}_N(F)$ via the map $q : F \rightarrow (N; q)$:

To see that ι is unimodular, let $N_2 = N \times N = \mathbb{Z}^d$, where \mathbb{Z}^d is the group of deck transformations of π , which acts diagonally on $N \times N$. We can identify N_2 with $F \times N$, and give it the measure $\text{vol}_N = \text{vol}_N(F) \otimes \text{vol}_N$. Then the map

$$N_2 = N \times N = \mathbb{Z}^d \rightarrow N \times N = \text{Isom}(N) \times M_2^d$$

is measure preserving, where we consider M_2^d with ι . On N_2 , the involution $(p; q) \mapsto (q; p)$ is measure preserving, since for each $F \in \mathbb{Z}^d$ the composition

$$F \times F \times N = N_2 \xrightarrow{(p; q) \mapsto (q; p)} N_2 = F \times N$$

is just given by $(x; y) \mapsto (y^{-1}(x); x^{-1}(y))$. So, as this involution on N_2 descends to (6) on M_2^d , the measure ι is invariant under (6), so ι is unimodular.

Example 2.5 (Restriction to saturated subsets). A subset $B \subseteq M^d$ is saturated if whenever $(M; p) \in B$ and $q \in M$, then $(M; q) \in B$ as well. Note that saturated Borel subsets of M^d form a σ -algebra, S .

If j is unimodular and B is a saturated Borel subset of M^d , then j_B is unimodular as well, since $(j_B)_I$ and $(j_B)_r$ are just the restrictions of $j_I = j_r$ to the set of all $(M; p; q) \in M_2$ with $(M^d; p) \in B$.

Finally, let X be a complete Riemannian manifold with a transitive isometry group $\text{Isom}(X)$. Up to rooted isometry, the choice of root in X is irrelevant, so we will denote the corresponding point in M^d by X as well.

Proposition 2.6. If a Riemannian manifold X has transitive isometry group, the atomic probability measure x supported on $X \setminus M^d$ is unimodular if and only if $\text{Isom}(X)$ is a unimodular Lie group.

Proof. Fix a point $x_0 \in X$ and let $K \leq G = \text{Isom}(X)$ be the stabilizer of x_0 , so that we can identify $X = G/K$. Then $(x)_1$ is supported on

$X_2 := G \cap X$

where G acts diagonally. Since G acts transitively, the natural map

$$(7) \quad K \cap X \quad [x]![(x_0; x)] \quad X_2:$$

is a homeomorphism. With respect to this identification, $(x)_1$ is just the push forward of the Riemannian measure on X to $K \times X$.

Since $K \cap X = K \cap G = K$, the identification (7) can also be written as

$$K \cap G = K \quad K \neq K![(x_0; g(x_0))] \quad X_2:$$

Conjugating, the involution $[(p; q)] \mapsto [(q; p)]$ on X_2 becomes the inversion map

$$\bar{i} : K \cap G = K \quad ! \quad K \cap G = K; \quad \bar{i}([g]) = [g^{-1}];$$

So, with (6) in mind, we want to show that the natural measure $\bar{\nu}$ on $K \backslash G = K$ is invariant if and only if G is unimodular.

Integrate against the (unique) right K -invariant probability measures on the fibers of $G \rightarrow G/K$; this gives a left Haar measure on G . Then G is unimodular if and only if K is invariant under the inversion map.

$$i : G \rightarrow G; \quad i(g) = g^{-1};$$

By definition, $\int_a^b f(x) dx$ can be expressed as an integral

$$e \quad K g K \quad d; \quad K g K 2 K n G = K$$

where the σ -measure κ_{gK} is the unique probability measure on KgK that is K -biinvariant. The action of $i : G \rightarrow G$ permutes the κ_{gK} , which implies that κ is i -invariant if and only if the factor measure κ is i -invariant.

As semisimple groups are unimodular, their symmetric spaces X satisfy the assumptions above. One can also see directly that the atomic measure χ is unimodular when X is a model space of constant curvature, i.e. when $X = \mathbb{R}^n; \mathbb{H}^n$ or S^n . The measures $(\chi)_l$ and $(\chi)_r$ are supported on the subset $X_2 \subset M^d$ consisting of isometry classes of doubly pointed manifolds $(X; p; q)$. Here, these $(X; p; q)$ are

classified up to isometry by $d(p; q)$, which is symmetric in $p; q$. So, the involution i in (6) is the identity, and therefore preserves $(x)_l; (x)_r$.

2.1. The No-Core Principle. This trivial, yet useful, consequence of unimodularity was mentioned in §1.3.4.

Theorem 1.15 (The No-Core Principle). Suppose that μ is a unimodular probability measure on M^d and that $f : M^d \rightarrow [0; 1]$ is a Borel function. Then for μ -almost every element $(M; p) \in M^d$, we have

$$0 < \mu \int_M f(q) d\mu(q) \leq \int_M f(M; q) d\mu(q) = \mu(M) < 1.$$

It is very important here that μ is a probability measure, and not just μ -nite. Otherwise, one could take a fixed Riemannian manifold N with infinite volume and no symmetries, and any finite (nonzero) volume subset $B \subset M$, and define $f(M; p) = 1$ if there is an isometry $M \rightarrow N$ that takes p into B . As N has no symmetries, the map $N \rightarrow M^d; q \mapsto (N; q)$ is an embedding, so μ_N pushes forward to a μ -nite unimodular measure μ_N on M^d , and the pair f and μ_N violates the statement of the theorem.

Proof. If the theorem fails, then for some $C > 0$ the set of all $(M; p)$ such that

$$(8) \quad 0 < \mu \int_M f(q) d\mu(q) \leq \mu(M) = 1$$

has positive μ -measure. This set is saturated and Borel, so we may assume after restriction and rescaling that μ is supported on it, as in Example 2.5.

Well, by unimodularity we know that

$$\int_{(M; p) \in M^d} \int_{q \in M} f(M; p) d\mu(q) d\mu(M) = \int_{(M; p) \in M^d} \int_{q \in M} f(M; q) d\mu(q) d\mu(M).$$

On the right, the integrand is at most C μ -almost surely, by (8). So, the right-hand side is μ -nite. Therefore, the integrand on the left is μ -nite μ -almost surely. So, for μ -a.e. $(M; p)$, we have $f(M; p) = 0$ by (8). This implies that the left side is zero. So, the integrand on the right side is zero μ -a.e., contradicting (8).

2.2. Unimodularity and IRSs. In previous work with Bergeron, Gelander, Nikolov, Raimbault and Samet, the authors studied the following group theoretic analogue of URMs, see [2]. Let G be a locally compact, second countable topological group and let Sub_G be the space of closed subgroups of G , endowed with the Chabauty topology, see §A.4.

Definition 2.7. An invariant random subgroup (IRS) of G is a random element of Sub_G whose law is a Borel measure invariant under conjugation by G . (In an abuse of notation, we will often refer to the law itself as an IRS.)

Invariant random subgroups supported on discrete groups of unimodular G satisfy a useful group-theoretic unimodularity property. Fix a Haar measure for G . If H is a discrete subgroup of G , then H pushes forward locally to a Radon measure μ_H on the coset space $H \backslash G$. Let Cos_G be the set of cosets of closed subgroups of G , endowed with its Chabauty topology.

Theorem 2.8 (Biringer-Tamuz [21]). Assume G is unimodular, and μ is a Borel probability measure on Sub_G such that a.e. $H \in \text{Sub}_G$ is discrete. Then μ is an IRS if and only if for every Borel function $f : \text{Cos}_G \rightarrow \mathbb{R}$, we have

$$\int_{\text{Sub}_G} \int_{H \in G} f(Hg) d_H(Hg) d(H) = \int_{\text{Sub}_G} \int_{H \in G} f(g^{-1}H) d_H(Hg) d(H);$$

As noted in [21], a more aesthetic version of the equality above is

$$\int_{H \in \text{Sub}_G} \int_{g \in H \cap G} f(Hg) d_H d = \int_{H \in \text{Sub}_G} \int_{g \in G} f(gH) d^H d;$$

where H is the measure on $G = H$ obtained by locally pushing forward μ . In other words, the ‘right’ measure obtained on Cos_G by viewing it as the space of right cosets and then integrating the natural invariant measures on $H \cap G$ against μ is the same as the analogous ‘left’ measure on Cos_G . The version given in the theorem is that which we will use here, though.

Suppose now that our unimodular G acts isometrically and transitively with compact stabilizers on a Riemannian d -manifold X , and write $X = G/K$, where K is a compact subgroup of G . A $(G; X)$ -manifold is a quotient $H \backslash X$, where $H < G$ acts freely and properly discontinuously. Let

$$\text{Sub}_G^{\text{df}} = \{H \in \text{Sub}_G \mid H \text{ acts freely and properly discontinuously on } X\};$$

and let $M^{(G; X)} = M^d$ be the space of all pointed $(G; X)$ -manifolds.

Proposition 2.9 (URM vs. IRS, transitive case). The continuous map

$$\phi : \text{Sub}_G^{\text{df}} \rightarrow M^{(G; X)}; \quad (H) = (H \backslash X; [\text{id}])$$

induces a (weak*) continuous map

$$\phi : \text{IRSs of } G \text{ with } (\text{Sub}_G) = \text{df} \rightarrow \text{URMs with } (M^{(G; X)}) = 1;$$

If X is simply connected and $G = \text{Isom}(X)$ is the full isometry group of X , then ϕ is a weak* homeomorphism.

Recall that a unimodular random manifold (URM) is a random element of a unimodular probability measure on M^d . However, we routinely abuse terminology by calling measures IRSs, and we will similarly call ϕ itself a URM. Note that ϕ is surjective, but is not in general injective, since conjugating H by an element of K does not change its image. Continuity of ϕ follows from Proposition 3.10 and Lemma 3.7 of [3].

Proof. Fix a Haar measure on G normalized so that $\mu = \text{vol}_G$, where $\text{vol}_G : G \rightarrow \mathbb{R}_+$ is the projection. If $H \in \text{Sub}_G^{\text{df}}$ and $\pi_H : H \backslash G \rightarrow H \backslash X$ is the natural projection, it follows that $(\mu)_H = \text{vol}_{H \backslash X}$:

Unimodularity of the image. Let μ be an IRS with $(\text{Sub}_G) = 1$. We must show that the measures $(\mu)_I$ and $(\mu)_r$ in Definition 2.3 are equal. So, let $f : M^d \rightarrow \mathbb{R}$ be a Borel function. We then define a new function

$$f^* : \text{Cos}_G^{\text{df}} \rightarrow \mathbb{R}; \quad f^*(Hg) = f(H \backslash X; [\text{id}]; [g]);$$

where Cos_G^{df} is the set of cosets of subgroups $H \in \text{Sub}_G^{\text{df}}$. We then compute:

$$\int_M f^* d(\mu)_I = \int_{H \in \text{Sub}_G^{\text{df}}} \int_{g \in H \cap G} f(H \backslash X; [\text{id}]; [g]) d\text{vol}_{H \backslash X} d(H);$$

d

$$\begin{aligned}
& \int \int f(Hg) d_H d; \\
&= \int_{Z^{H \text{Sub}_G}} \int_{Z^{HgH \cap G}} f((g^{-1}Hg)g^{-1}) d_H d; \\
&= \int_{Z^{H \text{Sub}_G}} \int_{Z^{HgH \cap G}} f(g^{-1}Hg \cap X; [\text{id}]; [g^{-1}]) d\text{vol}_{H \cap X} d(); \\
&= \int_{Z^{(H \cap X; [\text{id}]) \text{Sub}_G}} \int_{Z^{[g] \cap H \cap X}} f(H \cap X; [g]; [\text{id}]) d\text{vol}_{H \cap X} d(); \\
&= \int_{Z^{(H \cap X; [\text{id}]) \text{Sub}_G}} \int_{Z^{[g] \cap H \cap X}} f(H \cap X; [g]; [\text{id}]) d\text{vol}_{H \cap X} d();
\end{aligned}$$

Here, the first equation is the definition of $d(\cdot)_1$, keeping in mind that it is enough to integrate over rooted manifolds of the form $(H \cap X; [\text{id}])$. The second and forth equations follow from the normalization of the Haar measure, while the third is Theorem 2.8. The fifth equation reflects the fact that $(H \cap X; [g]; [\text{id}])$ and $(g^{-1}Hg \cap X; [\text{id}]; [g^{-1}])$ are isometric as doubly rooted manifolds.

The case of the full isometry group. Assume now that X is simply connected and $G = \text{Isom}(X)$ is the full isometry group of X .

We first analyze the bers of $\text{Sub}_G^{\text{df}} \rightarrow M^{(G; X)}$. Conjugate subgroups of G give isometric X -quotients, and if two subgroups $H, H^0 \in \text{Sub}_G^{\text{df}}$ are conjugate by an element of K , then the pointed manifolds $(H \cap X; [\text{id}])$ and $(H^0 \cap X; [\text{id}])$ are isometric. Conversely, as K is the full group of isometries of X fixing $[\text{id}]$, any based isometry of quotients lifts to a K -conjugacy of subgroups, so we have:

$$(9) \quad \text{bers of } \text{Sub}_G^{\text{df}} \rightarrow M^{(G; X)} \quad ! \quad K\text{-conjugacy classes in } \text{Sub}_G^{\text{df}}:$$

Injectivity. Let μ be an IRS with $(\text{Sub}_G^{\text{df}}) = 1$. By Rohlin's disintegration theorem (see [88, Theorem 6.2]), μ disintegrates as an integral

$$\begin{aligned}
& \int \int \mu_{(M; p)} d(); \\
&= \int_{(M; p) \in M^{(G; X)}} \mu_{(M; p)} d();
\end{aligned}$$

where $\mu_{(M; p)}$ is a Borel probability measure on the preimage $\pi^{-1}(M; p)$. The K -action by conjugation on Sub_G^{df} leaves the bers invariant (9) and preserves μ , so it must preserve a.e. ber measure $\mu_{(M; p)}$. As each ber is a K -homogeneous space, each $\mu_{(M; p)}$ is just the push forward of the unique Haar probability measure on K . Therefore, μ can be recovered by integrating the canonical measures $\mu_{(M; p)}$ against μ . So, μ is injective.

Surjectivity. If μ is an URM with $(M^{(G; X)}) = 1$, define a measure on Sub_G by

$$(10) \quad \int \int \mu_{(M; p)} d(); \\
&= \int_{(M; p) \in M^{(G; X)}} \mu_{(M; p)} d();$$

where as above each $\mu_{(M; p)}$ is the unique K -invariant probability measure on $\pi^{-1}(M; p)$. Then $(\mu) = \mu$, and we claim that μ is an IRS.

Our strategy will be to use the unimodularity of μ to establish the equality in Theorem 2.8 (the mass transport principle for IRSs). Consider the map

$$\varphi : \text{Cos}_G^{\text{df}} \rightarrow M^{(G; X)}; \quad \varphi(Hg) = (H \cap X; [\text{id}]; [g]);$$

where $M_2^{(G;X)}$ is the space of doubly rooted X -manifolds. The bers of $_2$ are exactly the $K \backslash K$ -orbits $(Hg)^{KK}$ in Cos_G^{df} , where the action is dened as

$$(11) \quad K \backslash K \ni y \in \text{Cos}_G; \quad (k; k^0) \cdot Hg := (kHk^{-1})kgk^0;$$

We dene $_{(M;p;q)}$ to be the unique $K \backslash K$ -invariant probability measure on the ber $^1(M; p; q)$, i.e. the push forward of the Haar measure on $K \backslash K$ under the conjugation action.

Claim 2.10. For $(M; p) \in M_2^{(G;X)}$, we have $_{(M;p)} d_{(M;p)}(H) = {}_{(M;p;q)} d\text{vol}_M(q)$:

We will prove the claim below, but rst we use it to prove that is an IRS, by deriving the equality in Theorem 2.8 from the unimodularity of . Suppose that $f : \text{Cos}_G^{\text{df}} \rightarrow \mathbb{R}$ is a Borel function, and dene a new function

$${}_{(2)}f : M_2^{(G;X)} \rightarrow \mathbb{R}; \quad {}_{(2)}f(M; p; q) := \int_{Hg \in {}^1(M; p; q)} f(Hg) d_{(M;p;q)}(Hg);$$

We rst compute the left side of the equality in Theorem 2.8.

$$\begin{aligned} & \int_{Z^{\text{Sub}_G}} \int_{Z^{HnG}} f(Hg) d_H(Hg) d(H) \\ &= \int_{Z^{(M;p)2M^d}} \int_{Z^{H^2}} \int_{Z^{f(M;p)}} f(Hg) d_H(Hg) d_{(M;p)}(Hg) d(H) \\ &= \int_{Z^{(M;p)2M^d}} \int_{Z^{q2M}} \int_{Z^{Hg2^{-1}(M;p;q)}} f(Hg) d_{(M;p;q)}(Hg) d\text{vol}_M(q) d(H) \\ &= \int_{M_2^{(G;X)}} \int_{Z^{\text{Sub}_G}} f d \end{aligned}$$

and using a similar argument, we compute the right side:

$$\begin{aligned} & \int_{Z^{\text{Sub}_G}} \int_{Z^{HnG}} f(g^{-1}H) d_H(Hg) d(H) \\ &= \int_{Z^{(M;p)2M^d}} \int_{Z^{q2M}} \int_{Z^{Hg2^{-1}(M;p;q)}} f(g^{-1}H) d_{(M;p;q)}(Hg) d\text{vol}_M(q) d(H) \\ &= \int_{Z^{(M;p)2M^d}} \int_{Z^{q2M}} \int_{Z^{Hg2^{-1}(M;q;p)}} f(Hg) d_{(M;q;p)}(Hg) d\text{vol}_M(q) d(H) \\ &= \int_{M_2^{(G;X)}} \int_{Z^{\text{Sub}_G}} f d \end{aligned}$$

So, the unimodularity of implies that is an IRS.

Weak* homeomorphism. Finally, recall that (10) denes an inverse for . Weak* continuity of the inverse will follow if we show that the map

$$M^{(G;X)} \rightarrow P(\text{Sub}_G); \quad (M; p) \mapsto {}_{(M;p)}$$

is continuous, where $P(\text{Sub}_G)$ is the space of Borel probability measures on Sub_G , considered with the weak* topology. However, $_{(M;p)}$ is the unique K -invariant measure on $^1(M; p)$, and if $(M_i; p_i) \rightarrow (M; p)$, we can pass to a subsequence so that $_{(M_i;p_i)}$ converges. The limit must be supported on $^1(M; p)$, and is K -invariant since its approximates are, so must be $_{(M;p)}$.

Finally, we promised to prove Claim 2.10 during the proof above:

Proof of Claim 2.10. Let $(M; p; q) \in M_2^{(G; X)}$ and let $Hg \in \text{Cos}_G$ such that ${}_2(Hg) = (M; p; q)$. By (11), we have a commutative diagram

$$\begin{array}{ccc} K \backslash K & \xrightarrow{(k; k^0) \cdot ! (k H k^{-1}) k g k^0} & \text{Cos}_G \\ \downarrow \iota & & \downarrow r \\ K \backslash K \cap N_K(H) \backslash K & \xrightarrow{[(k; k^0)] \cdot ! k H k^{-1}} & \text{Sub}_G; \end{array}$$

where $r : \text{Cos}_G \rightarrow \text{Sub}_G$; $(Hg) = H$. As we had previously dened ${}_{(M; p)}$ as the K -invariant probability measure on $H \backslash K \cap \text{Sub}_G$, the diagram shows that

$$(r)({}_{(M; p; q)}) = {}_{(M; p)}$$

The Haar probability measure on $K \backslash K$ disintegrates under ι as an integral of invariant probability measures on the cosets of $N_K(H) \backslash K$ against the pushforward measure on $K \backslash K = {}_{(H)} K$. Here, the coset $(k; 1)N_K(H) \backslash K$ has a measure invariant under its stabilizer, which is $N_K(k H k^{-1})K$. This disintegration pushes forward to a r -disintegration of ${}_{(M; p; q)}$:

$$(12) \quad {}_{(M; p; q)} = \int_{F \in \text{Sub}_G} {}^F_{(M; p; q)} d_{(M; p)}$$

where ${}^F_{(M; p; q)} = 0$ unless F is a conjugate of H , in which case ${}^F_{(M; p; q)}$ is an invariant probability measure on the $N_K(F) \backslash K$ -orbit in Cos_G obtained by intersecting ${}_2^{-1}(M; p; q)$ with $F \cap G$.

Now $x : (M; p) \rightarrow M^{(G; X)}$, let $H \in {}_2^{-1}(M; p)$ and x an isometric identification of $(H \cap G \backslash K; [\text{id}])$ with $(M; p)$. The bers of the composition

$$\begin{array}{ccc} H \cap G & \xrightarrow{[g]} & M \\ Hg & \xrightarrow{[g]} & H \cap G \backslash K & \xrightarrow{(H \cap G \backslash K; [\text{id}]; [g])} & M^{(G; X)} \end{array}$$

are exactly the $N_K(H) \backslash K$ -orbits in $H \cap G$. As ${}_H$ is invariant under the action of $N_K(H) \backslash K$, it disintegrates as an integral of invariant probability measures on these orbits against its pushforward under the composition. Under the rst map, ${}_H$ pushes forward to vol_M , so we may write instead:

$$(13) \quad {}_H = \int_{q \in M} {}^H_{(M; p; q)} d\text{vol}_M$$

Combining Equations (12) and (13), we can now prove the claim:

$$\begin{aligned} \int_{\text{Sub}_G} {}^H_{(M; p; q)} d_{(M; p; q)} &= \int_{Z \in \text{Sub}_G} \int_M {}^H_{(M; p; q)} d\text{vol}_M(q) d_{(M; p; q)} = \\ &= \int_M \int_{\text{Sub}_G} {}^H_{(M; p; q)} d_{(M; p; q)} d\text{vol}_M(q) = \\ &= \int_M d\text{vol}_M(q) \end{aligned}$$

We now construct URMs from IRSs of discrete groups. Suppose that G is a discrete group that acts freely and properly discontinuously on a Riemannian d -manifold X and that the quotient $G \backslash X$ has nite volume. There is a map

an IRS of $G \rightarrow !$ a probability measure on $M^{(G; X)}$;

where a $\bar{\gamma}$ -random element of M^d has the form $(HnX; [x])$, where we first take $x \in X$ to be an arbitrary lift of a random point in GnX and then choose $H \in \text{Sub}_G$ randomly. The conjugation invariance of $\bar{\gamma}$ makes the measure well-defined despite the arbitrary choice of lift. Alternatively, consider

$$B = (\text{Sub}_G X)^\perp; \text{ where } (H; x) \mapsto (H^{-1}; x);$$

Then B is a Sub_G -bundle over GnX , and each of its fibers has an identification with Sub_G that is canonical up to conjugation. So, as $\bar{\gamma}$ is conjugation invariant there is a well-defined probability measure $\bar{\gamma}_B$ on B obtained as the integral of $\bar{\gamma}$ on each fiber against the (normalized) Riemannian volume of GnX . The map

$$\text{Sub}_G X \rightarrow M^d; (H; x) \mapsto (HnX; [x])$$

factors through the $\bar{\gamma}$ -action to a map $B \rightarrow M^d$, and $\bar{\gamma}_B$ is the push forward of $\bar{\gamma}$ under this map.

Proposition 2.11 (IRS $\bar{\gamma}$ = URM, discrete case). If $\bar{\gamma}$ is an IRS of Sub_G , then $\bar{\gamma}_B$ is an URM.

Proof. Pick a Borel fundamental domain $D \subset X$, i.e. a Borel subset such that

- 1) $\text{vol}_X(D \setminus gD) = 0$ for every $g \in G$,
- 2) $\text{vol}_X(X \cap gD) = 0$.

It follows that $\text{vol}_X = \int_X \text{vol}_D$ and moreover that if $H \in \text{Sub}_G$, then

$$(14) \quad \text{vol}_{HnX} = \int_{Hg \in \text{Sub}_G} (g)(\text{vol}_D);$$

where $\pi: X \rightarrow HnX$ is the quotient map. We let \wedge be the push forward to M^d of vol_D under the function

$$\text{Sub}_G D \rightarrow M^d; (H; x) \mapsto (HnX; [x]);$$

This \wedge is the scale by $\text{vol}_X(D)$ of our $\bar{\gamma}$ above. For simplicity of notation, we show that \wedge is unimodular instead.

We must show that $\wedge = \wedge_r$, so let $f: M^d \rightarrow \mathbb{R}$ be a Borel function. We lift f to a function $\tilde{f}: \text{Cos}_G \rightarrow \mathbb{R}$ by letting

$$\tilde{f}(Hg) = \int_{(x; y) \in D} f(HnX; [x]; [gy]) \text{vol}_D^2;$$

Note that $[gy] \in HnX$ only depends on the coset Hg . We now compute:

$$(15) \quad \begin{aligned} & \int_{Z^{M^d}} f d\wedge \\ &= \int_{Z^{(HnX; [x])2M^d}} \int_{Z^{[y]2HnX}} f(HnX; [x]; [y]) \text{vol}_{X=H} d\wedge \\ &= \int_{Z^{(HnX; [x])2M^d}} \int_{Z^{Hg2HnG}} \int_{Z^{x2D}} f(HnX; [x]; [gy]) \text{vol}_D d\wedge dH d\wedge \\ &= \int_{Z^{Hg2HnG}} f(HnX; [x]; [gy]) \text{vol}_D^2 dH d\wedge dH \text{vol}_{H2\text{Sub}_G} dH \text{vol}_{Hg2HnG} dH \\ &= \int_{Z^{Hg2HnG}} f(Hg) \tilde{f}(Hg) dH d\wedge dH \text{vol}_{H2\text{Sub}_G} \end{aligned}$$

$$\begin{aligned}
(16) \quad &= \int_{\substack{Z \\ H \text{Sub}_G \\ Z}} \int_{\substack{X \\ Hg^{-1}H \\ X}} f((g^{-1}Hg)g^{-1}) d_H d \\
&= \int_{\substack{Z \\ H \text{Sub}_G \\ Z}} \int_{\substack{X \\ Hg^{-1}H \\ X}} f(g^{-1}Hg; [x]; [g^{-1}y]) d\text{vol}_D^2 d_H d \\
(17) \quad &= \int_{\substack{Z \\ H \text{Sub}_G \\ Z}} \int_{\substack{X \\ Hg^{-1}H \\ X}} f(HnX; [gx]; [y]) d\text{vol}_D^2 d_H d \\
(18) \quad &= \int_{\substack{Z \\ (HnX; [y])2M^d \\ Z}} f(HnX; [x]; [y]) d\text{vol}_{x=H} d^d \\
&= f d\wedge_{r: M_2}
\end{aligned}$$

Above, (15) and (18) follow from (14), while (16) is Proposition 2.8. Line (17) uses the fact that $g^{-1}Hg; [x]; [g^{-1}y]$ and $(HnX; [gx]; [y])$ are isometric as doubly rooted manifolds.

3. Measures on Riemannian foliated spaces

A foliated space with tangential dimension d is a separable metrizable space X that has an atlas of charts of the form

$$: U \rightarrow L \subset Z;$$

where each $L \subset \mathbb{R}^d$ is open and each Z is a separable, metrizable space. Transition maps must preserve and be smooth in the horizontal direction, with partial derivatives that are continuous in the transverse direction. The horizontal bers piece together to form the leaves of X . See [34] and [79] for details. A foliated space X is Riemannian if each of its leaves has a smooth, complete Riemannian metric, and if these metrics vary smoothly in the transverse direction, in the sense that the charts can be chosen so that if $t_n \rightarrow t \in Z$, the induced Riemannian metrics g_t on L converge smoothly to g_t .

We are interested in measures on a Riemannian foliated space X that are formed by integrating vol against a ‘transverse measure’. To this end, suppose that $U = f(U; g)$ is a countable atlas of charts as above and let $Z = [Z]$ be the associated ‘transverse space’. An invariant transverse measure on X is a -nite measure on Z that is invariant under the holonomy groupoid of U . Here, the holonomy groupoid is that generated by homeomorphisms between an open subset of some Z and an open subset of some Z that are dened by following the leaves of the foliation (see [34]). The reader can verify that if U and U^0 are countable atlases associated to a foliated space X , there is a 1-1 correspondence between the invariant transverse measures of U and those of U^0 .

If μ is an invariant transverse measure on a Riemannian foliated space X , one can locally integrate the Riemannian measure vol against μ to give a measure on X , specied by writing $d = \text{vol} d\mu$. For a precise denition, let $: U \rightarrow L \subset Z$ be a foliated chart and dene a measure on U by the formula

$$(E) = \int_{\substack{Z \\ E}} \text{vol} E \setminus (L \times) d: x \in Z$$

Then if fg is a partition of unity subordinate to our atlas, we have

$$= \int_X f g d\mu$$

Using holonomy invariance, one can check that the measure does not depend on the chosen partition of unity.

Measures on a Riemannian foliated space X satisfying $d = \int_X f d\mu$ for some f are usually called completely invariant. Actually, complete invariance just ensures that when d is disintegrated locally along the leaves of the foliation, Lebesgue measure is recovered in the tangent direction; that is, a transverse measure is automatically holonomy invariant whenever the measure d is $\int_X f d\mu$ on the ambient space is well-defined (see [40]).

Theorem 3.1. Suppose that X is a Riemannian foliated space and d is a finite Borel measure on X . Then the following are equivalent:

- 1) d is completely invariant.
- 2) d is unimodular, as defined in Equation (4) of §1.3.
- 3) d lifts uniformly to a measure \tilde{d} on the unit tangent bundle T^1X that is invariant under geodesic flow, see (19) below.

If the leaves of X have bounded geometry⁶, then 1) { 3) are equivalent to

- 4) $\int_X \text{div}(Y) d = 0$ for every vector field Y on X with integrable leaf-wise divergence.
- 5) $\int_X f g d = \int_{T^1X} f g d\tilde{d}$ for all continuous functions $f, g : X \rightarrow \mathbb{R}$ that are C^2 on each leaf of X .

The meaning of 3) was explained in the introduction, but briefly, the leaf-wise unit tangent bundle T^1X maps onto X , and the fibers $T^1_x X$ are round spheres. If μ_p is the Riemannian measure on the fiber $T_x X$, then we can define

$$(19) \quad d\tilde{d} = \mu_p d;$$

so $d\tilde{d}$ is a measure on T^1X . The geodesic flows on the unit tangent bundles of the leaves of X then piece together to a well-defined geodesic flow on T^1X , and 3) says that this flow leaves the measure \tilde{d} invariant.

As discussed in the introduction, this result may be particularly interesting to those familiar with unimodularity in graph theory. Condition 3) is similar to the ‘involution invariance’ characterization of unimodularity of Proposition 2.2 in [9]. Also, in analogy with 5), the ‘graphings’ of [50] can be characterized via the self adjointness of their Laplacian. See [60] for one direction; the other direction follows from the arguments in [73, Proposition 18.49].

The equivalence 1) { 4) is well-known as a consequence of work of Lucy Garnett [51], and a version with slightly different hypotheses on the foliated space appears in a recent paper of Catuogno{Ledesma{Runo [36]. However, we include the very brief proof below.

Proof of 1) =) 2). Suppose that $d = \int_X f d\mu$ for some f . Let $U_i = \bigcup_{x \in U_i} L_x$ for $i = 1, 2$:

$$U_i = \bigcup_{x \in U_i} L_x, \quad i = 1, 2;$$

⁶This condition is needed only in 5) =) 1), in order to invoke a theorem of Garnett [51]. It means that there is some uniform K such that every point $x \in X$ lies in a smooth coordinate patch for its leaf that has derivatives up to order 3 bounded by K , see [51].

be two foliated charts for X and assume that there is a homeomorphism $: Z_1 \rightarrow Z_2$ in the holonomy pseudogroup. We first check that $r = \iota$ on the set $X_{1,2} = X_1 \cap X_2$ defined by

$$\begin{aligned}
 X_{1,2} &= f(x_1; x_2) \cap U_1 \cap U_2 \text{ for } (x_i) = (l_i; z_i) \text{ where } (z_1) = z_2 g; \text{ For a} \\
 \text{subset } S \subset X_{1,2}, \text{ we then calculate} \\
 Z_1 &= Z_2 = Z \\
 (S) &= \int_{Z_1} \int_{Z_2} \int_{Z_1} \iota_S(x; y) d\text{vol} d\text{vol} d\text{vol} \\
 &= \int_{Z_2} \int_{Z_1} \int_{Z_2} \iota_S(x; y) d\text{vol} d\text{vol} d\text{vol} \\
 &= r(S);
 \end{aligned}$$

Above, () follows from a change of variables, the invariance of ι under the holonomy pseudogroup and Fubini's Theorem. Now, both of the measures r and ι are supported on the equivalence relation $R \subset X \times X$ of the foliation. However, we claim that R can be covered by a countable number of the Borel subsets $X_{1,2}$, which will prove the claim. First, the separability of X guarantees that $X \times X$ can be covered by a countable number of open sets $U_1 \times U_2$ with $i : U_i \rightarrow L_i \times Z_i$ foliated charts. If a pair of points with coordinates $(l_i; z_i) \in U_i \times Z_i$; $i = 1, 2$ determines an element of $(U_1 \times U_2) \setminus R$; then $z_2 = (z_1)$ for some holonomy map g . The set of germs of holonomy maps taking a given $z_1 \in Z_1$ into Z_2 is countable, so as Z_1 is separable, a countable number of domains and ranges of holonomy maps suffice to cover $(U_1 \times U_2) \setminus R$.

Proof of 2) \Rightarrow 3). Suppose \sim is a unimodular measure on X and let \sim be the induced measure on the foliated space T^1X . Each leaf of T^1X is the unit tangent bundle of a leaf of X and the tangential Riemannian metric is the Sasaki metric. The Riemannian volume on each leaf of T^1X is then the fiberwise product of vol with the Lebesgue measures vol_x on the tangent spheres T^1X_x .

First, note that \sim is unimodular. For T^1X fibers over $X \times X$ and $d\sim|_U = d\text{vol}_y d\text{vol}_x$ while $d\sim|_R = d\text{vol}_y d\text{vol}_x d\text{vol}_r$; so the fact that $\iota = r$ implies that $\sim|_U = \sim|_R$. Geodesic flow τ lifts to a map $\tau = (\tau; \text{id})$ on $T^1X \times T^1X$; as Liouville measure is geodesic flow invariant, the measure $\sim|_R$ is clearly τ -invariant. As \sim is unimodular, this implies that $\sim|_U$ is τ -invariant. But under the first coordinate projection $T^1X \times T^1X \rightarrow T^1X$, $\sim|_U$ pushes forward to \sim and τ descends to τ , so it follows that \sim is τ -invariant.

Before proving that 3) \Rightarrow 1), we need the following lemma.

Lemma 3.2. Suppose that U is an open subset of a Riemannian manifold M and denote the geodesic flow on T^1M by g_t . Let μ be a Borel measure on U and let $d\sim = \mu \otimes d$ be the lifted measure on T^1U , as in (19). Suppose that for all Borel subsets $S \subset T^1U$ and all $t \in \mathbb{R}$ with $g_t(S) \subset T^1U$ we have $\sim(g_t(S)) = \sim(S)$. Then \sim is a scale of the Riemannian measure on U .

The first part of this proof was shown to us by Nir Avni.

Proof. We first prove that $\tilde{\rho}$ is absolutely continuous with respect to the Riemannian measure on U , so let $S \subset U$ be a set of ρ -measure zero, and let \tilde{S} be the set of all pairs $(p; v) \in T^1 U$ where $p \in S$. After subdividing S into countably many pieces, we may assume that there is some $\delta > 0$ such that for all $p \in S$, we have $B(p; \delta) \subset U$ and $\text{inj}_M(p) > \delta$, where $\text{inj}_M(p)$ is the injectivity radius of M at p .

Choose a probability measure supported in $(0; \delta)$ that is absolutely continuous with respect to Lebesgue measure. For each $p \in S$, define a map

$$\tilde{\rho} : T^1 U \times (0; \delta) \rightarrow T^1 U; \quad \tilde{\rho}(v; t) = g_t(v);$$

Note that as $B(p; \delta) \subset U$ the image of the map does in fact lie in U . We then define a measure ρ on U via the formula

$$\rho = (\tilde{\rho})(!\tilde{\rho});$$

where $\pi : T^1 U \rightarrow U$ is the projection map. As $\text{inj}_M(p) > \delta$, the map $\tilde{\rho}$ is a diffeomorphism onto its image, so the pushforward ρ is absolutely continuous with respect to the Riemannian measure on U . Then we have

$$\begin{aligned} (20) \quad \rho(S) &= \tilde{\rho}(S) = \int_{Z^{t^2(0; \delta)}} \tilde{\rho}(g_t(z)) dz \\ &= \int_{Z^{t^2(0; \delta)}} \int_{Z^{p^2U}} \int_{Z^{v^2T^1 U}} \int_{Z^p} 1_{g_t(S)} d\pi_p dz dv dt \\ &= \int_{Z^{p^2U}} \int_{Z^{t^2(0; \delta)}} \int_{Z^{v^2T^1 U}} \int_{Z^p} 1_{g_t(S)} d\pi_p dz dv dt \\ &= \int_{Z^{p^2U}} \int_{Z^{t^2(0; \delta)}} f(v; t) j(g_t(v)) \delta g_t(v) d\pi_p dz \\ (21) \quad &= \int_{Z^{p^2U}} \rho(S) dz \\ (22) \quad &= \int_{p^2U} 0 dz = 0; \end{aligned}$$

Here, (20) comes from the g_t -invariance of $\tilde{\rho}$ and the fact that $\tilde{\rho}$ is a probability measure. Equation (21) follows since S consists of all unit tangent vectors lying above points of S and the projection π is injective on the image of $\tilde{\rho}$. Finally, equation (22) is just the fact that ρ is absolutely continuous to the Riemannian measure on U , with respect to which S has measure 0. This shows that $\tilde{\rho}$ is absolutely continuous with respect to ρ , which also implies that $\tilde{\rho}$ is absolutely continuous with respect to the Liouville measure $\tilde{\rho}$.

To show that $\tilde{\rho}$ is a scalar multiple of ρ , consider the commutative triangle

$$\begin{array}{ccc} T^1 U & \xrightarrow{\frac{d\tilde{\rho}}{d\rho}} & R \\ \downarrow & \searrow \frac{d\rho}{d\tilde{\rho}} & \\ U & & \end{array}$$

where $\frac{d\sim}{d}$ and $\frac{d}{d}$ are the Radon-Nikodym derivatives. Since any two points p, q in U can be joined by a geodesic in M , there are unit tangent vectors $(p; v)$ and $(q; w)$ with $g_t(p; v) = (q; w)$ for some t . But since both \sim and $\frac{d}{d}$ are geodesic flow invariant,

$$\frac{d}{d}(p) = \frac{d\sim}{d}(p; v) = \frac{d\sim}{d}(q; w) = \frac{d}{d}(q);$$

It follows that \sim is a scalar multiple of $\frac{d}{d}$.

Proof of 3) \Rightarrow 1). Let $\pi : U \rightarrow L^*Z$ be a foliated chart for X . The restriction $\pi|_U$ then disintegrates as $d\pi|_U = \pi_* d$; where

π is the pushforward of d under the projection $L^*Z \rightarrow Z$, and each π_z is a Borel probability measure on L^*Z .

The map $\pi_z : Z \rightarrow \pi_z(Z)$ is Borel, in the sense that for any Borel $B \subset Z$ we have that $\pi_z^{-1}(B)$ is Borel.

Consider now the foliated chart $\sim : T^1U \rightarrow T^1L^*Z$ for T^1X . The lifted measure $d\sim = \pi_* d$ then disintegrates as $\pi_{(z;1)} d_z$. As \sim is invariant under the geodesic flow $g_t : T^1X \rightarrow T^1X$, it follows that for π -almost all $z \in Z$, the measure $\pi_{(z;1)} d_z$ is invariant under the geodesic flow of L^*Z , regarded as an open subset of its leaf in X . Thus, by Lemma 3.2, the probability measure $\pi_z = \text{vol}_{(L^*Z)} \text{vol}_z$ for π -almost all $z \in Z$. Since this is true within every U , there is a holonomy invariant transverse measure π^0 , dened locally by $\pi^0 = \text{vol}_z(L^*Z)$, with $\pi = \text{vol}^0$. This proves the claim.

Proof of 1) \Rightarrow 4). Assume that $d = \text{vol}^0$ and that Y is a continuous vectoreld on X with integrable divergence on each leaf. Decomposing Y using a partition of unity, we may assume that Y is supported within some compact subset of the domain of a foliated chart $\pi : U \rightarrow L^*Z$. Then

$$\begin{aligned} \int_U \text{div}(Y) d\pi &= \int_Z \int_{L^*Z} \text{div}(Y) d\text{vol}_z d\text{vol}_{L^*Z} \\ &= \int_Z \int_{L^*Z} 0 d\text{vol}_z d\text{vol}_{L^*Z} = 0; \end{aligned}$$

by the divergence theorem applied to each leaf L^*Z .

Proof of 4) \Rightarrow 5). We compute:

$$\begin{aligned} \int_X f g d\pi &= \int_Z \int_{L^*Z} f \text{div}(rg) d\text{vol}_z d\text{vol}_{L^*Z} \\ &= \int_Z \int_{L^*Z} \text{div}(frg) - hrf; rg d\text{vol}_z d\text{vol}_{L^*Z} \\ &= \int_X hrf; rg d\pi; \end{aligned}$$

by condition 4). As this is symmetric in f and g , condition 5) follows.

Proof of 5) =) 1). It follows immediately from 5) that $\int_X^R f d\mu = 0$ for every continuous $f : X \rightarrow \mathbb{R}$ that is C^2 on each leaf of X . In the terminology of Garnett [51], μ is harmonic. Using the bounded geometry condition, Garnett proves that in every foliated chart $\phi : U \rightarrow L \times Z$, a harmonic measure μ disintegrates as $d\mu = h(l; z) d\text{vol}_L d(z)$, where h is a positive leaf-wise harmonic function and vol_L is a measure on the transverse space Z . We must show that $h(l; z)$ is constant for μ -almost every z .

If $f, g \in C(X)$ are continuous functions supported in some compact subset of U that are C^2 on each plaque $L \cap f^{-1}(g)$, we have by 5) that

$$\begin{aligned} \int_{L \cap f^{-1}(g)} f g h d\text{vol}_L d = & \int_{Z^{2d}} \int_{L \cap f^{-1}(g)} f g h d\text{vol}_L d z^{2d} \\ & = \int_{L \cap f^{-1}(g)} f (g h) d\text{vol}_L d z^{2d} \end{aligned}$$

As f is arbitrary, this implies that $g h = (g h)$ on μ -almost every plaque $L \cap f^{-1}(g)$. As g is arbitrary, $h(l; z)$ must be constant for μ -a.e. z .

4. The foliated structure of M^d

Let M^d be the space of isometry classes of pointed Riemannian manifolds $(M; p)$, equipped with the smooth topology. The space M^d is separable and completely metrizable (we refer the reader to the appendix §A.1 for a detailed introduction to the smooth topology and a proof of this result).

4.1. Regularity of the leaf map. When X is a d -dimensional Riemannian foliated space, there is a ‘leaf map’

$$L : X \rightarrow M^d; \quad L(x) = (L_x; x);$$

denoted by mapping each point x to the isometry class of the pointed manifold $(L_x; x)$, where L_x is the leaf of X containing x . We claim:

Proposition 4.1 (The leaf map is Borel). If $U \subset M^d$ is open, then $L^{-1}(U) = \bigcup_{i \in \mathbb{N}} O_i \setminus C_i$; where each O_i is open and each C_i is closed in X .

In [68, Lemma 2.8], Lessa showed that the leaf map is measurable when the Borel σ -algebra of X is completed with respect to any Borel probability measure on X . The proof is a general argument that any construction in a Lebesgue space that does not use the axiom of choice is measurable, and uses the existence of an inaccessible cardinal. He remarks that a more direct investigation of the regularity of L can probably be performed, which is what we do here. We should also mention that Alvarez López and Candel [71] study the leaf map from a foliated space into the Gromov-Hausdorff space of pointed metric spaces, and have observed, for instance, that it is continuous on the union of leaves without holonomy. See also [10], where together with Barral Lijo, they study the leaf map into M^d .

The key to proving Proposition 4.1 is the following slight extension of a result of Lessa [68, Theorems 4.1 & 4.3], which we prove in the appendix.

Theorem A.19. Suppose X is a d -dimensional Riemannian foliated space in which $x_i \rightarrow x$ is a convergent sequence of points. Then $L(x_i)$ is pre-compact in M^d , and every accumulation point is a pointed Riemannian cover of $L(x)$.

There is a partial order on M^d , where $(N; q) \leq (M; p)$ whenever $(N; q)$ is a pointed Riemannian cover of $(M; p)$. With respect to , Theorem A.19 asserts an ‘upper semi-continuity’ of the leaf map. The degree of regularity of L indicated in Proposition 4.1 is exactly that of upper semicontinuous maps of between ordered spaces, so to get the same conclusion in our setting we must show a compatibility between and the smooth topology on M^d :

Lemma 4.2. Every point $(M; p) \in M^d$ has a basis of neighborhoods U such that the following properties hold for each $U \in U$:

- 1) there is no $(N; q) \leq (M; p)$ such that $(N; q) \in @U$,
- 2) if $(N^0; q^0) \leq (N; q) \leq (M; p)$ and $(N^0; q^0) \in U$, then $(N; q) \in U$.

Proof. In §A.2, we define the open k^{th} -order $(R; \cdot)$ -neighborhood of $(M; p)$,

$$N_{R;1}^k(M; p);$$

to be the set of all $(N; q)$ such that there is an embedding $f : B_M(p; R) \rightarrow N$ with $f(p) = q$ such that $D^k f : T^k U \rightarrow T^k N$ is locally 0 -bilipschitz with respect to the iterated Sasaki metrics on the 1-neighborhood of the zero section in $T^k U$, where $1 < ^0 < \cdot$. Any sequence of these neighborhoods is a basis around $(M; p)$ as long as $! 1$ and $R; k ! 1$, and we will show that when $; R; k$ are chosen appropriately then these neighborhoods satisfy the conditions of the lemma.

The subset $C \subset M^d$ of pointed covers of $(M; p)$ is compact: if $R > 0$ is given the uniform geometry bounds on $B(p; R) \rightarrow M$ lift to any cover, see Definition A.3, so Theorem A.4 gives pre-compactness of $C \subset M^d$, and C is closed in M^d since Arzela-Ascoli allows one to take a limit of covering maps. Now x some $R > 0$. If $(N_i; q_i) \in C$ is a convergent sequence, the isometry type of $B(q_i; R) \rightarrow N_i$ is eventually constant. So by compactness, the R -ball around the base point takes on only nitely many isometry types within C .

Arzela-Ascoli’s theorem implies that when forming the closure of $N_{R;1}^k(M; p)$, we just allow $^0 = \cdot$. So, the boundaries $@N_{R;1}^k(M; p)$ are disjoint for distinct values of \cdot . As there only nitely many isometry types of, say, $2R$ -balls around the base point in pointed covers of $(M; p)$, there can be only nitely many < 2 such that there is a cover of $(M; p)$ in $@N_{R;1}^k(M; p)$. So, the rst condition in the lemma is satised as long as we choose < 2 to avoid these points.

To illustrate which neighborhoods $N_{R;1}^k(M; p)$ satises the second condition of the lemma, we need the following:

Claim 4.3. Fix $(M; p) \in M^d$. Then for all R in an open, full measure subset of $R_{>0}$, there is some > 1 such that whenever

$$^0 : (N^0; q^0) \rightarrow (M; p)$$

is a pointed Riemannian covering and

$$f : B(p; R) \rightarrow N^0$$

is a locally \cdot -bilipschitz embedding with $f(p) = q^0$, then 0 is injective on $f(B(p; R))$.

Proof. If not, there is a sequence indexed by i such that $i ! 1$, but i

$$: (N_i; q_i^0) \rightarrow (M; p)$$

is not injective on $f_i(B(p; R))$. In the limit, we obtain a Riemannian cover

$$^0 : (N^0; q^0) \rightarrow (M; p);$$

such that there is a pointed isometry

$$f : B(p; R) \rightarrow B(q^0; R) \cap N^0;$$

but where f^0 is not injective on $\overline{B(q^0; R)}$. Here, the non-injectivity persists in the limit since the distance between points of $(N_i^0; q_i^0)$ with the same projection to $(M; p)$ is bounded below by the injectivity radius of $(M; p)$, which is positive on the compact subset of $(M; p)$ in which we're interested.

The map $f^0 : B(p; R) \rightarrow M$ is an isometry fixing p , so it extends to an embedding $F : B(p; R) \rightarrow M$. As long as R is a (generalized) regular value for the (nonsmooth) function $d(p; \cdot)$ on M , a full measure open condition [84], the inclusion $B(p; R) \rightarrow B(p; R)$ is a homotopy equivalence, see [38, Isotopy Lemma 1.4]. So in this case, the map F takes $\overline{B(p; R)} = \overline{B(p; R)}$ into the f^0 -image of N^0 . Hence F lifts to an isometry $B(p; R) \rightarrow B(q^0; R) \cap N^0$, by the lifting criterion. Since F is an embedding, this contradicts that f^0 is non-injective on $\overline{B(q^0; R)}$.

As long as R are chosen according to Claim 4.3, $N_{R; }^k(M; p)$ satisfies the second condition of the lemma. For if

$$(N^0; q^0) \subset (N; q) \subset (M; p); \quad (N^0; q^0) \supset N_{R; }^k(M; p);$$

then there is a map $f : B(p; R) \rightarrow N^0$ as above, so $f^0 : (N^0; q^0) \rightarrow (M; p)$ is injective on $f(B(p; R))$. In particular, the covering map

$$: (N^0; q^0) \rightarrow (N; q)$$

is also injective there, so the composition

$$f : B(p; R) \rightarrow N^0$$

is an embedding. As f inherits the same Sasaki-bilipschitz bounds that f has, this shows that $(N; q) \supset N_{R; }^k(M; p)$ as well.

Therefore, for any k , almost every $R > 0$, and sufficiently close to 1, the neighborhood $N_{R; }^k(M; p)$ satisfies both conditions of the lemma. As these neighborhoods form a basis for the topology of M^d at $(M; p)$, we are done.

Using the lemma, we now complete the proof of Proposition 4.1. Recall that X is a d -dimensional Riemannian foliated space and

$$L : X \rightarrow M^d; \quad x \mapsto (L_x; x)$$

is the leaf map. We want to show that for each open $U \subset M^d$, the preimage $L^{-1}(U) = \bigcup_{i=1}^n O_i \setminus C_i$; where each O_i is open and each C_i is closed in X .

It suffices to check this when U is chosen as in Lemma 4.2. If $L^{-1}(U)$ does not have the form $\bigcup_{i=1}^n O_i \setminus C_i$; there is a point $x \in L^{-1}(U)$ and a sequence

$$x_i \in \overline{L^{-1}(U)} \cap L^{-1}(U); \quad x_i \neq x \in L^{-1}(U);$$

Passing to a subsequence, we may assume by Theorem A.19 that

$$L(x_i) \rightarrow (N; q) \subset L(x);$$

Note that as $L(x_i) \not\subset U$ for all i , we have $(N; q) \not\subset U$ as well.

Each x_i is the limit of some sequence $(y_{i;j})$ in $L^{-1}(U)$, and Theorem A.19 implies that after passing to a subsequence, we have that for each i ,

$$L(y_{i;j}) \rightarrow (Z_i; z_i) \subset L(x_i) \text{ as } j \rightarrow \infty;$$

Now x is in $R > 0$, since the manifolds $L(x_i)$ converge in M^d , the R -balls around their base points have uniformly bounded geometry, as in Definition A.3. These geometry bounds lift to pointed covers, so are inherited by the $(Z_i; z_i)$. So by Theorem A.4, after passing to a subsequence we may assume that

$$(Z_i; z_i) \rightarrow (N^0; q^0) \in M^d;$$

Moreover, as $(Z_i; z_i) \rightarrow L(x_i)$ for each i , we have

$$(N^0; q^0) = \lim(Z_i; z_i) \rightarrow \lim L(x_i) = (N; q);$$

simply by taking a limit of the covering maps. Remembering now that $(Z_i; z_i)$ was defined as the limit of $L(y_{i;j})$ as $j \rightarrow 1$, if we choose for each i some large $j = j(i)$ and abbreviate $y_i = y_{i;j(i)}$, then

$$L(y_i) \rightarrow (N^0; q^0)$$

as well. However, by construction we have $L(y_i) \subset U$, so $(N^0; q^0) \subset \overline{U}$.

The first part of Lemma 4.2 implies that $(N^0; q^0) \subset U$, and then the second part shows $(N; q) \subset U$. This is a contradiction, as we said above that $(N; q) \not\subset U$.

4.2. Resolving singularities in M^d . In this section, we will assume that $d \geq 2$. We saw in Example 2.2 that $M^1 = (0; 1]$ is completely understood; the reader is encouraged to think through the proofs of our results when $d = 1$ on his/her own.

M^d is not a naturally foliated space: although the images of the maps

$$M \rightarrow M^d; \quad p \rightarrow (M; p)$$

partition M^d as would the leaves of a foliation, these maps are not always injective and their images may not be manifolds. However, the following theorem, discussed in §1, shows that there is a way to desingularize M^d so that the theory of unimodular measures becomes that of completely invariant measures.

Theorem 1.8 (Desingularizing M^d). If μ is a completely invariant probability measure on a Riemannian foliated space X , then pushes forward under the leaf map to a unimodular probability measure on M^d .

Conversely, there is a Polish Riemannian foliated space P^d such that any finite unimodular measure on M^d is the push forward under the leaf map of some completely invariant measure on P^d . Moreover, for any fixed manifold M , the preimage of $f(M; p) \subset M^d$ under the leaf map is a union of leaves of P^d , each of which is isometric to M .

As a corollary of this and Theorem 3.1, we have the following theorem, which we also discussed in the introduction.

Theorem 1.9. A finite Borel measure on M^d is unimodular if and only if the lifted measure $\tilde{\mu}$ on $T^1 M^d$ is geodesic flow invariant.

Proof. By Theorem 1.8, μ is the push forward of a completely invariant measure on a Riemannian foliated space $X \rightarrow M^d$. (Taking $X = P^d$.) By Theorem 3.1, the induced measure $\tilde{\mu}$ on $T^1 X$ is invariant under geodesic flow. Now, the leafwise derivative $D : T^1 X \rightarrow T^1 M^d$ is geodesic flow equivariant, so the push forward measure $D\tilde{\mu} = \mu$ is geodesic flow invariant.

The first assertion of Theorem 1.8 is easy to prove. If

$$R = f(x; y) \subset X \times j_x; y \text{ lie on the same leaf};$$

then the measures $\iota;_r$ on $X \times X$ are supported on R and push forward to $\iota;_r$ under the natural map $R \rightarrow M^d$: By Theorem 3.1, $\iota = r$, so $\iota = r$.

The idea for the ‘conversely’ statement is to use Poisson processes to obstruct the symmetries of these manifolds, converting M^d into a foliated space P^d . To do this, we will recall some background on Poisson processes, define P^d and show how to translate between measures on M^d and on P^d , and then verify that P^d is a Riemannian foliated space.

If M is a Riemannian d -manifold, the Poisson process of M is the unique probability measure μ_M on the space of locally finite subsets $D \subset M$ such that

- 1) if A_1, \dots, A_n are disjoint Borel subsets of M , the random variables that record the sizes of the intersections $D \cap A_i$ are independent,
- 2) if $A \subset M$ is Borel, the size of $D \cap A$ is a random variable having a Poisson distribution with expectation $\text{vol}_M(A)$.

For a finite volume subset $A \subset M$ and $n \geq N$, we have (cf. [41, Example 7.1(a)])

$$(23) \quad \text{Prob} \begin{array}{l} \text{for } (x_1, \dots, x_n) \in A^n; \text{ we have } D \cap A = f(x_1, \dots, x_n)g; \\ \text{given that } D \cap A \text{ has } n \text{ elements.} \end{array} = d\text{vol}_M^n(x_1, \dots, x_n);$$

In other words, if D is chosen randomly, the elements of $D \cap A$ are distributed within A independently according to μ_M .

We refer the reader to [41] for more information on Poisson processes. In this text, they are not introduced on Riemannian manifolds, but for measures on R^d that are absolutely continuous with respect to Lebesgue measure. However, as the Poisson process behaves naturally under restriction and disjoint union, it is ‘local’, and can be defined naturally for manifolds. In fact, the Poisson process really only depends on the Riemannian measure on M , and not on the topology of M . Since M is isomorphic as a measure space to the (possibly infinite) interval $(0; \text{vol}(M))$, see [85], one really only needs to understand the usual Poisson process on R_+ , as that of an interval is just its restriction.

When M is a Riemannian d -manifold, let F_M be its orthonormal frame bundle, the bundle in which the fiber over $p \in M$ is the set of orthonormal bases for $T_p M$. If we regard F_M with the Sasaki-Mok metric [78], then

- 1) when $f : M \rightarrow M$ is an isometry, so is its derivative $Df : F_M \rightarrow F_M$,
- 2) the Riemannian measure μ_{F_M} is obtained by integrating the Haar probability measure on each fiber $F_p M = O(d)$ against μ_M .

Lemma 4.4. If M is a Riemannian d -manifold, $d \geq 2$, then $\text{Isom}(M)$ acts essentially freely, with respect to the Poisson measure μ_{F_M} , on the set of nonempty locally finite subsets of F_M .

The subset $\iota; F_M$ is fixed by $\text{Isom}(M)$ and has μ_{F_M} -probability⁷ $e^{-\text{vol}(F_M)}$. So if M has finite volume, we must exclude $\iota; F_M$ in the statement of the lemma.

Also, if $M = S^1$, then after choosing an orientation, every subset $fe_1; e_2 g \subset F_M$, where e_1, e_2 have opposite orientations, is stabilized by an involution of M . Since S^1 is compact, two-element subsets of $F S^1$ appear with positive $\mu_{F S^1}$ -probability, so the statement of the lemma fails for 1-manifolds.

Proof. The Lie group $\text{Isom}(M)$ acts freely on F_M , so any nonempty subset $D \subset F_M$ that is stabilized by a nontrivial element $g \in \text{Isom}(M)$ has at least two points.

⁷Via the measure isomorphism $F_M \rightarrow (0; \text{vol}(F_M))$, this is just the probability that there are no points in the interval $(0; \text{vol}(F_M))$, under the usual Poisson process on R_+ .

As the action is proper, its orbits are properly embedded submanifolds, so unless one is a union of components of $F M$, all orbits have $\text{vol}_{F M}$ -measure zero. In this case, the $\text{vol}_{F M}$ -probability of selecting two points from the same orbit is zero, so $F M$ -a.e. $D \subset F M$ has trivial stabilizer, by Equation (23).

So, we may assume from now there is an orbit of $\text{Isom}(M) \subset F M$ that is a union of components of $F M$. (The frame bundle $F M$ has either 1 or 2 components, depending on whether M is orientable.) Then $\text{Isom}(M)$ acts transitively on 2-planes in $T M$, so M has constant sectional curvature. As $\text{Isom}(M)$ also acts transitively on $T M$, M is either S^d ; RP^d ; R^d or H^d .

If $D \subset F M$ is stabilized by some nontrivial $g \in \text{Isom}(M)$, it has at least two points e_1, e_2 , and we can consider the images $g(e_1), g(e_2)$. Either e_1, e_2 are exchanged by g , or one is sent to the other, which is sent to something new, or both elements are sent to new elements of D . As the elements of a random D are distributed according to $\text{vol}_{F M}$, by (23), it suces to prove that for $(e_1; \dots; e_4) \in F M^4$, the following are $\text{vol}_{F M}$ -measure zero conditions:

- 1) $g(e_1) = e_2; g(e_2) = e_1$, for some $g \in \text{Isom}(M)$,
- 2) $d(e_1; e_2) = d(e_2; e_3)$,
- 3) $d(e_1; e_2) = d(e_3; e_4)$.

An isometry that exchanges two frames must be an involution, since its square is a frame. So, for 1) we want to show that the probability of selecting frames $e_1, e_2 \in F M$ that are exchanged by an involution is zero. The point is that in each of the cases $M = S^d; RP^d; R^d$ or H^d , an involution exchanging $p, q \in M$ leaves invariant some geodesic $\gamma : [0; 1] \rightarrow M$ joining p, q , and then exchanges

$T_p M$ with $T_q M$. So, after fixing a frame $e_1 \in F M_p$, the frames in $F M_q$ that are images of e_1 under involutions form a subset of $F M_q$ of dimension at most that of $O(d-1)$, which has zero Haar measure inside of $F M_q = O(d)$. Integrating over q , we have that for a fixed e_1 , the probability that a frame $e_2 \in F M$ is the image of e_1 under an involution is zero. Integrating over e_1 finishes the proof of part 1).

For 2), note that for a fixed $e_2 \in F M$, the function

$$d(e_2; \cdot) : F M \rightarrow \mathbb{R}$$

pushes forward $\text{vol}_{F M}$ to a measure on \mathbb{R} that is absolutely continuous with respect to Lebesgue measure λ : its RN-derivative at $x \in \mathbb{R}$ is the $(\dim(F M) - 1)$ -dimensional volume of the metric sphere around e_2 of radius x . So, if e_1 and e_3 are chosen against $\text{vol}_{F M}$, the distances $d(e_1; e_2)$ and $d(e_2; e_3)$ will be distributed according to a measure absolutely continuous to Lebesgue measure on \mathbb{R}^2 , so will almost never agree. The proof that 3) is a measure zero condition is similar.

We now show how to convert M^d into a foliated space by introducing Poisson processes on the frame bundles of each Riemannian d -manifold. Let

$$P_{\text{all}}^d = f(M; p; D) \int_{\substack{M \text{ a complete Riemannian } d\text{-manifold,} \\ p \in M; \text{ and } D \subset F M \text{ a closed subset}}} g = ;$$

where $(M; p; D) \in (M^0; p^0; D^0)$ if there is an isometry $\gamma : M \rightarrow M$ with $\gamma(p) = p^0$ whose derivative $d\gamma$ takes D to D^0 . There is a Polish smooth-Chabauty topology on P^d obtained from the smooth topology on M^d and the Chabauty topology on the subsets D , see §A.5. Now consider the subset

$$P^d = f(M; p; D) \subset P_{\text{all}}^d \mid @ \text{an isometry } \gamma : M \rightarrow M \text{ with } d\gamma = Dg;$$

The subset P^d is G , since $P_{all}^d \cap P^d = \bigcup_{n \in \mathbb{N}} F_n$; where F_n is the set of all $(M; p; D)$ such that there is an isometry $: M \rightarrow M$ with

$$d(D) = D \text{ and } \bigcup_{n \in \mathbb{N}} d_M(p; (p)) = n;$$

here, F_n is closed by the Arzela-Ascoli theorem. Hence, by Alexandrov's theorem, P^d is a Polish space. Note that P^d is dense in P_{all}^d , since any Riemannian manifold can be perturbed to have no nontrivial isometries.

Theorem 4.5. P^d has the structure of a Polish Riemannian foliated space, where $(M; p; D)$ and $(M^0; p^0; D^0)$ lie in the same leaf when there is an isometry

$$: M \rightarrow M^0; \quad d(D) = D^0;$$

Assuming Theorem 4.5 for a moment, let's indicate how to transform a unimodular measure on M^d into a completely invariant measure on P^d , which will finish the proof of Theorem 1.8. Each fiber of the projection

$$: P_{all}^d \rightarrow M^d; \quad (M; p; D) \mapsto (M; p)$$

is identified with a set of closed subsets of F_M , and this identification is unique up to isometry. The Poisson process on F_M (with respect to the natural volume, e.g. that induced by the Sasaki-Mok metric) induces a measure $_{(M; p)}$ on $^{-1}(M; p)$, supported on the Borel set of locally finite subsets. We call this measure the framed Poisson process on that fiber, and by Lemma 4.4 we have

$$_{(M; p)}(P^d) = 1 \cdot e^{-\text{vol } F_M} > 0$$

for each $(M; p) \in M^d$. Moreover, the map

$$M^d \rightarrow M(P^d); \quad (M; p) \mapsto _{(M; p)}$$

is continuous, where $M(P^d)$ is the space of Borel measures on P^d , considered with the weak topology. (This follows from weak* continuity of the Poisson process associated to a space with a measure as the measure varies in the weak* topology, which is a consequence of (23).)

So, given a measure on M^d , we define a measure \wedge on P^d by

$$(24) \quad \wedge = \frac{_{(M; p)}}{(M; p) 2^{M^d} \cdot 1 - e^{-\text{vol } F_M}} d;$$

The push forward of \wedge under the projection to M^d is clearly, so we must only check that \wedge is completely invariant.

Suppose that $R \subseteq P^d$ is the leaf equivalence relation of P^d , i.e. the set of all pairs $((M; p; D); (M^0; p^0; D^0))$ such that there is an isometry $: M \rightarrow M^0$ with $d(D) = D^0$. Each such pair determines a tuple $(M^0; (p); p^0; D^0)$, a doubly rooted manifold together with a closed subset of its frame bundle, that is unique up to isometry. So, there is a map

$$R \rightarrow M^d; \quad ((M; p; D); (M^0; p^0; D^0)) \mapsto (M^0; (p); p^0);$$

where the fiber over $(M; p; q) \in M^d$ is canonically identified (up to isometry of M) with the set of closed subsets of F_M on which $\text{Isom}(M)$ acts freely. From the construction of \wedge , the measures $_{\wedge_l}$ and $_{\wedge_r}$ on R are obtained by integrating (rescaled) Poisson processes on each fiber against $_{\wedge_l}$ and $_{\wedge_r}$. So, if $_{\wedge_l} = _{\wedge_r}$, then $_{\wedge_l} = _{\wedge_r}$, implying \wedge is completely invariant by Theorem 3.1.

4.3. The proof of Theorem 4.5. The goal is to cover P^d by open sets U , together with homeomorphisms

$$h : R^d \times Z \rightarrow U;$$

where $Z = Z(U)$ is separable and metrizable, with transition maps

$$t : R^d \times Z \rightarrow R^d \times Z^0; \quad t(x; z) = (t_1(x; z); t_2(z));$$

where $t_1(x; z)$ is smooth in x , and where t_1, t_2 and all the partial derivatives $\frac{\partial t_1(x; z)}{\partial x_i}$ are continuous on $R^d \times Z$. We also want the leaves of the foliation to be obtained by fixing M and $D \subset M$, and letting the base point $p \in M$ vary.

The construction of the charts will require some work | in outline, the idea is as follows. Given $X \subset P^d$, we show that on any small neighborhood $U \ni X$, there is an equivalence relation whose equivalence classes are obtained by taking some $(M; p; D)$ and making slight variations of the base point p . Eventually, these equivalence classes will be the plaques $h(R^d \times Z)$, and the quotient space $U =$ will be the transverse space Z . That is, we will have a homeomorphism h to complete the following commutative diagram:

$$\begin{array}{ccc} R^d \times Z & \xrightarrow{h} & U \\ \downarrow & & \downarrow \\ Z & \xrightarrow{\quad} & U = \end{array}$$

Of course, this cannot be done without a careful choice of U . It is not hard to choose U so that each -equivalence class is a small disc of base points in some manifold M with a distinguished closed subset D . Shrinking U , we show that one can construct a continuously varying family of base frames, one for each of these M . Then, we use the Riemannian exponential maps associated to these frames to parameterize the -classes, which allows us to identify them with R^d in a way that is transversely continuous.

Most of the proof involves constructing the base frames. Essentially, this is just a framed version of the following, which we can discuss now without introducing more notation. Given our neighborhood U of $X \subset P^d$, there is a section $s : U = \rightarrow U$ for the projection map with $s([X]) = X$. Briefly, the idea for this is as follows. Fix a metric d on P^d , and for each -class E , set

$$E_0 = \{p \in E \mid d(p; X) \leq d(E; X)\}.$$

The point $s(E) \in E$ is then dened to be the ‘circumcenter’ of E_0 , when we regard E_0 as a small subset inside of a Riemannian M as above. (In what follows, this argument will be done for base frames, and the notation will be dierent.)

Before starting the proof in earnest, we record the following two lemmas, which should convince the reader that such a foliated structure is likely.

Lemma 4.6 (Leaf inclusions). Suppose that $X = (M; p; D) \subset P^d$, and dene L

$$: M \rightarrow P^d; \quad L(q) = (M; q; D).$$

Then L is a continuous injection, so the restriction of L to any precompact subset of M is a homeomorphism onto its image.

Proof. For continuity of L , note that if $q; q^0 \in R^d$ and $jq = q^0j$, there is a dieomorphism f of R^d taking q to q^0 , such that

- 1) f is supported in a 2-ball around q ,
- 2) the k^{th} partial derivatives of f are all bounded by some $C(k; \cdot)$, where $C(k; \cdot) \rightarrow 0$ as $\cdot \rightarrow 0$.

For instance, one can just \times any bump function taking the origin to $(1; 0; \dots; 0)$ that is supported in a 2-ball around the origin, and conjugate it using appropriate Euclidean similarities. So if $q; q^0 \in M$ are close, we can choose an R^d -chart around them and transfer such an f to M to give an almost isometric map verifying that $(M; q; D)$ and $(M; q^0; D)$ are close in P^d .

Injectivity of L comes from the definition of P^d , which requires that there are no nontrivial isometries of the pair $(M; D)$. The statement about compact subsets of M follows from point set topology, as P^d is Hausdorff.

We optimistically call the image of L the leaf through $X \in P^d$, and write

$$L_x := L(M) \cap P^d;$$

Via L , we will from now on regard L_x as a smooth Riemannian d -manifold that is topologically embedded (non-properly) in the space P^d . (The distance function on a leaf L_x will usually be written as d_{L_x} .) Under this identification, the point p becomes X and the subset $D \subset M$ becomes a distinguished subset of the frame bundle of L_x . Note that the natural (manifold) topology on L_x is not the subspace topology induced from the inclusion $L_x \hookrightarrow P^d$.

Lemma 4.7 (Chabauty convergence of leaves). Suppose $X_i \rightarrow X$ in P^d . Then

- 1) for every point $Y \in L_x$, there is a sequence $Y_i \in L_{X_i}$ with $Y_i \rightarrow Y$ in P^d and $d_{L_x}(X_i; Y_i) \rightarrow d_{L_x}(X; Y)$.
- 2) if $Y_i \in L_{X_i}$ with $d_{L_{X_i}}(X_i; Y_i) < 1$, then after passing to a subsequence we have $Y_i \rightarrow Y \in L_x$, and $d_{L_x}(X_i; Y_i) \rightarrow d_{L_x}(X; Y)$.

Note that there may be sequences $Y_i \in L_{X_i}$ that converge in P^d , but where $d_{L_{X_i}}(X_i; Y_i) \geq 1$, so the statements about distance above have content.

Proof. By definition of the convergence $X_i \rightarrow X$, see §A.5, after conjugating by the leaf inclusions, there are almost isometric maps

$$(25) \quad f_i : L_x \rightarrow L_{X_i};$$

with $f_i(X) = X_i$ and where the derivatives Df_i pull back the distinguished subsets of the frame bundles L_{X_i} to a sequence that Chabauty converges to the distinguished subset of L_x . (Here, \rightarrow means that f_i is defined on some ball around the base point, where the domains exhaust L_x as $i \rightarrow 1$, see A.5.)

For 1), the sequence $Y_i = f_i(Y)$ is defined for large i and converges to Y in P^d : one can use the f_i in the definition of convergence. For 2), the sequence $f_i^{-1}(Y_i)$ is defined for large i , and is pre-compact in L_x by the condition on distances. So, after passing to a subsequence, it converges to some point $Y \in L_x$, and we will have $Y_i \rightarrow Y$ in P^d as well, again using the f_i in the definition of convergence.

4.3.1. Constructing the equivalence relation. For any $\epsilon > 0$, define a relation \sim on P^d by letting

$$X \sim Y \quad \text{if} \quad Y \in L_x \text{ and } d_{L_x}(X; Y) < \epsilon;$$

Note that \sim is reflexive and symmetric, but we only have

$$X \sim Y \text{ and } Y \sim Z \Rightarrow X \sim Z;$$

rather than transitivity for a particular ϵ . In particular, the equivalence class of X with respect to the transitive closure of \sim is exactly L_X .

However, each \sim is transitive on sufficiently small subsets of P^d .

Lemma 4.8. If $O \in P^d$, then for $\epsilon > 0$, there is a neighborhood $U \ni O$ on which the relations \sim and \approx agree. Hence, if U is chosen so that \approx on U , then \sim is an equivalence relation on U .

Proof. Assuming this is not the case for some $\epsilon > 0$, let X_i and Y_i be sequences in P^d that converge to O , with $X_i \sim Y_i$; but $X_i \not\approx Y_i$. Since $X_i \sim Y_i$, the distance $d_L(X_i; Y_i) < \epsilon$. So, Lemma 4.7 2) applies, and we must have $d_{L_{X_i}}(X_i; Y_i) \neq d_{L_O}(O; O) = 0$, violating that $d_{L_{X_i}}(X_i; Y_i) = 0$ for all i .

From now on, we assume that all our neighborhoods U are small enough so that \approx is an equivalence relation.

Lemma 4.9. The quotient topology on U/\sim is separable and metrizable.

Proof. Separability of U/\sim is immediate, as U is separable. Metrizability of U/\sim can be proved in the same way that we prove it for P^d in Section A.5. The only difference is that when comparing two triples $(M; p; D)$ and $(M^0; p; D^0)$, we now let our maps $f : B_M(p; R) \rightarrow M^0$ take p to any point within an ϵ -neighborhood of p^0 . Ordinarily, such flexibility would make it hard to establish a triangle inequality, but if U is sufficiently small, then such a map that realizes the distance between $(M; p; D)$ and $(M^0; p; D^0)$ will have small distortion, and using a limiting argument as in Lemma 4.8, one can show that in fact $f(p)$ must be (arbitrarily) close to p^0 , so that the composition of two such maps still takes base points within ϵ of base points.

4.3.2. A section of base frames. We describe here how to construct, for each equivalence class in U/\sim , a base frame for the corresponding M . To make a precise statement, we need a framed version of our space P^d . Define

$$FP^d = \{(M; e; D) \text{ such that } \exists \text{ an isometry } f : M \rightarrow M^0 \text{ such that } f(D) = D^0\}$$

There is a natural Polish topology on FP^d , coming from the framed smooth topology on the pairs $(M; e)$ and the Chabauty topology on the subsets D ; compare with Section A.5. We denote the natural projection by

$$p : FP^d \rightarrow P^d$$

Lemmas 4.6 and 4.7 have framed analogues. If $X = (M; e; D) \in FP^d$, then

$$L : FM \rightarrow FP^d; L(e^0) = (M; e^0; D)$$

is a continuous injection, and via L we will view its image $L_X \subset FP^d$ as (the frame bundle of) a smooth Riemannian manifold. Moreover, if

$$X_i = (M_i; e_i; D_i) \in X = (M; e; D)$$

in FP^d , then by definition, see §A.5, there are almost isometric maps

$$f_i : M \rightarrow M_i$$

such that the derivatives Df_i map e to e_i , and pull back (D_i) to a sequence of subsets of FM that Chabauty converges to D . Identifying frame bundles with the corresponding leaves in FP^d as above, these derivatives become maps

$$(26) \quad F_i : L_{X_i} \dashrightarrow L_{X_i}$$

These maps are almost isometric, in the sense that if L_{X_i} and $L_{X_{i+1}}$ are equipped with the Sasaki-Mok metrics g_i induced by the Riemannian metrics on M_i and M_{i+1} , see [78], then we have $F_i(g_i) \rightarrow g$ in the C^1 -topology. Using the F_i , one can prove a framed analogue of Lemma 4.7:

Lemma 4.10 (Chabauty convergence of leaves). *If $X_i \rightarrow X$ in FP^d , then*

- 1) for every point $Y \in L_X$, there is a sequence $Y_i \in L_{X_i}$ with $Y_i \rightarrow Y$ in FP^d and $d_{L_{X_i}}(X_i; Y_i) \rightarrow d_{L_X}(X; Y)$.
- 2) if $Y_i \in L_{X_i}$ with $d_{L_{X_i}}(X_i; Y_i) < 1$, then after passing to a subsequence we have $Y_i \rightarrow Y \in L_X$, and $d_{L_{X_i}}(X_i; Y_i) \rightarrow d_{L_X}(X; Y)$.

Finally, the relation \sim on FP^d pulls back under π to a relation on FP^d , which we will abusively call \sim as well. On small subsets $V \subset FP^d$, \sim is an equivalence relation on V , just as in the previous section.

Lemma 4.11. *Every $F \in FP^d$ has a neighborhood V on which there is a continuous map $s : V \rightarrow FP^d$ with $s(F) = F$ that is constant on \sim -equivalence classes and satisfies $s(X) \sim X$ for all $X \in V$.*

So, s gives a continuous section for the map $V \rightarrow V/\sim$ near F .

The proof of Lemma 4.11 will occupy the rest of the section. The idea is as follows. We first select a distinguished subset of each equivalence class, essentially consisting of those points whose distances to F are at most twice the minimum distance to F in that equivalence class. We then show that these subsets vary continuously with the equivalence class. The desired section is constructed by always choosing the ‘circumcenter’ of the distinguished subset.

Fix a metric d_{FP^d} on FP^d and suppose V is a metric ball around F . Define

$$d_{FP^d}(X; F) = \inf_{X^0 \in V} d_{FP^d}(X^0; F) \quad \text{if } X^0 \in V; \quad d_{FP^d}(X; F) = \infty \quad \text{if } X^0 \notin V.$$

Each \sim -equivalence class in V is pre-compact in FP^d , since it is the image of a pre-compact subset under a continuous map $FM \rightarrow FP^d$ from the frame bundle of some manifold M . And if $X \in V$, the metric ball V contains all points of FP^d that are closer to F than X . So, the infimum is always achieved.

Claim 4.12. *The map s is continuous.*

Proof. Suppose that in V we have

$$X_i = (M_i; e_i; D_i) \sim X = (M; e; D)$$

and that $X_i \rightarrow X$ realize the inimums defining (X_i) . We can assume that $\sup_i d_{L_{X_i}}(X_i; X^0) \leq 2$, so after passing to a subsequence, Lemma 4.10 2) implies that X^0 converges in FP^d to a point $X^0 \in L_X$. However,

$$d_{FP^d}(F; X^0) = \lim_i d_{FP^d}(F; X^0_i) = \lim_i d_{FP^d}(F; X_i) = d_{FP^d}(F; X);$$

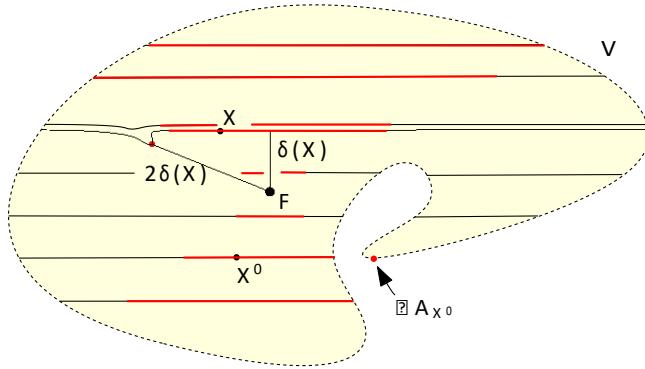


Figure 3. Each A_x $[X]$ V is drawn in red.

so as V is a metric ball around F that contains X , we have $X^0 \subset V$. So, X^0 can be used in the definition of (X) , implying that

$$\lim_i (X_i) = \lim_i d_{F^P d}(F; X_i)^c = d_{F^P d}(F; X^0) (X)$$

The reverse inequality is proved similarly: we assume that $X^0 \in X$ realizes the innum dening (X) , then we reroot the X_i using Lemma 4.10 1) to produce elements $X^0 \in V$ with $X_i \in X^0$ and $X^0 \neq X^0$, and use the continuity of the distance function d_{FP^d} .

Moving toward the denition of the map s , we rst dene a map that selects a small subset of each $_1$ -equivalence class in V . If $X \in F$, set

$$A_x = fF g:$$

Otherwise, if $X \in \text{dene}$

$$A_x = Y - 2V - Y_1 X \quad \text{and} \quad d_{FP^d}(Y; F) < 2(X) - FP^d.$$

Note that by continuity of d_{F^d} and positivity of (X) , the set A_X is always nonempty. (However, if $X \perp F$ then $(X) = 0$, so this latter denition of A_X would give the empty set, which is the reason we set $A_X = fFg$ in that case.) Moreover, A_X is compact: for if $X = (M; e; D)$ and

$$L : FM \rightarrow FP^d; \quad L(e^0) = (M; e^0; D)$$

is the framed analogue of the leaf inclusion map of Lemma 4.6, then the conditions $L(e^0) \subset X$ and $d_{F^d}(L(e^0); F) < 2(X)$ define a pre-compact subset of M , whose closure is the (compact) preimage $L^{-1}(A_X)$.

Claim 4.13 (Chabauty continuity of $X \setminus A_X$). After possibly shrinking V , we have that if $X_i \rightarrow X$ in V , then $A_{X_i} \rightarrow A_X$ in the Chabauty topology: every accumulation point in FP^d of a sequence $Z_i \in A_{X_i}$ lies in A_X , and every point of A_X is the limit of a sequence $Z_i \in A_{X_i}$.

Figure 3 indicates two issues related to this continuity.

1) The shape of V may be a problem: in the figure, the indicated point of $A \times 0$ cannot be approached from 'below' within the red subsets. This is resolved by shrinking V.

2) It is important to define A_X as the closure of a set defined by a strict inequality, as opposed to a set defined by a non-strict inequality. For the leftmost point in the closure that is equivalent to X has distance exactly $2(X)$ from F , but cannot be approached from above by red points.

Proof. Pick V^0 small enough so that for each $X \in V^0$, the closed $2(X)$ -ball around X in $F P^d$ is contained in the interior of V . This is possible since $(X) \neq 0$ as $X \in F$. Note that with V^0 so chosen, the condition that $Y \in V$, rather than just in $F P^d$, is superfluous in the definition of A_X .

Assume that $X_i \in X$ in V^0 . The fact that every accumulation point in $F P^d$ of a sequence $Z_i \in A_{X_i}$ lies in A_X follows immediately from Lemma 4.10 2) and the continuity of $d_{F P^d}$ and \cdot^X .

If $Y \in A_X$, pick a sequence $Y_i \in X$ with $d_{F P^d}(Y_i; F) < 2(X)$ such that $Y_i \rightarrow Y$, as in the definition of A_X . Passing to subsequences of (X_i) and (Y_i) and using Lemma 4.10 2), pick for each i some $Z_i \in X_i$ with

$$(27) \quad d_{F P^d}(Y_i; Z_i) < \frac{1}{i}.$$

Note that we can assume $Z_i \in V^0$, simply because the latter is open. As $d_{F P^d}$ and \cdot^X are continuous on $F P^d$, for large i we have

$$d_{F P^d}(Z_i; X_i) < (X_i);$$

so $Z_i \in A_{X_i}$. But $Z_i \rightarrow Y$, so we are done.

The goal now is to define a map $s : V \rightarrow F P^d$ by taking $s(X)$ to be the ‘circumcenter’ of A_X , in the following sense.

Lemma 4.14 (Circumcenters). Let M be a Riemannian manifold, let $p \in M$ and $R = \text{inj}_M(p)$. Suppose that the sectional curvature of M is bounded above by κ on $B(p; R)$, and let $R^0 = \min\{R, \frac{1}{16}\kappa\}$. If $A \subset B(p; R^0)$, the function

$$(28) \quad q \in M \mapsto \sup_{a \in A} d_M(q; a)$$

has a unique minimizer $(A) \in M$, called the circumcenter of A .

Here, $\text{inj}_M(p)$ is the injectivity radius of M at p , and the notation for (A) reects that it is the center of a minimal radius ball containing A .

Proof. As $A \subset B(p; D)$ is pre-compact, the supremum above is always realized on the closure of A . Also, pre-compactness implies that the function (28) is continuous and proper, so it must have at least one minimum.

Suppose $q_1 = q_2$ both realize the minimum, which we’ll say is D , and let q be the midpoint of the unique minimal geodesic connecting q_1, q_2 . Since D is the minimum, there must be some point $a \in \overline{A}$ with

$$d(q; a) = D.$$

By definition of D , we also have

$$d(q_i; a) = D \quad \text{for } i = 1, 2;$$

In other words, we have a triangle (q_1, a, q_2) in M where the distance from a to the midpoint q of $q_1 q_2$ is at least both $d(a; q_1)$ and $d(a; q_2)$. Note also that because $A \subset B(p; R^0)$, we have $q_1, q_2 \in B(p; 2R^0)$, so all side lengths of our triangle are at most $4R^0$.

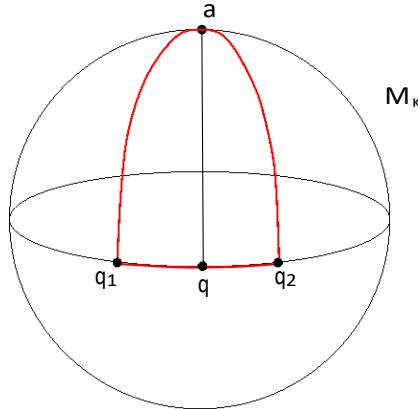


Figure 4. A triangle on a sphere in which a midpoint-vertex distance is the same as the adjacent side lengths. This happens only if the side lengths are at least half the diameter of the sphere.

We claim this is impossible. A theorem of Alexandrov, see [27, 1A.6], implies that distances between points in the triangle $(q_1; a; q_2)$ are at most those in a ‘comparison triangle’ with the same side lengths in the model space M with constant curvature κ . (Here is where we use that R^0 is less than the injectivity radius at p .) In particular, $d(q; a)$ is at most the corresponding midpoint-vertex distance of the comparison triangle. And in M , midpoint-vertex distances are always less than the maxima of the adjacent side lengths, unless M is a sphere and some side of the triangle has length at least half the diameter of the sphere, i.e. at least $\frac{1}{2}R^0$, see Figure 4. But our triangle has side lengths at most $\frac{1}{4}R^0$.

Claim 4.15. After possibly shrinking V , there is a well-defined, continuous map s

$$: V \rightarrow \mathbb{F}P^d; \quad s(X) = (Ax);$$

where s is the circumcenter map on L_x , as in Lemma 4.14.

This will finish the proof of Lemma 4.11, for as noted above, s is constant on \sim_1 -equivalence classes and $X \sim_1 s(X)$. So, it remains to prove the claim.

Proof. Given $\epsilon > 0$, we can choose V small enough such that for every $X \in V$, the \sim_1 -equivalence class $[X] \subset L_x$ has d_{L_x} -diameter at most ϵ . (The argument is almost the same as that used to prove Lemma 4.8.) As injectivity radius and sectional curvature near the base point vary continuously in $\mathbb{F}M^d$, we can assume that V is small enough so that by Lemma 4.14, each subset $[X] \subset L_x$ has a well-defined circumcenter. On such a neighborhood V , the map in the statement of the claim is well-defined.

For continuity, suppose that $X_i \rightarrow X$ in V . Let

$$F_i : L_{X_i} \rightarrow L_{X_i}$$

be the almost isometric maps of (26). Combining (the proof of) Lemma 4.10 and Claim 4.13, we have

$$(29) \quad F_i^{-1}(Ax_i) \rightarrow Ax$$

in the Chabauty topology on closed subsets of L_x . As these sets are all contained in a compact subset of L_x , Chabauty convergence means that $F_i^{-1}(A_x)$ and A_x are contained in ϵ -neighborhoods of each other, with $\epsilon \rightarrow 0$ as $i \rightarrow \infty$.

We need to show that if $p_i = (A_{x_i})$ is the circumcenter in L_{x_i} , then

$$F_i^{-1}(p_i) \rightarrow (A_x);$$

the corresponding circumcenter in L_x . After passing to a subsequence, the points $F_i^{-1}(p_i)$ converge to a point $p \in L_x$. If R_i is the minimum radius of a closed ball around p_i that contains A_{x_i} , then as the F_i are almost isometric, the sets $F_i^{-1}(B(p_i; R_i))$ Chabauty converge to a ball $B(p; R) \subset A_x$, where $R_i \rightarrow R$. But A_x cannot be contained in a ball with radius less than R , since then a slight enlargement of such a ball would contain $F_i^{-1}(A_x)$ for large i , contradicting the fact that $R_i \rightarrow R$. So, p is a circumcenter for A_x .

4.3.3. Constructing the charts. Let us recall our setup. We have the two spaces

$$\begin{aligned} P^d &= (M; p; D) \quad \text{such that } g \text{ an isometry } f: M \rightarrow M; f(p) = p \quad \text{isometry} \\ &\quad M \text{ a complete Riemannian } d\text{-manifold,} \\ &\quad p \in M; \text{ and } D \subset M \text{ a closed subset} \\ FP^d &= (M; e; D) \quad \text{such that } g \text{ an isometry } f: M \rightarrow M; f(D) = D \quad \text{isometry;} \\ &\quad M \text{ a complete Riemannian } d\text{-manifold,} \\ &\quad e \in M; \text{ and } D \subset M \text{ a closed subset} \end{aligned}$$

together with the projection map $\pi: FP^d \rightarrow P^d$. The relevant smooth-Chabauty topologies are discussed in §A.5. Note that π is an open map: for if $(M; p; D)$ and $(M^0; p^0; D^0)$ are close in P^d , there is a (locally dened) almost isometric map f between them that takes p to p^0 , and then given $e \in M$, we have that $(M; e; D)$ and $(M^0; Df(e); D^0)$ are close in FP^d .

Choose a point $O \in P^d$, and a point $F \in FP^d$ with $(F) = O$. Let V be a neighborhood of F that is small enough so that Lemma 4.11 applies, and so that $U = \pi(V)$ satises the assumptions of Lemma 4.8. Since the equivalence relation \sim on V is a π -pullback, Lemma 4.11 gives a continuous map

$$s: U \rightarrow \pi^{-1}(V)$$

such that $(s([X])) \sim X$ for all $X \in U$. We dene a chart h :

$$R^d \rightarrow U \rightarrow \pi^{-1}(V);$$

as follows. Each $Z \in FP^d$ gives an exponential map

$$\exp_Z: R^d \rightarrow L_{(Z)} \subset P^d;$$

where if $Z = (M; e; D)$ then \exp_Z is the exponential map of M , with respect to the frame $e \in M$, but composed with the leaf inclusions of Lemma 4.6, so that it can be considered as a map into $L_{(Z)} \subset P^d$. Then

$$h(v; [X]) := \exp_{s([X])}(v);$$

Since injectivity radius at the base point varies continuously in P^d , after possibly shrinking V we may $\epsilon < \delta$ such that for each $X \in U$, the map

$$(30) \quad \exp_{s([X])}: B(0; 2) \rightarrow L_{s([X])}$$

is a dieomorphism onto its image. We claim:

Claim 4.16. $h: B(0; \epsilon) \rightarrow U \rightarrow \pi^{-1}(V)$ is a homeomorphism onto its image.

Proof. For convenience, we work with the closed ball $\overline{B(0;)}$. We'll show that

$$h : \overline{B(0;)} \cup_{=1} \rightarrow \mathbb{P}^d$$

is a continuous, proper injection. As \mathbb{P}^d is Chabauty, this will imply that h is a homeomorphism onto its image.

Injectivity follows immediately from the definition of : the reason 2 appears in (30) is to ensure the exponential maps stay injective on the closed balls $\overline{B(0;)}$.

For continuity, remember that $h(v; [X]) = \exp_{s([X])}(v)$ and note that

$$\exp : \mathbb{F} \mathbb{P}^d \rightarrow \mathbb{R}^d \setminus \{0\}; (Z; v) \mapsto \exp_Z(v)$$

is continuous, since the Riemannian exponential map varies smoothly when the metric is varied smoothly, a consequence of the smooth variation of solutions to smoothly varying families of ODEs. Hence, h is continuous.

We now claim that h is proper. Assume that $(v_i; [X_i])$ is a sequence in $\overline{B(0;)} \cup_{=1}$, and that $h(v_i; [X_i]) \in Y \subset \mathbb{P}^d$. As

$$d_{L_{X_i}} X_i; h(v_i; [X_i]) < ;$$

Lemma 4.7 2) implies that (X_i) has a subsequence that converges to some $X \in \mathbb{P}^d$. By compactness, v_i has a subsequence that converges to some $v \in \overline{B(0;)}$, so the sequence $(v_i; [X_i])$ is pre-compact in $\overline{B(0;)} \cup_{=1}$.

We now want to show that the set of all maps h constructed as above is a foliated atlas for \mathbb{P}^d . The key is the following lemma:

Lemma 4.17. Suppose that U and $U=1$ are chosen to be small enough so that 1 is an equivalence relation on the image $h(B(0;) \cup_{=1})$. Then if

$$(v; [X]); (w; [Y]) \in B(0;) \cup_{=1}; \text{ we}$$

have that $[X] = [Y] \iff h(v; [X]) \sim h(w; [Y])$:

Proof. The forward direction is immediate, since if $s([X]) = (M; e; D)$ then $h(v; [X]) = (M; \exp_e(v); D)$ and $h(w; [Y]) = (M; \exp_e(w); D)$. Since $< \frac{1}{4}$ we have $v; w \in B(0; \frac{1}{2})$. So $d_M(\exp_e(v); \exp_e(w)) < 1$, as desired.

Conversely, suppose $h(v; [X]) \sim h(w; [Y])$. Then

$$X \sim (s([X])) \sim h(v; [X]) \sim h(w; [Y]) \sim (s([Y])) \sim Y;$$

Lemma 4.17 implies that transition maps between the charts h have the form

$$t : B \cup_{=1} \rightarrow B^0 \cup_{=1}; t(v; [X]) = (t_1(v; [X]); t_2([X]));$$

where $B; B^0$ are neighborhoods of the origin in \mathbb{R}^d and $U; U^0$ are open in \mathbb{P}^d . Furthermore, for each $x \in [X]$, the map $v \mapsto t_1(v; [X])$ is a transition map between two exponential maps for the same Riemannian manifold M , but taken with respect to different base frames. So, t_1 is smooth in v . As X varies in \mathbb{P}^d , the Riemannian manifolds M vary smoothly, and the base frames vary continuously, so the v -partial derivatives of t_1 also vary continuously.

Therefore, \mathbb{P}^d is a foliated space. The charts $h : B(0;) \cup_{=1} \rightarrow \mathbb{P}^d$ above are chosen exactly so that when $[X_i] \in U=1$, the pullback metrics g_X on $B(0;)$ converge in the C^1 topology to g_X . The point is just that if a sequence of framed manifolds converges in the framed smooth topology, then the almost isometric maps of Equation (45) in §A.3 can be chosen to almost commute with the exponential maps in the small neighborhoods of the base frames. Finally, by

Lemma 4.17, the leaf equivalence relation of P^d is generated by ${}_1$, so leaves are obtained as promised by $x_{\#}(M; D)$ and varying the base point $p \in M$.

4.4. Application: an ergodic decomposition theorem. A unimodular probability measure on M^d is ergodic if whenever B is saturated and Borel, either $(B) = 0$ or $(B) = 1$. Here, we use the desingularization theorem (Theorem 1.8) to show that any unimodular probability measure on M^d can be expressed as an integral of ergodic such measures.

Ergodic decomposition theorems are usually proved in one of two ways. Phrased in our context, one of the usual approaches is to disintegrate with respect to the σ -algebra of saturated subsets, see [48], and then prove that the conditional measures are ergodic. The other approach uses that ergodic probability measures are the extreme points of the convex set of all unimodular probability measures, and then appeals to Choquet's theorem [82].

Neither of these approaches quite applies to unimodular measures on M^d in full generality. For the first approach, the usual way to prove that the conditional measures are ergodic is to appeal to a pointwise ergodic theorem. While Garnett [51] has proved a foliated ergodic theorem with respect to Brownian motion | this could be applied in our setting using Theorem 1.8 | her theory requires that the leaves of the foliation have uniformly bounded geometry. The problem with the second approach is that to our knowledge, there is currently no version of Choquet's theorem that applies in this generality. Namely, the original requires that the convex set in question be compact, see [82], and more general versions such as Edgar's [43] require separability assumptions and that the underlying Banach space has the Radon-Nikodym property.

Our approach is to use Theorem 1.8 to reduce the problem to an ergodic decomposition theorem for Polish foliated spaces, and then to reduce that to a decomposition theorem for measures on a complete transversal. Essentially, if one traces through all the arguments in the referenced papers, in particular in [55], the argument does boil down to Choquet's theorem, but considering measures on the transversal allows one to use Varadarajan's compact model theorem [92, Theorem 3.2] (or rather, the easier countable case thereof) to reduce everything to the case of an ergodic decomposition for a countable group acting by continuous maps on a compact metric space, which is a setup that Choquet's theorem [82] can handle.

Proposition 4.18 (Ergodic decomposition). Let μ be a unimodular Borel probability measure on M^d . Then there is a standard probability space $(X; \mathcal{A})$ and a family $f_x : X \times M^d \rightarrow M^d$ of ergodic unimodular Borel probability measures on M^d such that for every Borel $B \subset M^d$, the map $x \mapsto (B)$ is Borel and

$$(B) = \int_X (B) d\mu$$

Proof. Let P^d be the Polish foliated space defined in Theorem 1.8. We say that a completely invariant probability measure on P^d is ergodic if every Borel, leaf-saturated subset has measure 0 or 1. The leaf map of Proposition 4.1 pushes forward (ergodic) completely invariant measures on P^d to (ergodic) unimodular measures on M^d . In light of Theorem 1.8, it then suffices to show that for every completely invariant Borel probability measure on P^d , there is a standard probability space $(X; \mathcal{A})$ and a family $f_x : X \times M^d \rightarrow M^d$ of ergodic completely invariant Borel probability

measures on P^d such that for every Borel $B \in P^d$, the map $x \mapsto x(B)$ is Borel and

$$(B) = \int_x x(B) d:$$

Choose a complete Borel transversal T for the foliated space P^d , i.e. a Borel subset that intersects each leaf in a nonempty countable set, and assume T is a Polish space. (The existence of such a T follows from the fact that P^d is Polish, and from the foliated structure.) The leaf equivalence relation restricts to an equivalence relation on T with countable equivalence classes, and T with its Borel -algebra is a standard Borel space. So by Feldman-Moore [45], is the orbit equivalence relation of some Borel action $G \curvearrowright T$ of a countable group G .

The measure is the result of integrating the Riemannian measures on the leaves of P^d against a holonomy invariant transverse measure on T . Since the action of the holonomy groupoid generates and preserves , the action $G \curvearrowright T$ above must also preserve , by Corollary 1 of [45].

We now apply the ergodic decomposition of Greschonig-Schmidt [55] to the transverse measure . They show that there is a standard probability space $(X; \mu)$ and a family $f_x : X \times T \rightarrow \mathbb{R}$ of G -ergodic Borel probability measures on T such that for every Borel $B \in T$, the map $x \mapsto x(B)$ is Borel and

$$(B) = \int_x x(B) d:$$

Integrating each x against the Riemannian measures on the leaves of P^d gives a completely invariant measure μ on P^d , and it follows that for every Borel $B \in P^d$, the map $x \mapsto x(B)$ is Borel and

$$(B) = \int_x x(B) d:$$

5. Compactness theorems

Cheeger-Gromov's $C^{1;1}$ -compactness theorem [56] states that for every $c_1 > 0$, the set of pointed Riemannian d -manifolds $(M; p)$ such that

- 1) $\|K_M\| \leq c$ for every 2-plane , 2)
- 2) $\text{inj}_M(p) > 0$

is precompact with respect to Lipschitz convergence, and that the limits are $C^{1;1}$ -manifolds, Riemannian manifolds where the metric tensor is only Lipschitz. Here, K_M is the sectional curvature tensor and $\text{inj}_M(p)$ is the injectivity radius of M at p . Variants of this theorem, see e.g. [81, Chapter 10], ensure greater regularity of the limits when the derivatives of K_M are bounded. For instance, if we x some sequence (c_j) in \mathbb{R} and replace 1) by

- 1') $\|r^j K_M\| \leq c_j$, for all $j \in \mathbb{N} \cup \{0\}$,

then the space of pointed Riemannian d -manifolds $(M; p)$ satisfying 1') and 2) is compact in the smooth topology, i.e. as a subset of M^d , see Lessa [68, Theorem 4.11]. We also discuss a similar compactness theorem in §A.1.

By the Riesz representation theorem and Alaoglu's theorem, the set of Borel probability measures on a compact metric space is weak* compact, so in particular we have weak* compactness for probability measures supported on the space of pointed manifold satisfying 1') and 2) above. As unimodularity is weak* closed, this also gives compactness for unimodular probability measures.

For the Cheeger-Gromov compactness theorems, a lower bound on injectivity radius at the base point is necessary, as no sequence $(M_i; p_i)$ with $\text{inj}_{M_i}(p_i) \leq 0$ can converge in the smooth (or even lipschitz) topology. In this section, however, we prove that for manifolds with pinched negative curvature, a condition on the injectivity radius is not necessary if we are only interested in the weak* compactness of the space of unimodular probability measures.

More precisely, xing $a; b > 0$ and a sequence $c_j \geq R$, let $M_{PNC}^d \subset M^d$ be the set of all pointed d -manifolds $(M; p)$ satisfying 1') and

$$3) \quad a^2 K_M() - b^2 < 0 \text{ for every 2-plane ,}$$

and let $M_{PNC; \text{inj}}^d$ be the subset of all $(M; p)$ that satisfy 1'), 2) and 3). The former space M_{PNC}^d is not compact, but even so we have:

Theorem 1.12 (Compactness in pinched negative curvature). The space of unimodular probability measures on M_{PNC}^d is compact in the weak topology.

The point is that the ϵ -thin part of a manifold M with pinched negative curvature only takes up a uniformly small proportion of its volume. More precisely,

Proposition 5.1 (Thick at the basepoint). If μ is a unimodular probability measure on M_{PNC}^d and $\epsilon > 0$, there is some $C = C(d; a; b)$ such that

$$\lim_{\epsilon \rightarrow 0} C = 0, \\ (M_{PNC; \text{inj}}) \leq C:$$

Since each $M_{PNC; \text{inj}}^d$ is compact, Prokhorov's theorem [23, IX.65] implies that the set of unimodular probability measures on M_{PNC}^d is weak* precompact in the space of all probability measures, and therefore compact since unimodularity is a closed condition. So, Theorem 1.12 follows from Proposition 5.1. In fact, since any sequence $(M_i; p_i) \in M_{PNC}^d$ such that $\text{inj}_{M_i}(p_i) \leq 0$ must diverge, Theorem 1.12 and Proposition 5.1 are formally equivalent.

We defer the proof of Proposition 5.1 to the next section, and nish here with some remarks about Theorem 1.12. First, as in the compactness theorems for pointed manifolds, control on the derivatives of sectional curvature is not necessary if one is willing to consider limits that are measures supported on $C^{1;1}$ -Riemannian manifolds, and where the convergence is Lipschitz. The derivative bounds in 1') do not factor into the proof of Proposition 5.1, and are used only when appealing to the compactness of $M_{PNC; \text{inj}}^d$. (See [81, Ch 10].)

Second, suppose that M_i is a sequence of nite volume Riemannian manifolds and $\epsilon_i \leq 0$ is a sequence such that

$$(31) \quad \frac{\text{vol}((M_i)_{\epsilon_i})}{\text{vol} M_i} \rightarrow 0;$$

where $(M_i)_{\epsilon_i}$ is the ϵ_i -thin part of M_i , i.e. the set of points with injectivity radius less than ϵ_i . Then the corresponding unimodular probability measures ($\mu_i = \text{vol}(M_i)$), see §2, form a sequence with no convergent subsequence. So for example, a uniform lower bound on curvature is required in Theorem 1.12, since when the metric on a closed hyperbolic surface is scaled by $1=i$, the whole manifold will be ϵ_i -thin for some $\epsilon_i \leq 0$. A similar argument shows that there is no analogue of Theorem 1.12 for at manifolds.

Example 5.2. The uniform negative upper bound curvature is also necessary. To see this, construct Riemannian surfaces S_i by cutting a hyperbolic surface along a closed geodesic with length $i > 0$, and inserting a at annulus A_i with boundary length i and width $1=i$ in between. The surfaces S_i have bounded volume, and the i -thin part of S_i has volume at least some constant, so (31) holds. The metrics on the S_i can then be perturbed so that the metric is smooth everywhere, and slightly negative on the annuli A_i , without affecting (31).

Although there is no general analogue of Theorem 1.12 in nonpositive curvature, there is a similar compactness result for nonpositively curved locally symmetric spaces. In §5.2, we will give an algebraic proof of this, and will also indicate how our geometric arguments might be adapted to this setting. We will also discuss the possibility of a universal theorem that implies both Theorem 1.12 and its locally symmetric analogue.

5.1. The proof of Proposition 5.1. The idea is simple. One needs to show that in a manifold with pinched negative curvatures, the ϵ -thin part takes up a small proportion of the volume when ϵ is small. Then one transfers this estimate to using unimodularity. Of course, our manifolds and their thin parts may have infinite volume, so one needs a local version of ‘small proportion’ that is robust enough to work in this setting. More precisely, we will show how to push volume from the ϵ -thin part into a region near the boundary of the δ -thin part, where δ is the Margulis constant, without incurring a large Radon-Nikodym derivative.

Before starting the proof in earnest, we record the following facts, which should be well known to those familiar with the literature.

Lemma 5.3. Let M be a simply connected Riemannian d -manifold with curvature $a^2 \leq K_M \leq 0$. Below, all geodesics have unit speed.

1) If γ, γ' are geodesics that intersect at $\gamma(0) = \gamma'(0)$ with angle θ , then

$$d((t); (t)) \leq \frac{\sinh(at)}{a}.$$

2) If γ, γ' are geodesics that both intersect a geodesic γ_0 orthogonally at $\gamma(0)$ and $\gamma'(0)$, and $\frac{d}{dt}(\gamma(0); \gamma'(0))$ are parallel vectors along γ_0 , then

$$d((t); (t)) \leq d((0); (0)) \cosh(at).$$

3) If γ, γ' are geodesics such that $\gamma(0)$ and $\gamma'(0)$ lie on a common horosphere around γ_0 and $\lim_{t \rightarrow 1} \gamma(t) = \lim_{t \rightarrow 1} \gamma'(t) = \gamma_0$,

$$d((t); (t)) \leq d((0); (0)) e^{at};$$

4) Given $\epsilon, T > 0$, there is some $\delta = \delta(\epsilon, T; a) > 0$ such that if γ, γ' are geodesics and $d((t); (t)) \leq \delta$ for all $t \in [0; 1]$, then

$$d((t); (t)) \leq 8t \leq 8T \quad \forall t \in [0; T].$$

Proof. 1) is an immediate consequence of Toponogov’s theorem. 2) follows from Berger’s extension of Rauch’s comparison theorem [39, Theorem 1.34], by interpolating between γ and γ' by a one parameter family of geodesics $\gamma_s(t)$ such that $\frac{d}{dt} \gamma_s(t) = \frac{d}{dt} \gamma(t)$ is a parallel vector field along γ .

For 3), let γ be a triangle in the model space $H^2_{a^2}$ with curvature a^2 , chosen with one ideal vertex γ_0 and so that the other two vertices lie on a common horocycle

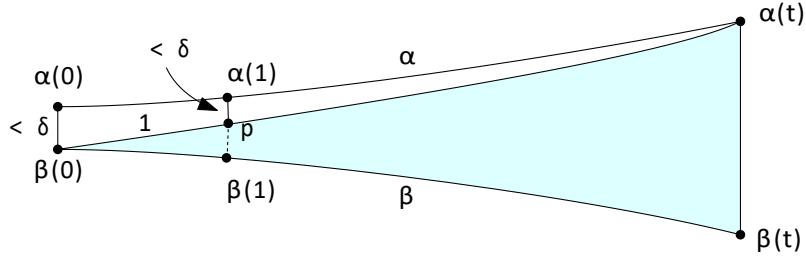


Figure 5. Above, $d((1); p) < \delta$ by convexity of the distance function. Then $d((1); p) < 2$, so applying Toponogov's theorem to the blue triangle gives an explicit upper bound for $d((t); (t))$ that depends only on a and t . This upper bound is that which one gets in H^2 , so goes to zero as $t \rightarrow 0$. So for small t , we have $d((t); (t)) \rightarrow 0$ for $t \rightarrow 0$.

centered at \bar{p} at a distance of $d((t); (t))$ from each other. Parametrize the infinite sides of $\bar{\Delta}$ by arc length using $\gamma: (-1, 1) \rightarrow H_{a^2}$. By Toponogov's theorem⁸, $d((0); (0)) \leq d((0); (0))$. If γ is the geodesic in H_{a^2} from (0) to (0) , we can move every point on γ away from a distance of t to produce a path γ_t from (t) to (t) . In the upper half-plane model for H^2 with $a = 1$, the path γ_t is created by dividing all the y-coordinates of the points on γ by e^{at} . Hence, $\text{length}(\gamma_t) = e^{at} \text{length}(\gamma)$. This gives the estimate

$$d((t); (t)) = d((t); (t)) \leq d((0); (0))e^{at} \leq d((0); (0))e^{at}.$$

For 4), see Figure 5.

Proof of Proposition 5.1. Let δ_0 be the Margulis constant for manifolds M with curvature bounds $a^2 \leq K_M \leq b^2 < 0$, and let \tilde{M} be the universal cover of M . If $0 < \delta < \delta_0$, and M is such a manifold, consider the set M_δ of all points $p \in M$ with $\text{inj}(p) < \delta$. By the Margulis lemma, see [12, §10], the components N of M_δ come in two types.

- 1) **Margulis tubes.** N is the quotient of a tubular neighborhood \tilde{N} of a geodesic γ in \tilde{M} by an infinite cyclic group $\langle \gamma \rangle$ of hyperbolic-type isometries that stabilize γ . Hence, N is a tubular neighborhood of a closed geodesic in M , which we call its core geodesic.
- 2) **Cusp neighborhoods.** N is the quotient of an open set \tilde{N} of \tilde{M} by a virtually nilpotent group $\langle \gamma \rangle$ of parabolic isometries that all have a common fixed point $\tilde{p} \in \gamma \cap \partial_1 \tilde{M}$.

In both cases, the closure of N is a codimension-0 submanifold of M that has piecewise-smooth boundary. To see this, given any compact set $K \subset \tilde{M}$, proper discontinuity implies that $\tilde{N} \setminus K$ is a finite union of sets of the form

$$U_g \setminus K; \text{ where } U_g = \{x \in \tilde{M} \mid d(x; g(x)) < g\}.$$

⁸This ideal version of Toponogov's theorem follows the usual one since $\bar{\Delta}$ is a limit of comparison triangles associated to $(t); (t); (T)$, as $T \rightarrow \infty$: For $T \gg 0$, these triangles will be almost isosceles (since $(t); (t)$ lie on a common horosphere) which implies that the limit triangle in H_{a^2} will have two vertices on a horocycle centered at the other vertex.

and the g are deck transformations. So, it suffices to show that the frontier ∂U_g of each U_g is a smooth submanifold. But ∂U_g is cut out by the equation $d(x; g(x)) = \epsilon$, and we claim that ϵ is a regular value for $x \mapsto d(x; g(x))$.

As \tilde{M} is a simply connected manifold with negative curvature, it is uniquely geodesic, so the distance function of \tilde{M} is smooth off the diagonal. But g has no fixed points, so this means that the map $x \mapsto d(x; g(x))$ is smooth. Suppose that $x \in M$ is a critical point for this map, and let $\gamma: [0; D] \rightarrow M$ be the geodesic from x to $g(x)$. As we start to move along γ from x , the distance $d(x; g(x))$ is constant to first order. So, by the first variational formula, $dg^0(0) = 0(D)$. Hence, the biinfinite geodesic γ is invariant under g . This would mean that γ is the axis of minimal displacement for g , which is impossible since g translates points on γ by ϵ , but has translation length on M less than ϵ .

Let $M_{<0}$ be the subset obtained from $M_{<0}$ by removing the core geodesics of all Margulis tubes, let $\partial M_{<0}$ be the boundary of the closure of $M_{<0}$, and define $M_{<0}$ and $\partial M_{<0}$ similarly. Note that there is a natural foliation of $M_{<0}$ by (the interiors of) geodesics with one endpoint on $\partial M_{<0}$, and where the other end either terminates at an orthogonal intersection with the core of a Margulis tube, or is a geodesic ray exiting a cusp⁹. We will call these geodesic leaves.

Claim 5.4. There is some $C = C(d; a)$, with $C > 1$ as $a \rightarrow 0$, such that the distance along any geodesic leaf from $\partial M_{<0}$ to $\partial M_{<0}$ is at least C .

Proof. Fixing some $R > 0$, we want to show that if ϵ is sufficiently small, then the distance along any geodesic leaf from $\partial M_{<0}$ to $\partial M_{<0}$ is at least R .

This is easiest to show for components $N \subset M_{<0}$ that are neighborhoods of cusps. If $N \subset M$ is a component of the preimage of N , the geodesic leaves of N lift to geodesic rays in N that limit to a point $x \in \partial_1 M$. If $x \in N$, there is some deck transformation g that is parabolic with $g(0) = x$ and $d(x; g(x)) < \epsilon$.

Let γ be the unit speed geodesic in M with $\gamma(0) = x$ and $\lim_{t \rightarrow 1} \gamma(t) = \gamma$. The image $\gamma = g(\gamma)$ is also a geodesic limiting to γ , and for all t , the points $\gamma(t)$ and $g(\gamma(t))$ lie on a common horosphere centered at x . By Lemma 5.3.3),

$$(32) \quad d(\gamma(t); g(\gamma(t))) = \frac{e^{at}}{a}$$

So as long as $t < C := \frac{1}{a} \log(\frac{a_0}{\epsilon})$, the element g will move $\gamma(t)$ at most ϵ . So, the distance along γ from $\partial M_{<0}$ to $\partial M_{<0}$ is at least C .

Now consider a component of $M_{<0}$ that is a Margulis tube with core geodesic c , which we lift to a neighborhood N of a geodesic \tilde{c} in \tilde{M} . Let Γ be the group of deck transformations stabilizing N . Here, all the non-identity elements $\gamma \in \Gamma$ act as nontrivial translations along \tilde{c} , coupled with the action of some element of $O(d-1)$ in the orthogonal direction. We claim

(?) Given $C > 0$, there is some $\epsilon > 0$ such that when the length of the core geodesic c is less than ϵ , we have $d(c; \partial M_{<0}) \geq C$:

⁹In the universal cover \tilde{M} , the normal exponential map $\exp: N \rightarrow \tilde{M}$ is a diffeomorphism for any geodesic γ . For a given g , the displacement function $x \mapsto d(x; g(x))$ is convex along (the orthogonal) geodesics, so each U_g from before is a star-shaped neighborhood of γ . The picture is similar for cusp neighborhoods, except that now we consider the foliation of M by geodesics with one endpoint at some $p \in \partial_1 M$.

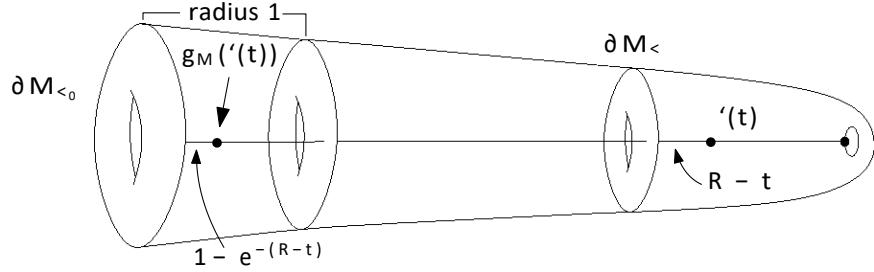


Figure 6. The denition of the map g_M , pictured in a Margulis tube in dimension 3. Note that the image of g_M lies in a radius 1 neighborhood of $\partial M_{<_0}$:

To prove this, rst use Lemma 5.3 1) to choose some $\epsilon > 0$ small enough ($\epsilon = a_0/(2 \sinh(a))$ works) so that any two geodesic rays $1(t); 2(t)$ in M that intersect at $t = 0$ with an angle at most ϵ satisfy

$$(33) \quad d(1(t); 2(t)) \leq \epsilon \text{ for all } t \in C:$$

Since $O(d-1)$ is compact, there is some $n \geq N$ such that any $A \in O(d-1)$ has a power A^k with $k = k(A) \geq n$ that is close enough to the identity so that

$$\|(A^k(v); v) \leq \epsilon \text{ for all } v \in \mathbb{R}^{d-1}:$$

Finally, using Lemma 5.3 2), let $\epsilon > 0$ be small enough so that any two geodesic rays $1(t); 2(t)$ in H^d that start out perpendicular to a third geodesic, parallel to each other and at distance at most ϵ from each other, must also satisfy (33). (For instance, take $\epsilon = 2 \cosh(a) - 1$.) Now take $\epsilon = \frac{1}{n+1}$.

If $g \in O(d)$ is any isometry with translational part less than ϵ , then for some $k \geq n$, the isometry g^k has translational part at most ϵ and rotates vectors orthogonal to the core geodesic c by at most an angle of ϵ . From this, we see that g^k has displacement at most ϵ everywhere on the C -neighborhood of c . So in any component of $M_{<_0}$, the distance from the core curve c to the boundary $\partial M_{<_0}$ is at least C whenever the core has length less than ϵ , proving (?).

To complete the proof of the claim, given $C > 0$ we choose ϵ as in (?), but using $C+1$ instead of C . Using Lemma 5.3 4), we may also assume that ϵ is small enough so that any two geodesics $1(t); 2(t)$ in M satisfy

$$(34) \quad d(1(t); 2(t)) \leq \epsilon \text{ for all } t \in [0; 1] \Rightarrow d(1(t); 2(t)) \leq \epsilon \text{ for all } t \in [0; C+1]:$$

We want to show that the distance from $\partial M_{<_0}$ to $\partial M_{<_0}$ is at least C . If the distance from the core c to $\partial M_{<_0}$ is less than 1 , then we are done since we know by (?) that $d(c; \partial M_{<_0}) \geq C+1$. So, we may assume that the distance from the core to $\partial M_{<_0}$ is at least 1 .

If $'$ is a geodesic leaf in $M_{<_0}$, parameterized by arc length so that $'(1)$ is on the boundary $\partial M_{<_0}$, there are two lifts $1; 2$ of $'$ in $N \setminus M$ with $d(1(t); 2(t)) \leq \epsilon$ throughout the preimage of $M_{<_0}$, so for all $t \in [0; 1]$. Therefore, (34) implies that the injectivity radius along $'$ stays less than ϵ for all $t \in [0; C+1]$, i.e. for at least a length of C after exiting $M_{<_0}$.

We now dene a map

$$g_M : M_{<} \rightarrow M_{<_0}$$

as follows. If γ is a geodesic leaf, parameterized by arc length so that $\gamma(0)$ is on the core, suppose that $\gamma(R) \in \partial M_\zeta$ and $\gamma(R_0) \in \partial M_{\zeta_0}$. Then define

$$g_M(\gamma(t)) = \gamma(R_0 \cdot 1 + e^{b(t-R)}):$$

In other words, g_M is constructed to map M_ζ to a 1-neighborhood of ∂M_{ζ_0} , as shown in Figure 6. This g_M is a piecewise smooth homeomorphism onto its image, since R and R_0 are piecewise smooth functions of the point $\gamma(t) \in M_\zeta$.

Claim 5.5. At every point p where g_M is smooth, we have

$$j \det dg_M(p)j = D();$$

for some $D()$ that tends to infinity as $t \rightarrow 0$.

Here, the determinant is calculated with respect to orthonormal bases in the two relevant tangent spaces, and so measures the volume distortion of g_M .

Proof. First, note that at $p = \gamma(t_0)$, the map g_M stretches lengths in the direction of γ by a factor of $\frac{d}{dt}(R_0 \cdot 1 + e^{b(t-R)})|_{t=t_0} = be^{b(t_0-R)}$.

Assume now that we are working within a component of ∂M_{ζ_0} that is a Margulis tube with core geodesic c . Given a point p at which g_M is smooth, let $\gamma_s(t)$ be a one parameter family of geodesic leaves satisfying:

- 1) $\gamma_s(t_0) = p$ and $j \frac{d}{ds} \gamma_s(t_0)j = 1$.
- 2) $j \frac{d}{dt} \gamma_s(t)j = 1$ for all s, t , and $\gamma_s(0) \in c$ for all s .

The path $s \mapsto \gamma_s(t_0)$ passes through p at $s = 0$ and moves along the boundary $\partial B(c; t)$ of the radius t_0 -neighborhood of c in M , orthogonally to the leaves. Its image under g_M is just the path $s \mapsto \gamma_s(R_0 \cdot 1 + e^{a(t_0-R)})$.

The equation $J(t) = \frac{d}{ds} \gamma_s(t)|_{s=0}$ defines a Jacobi field along γ_0 , and

$$dg_M(J(t)) = J(R_0 \cdot 1 + e^{b(t-R)}):$$

As the path $s \mapsto \gamma_s(t_0)$ lies in $\partial B(c; t_0)$, and $B(c; t_0) \cap M$ is convex, Warner's extension of the Rauch comparison theorem [94, Theorem 4.3 (b)] implies that for $t \neq t_0$ we have¹⁰ $j J(t)j \leq \cosh(b(t - t_0))$: So in particular,

$$\begin{aligned} j J(R_0 \cdot 1 + e^{b(t_0-R)})j &\leq \cosh(b(R_0 \cdot 1 + e^{b(t_0-R)} - t_0)) \\ &\leq \frac{1}{2} e^{b(R_0 \cdot 1 + t_0)} \\ &\leq \frac{1}{2} e^{b((R_0 - R) - 1)} e^{b(R - t_0)}; \end{aligned}$$

¹⁰Here, $\frac{\cosh(b(t - t_0))}{b}$ is the length of a Jacobi field in H^2 obtained by differentiating a unit speed geodesic variation $s(t)$, where $s \mapsto s(t_0)$ is also a unit speed geodesic, and is perpendicular to all the geodesics $t \mapsto s(t)$. Warner's theorem requires the sectional curvatures in M to be less than those in the comparison space, the two Jacobi fields to have the same length at $t = t_0$, and the path $s \mapsto s(t_0)$ to lie in a codimension one submanifold S orthogonal to $\frac{d}{dt} s(t)$ all of whose principal curvatures are larger than those of a corresponding submanifold $S^{\partial t}$ containing $s \mapsto s(t_0)$. In our case, both Jacobi fields have length one at $t = t_0$. Convexity implies that the principal curvatures of $S = \partial B(c; t_0)$ are nonnegative, when calculated with respect to the outward normal $\frac{d}{dt} s(t)|_{t=t_0}$, so they are larger than those of the geodesic $s \mapsto s(t_0)$, which are zero.

As $jJ(t_0)j = 1$, this means that dg_M scales the length of $J(t_0)$ by at least a factor of $\frac{1}{2}e^{b((R_0 - R) - 1)}e^{b(R - t_0)}$. But above, $J(t_0)$ can be taken to be any vector in TM_p orthogonal to $'$, by choosing the variation $'_s$ appropriately. So,

$$\begin{aligned} j \det dg_M(p)j & \geq e^{b(t_0 - R) - 1} \frac{1}{2} e^{b((R_0 - R) - 1)} e^{b(R - t_0)^d - 1} \\ & \frac{b}{2^{d-1}} e^{b((R_0 - R) - 1)} := D(); \end{aligned}$$

a constant that tends to infinity as $R \rightarrow 0$, by Claim 5.4. The argument for a component of \mathcal{M}_c that is a neighborhood of a cusp is almost exactly the same. Instead of parameterizing the geodesic variations $'_s$ so that for constant t_0 , the path $s = s(t_0)$ lies along a metric sphere around the core of the Margulis tube, we parameterize so that $s = s(t_0)$ is contained in a horosphere. Horospheres are C^2 [61] and convex [42], so one can still apply Warner's comparison theorem.

We now use unimodularity to finish the proof of Proposition 5.1. Let $\mathcal{M}_{p, N, c, 2}^d$ be the space of all isometry classes of doubly pointed d -manifolds $(M; p, q)$ with pinched negative curvature $a^2 \leq K_M \leq b^2 < 0$ and geometry bounds as in 1' at the beginning of the section. Define a Borel function $F : \mathcal{M}_{p, N, c, 2}^d \rightarrow \mathbb{R}_+$ via

$$F(M; p, q) = \begin{cases} j \det dg_M(p)j & \text{if } p \in M_c \text{ and } d(g_M(p); q) \leq 10 \\ \text{otherwise} & \end{cases}$$

Using Claim 5.4, x some c_0 with $C() \leq 1$. By definition, the image of g_M lies in a radius 1 neighborhood of \mathcal{M} , so the injectivity radius at every $g_M(p)$ is at least c_0 . Setting $V(\cdot)$ to be the volume of a radius r ball in the d -dimensional model space of constant curvature κ , we have that the volume of a ball of radius 1 around each $g_M(p)$ satisfies

$$V(\cdot; b^2) \leq \text{vol}(B_M(g_M(p); 1)) \leq V(1; a^2);$$

So, using this and (5.5), we compute:

$$\begin{aligned} (H \leq) & \int_{(M; p) \in \mathcal{M}_{p, N, c, 2}^d} \frac{j \det dg_M(p)j}{D()} \frac{\text{vol}(B_M(g_M(p); 1))}{V(\cdot; b^2)} d \\ & = \frac{1}{D()V(\cdot; b^2)} \int_{(M; p) \in \mathcal{M}_{p, N, c, 2}^d} F(M; p, q) d\text{vol} d \\ (35) & = \frac{1}{D()V(\cdot; b^2)} \int_{(M; p) \in \mathcal{M}_{p, N, c, 2}^d} \int_{q \in M \setminus g^{-1}(B_M(p; 1))} F(M; q, p) d\text{vol} d \\ & = \frac{1}{D()V(\cdot; b^2)} \int_{(M; p) \in \mathcal{M}_{p, N, c, 2}^d} \int_{q \in M \setminus g^{-1}(B_M(p; 1))} j \det dg_M(q)j d\text{vol} d \quad (36) \\ & \int_{(M; p) \in \mathcal{M}_{p, N, c, 2}^d} \frac{1}{D()V(\cdot; b^2)} \text{vol}(B_M(p; 1)) d V(1; \\ & \quad \frac{a^2)}{D()V(\cdot; b^2)}; \end{aligned}$$

where here $M_{PNC; \text{inj} <}^d$ is the set of all $(M; p) \in M_{PNC}^d$ where $\text{inj}_M(p) < \cdot$. Equation (35) is unimodularity, while (36) is just the change of variables formula. The last line goes to zero as $\cdot \rightarrow 0$, which proves Proposition 5.1.

5.2. Locally symmetric spaces. Let X be a symmetric space of nonpositive curvature with no Euclidean factors, and let $G = \text{Isom}(X)$. An X -manifold is a quotient $X = G / \Gamma$, where $\Gamma \subset G$ is discrete and torsion free. Let $M^X \subset M^d$ be the subset of pointed X -manifolds.

Theorem 1.13 (Compactness for locally symmetric spaces). The space of unimodular probability measures on M^X is weak*-compact.

By Proposition 2.9, there is a dictionary between unimodular measures on M^X and discrete, torsion free invariant random subgroups of G . The space of all invariant random subgroups of G is compact, since the Chabauty topology on the set of closed subgroups of any locally compact group is compact. As G is semi-simple, c.f. [62], it suces to prove the following proposition:

Proposition 5.6. For IRSs in a semi-simple Lie group G , ‘discrete’ is a closed condition. For discrete subgroups $H \subset G$, ‘torsion-free’ is a closed condition.

Note that unlike the second sentence, the rst is true only on the level of IRSs, since there are always discrete, cyclic subgroups of G that limit in the Chabauty topology to subgroups isomorphic to \mathbb{R} .

Lemma 5.7. If G is a semi-simple Lie group, every connected IRS $H \subset G$ is a normal subgroup of the identity component G^0 .

Proof. If $H \subset G$ is any ergodic connected IRS, the Lie algebra h is a random k -dimensional subspace of g , for some k , and the distribution of h is invariant under the adjoint action of G on the Grassmannian $\text{Gr}(k; g)$. Since G has no nontrivial compact quotients, applying the arguments of [49, Lemmas 2,3] to $\text{Gr}(k; g)$ instead of the projective space $P(g)$, we see that the distribution of h is concentrated on $\text{Ad } G$ -invariant subspaces of g .

Proof of Proposition 5.6. Any subgroup $H \subset G$ that is a Chabauty limit of discrete groups has a nilpotent identity component, c.f. [90, Theorem 4.1.7]. So, any IRS that is a limit of discrete IRSs also has this property. However, a semi-simple Lie group does not have any nontrivial nilpotent normal subgroups, so Lemma 5.7 implies that a limit of discrete IRSs is discrete.

Next, we show that ‘torsion-free’ is a closed condition within the space of discrete $H \subset G$. For suppose $H_n \subset H$ are discrete and the only torsion is in the limit, and take $1 = \bigcap H_n$ with $k = 1$. Picking $h_n \in H_n$ that converge to 1 , the sequence (h_n) consists of nontrivial elements converging to 1 . Aiming for a contradiction, choose open balls $B_1; B_2; \dots$ in G with $B_i \subset \overline{B_{i+1}}$. Exponentiating the h_n by appropriate powers determined using exponential coordinates, it follows that for any i , and large enough n , there is an element of H_n inside $B_i \cap \overline{B_{i+1}}$. This contradicts discreteness of H .

Using the same arguments as in the paragraph after the statement of Proposition 5.1, Theorem 1.13 is equivalent to the following:

Proposition 5.8. If μ is a unimodular probability measure on M^X and $\mu > 0$, there is some $C = C(\mu; X)$ such that

$$\lim_{\infty} C = 0,$$

$$(M_{inj}) \times 1 - C;$$

where M_{inj}^X be the set of pointed X -manifolds $(M; p)$ such that $inj_M(p)$.

While the algebraic proof of Theorem 1.13 is quite direct, it is natural to ask whether there is a geometric proof of Proposition 5.8. In particular, why is it true for locally symmetric spaces when it fails for general spaces of nonpositive, or even unpinched negative, curvature? (See Example 5.2.)

The biggest difference is that when X is a non-positively curved symmetric space without Euclidean factors, its Ricci curvature is bounded away from zero, and hence the same is true for any X -manifold. (In contrast, the surfaces of Example 5.2 have points where the Ricci curvature is arbitrarily close to zero.) Specifically, the Ricci curvature tensor of $X = G/K$ is a constant negative multiple of the Killing form on g [11, Theorem B.24], so is negative definite. There is then some constant $b = b(X) > 0$ such that

$$(37) \quad Ric(v; v) \geq b^2 = (d-1); \quad \forall v \in T^1 X;$$

since X is homogenous. Here, d is dimension, and we prefer to write the upper bound as above since then it follows that every v is contained in a 2-plane with sectional curvature at most $-b^2$. We ask:

Question 5.9. Consider the space $M^d(a; b; c_j)$ of all $(M; p) \in M^d$ with

$$1') \quad j \in K_M \quad \forall j \in N \quad [fog];$$

$$3') \quad a^2 \geq K_M() \geq 0, \text{ and } Ric(v; v) \geq b^2, \text{ for every 2-plane } v \in T M_p,$$

where Ric is the Ricci curvature. Is the set of unimodular probability measures on $M^d(a; b; c_j)$ weak* compact? More concretely, does condition 3') imply a uniform bound $C = C(a; b; d)$ on the proportion of volume that the ϵ -thin part occupies in (say) a finite volume $(M; p) \in M(a; b; c_j)$, with $C \rightarrow 0$ as $\epsilon \rightarrow 0$?

A proof of such a compactness result would be possible, for instance, if one could prove (say, for Hadamard manifolds) that an upper bound on Ricci curvature gives volume comparison results analogous to those given by Bishop-Gromov, see [81, Lemma 7.1.4], for Ricci lower bounds.

We do expect that our proof in pinched negative curvature can be adapted to the locally symmetric setting|that is, to give a geometric proof of Proposition 5.8|without proving the volume comparison results mentioned above. Much of the argument goes through unchanged, although it becomes more subtle to develop an analogue of the foliation by geodesic leaves when the curvature is only nonpositive.

6. Unimodular random hyperbolic manifolds

Recall that the limit set of a subgroup H of $Isom(H^d)$ is the subset of $\partial H_d = S^{d-1}$ consisting of all accumulation points at infinity of any orbit of H . In [3], it is shown that if H is an invariant random subgroup of $Isom(H^d)$ without an atom at the identity, then the limit set of H in $Isom(H^d)$ must have full limit set ∂H_d almost surely. In two dimensions, this has the following corollary:

Corollary 6.1. Any unimodular random hyperbolic surface with finitely generated fundamental group is either H^2 or has finite volume.

As usual, the translation between IRSs and URHSs is through Proposition 2.9. Recall that a unimodular random manifold is a random element of M^d whose law is a unimodular probability measure, and is hyperbolic if its law is supported on hyperbolic manifolds. For those allergic to probabilistic language, the statement of the corollary is that if μ is a unimodular measure on H^2 then -a.e. pointed hyperbolic surface $(S; p)$ with nitely generated π_1 is either isometric to H^2 or has nite volume.

There is an alternative way to prove Corollary 6.1, using the No-Core Principle (Theorem 1.15). Recall that the convex core of a hyperbolic surface S is the smallest convex subsurface whose inclusion is a homotopy equivalence. When S has nitely generated fundamental group, its convex core is compact. Alternatively, the ends of S are geometrically either innite volume ares or nite volume cusps. Here, a are is cut o by a closed geodesic, and is isometric to half of the quotient of H^2 by the group generated by a single isometry of hyperbolic type. The convex core of S is obtained by chopping o all ares at the bounding closed geodesics. See [14] for details.

Dene a function $f : H^2 \rightarrow [0, 1]$ by setting $f(S; p) = 1$ whenever p is in the open radius 1 neighborhood of the convex core of S . We claim $f^{-1}(1)$ is open, so that f is Borel. If $f(S; p) = 1$, then p lies at distance less than 1 from some closed geodesic in S , by density of closed geodesics in the convex core. Using the almost isometric maps dening the smooth topology, see §A.1, can be transferred to a closed $(1 + \epsilon)$ -quasigeodesic in any nearby $(S^0; p^0)$ and then tightened to a closed geodesic g^0 using the Morse Lemma [27, Theorem 1.7, pg 401]. This geodesic g^0 is contained in the convex core of S^0 , and will lie at a distance less than 1 from p as long as $(S^0; p^0)$ $(S; p)$.

So, by Theorem 1.15, we have for -a.e. $(S; p)$ that

$$0 < \text{vol}_S f^{-1}(1) \leq \text{vol}(S) < 1.$$

As a hyperbolic surface with nitely generated π_1 either is H^2 or has a nite volume core, this proves Corollary 6.1.

As explained in the introduction, there are examples of unimodular random hyperbolic 3-manifolds with nitely generated fundamental group other than H^3 and nite volume manifolds, e.g. cyclic covers M of closed hyperbolic 3-manifolds M bering over the circle. We now show that in 3-dimensions, every URHM with nitely generated π_1 looks coarsely like such M . To do this, though, we need to recall some background about the geometry of ends.

Suppose that M is a hyperbolic 3-manifold with nitely generated fundamental group. Then M is homeomorphic to the interior of a compact 3-manifold, by the Tameness Theorem of Agol [7] and Calegari-Gabai [29]. Each end E of M then has a neighborhood that is a topological product $S^1 \times [0, 1]$, for some closed surface S , and can be classied geometrically according to its relationship with the convex core of M . Here, the convex core of M is the smallest convex submanifold of M whose inclusion is a homotopy equivalence. When M has no cusps¹¹, work of Bonahon [22] and Canary [31] implies that either E has a neighborhood disjoint from the convex core, in which case we call it a convex cocompact end, or it has a neighborhood

¹¹In general, cusps may split the topological ends of M into ‘geometric ends’ with smaller genus, which have a similar classification. See [76].

completely contained in the convex core, in which case E is degenerate. See [66] for more details.

A cyclic cover \tilde{M} of a mapping torus is homeomorphic to $S \times R$, and both of its two ends are degenerate if the convex core of M is the entire manifold. In ABBGNRS [3, §12.5], we constructed more general examples of IRSs that give doubly degenerate unimodular random hyperbolic structures on $S \times R$; for instance, our examples do not cover any finite volume 3-manifold.

Theorem 1.14. Every unimodular random hyperbolic 3-manifold with nitely generated fundamental group either is isometric to H^3 , has finite volume, or is a doubly degenerate hyperbolic structure on $S \times R$ for some finite type surface S .

The proof is another application of the No-Core Principle, and the idea is that any infinite volume hyperbolic 3-manifold that is not H^3 and is not a doubly degenerate hyperbolic structure on $S \times R$ has a geometrically dened ‘core’. Intuitively, the core should just be obtained by cutting off the ends of the manifold, but the difcult part is doing this in a canonical enough way that for as $(M; p)$ varies through H^3 ,

the condition that p lies in the core is Borel. For simplicity, we’ll rst prove Theorem 1.14 only for manifolds with no cusps, and then at the end we will make some brief comments about the modications needed to extend to the general case.

Fix once and for all some $\epsilon > 0$ less than the Margulis constant and let M be a hyperbolic 3-manifold with no cusps. The ϵ -electric distance between two points p, q in M is the infimum over all smooth paths joining p, q of the length of the intersection of with M , the ϵ -thick part of M . Given $R > 0$, an R -core for M is a compact 3-dimensional submanifold $N \subset M$ such that

- 1) the diameter of N is less than R ,
- 2) N is contained in an open radius 1 neighborhood of the convex core of M ,
- 3) the component $E \subset M \setminus N$ facing each component $S \subset N$ is a neighborhood of an end that is homeomorphic to $S \times R$,
- 4) if E , as in 3), is a neighborhood of a convex cocompact end of M , then E lies completely outside the convex core of M ,
- 5) if E , as in 3), is a neighborhood of a degenerate end of M and $p \in E$ has ϵ -electric distance more than R from N , there is a level surface in $E = S \times R$ that passes through p and has ϵ -electric diameter less than R .

Here, a level surface of $S \times R$ is any embedded surface isotopic to a fiber S ftg. The point of the denition above is that N is a small-diameter ‘core’ for M , obtained topologically by chopping off the ends of M . Conditions 2), 4) and 5) require that convex cocompact ends are chopped off near the convex core boundary, and the removed neighborhoods of degenerate ends have cross-sections with small electric diameter.

Every hyperbolic 3-manifold with nitely generated π_1 and no cusps, that is not isometric to H^3 , has an R -core for some $R > 0$. Namely, the Tameness Theorem gives such an N satisfying 1) and 3) for some R . The complement of the convex core of M consists of product neighborhoods of the convex cocompact ends [30, II.1.3], so we may pick N to satisfy 2) and 4). Finally, Canary’s Filling Theorem [32] states that there is a neighborhood E of each degenerate end of M such that E is homeomorphic to $S \times R$ and is exhausted by the images of simplicial hyperbolic

surfaces¹² in the homotopy class of the ber, on which no essential simple closed curves of length less than are null-homotopic in M . By the Bounded Diameter Lemma [32, Lemma 4.5], such surfaces have -electric diameter bounded above by some constant depending only on and (S) . So increasing R and enlarging N , we have 5) using Freedman-Hass-Scott [47] to replace the simplicial hyperbolic surfaces by embedded level surfaces, compare with [20, Corollary 3.5].

Proposition 6.2 (Borel-parametrized cores). Suppose $M = H^3$ is a hyperbolic 3-manifold with nitely generated fundamental group and no cusps, let $R > 0$ and $C_R(M)$ be the union of all R -cores of M . Then:

- 1) Unless M is a doubly degenerate hyperbolic metric on $S \times R$, for some closed surface S , the subset $C_R(M) \cap M$ has nite, nonzero volume for suiently large R .
- 2) If we set $C_R(M) = \emptyset$ for all other $(M; p) \in H^3$, the subset $C_R \subset H^3$ consisting of all $(M; p)$ with $p \in C_R(M)$ is Borel.

Both conditions 4) and 5) in the denition of an R -core are necessary for the ‘nite volume’ part of this proposition. Condition 4) is needed in order to prevent a sequence of R -cores from exiting the degenerate end of a hyperbolic 3-manifold homeomorphic to $S \times R$ that has one convex cocompact end and one degenerate end. Less obviously, condition 5) is needed to prevent a sequence of R -cores from exiting a hyperbolic 3-manifold homeomorphic to the interior of a handlebody whose single end is degenerate. Here, the point is to express the interior of the handlebody as $S \times R$, where S is a closed, orientable surface with a single puncture, and then take appropriate ‘cores’ of the form $S^t \times [t-1; t+1]$, where S^t is obtained from S by truncating its cusp.

Deferring the proof, let’s understand how Proposition 6.2 implies Theorem 1.14 in the no-cusp case. Suppose μ is a unimodular measure on H^3 , and apply the No-Core Principle (Theorem 1.15) to the characteristic function of each C_R . We obtain that for each $R > 0$, the following holds for -a.e. $(M; p)$:

$$0 < \text{vol } C_R(M) < 1 \iff \text{vol } M < 1 :$$

Taking a countable union of measure zero sets, we have for -a.e. $(M; p)$ that

$$< \text{vol } C_R(M) < 1 \text{ for some } R \in N \iff \text{vol } M < 1 :$$

So by Proposition 6.2, we have that -a.e. $(M; p)$ with nitely generated fundamental group and no cusps is either nite volume (i.e. closed), H^3 or a doubly degenerate hyperbolic 3-manifold homeomorphic to $S \times R$.

6.0.1. Proof of Proposition 6.2. We rst prove 1), so assume that M has nitely generated π_1 , no cusps and is not isometric to H^3 . As mentioned above, M admits an R -core for some R . So, for large R the subset $C_R(M)$ has nonzero volume. Our goal is to show that $C_R(M)$ is always bounded in M , so always has nite volume.

Suppose on the contrary that there is a sequence C_i of R -cores of M that exits an end E of M . By condition 2) in the denition, R -cores lie near the convex core, so E is a degenerate end of M . Increasing R if necessary, pick a neighborhood E' of E that is homeomorphic to a product $S \times R$ and is exhausted by level surfaces with -electric diameter at most R .

¹²A simplicial hyperbolic surface is a map from a triangulated surface that is totally geodesic on each triangle, and where the total angle around each vertex is at least 2π , [32].

We claim that M is a doubly degenerate hyperbolic structure on $S \setminus R$. For large i , the ϵ -electric distance from $C_i \cap E$ to the frontier of E is at least $6R$. This electric distance is realized by a path in some component $D \subset M \setminus C_i$. Then $D = S^0 R$ for some closed surface S^0 , and since S^0 is contained in the convex core of M , this D cannot be a neighborhood of a convex cocompact end by condition 4) in the definition of an R -core. So, by condition 5), there are surfaces $S^0, S^1 \subset M$ that are level surfaces of $D = S^0 R$, have ϵ -electric diameter less than R , and which pass through points on S^0 at ϵ -electric distance R and $5R$, respectively, from C_i . These surfaces must then be disjoint, so they bound a submanifold N homeomorphic to $S^0 [0; 1]$. However, we can also pick a level surface in $E = S \setminus R$ with ϵ -electric diameter less than R that passes through a point on S^1 at ϵ -electric distance $3R$ from C_i . This $N = S^1 [0; 1]$, and is incompressible since it is incompressible in E , which contains N . Therefore, by Waldhausen's Cobordism Theorem [93], N is a level surface of N , which in turn means that S^0 and S^1 both bound product neighborhoods of degenerate ends of M on both sides, one contained in D and the other in E . Hence, M is a doubly degenerate hyperbolic metric on $S \setminus R$.

For the second part of the proposition, we need to show that a Borel subset of H^3 is dened if we require $(M; p)$ to satisfy the following three conditions:

- (A) M has no cusps,
- (B) $\pi_1 M$ is nitely generated,
- (C) p lies in an R -core of M .

We'll rst show that (A) and (B) each dene Borel subsets, and deal with (C) afterwards. Note that (C) doesn't make sense on its own, since R -cores are only dened for manifolds with nitely generated π_1 and no cusps.

To see that (A) denes a Borel set, we check that for each $R > 0$ and small $\epsilon > 0$, the set of all $(M; p)$ where there is a cuspidal ϵ -thin part at distance at most R from p is closed, and then take a union over $R \in N$. For if $(M_i; p_i) \rightarrow (M_1; p_1)$, we can write $M_i = H^3 = \cup_i$ in such a way that $\cup_i \rightarrow \cup_1$ in the Chabauty topology on subgroups of $PSL_2 \mathbb{C}$, and the points p_i are all projections of a xed $p \in H^3$, see [76, Chapter 7]. Cuspidal ϵ -thin parts at distance at most R from $p_i \in M_i$ then give elements $\cup_i \subset \cup_1$ such that

- 1) $\text{jtr}_i j = 2$ for all i ,
- 2) there are points $x_i \in H^3$ with $d(x_i; p) \leq R$ and $d(x_i; \pi_i(x_i)) \leq \epsilon$.

After passing to a subsequence, $x_i \rightarrow x_1 \in H^3$ and $\cup_i \rightarrow \cup_1$ in the Chabauty topology, where $d(x_1; p) \leq R$ and $\text{jtr}_1 j = 2$. Passing to the quotient, we have a cuspidal ϵ -thin part at distance at most R from $p_1 \in M_1$.

To prove that (B) is a Borel condition, we use:

Lemma 6.3. Fix a compact 3-manifold N_0 , a Riemannian metric on N_0 , and a constant $\epsilon > 1$. Let S be the set of all $(M; p) \in H^3$ that admit a smooth embedding $f: N_0 \rightarrow M$ such that

- 1) the iterated derivative maps $D^k f: T^k N_0 \rightarrow T^k M$ are locally ϵ -bilipschitz on the 1-neighborhood of the zero section in $T^k N_0$, for $k = 0; 1; 2$,
- 2) the image $N = f(N_0)$ contains p ,
- 3) each component of $M \setminus N$ is homeomorphic to $S \setminus R$, for some closed surface S .

Then S is a Borel subset of H^3 .

See §A.2 for details about iterated derivatives. The point of 1) is the following, though. As shown in at the end of the proof of Theorem A.10, bounds on iterated total derivatives up to order 2 give bounds in xed local coordinates for the C^2 -norm of f . So by Arzela-Ascoli, if $f_i : N_0 \rightarrow M$ is a sequence of embeddings satisfying 1) and 2), then after passing to a subsequence we may assume that f_i converges in the C^1 -topology to some C^1 -embedding $f : N_0 \rightarrow M$. Working in normal-bundle coordinates in a regular neighborhood of $f(N_0)$, we can then move any f_i (with i large) by a small C^1 -isotopy so that the image agrees with $f(N_0)$. In particular, the images of all such f_i dier by small isotopies.

Proof of Lemma 6.3. We'll write S for the set of all $(M; p)$ admitting an embedding as above. Fix $R > 0$ and consider the set S_R of all $(M; p)$ such that there is an embedding $N_0 \rightarrow M$ satisfying 1) and 2), and also a compact submanifold $N^0 \subset M$ that contains the radius R -ball around p , and where every component of $N^0 \cap \text{int}(N)$ is homeomorphic to $S [0; 1]$ for some closed surface S . This S_R is open in the smooth topology, since the approximate isometries dening the smooth topology (see §A.1) allow us to transfer compact submanifolds of $(M; p)$ to nearby $(N; q)$, with small metric distortion.

We claim that $S = \bigcup_R S_R$, which will imply S is Borel. The forward inclusion is obvious, so assume $(M; p)$ is in the intersection. Then there is a sequence $R_i \rightarrow 1$ such that if $f_i : N_0 \rightarrow M$, N_i and N^0_i are the corresponding embeddings and submanifolds, we have $N^0_i \subset N^0$. Passing to a subsequence, we may assume by 1) and 2) that the embeddings $f_i : N_0 \rightarrow M$ all dier by small isotopies. Hence, the complement of $\text{int}(N_1)$, say, in every N^0 is a union of topological products $S [0; 1]$. Consequently, each $N^0 \cap \text{int}(N^0)$ is also a union of products $S [0; 1]$, so taking a union over i , the components of $M \cap N_1$ are homeomorphic to S .

To prove (B) denes a Borel set, apply the lemma and take a union over the countably many homeomorphism types of compact 3-manifolds N_0 , over a countable dense subset of the space of Riemannian metrics on a given N_0 , and over \mathcal{C}^2 N . This proves that a Borel subset is dened by the condition that there is a submanifold $N \subset M$ containing p whose complementary components are homeomorphic to products S . By the Tameness Theorem, this is equivalent to $\mathcal{C}^1 M$ being nitely generated.

The proof that (C) denes a Borel set uses a more complicated version of Lemma 6.3, but the argument is very similar. Fixing a compact 3-manifold N_0 , a Riemannian metric on N_0 , and a constant $\kappa > 1$, let S be the set of all $(M; p) \in \mathcal{C}^2 M$ with no cusps and nitely generated \mathcal{C}^1 , that admit a smooth embedding $N_0 \rightarrow M$ satisfying 1) and 2) of Lemma 6.3, and whose image is an R -core of M .

We claim that S is Borel. To that end, fix $R > 0$ and consider the set S_R of all $(M; p)$ with nitely generated \mathcal{C}^1 and no cusps, satisfying the following conditions. We require that there is an embedding $N_0 \rightarrow M$ with bilipschitz constant less than κ , whose image N contains p and satises

- 1) the diameter of N is less than R ,
- 2) N is contained in an open radius 1 neighborhood of the convex core of M .

We also require that N is contained in a compact submanifold $N^0 \subset M$ whose interior contains the closed radius R ball around N , such that

- 3) each component E of $N^0 \cap \text{int}(N)$ is homeomorphic to $S [0; 1]$, for some closed surface S ,

4) if a component E of $N^0 \cap \text{int}(N)$ intersects the convex core of M , then through each point $p \in E$ that lies more than an ϵ -electric distance of R from $M \cap E$, there is a level surface in $E = S[0; 1]$ that passes through p that has ϵ -electric diameter less than R .

We now claim that S_T is Borel. As we have shown above, the conditions that M has no cusps, and that ${}_1M$ is nitely generated are both Borel. Furthermore, the approximate isometries dening the smooth topology (see §A.1) allow us to transfer compact submanifolds of $(M; p)$ to nearby $(N; q)$, with small metric distortion. So, the existence of an embedding $N_0 \hookrightarrow M$ as above that satises 1) and 3) is an open condition.

To deal with the other conditions, let $N > 0$ and let H_N^3 be the set of all $(M; p) \in H^3$ where the injectivity radius of $(M; p)$ is bounded above by N throughout the convex core of M . Each H_N^3 is a closed subset of H^3 , and the convex core of M varies continuously as $(M; p)$ varies within H_N^3 , by [77, Proposition 2.4]. Using this and the previous paragraph, one can see that 2) and 4) are also open conditions within H_N^3 , so $S_T \setminus H_N^3$ is a Borel subset of H_N^3 for all N . As any hyperbolic 3-manifold with nitely generated ${}_1$ has an upper bound for the injectivity radius over its convex core, [32, Corollary A], this expresses S_T as a union of Borel sets, so S_T is Borel.

We claim that $S = \bigcup_T S_T$, which will imply S is Borel. The forward inclusion is obvious, so assume $(M; p)$ is in the intersection. Arguing as in the proof of Lemma 6.3, we may assume that we have a xed embedding $f : N_0 \hookrightarrow M$ satisfying 1) and 2), and a sequence $T_i \rightarrow 1$ such that there are N^0 whose interiors contain the closed T_i -ball around $N = f(N_0)$ and satisfy 3) and 4). Again as in the proof of Lemma 6.3, the complementary components of N are all homeomorphic to products $S \times R$. But then conditions 3) and 4) in the denition of an R -core follow for N from condition 4) above. For if a component of $M \setminus N$ intersects the convex core, it must have the necessary level surfaces with bounded electric diameter (and is a neighborhood of a degenerate end). Otherwise, we have condition 4) in the denition of an R -core.

This proves that S is Borel, which proves (C) is a Borel condition, and Proposition 6.2 follows.

6.0.2. The case with cusps. In the presence of cusps, the proof is the same, but more complicated. When M has nitely generated ${}_1$, the topological ends of M may be split by cusps into ‘geometric ends’. More precisely, xing $\epsilon > 0$ we let M_{np} be the manifold with boundary that is the complement of the cuspidal ϵ -thin part of M . Then the topological ends of M_{np} are called geometrically nite or degenerate depending on whether they have neighborhoods disjoint from, or contained in, the convex core of M . The denition of an R -core is basically the same, except that M should be replaced by M_{np} , complementary components should now be homeomorphic to $S \times R$, where S is a surface with boundary, and the dening electric distance should be chosen smaller than that dening M_{np} .

Proposition 6.2 should now allow cusps, and exclude in 1) products $S \times R$, where S is a nite type surface. Its proof is the same, as long as one keeps track of the relationship between the new denition of R -cores and M_{np} . However, the increase in the already formidable amount of notation will be unpalatable.

Appendix A. Spaces of Riemannian manifolds

In this appendix, we discuss the smooth topology on the space of pointed Riemannian manifolds, and related topologies on similar spaces.

A.1. Smooth convergence and compactness theorems. As introduced in the introduction, let M^d be the set of isometry classes of connected, complete, pointed Riemannian manifolds $(M; p)$.

Remark A.1. The class of all pointed manifolds is not a set. However, every connected manifold has at most the cardinality of the continuum, so one can discuss M^d rigorously by only considering manifolds whose underlying sets are identified with subsets of \mathbb{R} . The same trick works in all the related spaces below, so we will make no more mention of set theoretic technicalities.

A sequence of pointed Riemannian manifolds $(M_i; p_i)$ C^k -converges to $(M; p)$ if there is a sequence of C^k -embeddings

$$(38) \quad f_i : B(p; R_i) \rightarrow M_i$$

with $R_i \geq 1$ and $f_i(p) = p_i$, such that $f_i g_i \rightarrow g$ in the C^k -topology, where g_i, g are the Riemannian metrics on M_i, M . Here, C^k -convergence of tensors is dened locally: in each pre-compact coordinate patch, the coordinates of the tensors and all their derivatives up to order k should converge uniformly. Note that each metric $f_i g_i$ is only partially dened on M , but their domains of denition exhaust M , so it still makes sense to say that $f_i g_i \rightarrow g$ on all of M . We say that $(M_i; p_i) \rightarrow (M; p)$ smoothly if the convergence is C^k for all $k \geq N$.

Whether the convergence is C^k or smooth, we will call such an (f_i) a sequence of almost isometric maps witnessing the convergence $M_i \rightarrow M$. When the particular radii R_i do not matter, we will denote our partially dened maps by

$$f_i : M \rightarrow M_i;$$

where the notation indicates that each f_i is only partially dened on M , but any point $p \in M$ is in the domain of f_i for all large i .

Of course, another way to dene C^k -convergence would be to require that for every xed radius $R > 0$, there is a sequence of maps $f_i : B(p; R) \rightarrow M_i$ satisfying the properties above. To translate between the two denitions, we can restrict the f_i in (38) from R_i -balls to R -balls, or in the other direction, we can take a diagonal sequence where R increases with i . Most of the time, we will use the ‘xed R ’ perspective in this appendix.

In some references, e.g. Petersen [81, §10.3.2], R is xed and the maps f_i are dened on open sets containing $B(p; R)$ and their images are required to contain $B(p_i; R) \subset M_i$. Such restrictions on the image of the f_i do not change the resulting C^k -topology, though, since for large i the maps f_i are locally 2-bilipschitz embeddings, and we can appeal to the following Lemma.

Lemma A.2. Suppose M, N are complete Riemannian d -manifolds, $p \in M$. If $f : B(p; R) \rightarrow N$ is a smooth locally 2-bilipschitz embedding,

$$f(B(p; R)) \subset B(f(p); R):$$

Proof. Fix a point $q \in B(f(p); R)$ and let $\gamma : [0; 1] \rightarrow N$ be a length-minimizing geodesic with $\gamma(0) = f(p)$ and $\gamma(1) = q$. Let

$$T = f \circ \gamma : [0; 1] \rightarrow B(p; R) \text{ with } T(0) = p; T(t) = f(\gamma(t)) \text{ for } t \in [0; 1]:$$

The set T is a subinterval of $[0; 1]$ that contains 0. It is open in $[0; 1]$, since f is a local dieomorphism. We claim that it is also closed. First, as f is a local dieomorphism the lifts t are unique if they exist, so if $t \in [0; 1]$ is a limit point of T then the limiting lifts patch together to give

$$: [0; t] \rightarrow R; \quad (0) = p; \quad f = j_{[0; t]}:$$

The path γ is itself locally \mathcal{B} -bilipschitz, so its image is contained within the compact subset $\overline{B(p; d(f(p); q))} \cap B(p; R)$. From this and the fact that it is locally bilipschitz, γ can be continuously extended to a map $[0; t] \rightarrow R$. This map must lift γ , so $t \in T$. Therefore, $T = [0; 1]$, implying in particular that $q = (1) \in f(B(p; R))$.

One reason that these convergence notions are useful is that sequences of manifolds with ‘uniformly bounded geometry’ have convergent subsequences.

Definition A.3. Suppose that M is a complete C^k -Riemannian manifold. A subset A of M has C^k -bounded geometry if for some fixed $r; L > 0$ there is a system of coordinate charts

$$s : B_{R^d}(0; r) \rightarrow U_s \subset M$$

with the following properties:

- 1) for every $p \in A$, the ball $B(p; r) \subset U_s$ for some s ,
- 2) s is locally L -bilipschitz,
- 3) all coordinates of the metric tensor (g_{ij}) have C^k -norm at most L ,
- 4) the transition maps $t_s^{-1} \circ t_s$ have C^{k+1} -norm at most L .

A sequence of subsets $A_i \subset M_i$ of complete Riemannian manifolds has uniformly C^k -bounded geometry if the constants $r; L$ can be chosen independently of i .

The conditions above are a simplification of those given by Petersen [81, pp. 289, 297] that are sufficient for the following theorem.

Theorem A.4. Suppose that $(M_i; p_i)$ is a sequence of complete pointed C^k -Riemannian manifolds and that for some fixed $R > 0$ the balls $B(p_i; R) \cap M_i$ have uniformly C^k -bounded geometry. Then there is a complete pointed C^{k-1} -Riemannian manifold $(M; p)$ and, for sufficiently large i , embeddings

$$f_i : B(p_i; R-1) \rightarrow M_i$$

with $f_i(p_i) = p_i$ such that $f_i \circ g_i \rightarrow g$ in the C^{k-1} -topology on $B(p; R-1)$, where $g_i; g$ are the Riemannian metrics on $M_i; M$.

In other words, if the balls $B(p_i; R) \cap M_i$ have uniformly C^k -bounded geometry, there is a subsequence on which we see C^{k-1} -convergence of the $(M_i; p_i)$, at least within a distance of $R-1$ from the base points. This is a version of Cheeger’s compactness theorem [81, Ch. 10, Thm. 3.3] for R -balls. Cheeger’s theorem usually requires uniform geometry bounds over the entire manifolds $(M_i; p_i)$, but the proof is the same.

The ideas to take a subsequential Gromov-Hausdorff limit $(X; x)$ of the balls $B_{M_i}(p_i; R)$, which exists by the uniform geometry bounds. An atlas of C^{k-1} -charts for X is obtained as a limit of the charts for $B_{M_i}(p_i; R)$ with uniformly C^k -bounded

geometry, and then one shows that the convergence is C^{k-1} in addition to Gromov-Hausdorff. Then choose a complete pointed Riemannian manifold $(M; p)$ such that $B(p; R-1) \cong M$ and $B(x; R-1) \cong X$ are isometric.

The details are entirely the same as those of [81, Ch. 10, Thm. 3.3].

Theorem A.4 also gives a strong version of Cheeger's theorem in which the uniform geometry bounds may depend on the distance to the base point:

Corollary A.5. Let $(M_i; p_i)$ be a sequence of complete pointed Riemannian manifolds such that for every $R > 0$ and $k \geq N$, the balls $B(p_i; R) \cap M_i$ have uniformly C^k -bounded geometry, where the bounds may depend on R, k but not on i . Then $(M_i; p_i)$ has a smoothly convergent subsequence.

Proof. Applying a diagonal argument and passing to a subsequence, we may assume that for every $k \geq N$, there is a complete pointed C^{k-1} -Riemannian manifold $(L_k; q_k)$ and, for sufficiently large i , embeddings

$$f_{i,k} : B(p_i; k-1) \rightarrow M_i$$

with $f_i(q_k) = p_i$ such that $f_i \circ g_i \rightarrow g_k$ in the C^{k-1} -topology on $B(p_i; R-1)$, where g_i, g_k are the Riemannian metrics on M_i, M .

By Arzela-Ascoli's theorem, for each k there is a pointed isometry

$$B_{L_k}(q_k; k-1) \rightarrow B_{L_{k+1}}(q_{k+1}; k-1)$$

So, the direct limit of the system

$$B_{L_2}(q_2; 1) \rightarrow B_{L_3}(q_3; 2) \rightarrow B_{L_4}(q_4; 3) \rightarrow \dots$$

is a complete pointed C^1 -Riemannian manifold to which $(M_i; p_i)$ smoothly converges.

A.2. Metrizability of M^d in the smooth topology. The goal here is to show that smooth convergence on M^d is induced by a Polish topology. As mentioned in the introduction, this result was established independently and concurrently by Candel, Alvarez López and Barral Lijó [10]. Their paper became available earlier than ours, so the theorem is certainly theirs. The two approaches use the same key idea, encoding partial derivatives of a metric in iterated Sasaki metrics, but ours produces an explicit metric that will be used elsewhere in the paper, namely in §A.5. Our approach is also a bit simpler, since we use metric neighborhoods of the zero section in iterated tangent bundles instead of the iteratively defined neighborhoods in [10].

Suppose M is a manifold with a Riemannian metric g . Sasaki [86] introduced a Riemannian metric g^1 on the tangent bundle TM . If $(x_1; \dots; x_d)$ is a coordinate system for some $U \subset M$, let

$$(x; v) = (x_1; \dots; x_d; v_1; \dots; v_d)$$

be the induced coordinates on TU , where $v_i = Dx_i$. At a point $(x; v) \in TU$, the Sasaki metric g^1 is given as follows, see [86, p. 342]: for $1 \leq i, j \leq d$,

$$(39) \quad \begin{aligned} (g^1)_{ij} &= g_{ij} + \sum_{k=1}^d g_{i+k, j+k} v_k v_{k+d} \\ (g^1)_{i(d+j)} &= \sum_{k=1}^d g_{i+k, j+k} v_k v_{k+d} \end{aligned}$$

$$(g^1)_{(d+i)(d+j)} = g_{ij}:$$

Here, ${}_{kaj}$ and ${}_{aj}$ are the Christoffel symbols of g of the first and second kind, and all the metric data on the right sides of the equations are taken at $x \in U$.

The k -fold iterated tangent bundle of a manifold M is the manifold

$$T^k M = T(T(T(M))):$$

Any smooth map f of manifolds induces a smooth map of iterated tangent bundles, the iterated total derivative $D^k f$, and if M has a Riemannian metric g then $T^k M$ inherits the k -fold iterated Sasaki metric g^k . Note that

$$T^k M \rightarrow T^{k-1} M \rightarrow \dots \rightarrow TM \rightarrow M$$

is a sequence of vector bundles, so for each i we have a zero section

$$:T^{i-1} M \rightarrow T^i M:$$

Denote the zero section of the fiber bundle $T^k M \rightarrow M$ to be the iteration k

$$:M \rightarrow T^k M:$$

We now show that the iterated Sasaki metric g^k encodes all order k derivatives of g . We will state this in a strong way that will be useful in Corollary A.7, but the point is that partial derivatives of the g_{ij} can be written in terms of the g^k .

Lemma A.6. Suppose g is a Riemannian metric on an open subset $U \subset \mathbb{R}^d$ and let g^1 be the Sasaki metric on TU . Fix coordinates $(x_1; \dots; x_d)$ on U and let $(x_1; \dots; x_d; v_1; \dots; v_d)$ be the induced coordinates on TU , where $v_i = Dx_i$.

For every $x = (x_1; \dots; x_d) \in U$ and indices $i; j \in \{1; \dots; d\}$, we have

$$(40) \quad g_{ij}(x) = g^1_{(i+d)(j+d)}(x; v); \quad \forall v \in T_x U$$

$$(41) \quad @g_{ij}(x) = t \left(g^1_{i(d+j)} + g^1_{j(d+i)} \right)(x; 0; \dots; \underset{t^{\text{th}} \text{ place}}{\frac{1}{\dots}}; 0); \quad \forall t > 0:$$

Now $x \in U$, and iterate the above construction to give a system of coordinates on $T^k U$. For any compact $C \subset U$ and any open neighborhood $O \subset T^k(C)$ in $T^k U$, any partial derivative $@g_{ij}(x)$ with $x \in C$, $0 \leq i, j \leq k$ can be represented as a linear combination

$$(42) \quad @_{i; \dots; i} g_{ij}(x) = \sum_{n=1}^k t_n g^k_{n n}(v_n)$$

where $v_n \in O$ and $1 \leq n \leq k$. Here, $v_n; n; n; t_n$ are determined just by the indices $i; \dots; i; j$ and the choices of $C; U$, and not by the metric g .

Proof. The $k = 1$ case follows from (39), using the identity ${}_{ji} + {}_{ij} = @g_{ij}$. For (42), first choose some $t > 1$ such that for all $x \in C$, the point

$$(x; 0; \dots; \underset{t^{\text{th}} \text{ place}}{\frac{1}{\dots}}; 0) \in O:$$

Then (42) is proved inductively: every time a successive partial derivative is taken, one can instead consider the appropriate linear combination of entries of the next Sasaki metric, given in (40). One takes at most k of these derivatives, and then uses (41) to encode the resulting data in the k^{th} iterated Sasaki metric, instead of a previous one.

It will follow that C^k -convergence of metrics g_i is equivalent to C^0 -convergence of the Sasaki metrics g_i^k . Here, recall that C^k -convergence means uniform convergence on compact sets of all derivatives up to order k . In fact, slightly more is true.

Corollary A.7. Fix $k \geq N$. Suppose that g_i, g are Riemannian metrics on some manifold M , and let g_i^k, g^k be the induced Sasaki metrics on $T^k M$. Then the following are equivalent:

- 1) $g_i \rightarrow g$ in the C^k -topology on M ,
- 2) $g_i^k \rightarrow g^k$ in the C^0 -topology on $T^k M$,
- 3) for any compact $C \subset M$, there is some open set $O \subset T^k M$ containing $g_i^k(C)$ such that $g_i^k \rightarrow g^k$ uniformly on O .

Proof. Covering M with a locally finite set of coordinate charts, it suffices to prove the Corollary when M is an open subset of \mathbb{R}^n . So, we will feel free to use the coordinate expressions in (39) and Lemma A.6 below without comment.

For (1) implies (2), x a compact subset $K \subset T^k M$. The C^k -convergence $g_i \rightarrow g$ implies that all derivatives up to order k of g_i converge to those of g , uniformly on the projection of K into M . In particular, when computing each successive Sasaki metric, the Christoffel symbols in (39) converge. Since K is compact, all coordinates $v; v$ from (39) that are relevant in the construction of g^k are bounded. It follows that $g_i^k \rightarrow g^k$ uniformly on K .

Since C^0 -convergence is by definition uniform convergence on compact sets, the implication (2) \Rightarrow (3) is obvious, taking O to be any such open subset that has compact closure in $T^k M$.

It remains to prove (3) \Rightarrow (1): Given a compact subset $C \subset M$, let O be as in (3). For each $x \in M$, we can use (42) to write the partial derivatives of each g_i as linear combinations of entries of the g_i^k , evaluated at points of O , where then particular linear combination is independent of i , and also works for g . These linear combinations converge uniformly, by our assumption, so $g_i \rightarrow g$ in the C^k -topology as desired.

The advantage of using convergence of Sasaki metrics instead of C^k convergence is that it is easier to metrize, since two Sasaki metrics can then be compared by analyzing the minimal distortion of a bilipschitz map between them. Now, it is not the case that when two metrics on M are C^k -close, the associated metrics on $T^k M$ are bilipschitz. (We thank a referee for first bringing this to our attention.) For instance, looking at (39), if two metrics are C^1 -close then their Christoffel symbols are close, but the expression given for the Sasaki metric also includes the coordinates $v; v$, which can be arbitrarily large¹³. To fix this, we only look at the bilipschitz distortion on subsets of $T^k M$ in which the coordinates $v; v$ are bounded. Namely, for each $r > 0$ and $k \geq N$, let

$$Z_r^k(M) \subset T^k M$$

¹³One can also see this issue when calculating $D^2 f$, where $f : R \rightarrow R$ is a map between open subsets of R that is C^2 -close to the identity. On $T^2 R$, the map $D^2 f$ has the form

$$(x; v; w) \mapsto x; f^0(x)v; f^0(x) \overset{f}{\circ} v; f^0(x)w;$$

where here $v \in T_x R = R$ and $w \in T_{f(x)} R = R^2$. The term $f^0(x)v$ can be arbitrarily large, so $D^2 f$ is only bilipschitz if $f^0(x) \neq 0$.

be the radius- r neighborhood of the zero section ${}^k(M)$, with respect to the k -fold iterated Sasaki metric. Then we have:

Corollary A.8. Suppose that $(M_n; p_n) \in M^d$, where $n = 1, 2, \dots$. Then $(M_n; p_n)$ converges C^k to $(M; p) \in M^d$ if and only if for every $R > 0$, we have that for sufficiently large n , there are smooth embeddings

$$f_n : B_M(p; R) \rightarrow M_n$$

with $f_n(p) = p_n$ such that for some $r > 0$, the iterated total derivatives

$$D^k f_n : T^k B_M(p; R) \rightarrow T^k M_n$$

are locally n -bilipschitz embeddings on $Z_r := Z_r({}^k B_M(p; R))$, with $n \geq 1$.

Proof. Let g and g_n be the metrics on M and M_n . The point is to show that the condition that $D^k f_n$ is locally n -bilipschitz on Z_r , with $n \geq 1$, is equivalent to the condition that $f_n g_n \rightarrow g$ in the C^k -topology. First, note that

$$(D^k f_n) g_n^k = (f_n g_n)^k;$$

where g_n^k is the Sasaki metric on $T^k M_n$ and $(f_n g_n)^k$ is the Sasaki metric on $T^k B_M(p; R)$ corresponding to $f_n g_n$. So, $D^k f_n$ is locally n -bilipschitz on Z_r exactly when

$$(43) \quad \text{id} : (B_M(p; R); g^k) \rightarrow (B_M(p; R); (f_n g_n)^k)$$

is locally n -bilipschitz on Z_r .

The ‘only if’ direction then follows from our previous work, since if the map (43) is locally n -bilipschitz on $Z_r({}^k M)$ with $n \geq 1$, then

$$(f_n g_n)^k \rightarrow g^k$$

uniformly on Z_r , implying that $f_n g_n$ converges C^k to g by Corollary A.7.

The ‘if’ direction is also easy. Suppose that $f_n g_n \rightarrow g$ in the C^k -topology. Then Corollary A.7 implies that $(f_n g_n)^k \rightarrow g^k$ in the C^0 topology. The ball $B_M(p; R)$ has compact closure in M , so the set Z_r has compact closure in $T^k M$. Hence, $(f_n g_n)^k \rightarrow g^k$ uniformly on Z_r , implying that the identity map in (43) is locally n -bilipschitz with $n \geq 1$.

Finally, we record for later use the following fact.

Fact A.9. Fix $\epsilon > 1$, $k \in \mathbb{N}$ and $r > 0$. Suppose that $f : M \rightarrow N$ is a smooth map of Riemannian manifolds and that $D^k f$ is locally ϵ -bilipschitz when restricted to some neighborhood of the zero section ${}^k(M) \subset T^k M$, for instance the neighborhoods $Z_r(M)$ above. Then the map f is itself locally ϵ -bilipschitz.

Proof. Let $x \in M$, set $v_0 := x$ and set $v^i = f^i(x)$, for $i = 1, \dots, k$. For each i , we have isometric embeddings

$$: T^i M_{v_{i-1}} \xrightarrow{\cong} T((T^i M)_{v_{i-1}})_{v_i}, \rightarrow T^{i+1} M_{v_i};$$

which satisfy the commutative diagram

$$\begin{array}{ccc} T^i M_{v_{i-1}} & \xrightarrow{\quad} & T^{i+1} M_{v_i} \\ \downarrow D^i f & \longrightarrow & \downarrow D^{i+1} f \\ T^i N_{D^{i-1} f(v_{i-1})} & \xrightarrow{\quad} & T^{i+1} N_{D^i f(v_i)} \end{array};$$

dening similarly on N . The commutativity is just the statement that a linear map is its own derivative, and the fact that is an isometric embedding is immediate from the denition of the Sasaki metric. Composing, we have a diagram

$$\begin{array}{ccc} TM_x & \xrightarrow{k} & T^{k+1}M_{v_k} \\ \downarrow Df & & \downarrow D^{k+1}f \\ TN_{f(x)} & \xrightarrow{k} & T^{k+1}N_{D^k f(v^k)} \end{array};$$

so if the linear map $D^{k+1}f$ is -bilipschitz, so must be Df .

Corollary A.8 suggests a description of a basis of neighborhoods around a point $(M; p) \in M^d$. We dene the k^{th} -order $(R; r)$ -neighborhood of $(M; p)$, written

$$N_{R,r}^k(M; p);$$

to be the set of all $(N; q)$ such that there is a smooth embedding

$$f : B_M(p; R) \rightarrow N$$

with $f(p) = q$ such that $D^k f : T^k U \rightarrow T^k N$ is locally -bilipschitz with respect to the iterated Sasaki metrics on $Z^k(B_M(p; R))$. Note that $N_{R,r}^k(M; p)$ is a closed neighborhood of $(M; p)$. By Arzela-Ascoli, its interior is the open neighborhood

$$N_{R,r}^k(M; p)$$

that is dened similarly, except that we require $D^k f$ to be locally 0 -bilipschitz for some $^0 < \cdot$.

Theorem A.10. M^d has the structure of a Polish space (a complete, separable metric space), in which convergence is smooth convergence.

Proof. For each $R > 0$ and $k \in \mathbb{N}$, dene a function $d_{R,k} : M^d \times M^d \rightarrow \mathbb{R}$ by

$$d_{R,k}((M; p); (N; q)) = \inf \log j(N; q) \in N_{R;1}^k(M; p);$$

Each $d_{R,k}$ satises an (asymmetric) triangle inequality. For suppose we have $(M; p); (N; q); (Z; z) \in M^d$ and basepoint respecting embeddings

$$f : B_M(p; R) \rightarrow N; g : B_N(q; R) \rightarrow Z$$

such that $D^k f$ and $D^k g$ are locally -bilipschitz and locally -bilipschitz embeddings, respectively, when restricted to the sets

$$Z_{1=()}^k(B_M(p; R)) \subset T^k M; Z_{1=()}^k(B_N(q; R)) \subset T^k N: \text{By Fact}$$

A.9, the map f is also a locally -bilipschitz embedding, so

$$f : B_M(p; R) \rightarrow N; g : B_N(q; R) \rightarrow Z;$$

and since $D^k f$ is -bilipschitz,

$$D^k f : Z_{1=()}^k(B_M(p; R)) \rightarrow Z_{1=()}^k(B_N(q; R));$$

Therefore, the composition $gf : B_M(p; R) \rightarrow N$ is dened and the map $D^k(gf)$ is locally ()-bilipschitz on $Z_{1=()}^k(B_M(p; R))$: So,

$$d_{R,k}((M; p); (Z; z)) = \inf \log;$$

$$\begin{aligned}
&= \inf \log + \inf \log \\
&= d_{R;k}((M; p); (N; q)) + d_{R;k}((N; q); (Z; z)):
\end{aligned}$$

The subsets of M^d dened for each $(M; p) \in M^d$, $R > 0$, $k \in \mathbb{N}$, > 0 by

$$d_{R;k}((M; p);) <$$

form a basis for a smooth topology on M^d that induces smooth convergence, by Lemma A.8. Although the $d_{R;k}$ are not symmetric, the reversed inequalities

$$d_{R;k}(); (M; p)) <$$

dene a basis for the same topology, as Lemma A.2 allows the relevant locally bilipschitz maps to be inverted at the expense of decreasing R . So, the smooth topology is generated by the family of pseudo-metrics

$$d_{R;k}^* : M^d \times M^d \rightarrow [0, \infty], \quad d_{R;k}^*(x; y) = d_{R;k}(x; y) + d_{R;k}(y; x):$$

As the topology on M^d induced by a particular pseudo-metric $d_{R;k}^*$ becomes finer if $R; k$ are increased, it suces to consider only $d_{k;k}$ for $k \in \mathbb{N}$. Therefore, the following is a metric on M^d that induces the smooth topology:

$$D : M^d \times M^d \rightarrow [0, \infty], \quad D(x; y) = \sum_{k=1}^{\infty} 2^{-k} \min d_{k;k}(x; y); 1g:$$

We now show that M^d is separable. An element $(M; p) \in M^d$ is a limit of closed Riemannian manifolds: for instance, we can exhaust M by a sequence of compact submanifolds with boundary, double each of these and extend the Riemannian metric on one side arbitrarily to the other. So, it suces to construct a countable subset of M^d that accumulates onto every closed manifold in M^d .

There are only countably many dieomorphism types of closed manifolds: this is a consequence of Cheeger's niteness theorem [37], for instance. So, it suces to show that the space $M(M)$ of isometry classes of pointed closed Riemannian manifolds in the dieomorphism class of some xed M is separable in the smooth topology. This space $M(M)$ is a continuous image of the product of M with the space of Riemannian metrics on M , with the smooth topology on tensors. The manifold M is separable, and so is the space of Riemannian metrics on M , by the Weierstrass approximation theorem. So, their product is separable, implying $M(M)$ is too, nishing the proof.

Finally, we want to show that $(M^d; D)$ is complete, so let $(M_i; p_i)$ be a Cauchy sequence. We claim that for every $R > 0$ and $k \in \mathbb{N}$, the balls

$$B(p_i; R) \cap M_i$$

have uniformly C^k -bounded geometry, in the sense of Denition A.3. Corollary A.5 will then imply that $(M_i; p_i)$ has a smoothly convergent subsequence, which will nish the proof.

It suces to show that there are arbitrarily large $R; k$ for which the balls

$$B(p_i; R) \cap M_i$$

have uniformly C^k -bounded geometry. So, x some $k \in \mathbb{N}$. Since $(M_i; p_i)$ is D -Cauchy and $D = \sum_{j=1}^{\infty} 2^{-j} \min d_{j;j}; 1g$, the $d_{k;k}$ -diameter of the tail of $(M_i; p_i)$

can be made arbitrarily small. In other words, there is some $(M; p) \in M^d$ such that for sufficiently large i ,

$$d_{k,k}((M; p); (M_i; p_i)) < \log 2:$$

This means that for each large i there is a pointed, smooth embedding

$$f_i : B_M(p; k) \rightarrow M_i$$

such that $D^k f_i$ is locally 2-bilipschitz on $Z := Z_{\frac{1}{2}}(B_M(p; k=2))$. By Lemma A.2,

$$f(B_M(p; k=2)) \subset B_{M_i}(p_i; k=4):$$

By precompactness, the ball $B_M(p; k=2-1) \subset M$ has C^k -bounded geometry, in the sense of Definition A.3, for some constants r, L . We will use the maps f_i to translate this to uniform C^k -geometry bounds for the balls

$$B_{M_i}(p_i; R) \subset M_i; \text{ where } R := (k-1)=4:$$

Let $s : B \rightarrow U_s \subset M$ be nitely many coordinate charts as in Definition A.3, where B is a ball around the origin in R^d , and by shrinking B assume that $U_s \subset B_M(p; k)$ for all s . Define

$$i_s : B \rightarrow U_{i,s} \subset M_i; \quad i_s = f_i \circ s: B \rightarrow M_i$$

It is now straightforward to verify that 1) { 4) of Definition A.3 are satisfied for the subsets $B_{M_i}(p_i; R) \subset M_i$ by the charts i_s , with modied constants. As the maps $f_i : B_M(p; R) \rightarrow M_i$ are locally 2-bilipschitz, the i_s are locally $2L$ -bilipschitz, so by Lemma A.2 the $=2$ -ball around every $q \in B_M(p; R^0)$ is contained in some $U_{i,s}$, as $R^0 = (R-1)=2$. The transition maps of 4) are unchanged by the composition, so it remains to prove condition 3). The argument for here is like an eective version of (3) = (1) in Corollary A.7. Fix some s , and let $O = D^{k-1}(Z) \cap T^k B$, where $Z \subset T^k M$ is the precompact subset dened above on which f_i is locally 2-bilipschitz. By Lemma A.6, each partial derivative of a Riemannian metric g on B can be expressed as some linear combination

$$(44) \quad @_{i,s} g_{ij}(x) = \sum_n t_n g_{nn}^k(v_n) n$$

of coecients of the metric g^k on $T^k B$, where $v_n \in O$ and the linear combination depends only on the partial derivative taken and the neighborhood O , not the metric g . So, let g_M and g_i be the metrics on M and M_i , respectively. By assumption, the coecients of the metric g_M have bounded C^k norm, so since $O \subset T^k B$ is precompact, the construction of the Sasaki metric implies that all the coecients of $(g_M)^k = (D^k)g^k$ are bounded on O . But since $D^k f_i$ is 2-bilipschitz on Z , the metrics g^k and $(D^k f_i)g^k$ differ by a factor of at most 2 on Z , and hence the coecients of the metric

$$((f_i)_s g_i)^k = (D^{k-1})((D^k f_i)g^k) \quad i \in I$$

are also bounded on O . Equation (44) then implies that all partial derivatives of the metric $(f_i)_s g_i$ are bounded, which proves condition (3).

This shows that for all $k \in \mathbb{N}$, the balls $B(p_i; (k-1)=2) \subset M_i$ have uniformly C^k -bounded geometry. (We showed this explicitly for large i , but the initial nitely many terms only contribute a bounded increase to the constants.) So, Corollary A.5 implies that $(M_i; p_i)$ has a smoothly convergent subsequence.

A.3. Vectored and framed manifolds. It is often convenient to supplement the basepoint of a pointed manifold $(M; p)$ with additional local data: for instance, a unit vector or an orthonormal basis for $T_p M$. An orthonormal basis for $T_p M$ is called a frame for M at p , and we let $F M \rightarrow M$ be the bundle of all frames for M .

A vectored Riemannian manifold is a pair $(M; v)$, where $v \in TM$ is a unit vector, and a framed Riemannian manifold is a pair $(M; f)$, where $f \in FM$ is some (orthonormal) frame. We denote

$$\begin{aligned} T^1 M^d &= \{f \in \text{Riemannian } d\text{-manifolds } (M; v) \mid g = \\ &\quad \text{vectored, connected, complete}\} \\ FM^d &= \{f \in \text{Riemannian } d\text{-manifolds } (M; f) \mid g = \\ &\quad \text{framed, connected, complete}\} \end{aligned}$$

where in both cases we consider vectored (framed) manifolds up to vectored (framed) isometry. Smooth convergence of vectored Riemannian manifolds is defined as follows: we say that $(M_i; v_i) \rightarrow (M; v)$ if for every $R > 0$ there is an open set $U \subset B(p; R)$ and, for sufficiently large i , embeddings

$$(45) \quad f_i : U \rightarrow M_i$$

with $Df_i(v) = v_i$ such that $f_i g_i \rightarrow g$ on U in the C^1 -topology, where $g_i; g$ are the Riemannian metrics on $M_i; M$; an analogous definition gives a notion of smooth convergence on FM^d . We then have:

Theorem A.11. $T^1 M^d$ and FM^d both admit complete, separable metrics that topologize smooth convergence, and such that the natural maps

$$FM^d \rightarrow T^1 M^d \rightarrow M^d$$

defined by taking a frame to its first element, and a vector to its basepoint, are quotient maps.

The proof is identical to the work done earlier in this section. In particular, one can still reinterpret smooth convergence through locally bilipschitz maps of iterated tangent bundles, as long as these maps respect the obvious lifts of the base vectors or frames of the original manifolds. Also, all compactness arguments still apply since we have chosen unit vectors and orthonormal frames.

A.4. The Chabauty topology. Suppose M is a proper metric space and let $C(M)$ be the space of closed subsets of M . The Chabauty topology on $C(M)$ is that generated by subsets of the form

$$(46) \quad fC \subset C(M) \mid C \setminus K = \{g\}; \quad fC \subset C(M) \mid C \setminus U = \{g\};$$

where $K \subset M$ is compact and $U \subset M$ is open. It is also called the Fell topology by analysts. Convergence can be characterized as follows:

Proposition A.12 (Prop E.12, [14]). A sequence (C_i) in $C(M)$ converges to $C \in C(M)$ in the Chabauty topology if and only if

- 1) if $x_{i_j} \in C_{i_j}$ and $x_{i_j} \rightarrow x \in M$, where $i_j \rightarrow \infty$, then $x \in C$.
- 2) if $x \in C$, then there exist $x_i \in C_i$ such that $x_i \rightarrow x$.

The Chabauty topology is compact, separable and metrizable [14, Lemma E.1.1]. When M is compact, it is induced by the Hausdorff metric on $C(M)$, where the distance between closed subsets $C_1, C_2 \subset M$ is defined as

$$d_{\text{Haus}}(C_1, C_2) = \inf \{j \mid C_1 \cap N(C_2) \neq \emptyset \text{ and } C_2 \cap N(C_1) \neq \emptyset\}$$

For noncompact M , the Chabauty topology is almost, but not quite, induced by taking the Hausdorff topology on all compact subsets of M . Namely, x a base point $p \in M$. If $A \subset M$ is closed and $R > 0$, set

$$A_R = A \setminus \overline{B(p; R)};$$

and then define a pseudo-metric d_R on $C(M)$ by setting

$$d_R(A; B) = \min_{\substack{n \\ 0}} \max_{i=1}^n d_{Haus}(A_R; B_R);$$

where d_{Haus} is the Hausdorff metric of the compact subset $\overline{B(p; R)} \cap M$.

The family of pseudo-metrics d_R for $R > 0$ does not determine the Chabauty topology, since if $x_i \rightarrow x$ is a convergent sequence of points with $d(x; p) = R$ and $d(x_i; p) > R$ for all i , then $f_{x_i g} \rightarrow f_{x g}$ in the Chabauty topology, but $d_R(f_{x_i g}; f_{x g}) = 1$ for all i .

We now describe how to taper down d_R near the boundary of $\overline{B(p; R)}$ so that even when points converge into $\partial B(p; R)$ from outside, d_R does not jump in the limit. The idea is to view the Hausdorff distance on closed subsets of $\overline{B(p; R)}$ as a special case of a distance d_{usc} on upper semicontinuous (u.s.c.) functions

$$; g : B(p; R) \rightarrow [0; 1];$$

Closed subsets $A; B$ have u.s.c. characteristic functions $1_A; 1_B$. The advantage of functions is that $1_A(x)$ and $1_B(x)$ can be scaled to converge to zero as $x \rightarrow \partial B(p; R)$, so that near $\partial B(p; R)$, the contribution to distance is negligible.

To define a metric on u.s.c. functions, we use an idea of Beer [13]. Given a compact metric space K and a function $: K \rightarrow [0; 1]$, let

$$H() = f(x; s) \wedge s(x)g \in K \subset [0; 1]$$

be the hypograph of f . The distance between functions $: K \rightarrow [0; 1]$ is

$$d_{usc}();) := d_{Haus}(H()); H());$$

where d_{Haus} is the Hausdorff metric on $K \subset [0; 1]$, considered with the product metric $d((x; s); (y; t)) = d(x; y) + d(s; t)$. Note that if $A; B \subset K$ are closed,

$$d_{usc}(1_A; 1_B) = \min \{1; d_{Haus}(A; B)\}.$$

Fix a function $: K \rightarrow [0; 1]$, and define a new metric d_{Haus} on $C(K)$ via

$$d_{Haus}(A; B) = d_{usc}(H(1_A); H(1_B));$$

So in words, we are just taking the Hausdorff distance between $A; B$, but are scaling down the importance of different parts of the sets as dictated by f .

Lemma A.13. Suppose $f; g : K \rightarrow [0; 1]$ are u.s.c. functions, that is ϵ -Lipschitz, and that $f(x) \leq g(x)$. Then $d_{Haus}(f; g) \leq \epsilon$.

Note that the Lipschitz condition is necessary for any sort of inequality. For instance, if f approximates g and $f(x) = g(x)$ is constant, we can make

$$d_{Haus}(f; g) > \epsilon$$

by taking $y \neq x$ and the approximation $f(x) \approx g(y)$ sufficiently close.

Proof. Suppose that $H(1_A)$ and $H(1_B)$ are ϵ -close in the Hausdorff metric. We want to show $H(1_A)$ and $H(1_B)$ are $(\max fC; + 1g)$ -close, i.e. that the two sets are each contained in $(\max fC; + 1g)$ -neighborhoods of each other.

Let $x \in A$. It suffices to show that there is some $(y; t) \in H(1_B)$ with

$$(47) \quad d((x; (x)); (y; t)) \leq \max fC; + 1g;$$

For the same estimate will also work with (x) replaced by any $s < (x)$, so $H(1_A)$ is contained in a C -neighborhood of $H(1_B)$. The proof of the other inclusion is the same, switching the roles of $A; B$.

We know that there is some $(y; t) \in H(1_B)$ with $d((x; (x)); (y; t)) \leq 1g$: If $t = 0$, then $(x) \in C$, implying $(x) \in C$, and $d((x; (x)); (x; 0)) \leq C$; which proves (47). So, assume $t = 0$. In this case, $y \in B$ and $d(x; y) \leq C$. Since δ is 1 -lipschitz, $d(x; y) \leq C$. Hence,

$$d((x; (x)); (y; (y))) \leq (1 + C);$$

We now return to the problem of constructing a metric for the Chabauty topology on $C(M)$, for a proper metric space M . Fix a point $p \in M$ and for each $R > 0$, define a pseudometric d_R^{Δ} on $C(M)$ by

$$(48) \quad d_R^{\Delta} = d_{Haus}^R; \text{ where } d_R^{\Delta}(x) = \begin{cases} \frac{R - d(p; x)}{R} & d(p; x) \leq R \\ 0 & d(p; x) > R \end{cases}$$

Note that d_R^{Δ} induces the Hausdorff topology on the set of compact subsets of the open ball $B(p; R)$, but cannot tell apart subsets of $M \setminus B(p; R)$. Also, earlier we only defined our modified Hausdorff metrics d_K^{Δ} for K compact, while M is not compact. However, since $d_R^{\Delta}(x) = 0$ when $d(p; x) \geq R$, one can consider the above construction as taking place within $K = B(p; R)$.

Proposition A.14. The Chabauty topology on $C(M)$ is induced by the family of pseudo-metrics d_R^{Δ} , for $R \in (0; 1)$.

By Lemma A.13, we have $d_R^{\Delta} \geq d_{R^0}^{\Delta}$ whenever $1 \leq R \leq R^0$, since d_R^{Δ} is 1 -lipschitz and $d_{R^0}^{\Delta}$ is 1 -lipschitz. This implies the Chabauty topology is induced by any family d_R^{Δ} with $R_i \in (0; 1)$, although this is also clear from the proof below.

Proof. Assume that $A_i \in A$ in the Chabauty topology. Fixing R , we want to show that the hypographs $H(R 1_A)$ Hausdorff converge to $H(R 1_A)$.

First, suppose that $(x; t) \in H(R 1_A)$. If $t = 0$, we have $(x; t) \in H(R 1_A)$ for all i . If $t = 0$, then $p \in A \setminus B(p; R)$, so by Chabauty convergence, $x = \lim_i x_i$ for some sequence $x_i \in A_i$. So, $(x; t)$ is a limit of points $(x_i; t_i) \in H(R 1_A)$.

Next, suppose $(x; t)$ is the limit of some sequence $(x_{i_j}; t_{i_j}) \in H(R 1_{A_{i_j}})$. Again, if $t = 0$ then $(x; t) \in H(R 1_A)$ automatically, so we are done. Otherwise, we can assume after passing to a further subsequence that $t_{i_j} = 0$ for all i_j . In this case, each $x_{i_j} \in A_{i_j}$, so $x = \lim_{i_j} x_{i_j} \in A$. Hence $(x; t) \in H(R 1_A)$.

Finally, we must show that if (A_i) does not converge to A in the Chabauty topology, then there is some R with $d_R^{\Delta}(A_i; A) \neq 0$. There are two cases. Assume first that $x \in A$ is not the limit of any sequence $x_i \in A_i$. Taking $R > d(p; x)$, we see that $(x; R 1_A)$ is not the limit of any sequence of points in the hypographs $H(R 1_{A_i})$, so we have $d_R^{\Delta}(A_i; A) \neq 0$. Similarly, if there

is some sequence $x_{i_j} \in A_{i_j}$ that converges to a point outside of A , the points $(x_{i_j}; R^{-1}A_{i_j}(x_{i_j}))$ will converge to a point outside of $H(R^{-1}A)$.

Finally, for use in the next section, we prove:

Corollary A.15. Suppose that $f : B_{M_1}(p_1; R_1) \rightarrow M_2$ is a locally α -bilipschitz embedding with $R_1 > 1$, and $f(p_1) = p_2$. Then for any $R_2 > R_1$, we have

$$\hat{d}_{R_1}(f^{-1}(C); f^{-1}(D)) \leq \hat{d}_{R_2}(C; D); \quad 8C; D \leq C(M_2);$$

Note that $R_2 > R_1$ implies $f^{-1}(B_{M_1}(p_1; R_1)) \subset B_{M_2}(p_1; R_2)$.

Proof. The two sides of the inequality are $d_{Haus}^i(C; D)$, $i = 1, 2$, where

$$\begin{aligned} {}_1 : M_2 \rightarrow [0; 1]; \quad {}_1(x_2) = & \begin{cases} \frac{R_2 - d(p_1; x_1)}{R_1} & x_2 = f(x_1); \quad x_1 \in B_{M_1}(p_1; R_1); \\ 0 & x_2 \notin f^{-1}(B_{M_1}(p_1; R_1)); \end{cases} \\ {}_2 : M_2 \rightarrow [0; 1]; \quad {}_2(x_2) = & \begin{cases} \frac{R_2 - d(p_2; x_2)}{R_2} & x_2 \in B_{M_2}(p_1; R_2) \\ 0 & x_2 \notin B_{M_2}(p_1; R_2); \end{cases} \end{aligned}$$

Since f is α -lipschitz, we have $d(p_2; x_2) \leq \alpha d(p_1; x_1)$ if $f(x_1) = x_2$. Conversely, suppose x_2 is a path in M_2 joining x_1 to p_2 . The preimage $f^{-1}(x_2)$ is either a path from x_1 to p_1 , or is a union of paths, the last of which is a path from $\partial B_{M_1}(p_1; R_1)$ to p_1 . In either case, the length of $f^{-1}(x_2)$ is at least $d(p_1; x_1)$, so the length of x_2 is at least $d(p_1; x_1)$, as f is locally α -bilipschitz. This shows

$$(49) \quad \frac{1}{\alpha}(d(p_1; x_1) - d(p_2; x_2)) \leq d(p_1; x_1);$$

Note that it may not be true that f is globally α -bilipschitz, e.g. if f is the inclusion of an interval of length α into a circle of length 1, but (49) holds in this case because one of the two points is the center of the interval.

It follows from (49) that ${}_1$ is α -lipschitz. Moreover, since $R_2 > R_1$,

$${}_1(x_2) = \frac{R_1 - d(p_1; x_1)}{R_1} \leq \frac{R_1 - d(p_2; x_2)}{R_2} = {}_2(x_2)$$

for all $x_2 \in B_{M_2}(p_1; R_2)$. So ${}_1 = {}_2$. Therefore, the hypotheses of Lemma A.13 are satisfied with the constant α , which proves the corollary.

A.5. The smooth-Chabauty topology. In this section we combine the smooth topology of §A.2 with the Chabauty topology of §A.4. Consider the set

$$CM^d = f(M; p; C) \subset \{M \text{ a complete, connected Riemannian } d\text{-manifold, } p \in M; \text{ and } C \subset M \text{ a closed subset}\}^d;$$

where $(M_1; p_1; C_1) \sim (M_2; p_2; C_2)$ if there is an isometry $M_1 \rightarrow M_2$ with $p_1 \mapsto p_2$ and $C_1 \mapsto C_2$. We say that $(M_i; p_i; C_i) \sim (M; p; C)$ in the smooth-Chabauty topology if for large i there are embeddings

$$(50) \quad f_i : B_{M_i}(p_i; R_i) \rightarrow M$$

with $f_i(p_i) = p$ such that $R_i \geq 1$ and the following two conditions hold:

- 1) $f_i \circ g_i \rightarrow g$ in the C^1 -topology, where g_i, g are the Riemannian metrics on M_i, M , and
- 2) $f_i^{-1}(\overline{C_i}) \subset C$ in the Chabauty topology on closed subsets of M .

Note that the metrics $f_i g_i$ are only partially defined, but they are defined on larger and larger subsets of M as $i \rightarrow 1$. So as C^1 -convergence of metrics is checked on compact sets, the convergence in 1) still makes sense. As in §A.1, we call (f_i) a sequence of almost isometric maps witnessing the convergence $(M_i; p_i; C_i) \rightarrow (M; p; C)$. Also, when the R_i do not matter, we will again write

$$f_i : M \dashrightarrow M_i$$

to indicate that the maps f_i are partially defined, but that their domains of definition exhaust M . (This notation will be mostly used in the body of the paper, not in this appendix.)

We now show how to construct a quasi-metric that induces the smooth Chabauty topology. Here, a quasi-metric on a set X is a nonnegative, symmetric function $d : X \times X \rightarrow \mathbb{R}$ that vanishes exactly on the diagonal and for some $K \geq 1$ satisfies the quasi-triangle inequality

$$d(x_1; x_3) \leq K(d(x_1; x_2) + d(x_2; x_3)); \quad \forall x_1, x_2, x_3 \in X.$$

Examples of quasi-metrics include powers $d = \sqrt{d}$ of metrics, and a theorem of Frink, c.f. [8], implies that for every quasi-metric d , there is an honest metric \tilde{d} on X such that $\frac{1}{K} \leq d \leq K$ for some $1 \leq K < \infty$. The added flexibility in the quasi-triangle inequality makes it much easier to construct quasi-metrics than metrics, and yet Frink's theorem shows that essentially, one can do as much with the former as with the latter.

Given points $X_i = (M_i; p_i; C_i) \in CM^d$, $i = 1, 2$, define

$$d_{R;K}(X_1; X_2) = \inf_{f: B_{M_1}(p_1; R) \rightarrow B_{M_2}(p_2; R)} \{ \text{inf} \log + \text{gg} \},$$

where the infimum is taken over all f such that there is a smooth embedding $f : B_{M_1}(p_1; R) \rightarrow B_{M_2}(p_2; R)$ with $f(p_1) = p_2$ such that

- 1) $D^k f : T^k B_{M_1}(p_1; R) \rightarrow T^k B_{M_2}(p_2; R)$ is locally α -bilipschitz on the subset $Z_{1=1}^k(B_{M_1}(p_1; R)) \subset T^k M_1$ with respect to the iterated Sasaki metric \tilde{d} , ¹⁴
- 2) $d_{R;K}(C_1; f^{-1}(C_2)) \leq K$, where $d_{R;K}$ is as in Proposition A.14.

Note that if α and K are at least $\alpha = 2:718 \dots$, the 1 realizes the minimum defining $d_{R;K}$. So, everywhere below, we will always assume $\alpha < \alpha$:

The functions $d_{R;K}$ are not symmetric, so later on we will symmetrize them. However, they are already 'quasi-symmetric':

Lemma A.16. If $R > 0$, $K \geq 1$ and $X_i = (M_i; p_i; C_i) \in CM^d$ for $i = 1, 2$,

$$d_{R;K}(X_2; X_1) \leq d_{R;K}(X_1; X_2);$$

Proof. Suppose $d_{R;K}(X_1; X_2) < \alpha$, where the sum is that in the definition of $d_{R;K}$, and choose $f : B_{M_1}(p_1; R) \rightarrow B_{M_2}(p_2; R)$ as above realizing this inequality. Applying Lemma A.2, the inverse map is defined on the domain

$$f^{-1} : B_{M_2}(p_2; R) \rightarrow B_{M_1}(p_1; R);$$

and of course is locally α -bilipschitz. Note that the iterated derivative of f^{-1} is $(D^k f)^{-1}$, which is locally α -bilipschitz on $D^k f(Z)$, where

$$Z = Z_{1=1}^k(B_{M_1}(p_1; R)) \subset T^k M_1;$$

¹⁴Here, recall that $Z_r^k(M)$ is the r -neighborhood of the zero section in $T^k(M)$.

And since $D^k f$ is locally β -bilipschitz, we have

$$D^k f(Z) \subset B_{M_2}(p_2; R^{-2});$$

so $D^k f^{-1}$ is locally β -bilipschitz. We have

$$\begin{aligned} d_{R^{-2}}(C_2; f^{-1}(C_1)) &= d_{R^{-2}}(C_2; f(C_1)) \\ &= d_{R^{-2}}(f^{-1}(C_2); C_1) \end{aligned}$$

where the first inequality uses Corollary A.15. The lemma follows as $\beta < \epsilon$:

We now prove a quasi-triangle inequality:

Lemma A.17. If $R > e^2; k \geq N$ and $X_i = (M_i; p_i; C_i) \in CM^d$ for $i = 1, 2, 3$,

$$d_{R;k}(X_1; X_3) \leq d_{R;k}(X_1; X_2) + d_{R;k}(X_2; X_3);$$

Proof. Suppose $d_{R;k}(X_1; X_2) < \log +$ and $d_{R;k}(X_2; X_3) < \log +$, where these sums are those in the definition of $d_{R;k}$, and choose

$$f : B_{M_1}(p_1; R^{-1}) \rightarrow M_2; \quad g : B_{M_2}(p_2; R^{-1}) \rightarrow M_3$$

above realizing these inequalities. The composition

$$g \circ f : B_{M_1}(p_1; R^{-1}) \rightarrow M_3$$

is indeed, since f is itself β -lipschitz, by Corollary A.7. The iterated total derivative

$D^k(g \circ f) : T^k B_{M_1}(p_1; R^{-1}) \rightarrow T^k M_3$ is also locally β -bilipschitz on the appropriate domain, so we just need to deal with condition 2). But

$$\begin{aligned} &d_{R^{-1}}(C_1; (g \circ f)^{-1}(C_3)) \\ &= d_{R^{-1}}(C_1; f^{-1}(C_2) + d_{R^{-1}}(f^{-1}(C_2); (g \circ f)^{-1}(C_3)) \quad (51) \\ &\leq d_{R^{-1}}(C_1; f^{-1}(C_2)) + d_{R^{-1}}(f^{-1}(C_2); g^{-1}(C_3)) \\ &\leq \epsilon + \epsilon + \\ &\quad \vdots \end{aligned}$$

Here, the first term of (51) comes from the comment after the statement of Proposition A.14, and the second term comes from Corollary A.15. This finishes the proof, since then $d_{R;k}(X_1; X_3) \leq \log(\epsilon) + \epsilon + \epsilon(\log + + \log +) \leq d_{R;k}(X_1; X_2) + d_{R;k}(X_2; X_3)$.

One now proceeds as in the proof of Theorem A.10 to construct a quasi-metric D on CM^d that induces the smooth-Chabauty topology:

$$D(X; Y) = \sum_{k=0}^{\infty} \frac{1}{2^k} (d_{k;k}(X; Y) + d_{k;k}(Y; X));$$

where $9 > \epsilon^2$ is chosen because of Lemma A.17. Note that the quasi-symmetry lemma (Lemma A.16) implies that symmetrizing does not change the topology induced by $d_{R;k}$. Now as mentioned above, Frink's theorem, c.f. [8], implies that there is a metric on CM^d with

$$\frac{1}{K} D = K; \quad \text{for some } 1; K > 0; \quad \text{This}$$

allows us to prove:

Theorem A.18. CM^d is a Polish space.

Proof. The definition of a Cauchy sequence extends verbatim to quasi-metrics, and we claim that the quasi-metric D is complete. If $X_i = (M_i; p_i; C_i)$ is a D -Cauchy sequence, the sequence of pointed manifolds $(M_i; p_i)$ is Cauchy for the complete metric, also called D , introduced in the proof of Theorem A.10. Hence, we can assume $(M_i; p_i) \rightarrow (M; p)$ in the smooth topology.

Fix sequences $R_n \rightarrow 1$, $k_n \rightarrow 1$. Then for each n , we have that for all $i \in I_n$ there are maps

$$f_{n;i} : B_M(p; R_n) \rightarrow M_i$$

with $f_{n;i}(p_1) = p_2$ such that $D^{k_n} f_{n;i}$ is locally n -bilipschitz on an appropriate neighborhood of the zero section in $T^k M$. Because the Chabauty topology is compact, we can pass to a subsequence in n such that

$$(52) \quad \overline{f_{n;I_n}^{-1} C_{I_n}} \subset C \subset C(M);$$

and passing to a further subsequence¹⁵ we may assume that

$$(53) \quad d_{R_n}(f_{n;I_n}^{-1} C_{I_n}; C) \xrightarrow{n} 0 \text{ and } d_{k_n; R_n}(X_i; X_j) \xrightarrow{n} 0 \text{ when } i, j \in I_n;$$

where $d_{R; k}$ is as in Proposition A.17 and the second part of (53) uses that (X_i) is D -Cauchy. Now set $X = (M; p; C)$. Then for each n and $i \in I_n$, we have

$$d_{k_n; R_n}(X; X_i) \leq d_{k_n; R_n}(X; X_{I_n}) + d_{k_n; R_n}(X_{I_n}; X_i) \\ (log n + 1/n) + \frac{1}{n}$$

This converges to zero with n , so $X_i \rightarrow X$ in CM^d . In other words, D is a complete quasi-metric. But Cauchy sequences for D are the same as Cauchy sequences for D , so this means that D is a complete metric on CM^d .

Separability of CM^d follows from separability of M^d : we can choose an element from a countable dense subset of M^d by first choosing a pointed manifold $(M; p)$ from a countable dense subset of M^d and then choosing a finite subset $C \subset M$ that lies within a fixed countable dense subset of M .

There are a number of variants of CM^d : one could substitute pointed manifolds with vectored or framed manifolds, or require the distinguished closed subset to lie in either the unit tangent bundle or the frame bundle. (See the space P_{all}^d introduced in §4.2, for instance, which is the space of pointed manifolds with distinguished closed subsets of the frame bundle.) The techniques above apply just as easily to all these situations, so we will feel free to use their metrizability without comment in the text.

¹⁵We are performing a bit of sleight-of-hand here in order to tame the proliferation of indices. Namely, we are passing to a subsequence in n , but then also replacing the R_n and k_n with sequences that goes to infinity more slowly. The convergence in (52) alone would not be enough to conclude the first part of (53), otherwise, for instance.

A.6. A stability result for Riemannian foliated spaces. This section is devoted to the following stability result for leaves of Riemannian foliated spaces. It is a slight strengthening of Theorem 4.3 (see also Theorem 4.1) from Lessa [68], which requires that X is compact, and implies a number of classical results on foliations, such as the Reeb local stability theorem, see [68].

Theorem A.19. Suppose X is a d -dimensional Riemannian foliated space in which $x_i \in X$ is a convergent sequence of points. Then $(L_{x_i}; x_i)$ is pre-compact in M^d , and every accumulation point is a pointed Riemannian cover of $(L_x; x)$.

Moreover, if $(M; p)$ is such an accumulation point, it is covered by the holonomy cover $(\mathcal{L}_x^{\text{hol}}; x)$ of $(L_x; x)$: that is, there are covering maps

$$(\mathcal{L}_x^{\text{hol}}; x) \rightarrow (M; p) \rightarrow (L_x; x);$$

where the composition of the two is the holonomy covering.

Recall that the holonomy cover of a pointed leaf $(L; x)$ is the pointed cover corresponding to the subgroup of $\pi_1(L; x)$ consisting of all loops on L with trivial holonomy. The last part of Theorem A.19 will never be used in this paper, but we think it is worth including in the theorem statement for future reference.

Before giving the proof, we note the following:

Lemma A.20. Let X be a Riemannian foliated space and let $R > 0$. Suppose that $x_i \in X$ and for each i , we have a point $y_i \in L_{x_i}$ with

$$\limsup_{i \rightarrow 1} d_{L_{x_i}}(x_i; y_i) \geq R;$$

Then there is a subsequence of (y_i) that converges to a point $y \in L_x$ with

$$d_{L_x}(x; y) \geq R;$$

Proof. There is some $\epsilon > 0$ with the following property: for every z in the ball $B(x; R) \cap L_x$, there is a foliated chart $\phi: R^d \rightarrow T \subset X$ with $(0; s) = z$ and

$$d_t([-1; 1]^d; R^d) \cap [-2; 2]^d \subset B(x; R);$$

where d_t is the Riemannian metric on R^d induced from that on (R^d, ftg) . This is a simple consequence of the relative compactness of $B(x; R)$.

If $R < \epsilon$, then pick such a foliated chart with $(0; s) = x$. For large i , we have $x_i \in [-1; 1]^d \cap T$ and $d_{L_{x_i}}(x_i; y_i) < \epsilon$, so it follows that

$$y_i = (a_i; t_i); \text{ where } a_i \in [-2; 2]^d; t_i \in [-\epsilon, \epsilon];$$

and extracting a convergent subsequence of (a_i) proves the claim.

Most likely $R > \epsilon$, though. In this case, construct a new sequence by choosing $z_i \in L_{x_i}$ along a geodesic from x_i to y_i so that

$$d_{L_{x_i}}(x_i; z_i) = \epsilon; \quad \limsup_{i \rightarrow 1} d_{L_{x_i}}(z_i; y_i) \geq R - \epsilon;$$

Passing to a subsequence, (z_i) converges, so we may replace (x_i) with (z_i) , thus substituting R with $R - \epsilon$. The proof concludes by induction.

We now prove the theorem.

Proof of Theorem A.19. Given $R > 0$ and $k \in \mathbb{N}$, the R -balls around the base points x_i within the leaves L_{x_i} have uniformly C^k -bounded geometry, in the sense of Definition A.3 in the appendix. For by compactness, this is true of the R -ball

around $x \in L_x$, and for large i the coordinate charts of Definition A.3 can be transferred to L_{x_i} with arbitrarily small distortion via the vertical projections in local flow boxes, see Lemma A.20. Compare also with Lemma 4.34 of Lessa [68], in which similar arguments are used. It follows from Theorem A.5 that $(L_x; x_i)$ is pre-compact in M^d .

Suppose now that $x_i \rightarrow x$ in X and $(L_{x_i}; x_i) \rightarrow (M; p)$ smoothly. From the smooth convergence, it follows that for every $R > 0$ we have maps

$$f_i : B(p; R) \rightarrow L_{x_i} \subset X; \quad f_i(p) = x_i;$$

that are locally bilipschitz with distortion constants converging to 1. We claim:

Claim A.21. After passing to a subsequence, the maps f_i converge to a local isometry $f : B(p; R) \rightarrow L_x$ with $f(p) = x$.

Proof. The first step is to construct a metric on X with respect to which the maps f_i are uniformly lipschitz, and the second is to show that the images of the f_i are contained in some compact subset of X , so that Arzela-Ascoli applies.

In [68, Lemma 4.33], Lessa shows that any compact Riemannian foliated space X admits a metric d that is adapted to the leafwise Riemannian structure: i.e. when x, y lie on the same leaf, their leafwise distance is at least $d(x, y)$. The idea is to first construct pseudo-metrics on X that vanish outside of a given foliated chart $R^d T \rightarrow X$, by combining the leafwise metrics d_t with the distance d_T in T . Then, one covers X with a finite number of such charts, and sums the resulting pseudo-metrics to give an adapted metric on X .

In our situation, X may not be (even locally) compact, so this method fails to produce an adapted metric. However, as $B(x; R) \subset L_x$ is relatively compact, the same argument does give a pseudo metric d on X such that

- 1) if x, y lie on the same leaf, their leafwise distance is at least $d(x, y)$,
- 2) there is a neighborhood $U \subset X$ of the ball $B(x; R) \subset L_x$ such that d restricts to a metric on the closure of U .

As the maps $f_i : B(p; R) \rightarrow L_{x_i} \subset X$ are locally bilipschitz with distortion constants converging to 1, they are uniformly lipschitz with respect to the adapted pseudo-metric d . Lemma A.20 implies that $f_i(B(p; R)) \subset U$ for large i and that

$$K = \overline{B(x; R)} \cup \overline{\bigcup_i f_i(B(p; R))}$$

is compact, so the intersection of $K \setminus \overline{U}$ is a compact metric space that contains $f_i(B(p; R))$ for large i . By Arzela-Ascoli's theorem, f_i converges after passing to a subsequence. The limit is a local isometry $f : B(p; R) \rightarrow L_x$ with $f(p) = x$, proving Claim A.21, and therefore Theorem A.19.

Using Claim A.21, a diagonal argument now gives a local isometry

$$f : M \rightarrow L_x; \quad f(p) = x$$

defined on all of M . As M and L_x are both complete, connected Riemannian manifolds, this f is a Riemannian covering map. The fact that $L_x^{\text{hol}} \rightarrow L_x$ factors through M is exactly the same as in [68], see the last 3 paragraphs of the proof of Theorem 4.3.

References

1. Miklos Abert, Nicolas Bergeron, Ian Biringer, and Tsachik Gelander, Convergence of normalized betti numbers in nonpositive curvature, arXiv preprint arXiv:1811.02520 (2018).
2. Miklos Abert, Nicolas Bergeron, Ian Biringer, Tsachik Gelander, Nikolay Nikolov, Jean Raimbault, and Iddo Samet, On the growth of Betti numbers of locally symmetric spaces, *C. R. Math. Acad. Sci. Paris* 349 (2011), no. 15-16, 831{835. MR 2835886 (2012j:58033)
3. , On the growth of L^2 -invariants for sequences of lattices in Lie groups, arXiv:1210.2961 (2012).
4. Miklos Abert, Nicolas Bergeron, and Etienne Le Masson, Eigenfunctions and random waves in the benjamini-schramm limit, arXiv preprint arXiv:1810.05601 (2018).
5. Miklos Abert, Yair Glasner, and Béla Virág, Kesten's theorem for invariant random subgroups, arXiv:1201.3399 (2012).
6. Miklos Abert and Tamás Hubai, Benjamini-Schramm convergence and the distribution of chromatic roots for sparse graphs, *Combinatorica* 35 (2015), no. 2, 127{151.
7. Ian Agol, Tameness of hyperbolic 3-manifolds, arXiv:math.GT/0405568 (2006).
8. Hugo Aimar, Bibiana Iaei, and Liliana Nitti, On the Macas-Segovia metrization of quasi-metric spaces, *Rev. Un. Mat. Argentina* 41 (1998), no. 2, 67{75. MR 1700292
9. David Aldous and Russell Lyons, Processes on unimodular random networks, *Electron. J. Probab.* 12 (2007), no. 54, 1454{1508. MR 2354165 (2008m:60012)
10. Jesús A. Alvarez López, Ramon Barral Lijo, and Alberto Candel, A universal Riemannian foliated space, *Topology Appl.* 198 (2016), 47{85. MR 3433188
11. Werner Ballmann, Lectures on Kähler manifolds, ESI Lectures in Mathematics and Physics, European Mathematical Society (EMS), Zürich, 2006. MR 2243012
12. Werner Ballmann, Mikhael Gromov, and Viktor Schroeder, Manifolds of nonpositive curvature, *Progress in Mathematics*, vol. 61, Birkhäuser Boston, Inc., Boston, MA, 1985. MR 823981 (87h:53050)
13. Gerald Beer, Upper semicontinuous functions and the Stone approximation theorem, *J. Approx. Theory* 34 (1982), no. 1, 1{11. MR 647707
14. Riccardo Benedetti and Carlo Petronio, *Lectures on hyperbolic geometry*, Universitext, Springer-Verlag, Berlin, 1992. MR MR1219310 (94e:57015)
15. Itai Benjamini and Nicolas Curien, Ergodic theory on stationary random graphs, *Electron. J. Probab.* 17 (2012), no. 93, 20. MR 2994841
16. Itai Benjamini, Russell Lyons, Yuval Peres, and Oded Schramm, Group-invariant percolation on graphs, *Geom. Funct. Anal.* 9 (1999), no. 1, 29{66. MR 1675890 (99m:60149)
17. Itai Benjamini, Russell Lyons, and Oded Schramm, Unimodular random trees, *Ergodic Theory and Dynamical Systems* 35 (2015), no. 2, 359{373.
18. Itai Benjamini and Oded Schramm, Recurrence of distributional limits of finite planar graphs, *Electron. J. Probab.* 6 (2001), no. 23, 13 pp. (electronic). MR 1873300 (2002m:82025)
19. Ian Biringer and Jean Raimbault, Ends of unimodular random manifolds, *Proceedings of the American Mathematical Society* 145 (2017), no. 9, 4021{4029.
20. Ian Biringer and Juan Souto, Ranks of mapping tori via the curve complex, preprint at arxiv.org/abs/1409.1878.
21. Ian Biringer and Omer Tamuz, Unimodularity of invariant random subgroups, arxiv.org/abs/1402.1042.
22. Francis Bonahon, Bouts des variétés hyperboliques de dimension 3, *Ann. of Math.* (2) 124 (1986), no. 1, 71{158. MR MR847953 (88c:57013)
23. Nicolas Bourbaki, *Integration. II. Chapters 7{9*, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2004, Translated from the 1963 and 1969 French originals by Sterling K. Berberian. MR 2098271 (2005f:28001)
24. Lewis Bowen, Invariant random subgroups of the free group, arXiv:1204.5939 (2012).
25. , Cheeger constants and L^2 -betti numbers, *Duke Mathematical Journal* 164 (2015), no. 3, 569{615.
26. Lewis Bowen, Rostislav Grigorchuk, and Rostyslav Kravchenko, Invariant random subgroups of lamplighter groups, *Israel Journal of Mathematics* 207 (2015), no. 2, 763{782.
27. Martin R. Bridson and Andre Haefliger, Metric spaces of non-positive curvature, 319 (1999), xxii+643. MR MR1744486 (2000k:53038)

28. Sara Broerio, Maura Salvatori, and Wolfgang Woess, Brownian motion and harmonic functions on $\text{Sol}(p; q)$, *Int. Math. Res. Not. IMRN* (2012), no. 22, 5182{5218. MR 2997053
29. Danny Calegari and David Gabai, Shrinkwrapping and the taming of hyperbolic 3-manifolds, *J. Amer. Math. Soc.* 19 (2006), no. 2, 385{446 (electronic). MR MR2188131 (2006g:57030)
30. R. D. Canary, D. B. A. Epstein, and P. Green, Notes on notes of Thurston, Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984), London Math. Soc. Lecture Note Ser., vol. 111, Cambridge Univ. Press, Cambridge, 1987, pp. 3{92. MR 903850 (89e:57008)
31. Richard D. Canary, Ends of hyperbolic 3-manifolds, *J. Amer. Math. Soc.* 6 (1993), no. 1, 1{35. MR MR1166330 (93e:57019)
32. , A covering theorem for hyperbolic 3-manifolds and its applications, *Topology* 35 (1996), no. 3, 751{778. MR MR1396777 (97e:57012)
33. Alberto Candel, The harmonic measures of Lucy Garnett, *Adv. Math.* 176 (2003), no. 2, 187{247. MR 1982882 (2004m:58057)
34. Alberto Candel and Lawrence Conlon, *Foliations. I*, Graduate Studies in Mathematics, vol. 23, American Mathematical Society, Providence, RI, 2000. MR 1732868 (2002f:57058)
35. , *Foliations. II*, Graduate Studies in Mathematics, vol. 60, American Mathematical Society, Providence, RI, 2003. MR 1994394 (2004e:57034)
36. Pedro J. Catuogno, Diego S. Ledesma, and Paulo R. Runo, *Foliated stochastic calculus: harmonic measures*, *Trans. Amer. Math. Soc.* 368 (2016), no. 1, 563{579. MR 3413874
37. Je Cheeger, Finiteness theorems for Riemannian manifolds, *Amer. J. Math.* 92 (1970), 61{74. MR 0263092 (41 #7697)
38. , Critical points of distance functions and applications to geometry, *Geometric topology: recent developments* (Montecatini Terme, 1990), Lecture Notes in Math., vol. 1504, Springer, Berlin, 1991, pp. 1{38. MR 1168042 (94a:53075)
39. Je Cheeger and David G. Ebin, *Comparison theorems in Riemannian geometry*, AMS Chelsea Publishing, Providence, RI, 2008, Revised reprint of the 1975 original. MR 2394158
40. A. Connes, A survey of foliations and operator algebras, *Operator algebras and applications, Part I* (Kingston, Ont., 1980), *Proc. Sympos. Pure Math.*, vol. 38, Amer. Math. Soc., Providence, R.I., 1982, pp. 521{628. MR 679730 (84m:58140)
41. D. J. Daley and D. Vere-Jones, *An introduction to the theory of point processes. Vol. I*, second ed., *Probability and its Applications* (New York), Springer-Verlag, New York, 2003, *Elementary theory and methods*. MR 1950431 (2004c:60001)
42. Patrick Eberlein, Geodesic ows on negatively curved manifolds. II, *Trans. Amer. Math. Soc.* 178 (1973), 57{82. MR 0314084
43. G. A. Edgar, A noncompact Choquet theorem, *Proc. Amer. Math. Soc.* 49 (1975), 354{358. MR 0372586
44. Amichai Eisenmann and Yair Glasner, Generic IRS in free groups, after Bowen, *Proceedings of the American Mathematical Society* 144 (2016), no. 10, 4231{4246.
45. Jacob Feldman and Calvin C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras. I, *Trans. Amer. Math. Soc.* 234 (1977), no. 2, 289{324. MR 0578656
46. Renato Feres and Abdelghani Zeghib, Leafwise holomorphic functions, *Proc. Amer. Math. Soc.* 131 (2003), no. 6, 1717{1725 (electronic). MR 1955258 (2003j:32040)
47. Michael Freedman, Joel Hass, and Peter Scott, Least area incompressible surfaces in 3-manifolds, *Invent. Math.* 71 (1983), no. 3, 609{642. MR MR695910 (85e:57012)
48. D. H. Fremlin, *Measure theory. Vol. 4*, Torres Fremlin, Colchester, 2006, *Topological measure spaces. Part I, II*, Corrected second printing of the 2003 original. MR 2462372
49. Harry Furstenberg, A note on Borel's density theorem, *Proc. Amer. Math. Soc.* 55 (1976), no. 1, 209{212. MR 0422497
50. Damien Gaboriau and Russell Lyons, A measurable-group-theoretic solution to von Neumann's problem, *Invent. Math.* 177 (2009), no. 3, 533{540. MR 2534099 (2011a:37010)
51. Lucy Garnett, Foliations, the ergodic theorem and Brownian motion, *J. Funct. Anal.* 51 (1983), no. 3, 285{311. MR 703080 (84j:58099)
52. , Statistical properties of foliations, *Geometric dynamics* (Rio de Janeiro, 1981), *Lecture Notes in Math.*, vol. 1007, Springer, Berlin, 1983, pp. 294{299. MR 1691595
53. Etienne Ghys, Topologie des feuilles génériques, *Ann. of Math. (2)* 141 (1995), no. 2, 387{422. MR 1324140 (96b:57032)

54. Yair Glasner, Invariant random subgroups of linear groups, *Israel Journal of Mathematics* 219 (2017), no. 1, 215{270.

55. Gernot Greschonig and Klaus Schmidt, Ergodic decomposition of quasi-invariant probability measures, *Colloq. Math.* 84/85 (2000), no. part 2, 495{514, Dedicated to the memory of Anzelm Iwanik. MR 1784210

56. Misha Gromov, Metric structures for Riemannian and non-Riemannian spaces, english ed., *Modern Birkhäuser Classics*, Birkhäuser Boston, Inc., Boston, MA, 2007, Based on the 1981 French original, With appendices by M. Katz, P. Pansu and S. Semmes, Translated from the French by Sean Michael Bates. MR 2307192 (2007k:53049)

57. Olle Häggström, Infinite clusters in dependent automorphism invariant percolation on trees, *Ann. Probab.* 25 (1997), no. 3, 1423{1436. MR 1457624 (98f:60207)

58. Yair Hartman and Omer Tamuz, Stabilizer rigidity in irreducible group actions, *arXiv:1307.7539* (2013).

59. , Furstenberg entropy realizations for virtually free groups and lamplighter groups, *Journal d'Analyse Mathématique* 126 (2015), no. 1, 227{257.

60. Hamed Hatami, László Lovász, and Balázs Szegedy, Limits of locally-globally convergent graph sequences, *Geom. Funct. Anal.* 24 (2014), no. 1, 269{296. MR 3177383

61. Ernst Heintze and Hans-Christoph Im Hof, Geometry of horospheres, *J. Differential Geom.* 12 (1977), no. 4, 481{491 (1978). MR 512919

62. Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, *Pure and Applied Mathematics*, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 514561

63. V. A. Kaimanovich, Brownian motion on foliations: entropy, invariant measures, mixing, *Funktional. Anal. i Prilozhen.* 22 (1988), no. 4, 82{83. MR 977003

64. VA Kaimanovich, Invariance, quasi-invariance, and unimodularity for random graphs, *Journal of Mathematical Sciences* 219 (2016), no. 5, 747{764.

65. Vadim A. Kaimanovich and Mikhail Lyubich, Conformal and harmonic measures on laminations associated with rational maps, *Mem. Amer. Math. Soc.* 173 (2005), no. 820, vi+119. MR 2111096

66. Michael Kapovich, Hyperbolic manifolds and discrete groups, *Progress in Mathematics*, vol. 183, Birkhäuser Boston Inc., Boston, MA, 2001. MR MR1792613 (2002m:57018)

67. Anatole Katok and Vaughn Climenhaga, Lectures on surfaces, *Student Mathematical Library*, vol. 46, American Mathematical Society, Providence, RI; Mathematics Advanced Study Semesters, University Park, PA, 2008, (Almost) everything you wanted to know about them. MR 2457970 (2010e:53004)

68. Pablo Lessa, Brownian motion on stationary random manifolds, *Theses, Université Pierre et Marie Curie - Paris VI*, March 2014.

69. , Reeb stability and the Gromov-Hausdorff limits of leaves in compact foliations, *Asian J. Math.* 19 (2015), no. 3, 433{463. MR 3361278

70. , Brownian motion on stationary random manifolds, *Stoch. Dyn.* 16 (2016), no. 2, 1660001, 66. MR 3470550

71. Jesé A Alvarez Lopez and Alberto Candel, On turbulent relations, *arXiv* preprint *arXiv:1209.0307* (2012).

72. Jesé A Alvarez Lopez and Ramón Barral Lijo, Bounded geometry and leaves, *arXiv* preprint *arXiv:1504.06835* (2015).

73. László Lovász, Large networks and graph limits, *American Mathematical Society Colloquium Publications*, vol. 60, American Mathematical Society, Providence, RI, 2012. MR 3012035

74. W. Luck, Approximating L^2 -invariants and homology growth, *Geom. Funct. Anal.* 23 (2013), no. 2, 622{663. MR 3053758

75. Russell Lyons and Yuval Peres, Probability on trees and networks, 2015.

76. Katsuhiko Matsuzaki and Masahiko Taniguchi, Hyperbolic manifolds and Kleinian groups, *Oxford Mathematical Monographs*, The Clarendon Press Oxford University Press, New York, 1998, Oxford Science Publications. MR MR1638795 (99g:30055)

77. Curtis T. McMullen, Renormalization and 3-manifolds which fiber over the circle, *Annals of Mathematics Studies*, vol. 142, Princeton University Press, Princeton, NJ, 1996. MR MR1401347 (97f:57022)

78. Kam Ping Mok, On the differential geometry of frame bundles of Riemannian manifolds, *J. Reine Angew. Math.* 302 (1978), 16{31. MR 511689 (80c:53057)

79. Calvin C. Moore and Claude L. Schochet, Global analysis on foliated spaces, second ed., Mathematical Sciences Research Institute Publications, vol. 9, Cambridge University Press, New York, 2006. MR 2202625 (2006i:58035)
80. Hossein Namazi, Pekka Pankka, and Juan Souto, Distributional limits of Riemannian manifolds and graphs with sublinear genus growth, arxiv.org/abs/1208.2130 (Preprint 2012).
81. Peter Petersen, Riemannian geometry, second ed., Graduate Texts in Mathematics, vol. 171, Springer, New York, 2006. MR 2243772 (2007a:53001)
82. Robert R. Phelps, Lectures on Choquet's theorem, second ed., Lecture Notes in Mathematics, vol. 1757, Springer-Verlag, Berlin, 2001. MR 1835574
83. John G. Ratcliffe, Foundations of hyperbolic manifolds, Graduate Texts in Mathematics, vol. 149, Springer-Verlag, New York, 1994. MR 1299730
84. Ludovic Riord, A Morse-Sard theorem for the distance function on Riemannian manifolds, *Manuscripta Math.* 113 (2004), no. 2, 251{265. MR 2128549 (2005m:53059)
85. V. A. Rohlin, On the fundamental ideas of measure theory, *Amer. Math. Soc. Translation* 1952 (1952), no. 71, 55. MR 0047744
86. Shigeo Sasaki, On the dierential geometry of tangent bundles of Riemannian manifolds, *Tôhoku Math. J.* (2) 10 (1958), 338{354. MR 0112152 (22 #3007)
87. Michael Schrödl, ℓ^2 -betti numbers of random rooted simplicial complexes, arXiv preprint [arXiv:1810.09716](https://arxiv.org/abs/1810.09716) (2018).
88. David Simmons, Conditional measures and conditional expectation; Rohlin's disintegration theorem, *Discrete Contin. Dyn. Syst.* 32 (2012), no. 7, 2565{2582. MR 2900561
89. Simon Thomas and Robin Tucker-Drob, Invariant random subgroups of strictly diagonal limits of nite symmetric groups, arXiv preprint [arXiv:1402.4837](https://arxiv.org/abs/1402.4837) (2014).
90. William Thurston, The geometry and topology of three-manifolds, Lecture notes at Princeton University (1980).
91. William P. Thurston, Hyperbolic structures on 3-manifolds. I. Deformation of acylindrical manifolds, *Ann. of Math.* (2) 124 (1986), no. 2, 203{246. MR MR855294 (88g:57014)
92. V.S. Varadarajan, Groups of automorphisms of Borel spaces, *Transactions of the American Mathematical Society* 109 (1963), no. 2, 191{220.
93. Friedhelm Waldhausen, On irreducible 3-manifolds which are suciently large, *Ann. of Math.* (2) 87 (1968), 56{88. MR MR0224099 (36 #7146)
94. F. W. Warner, Extensions of the Rauch comparison theorem to submanifolds, *Trans. Amer. Math. Soc.* 122 (1966), 341{356. MR 0200873

Miklos Abert, Renyi Institute of Mathematics, 13-15 Realtanoda utca, 1053 Budapest, Hungary,
 Email address: abert.miklos@renyi.mta.hu

Ian Biringer, Boston College, Mathematics Department, 140 Commonwealth Ave.
 Chestnut Hill, MA 02467-3806,
 Email address: ianbiringer@gmail.com