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CONVERGENCE OF NORMALIZED BETTI NUMBERS IN
NONPOSITIVE CURVATURE

MIKLOS ABERT, NICOLAS BERGERON, IAN BIRINGER, AND TSACHIK GELANDER

Abstract. We study the convergence of volume-normalized Betti numbers in Benjamini-
Schramm convergent sequences of non-positively curved manifolds with finite volume. In
particular, we show that if X is an irreducible symmetric space of noncompact type, X
= H3, and (M,) is any Benjamini-Schramm convergent sequence of finite volume X-
manifolds, then the normalized Betti numbers bx(My)/vol(My) converge for all k.

As a corollary, if X has higher rank and (M) is any sequence of distinct, finite volume
X-manifolds, the normalized Betti numbers of M, converge to the L? Betti numbers of X .
This extends our earlier work with Nikolov, Raimbault and Samet in [1], where we proved
the same convergence result for uniformly thick sequences of compact X-manifolds. One
of the novelties of the current work is that it applies to all quotients M = T\ X where I
is arithmetic; in particular, it applies when I is isotropic.
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1. Introduction

We begin with a fair amount of general motivation, mostly from Elek [16] and Bowen
[10]. The well-versed reader can skip ahead to §1.1 for the statements of our results.

The normalized Betti numbers of a space X are the quotients
by(x)/vol(x), where by(X) := dim Hy(X, R).

All spaces in this paper will be either Riemannian manifolds or simplicial complexes. In
the latter case, volume should be interpreted as the number of vertices.

Fix d > 0. A simplicial complex K has degree at most d if every vertex in K is adjacent to at
most d edges. In [16], Elek shows that the normalized Betti numbers of finite simplicial
complex K with degree at most d are testable, meaning that there is a way to read off
approximations of the normalized Betti numbers while only looking at bounded random
samples of K. More precisely, given 9> 0, there is some R(9) as follows. Given K, select R
vertices of K at random and look at the R-neighborhood of each in K. Testability means
there is a way to guess from this data what the normalized Betti numbers of K are, that

is correct up to an error of owith probability 1 - o.
This is really a continuity result, in the following sense. Consider the topological space

K = connected, pointed finite degree simplicial complexes (K, p) / [,

where each p B K is a vertex, two pointed complexes are equivalent if they are isomorphic via
a map that takes basepoint to basepoint, and where two complexes are close if for large
R, the R-balls around their basepoints are isomorphic. Each finite (even possibly
disconnected) complex K induces a finite measure pg on K, defined by pushing forward the
counting measure on the vertex set V (K ) under the map

V(K) -=> K, p > [(Kp, p)],

where K, @ K is the connected component of p. One then says that a sequence (K,) inK
Benjamini-Schramm (BS) converges® if the probability measures uk  /vol(K,) weakly

converge to some probability measure on K. One can then reformulate the testability of
normalized Betti numbers above as saying:

Theorem 1.1 (Elek [16, Lemma 6.1]). If (K,) is a BS-convergent sequence of finite, sim-
plicial complexes, each with degree at most d, the normalized Betti numbers by (K,)/vol(K,)
converge for all k.

Informally, the relationship with testability is that if we fix R > 0 and take n,m >> 0,
convergence says the measures associated to the two complexes K., K, will be close. So by
the definition of the topology on K, we will have that for large R, the distribution of
randomly sampled R-balls in K, will be almost the same as that in K,,, so having a way

IBenjamini-Schramm convergence of graphs was first studied in their paper [8]. See also Aldous—Lyons [3]
for a broader picture of BS-convergence in the case of graphs.
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to accurately guess the normalized Betti numbers from these (nearly identical) data sets
means that the normalized Betti numbers of K,, and K,, must be close.

Recently, a number of authors, see e.g. [1, 2, 9, 10, 26], have studied the analogous version
of BS-convergence for Riemannian manifolds. Adopting the language of [2], set

M = {pointed Riemannian manifolds (M, p)}/pointed isometry,

endowed with the topology of pointed smooth convergence. See §2.1. Here and below,
Riemannian manifolds are always assumed to be connected and complete. Really, all of the
results below hold for disconnected manifolds, just as Theorem 1.1 applies to disconnected
complexes, but it seems unnecessarily confusing to continue working in this generality.

A finite volume (connected, complete) Riemannian manifold M induces a finite measure
Um on M, by pushing forward the Riemannian measure on M via the map p = [(M, p)],
and we say that a sequence (M,) Benjamini-Schramm (BS) converges if the measures pum
/vol(M;) weakly converge to some probability measure. In full generality, the Rie-
mannian analogue of Theorem 1.1 is not true, since if no geometric constraints are im-
posed, we can pack as much homology as desired into a part of a manifold with negligible
volume. For example: connect sum a small volume genus g(n) surface, say with volume 1,
somewhere on a round radius-n sphere. The resulting surfaces will BS-converge to an
atomic measure on the single point [(R?, p)] @ M, where p B R? is any basepoint. But by
choosing g(n) appropriately, we can make the first Betti numbers whatever we like.

In the above example, the real problem is injectivity radius. For a Riemannian manifold M
and a point x @ M we denote the injectivity radius of M at x by inj (x), Given 9> 0, the
o-thick part and the o-thin part of M are

Mo = {Xx @M : injy(x) 2 @/2} and M, = M\ M,,.

One says that M is @-thick if M = M,. Now, under geometric constraints like curvature
bounds, there is a standard way to model an @-thick manifold M by a simplicial complex
K(M ) with comparable volume and bounded degree: one selects an ¢g-net S in M, and lets
N(S) be the nerve of the covering of M by o-balls. One can then show:

Theorem 1.2 (Elek, Bowen + ABBG?). If (M,) is a BS-convergent sequence of compact, o-
thick Riemannian manifolds with upper and lower curvature bounds, then the normalized B etti
numbers by(M,)/vol(M,) converge.

A word is in order about the attributions: it was originally conceived by Elek, and then
written up and published by Bowen [10, Theorem 4.1], but this writeup was not complete,
and we (ABBG) provide a slightly different argument that avoids this gap in §2.3. Briefly,
the idea is to superimpose a bunch of Poisson processes on M,, discarding points that
are too close together, until enough points are laid down so that the nerve complex N,
associated to a collection of balls around these points sees the Betti numbers of M, up to a
small error. One then proves that the constructed sequence of (random) nerve complexes

—2By{ABBG) we refer to the current paper.
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BS-converges. By (a slight generalization of) Theorem 1.1 above, the expected normalized
Betti numbers E[byx(N,))/vol(N,)] will converge, from which one can deduce convergence of
the normalized Betti numbers by(M,)/vol(M,).

Theorem 1.2 is really a special case of a more general result, see §2.3. Indeed, the essence
of the current work is that we deal with general manifolds with no assumptions on the
injectivity radius. The thick part Ms, is then a proper submanifold with boundary and we
rely on Gelander’s techniques [18] in order to associate a random simplicial compex to the
thick part. As shown in [5] the boundary of the thick part corresponds to a sub-simplicial
complex. This allows as to consider the thick and the thin parts separately.

1.1. Main results. Our interest in this paper is whether for certain manifolds of nonpos-
itive curvature, one can control the thin parts well enough so that BS-convergence implies
convergence of normalized Betti numbers, without any assumption of thickness.

Although almost all of the real work in this paper is done more generally, we start as
follows. Let X be an irreducible symmetric space of noncompact type. An X-manifold is a
complete Riemannian manifold whose universal cover is isometric to X .

Theorem 1.3. Suppose that dim(X) = 3 and (M,) is a BS-convergent sequence of finite
volume x-manifolds. Then for all k, the sequence by(M,)/vol(M,) converges.

Here, the only three-dimensional irreducible symmetric spaces of noncompact type are
scales of H3. In fact, the conclusion of Theorem 1.3 is false when X = H3. As an example, let
K Bs3 be a knot such that the complement M = S3\ K admits a hyperbolic metric, e.g. the
figure-8 knot. Using meridian—longitude coordinates, let M,, be obtained by Dehn filling M
with slope (1,n); then each M, is a homology 3-sphere. The manifolds M, - M
geometrically, see [7, Ch E.6], so the measures uy  weakly converge to pum (c.f. [5, Lemma
6.4]) and the volumes vol(M,) = vol(M). However, b:1(M,) = 0 while by(M) = 1, so
the normalized Betti numbers of the BS-convergent sequence Mi, M, M;, M, ... do not
converge. See also Example 3.1 for a similar counterexample in which volume goes to
infinity. In fact, there is a real sense in which the only counterexamples come from Dehn
filling. See §3.

To illustrate a special case of Theorem 1.3, let’s say that (M, ) BS-converges to X when
the measures u\, weakly converge to the atomic probability measure on the point

(X, x)] BM,

where x B X is any basepoint. Now any X as above admits a (compact, even) X-manifold M,
by a theorem of Borel [27, Theorem 14.1]. A theorem of Mal’cev [25] says that ;M is
residually finite. So, we can take a tower of regular covers

e SIM > M S M

corresponding to a nested sequence of normal subgroups of m;M with trivial intersection,
and such a sequence (M,) will BS-converge to X, see [1] for details. Moreover, if M is
compact then DeGeorge—Wallach [14] showed that the normalized Betti numbers of (M)
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converge to the L2-Betti numbers biz)(x) of X. See [1, 24] for more information about
L2-Betti numbers, and for a more general result.

In fact, any sequence of manifolds that BS-converges to X can be interleaved with a
tower of covers of a compact Xx-manifold as in the example above, and the result still BS-
converges. So, Theorem 1.3 and the result of DeGeorge-Wallach [14] above give:

Corollary 1.4. Suppose that (M,) is a sequence of finite volume X-manifolds that BS-
converges to X. Then for all k @ N, we have by (M,)/vol(M,) > bl(f)(X).

With Nikolov, Raimbault and Samet, we proved this in [1] for sequences of compact, o-
thick manifolds, using analytic methods. One could also prove it in the thick case by using
Theorem 1.2 above (the Bowen—Elek simplicial approximation technique) and interleaving
with a covering tower. In the thin case, we were able to push our analytic methods far
enough to give a proof for X = H9Y, see [1, Theorem 1.8]. Hence, there is no problem in
allowing X = H3 in Corollary 1.4, even though Theorem 1.3 does not apply.

While we were finishing this paper, Alessandro Carderi sent us an interesting preprint
where, among other things, he proves the same result as Corollary 1.4 if either k = 1,
or k is arbitrary and the symmetric space X = G/K is of higher rank and M, is non
compact, or in most cases when X isof rank 1. His proof is quite different, he considers the
ultraproduct of the sequence of actions of G on G/r,. He then identifies the L?-Betti
numbers of the resulting G-action with the L2-Betti numbers of the group G.

Corollary 1.4 is particularly powerful when X has real rank at least two. In this case, we
proved with Nikolov, Raimbault and Samet that any sequence of distinct finite volume X-
manifolds BS-converges to X, see [1, Theorem 4.4]. So, Corollary 1.4 implies:

Corollary 1.5. Suppose that rankgX 2= 2 and (M,) is any sequence of distinct finite
volume x-manifolds. Then for all k @ N, we have by(M,)/vol(M,) > b(kz)(X).

In the two corollaries above, we can identify the limit of the normalized Betti numbers
when the BS-limit is X. In general, one can think of Theorem 1.3 as giving a definition of ‘L?-
Betti numbers’ for arbitrary limits of BS-convergent sequences. The measures on M that
arise as such limits have a special property called unimodularity, see [2], and it would be
interesting to find a good intrinsic definition of the ‘L2-Betti numbers’ of a unimodular
measure that is compatible with Theorem 1.3.

1.2. The proof, and generalities in nonpositive curvature. To prove Theorem 1.3, we
split into cases depending on rankgX. When the rank is one, we need to deal with general
BS-convergent sequences, but the thin parts of rank one locally symmetric spaces are easy
to understand. And when the rank is at least two, the only possible BS-limit we need to
consider is X. We now give two theorems that handle these two cases. We state them very
generally, without any assumption of symmetry.
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Theorem 1.6 (Pinched negative curvature, arbitrary BS-limits). Let (M,) be a BS-
convergent sequence of finite volume Riemannian d-manifolds, with d = 3, and with sec-
tional curvatures in the interval [-1, 8], for some -1 < § < 0. Then the normalized Betti
numbers by(M,)/vol(M,) converge for all k.

Theorem 1.7 (Nonpositive curvature, with a thick BS-limit). Let 9> 0 and let (M,) be a
sequence of real analytic, finite volume Riemannian d-manifolds with sectional curvaturesin
the interval [-1, 0], and assume the universal covers of the M, do not have Euclidean de
Rham-factors. If (M,) BS-converges to a measure i on M that is supported on o-thick
manifolds, the normalized Betti numbers b, (M,)/vol(M,) converge for all k.

Let’s see how to deduce Theorem 1.3 from these results. Suppose X is an irreducible
symmetric space of noncompact type, dim(X) = 3. When X has rank one, X has pinched
negative curvature, so therefore Theorem 1.3 follows from Theorem 1.6. When X has
higher rank, [1, Theorem 4.4] says that any BS-convergent sequence (M,) of Xx-manifolds
BS-converges to X, as mentioned above. Since X is actually @-thick for any @, Theorem 1.7
applies, and Theorem 1.3 follows.

The reader may wonder where we use d = 3 in the proof of Theorem 1.6. When d = 2, one
can deduce the claim from Gauss—Bonnet. In general, the point is that the boundary of a
Margulis tube is homeomorphic to an s""2-bundle over s. When d > 4, this bundle is not
aspherical, so it can be distinguished from a cusp cross section, which prevents one from
doing Dehn filling as in our problematic 3-dimensional example. More to the point, one can
show that when d > 4, Margulis tubes with very short cores have boundaries with large
volume, see Proposition 3.1, which implies that the number of Margulis tubes with short
cores one can see in a manifold is sublinear in volume. Hence, the contribution of the tubes
to homology cannot affect the normalized Betti numbers much.

The key to Theorem 1.7 is a celebrated theorem of Gromov, see [6, Theorem 2], that
bounds the Betti numbers of an analytic manifold with sectional curvatures in [-1, 0] and no
local Euclidean deRham factors linearly in terms of its volume. Delving into its proof, one
can show that in the setting of Theorem 1.7, the Betti numbers of the thin parts of the M,
grow sublinearly with vol(M,). One can then combine the proof of Theorem 1.2 (the
Bowen—Elek simplicial approximation argument), which handles the thick parts of the M,,
making use of the techniques from [18] and [5] to control the complexity of the boundary,
where the thick and thin parts are glued, with Mayer—Vietoris sequence to get Theorem 1.7.

Remark 1.1. Recently, the work [1] has been extended by Gelander and Levit to ana-
lytic groups over non-archimedean local fields [19]. For non-archimedean local fields of
characteristic 0 the uniform discreteness assumption holds automatically for the family of all
lattices and more generally all discrete IRS. However this is not the case in positive
characteristic. We conjecture that the analogue of the stronger results concerning Betti
numbers obtained in the current work can be extended to general analytic groups over
non-archimedean local fields.
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2. Spaces of spaces and simplicial approximation

In this section, we discuss the topology on M and a similar topology on the space M of all
pointed metric measure spaces. We then state and prove a generalization of the Bowen—Elek
theorem on the convergence of Betti numbers of thick spaces, which was stated in a weak
form in the introduction as Theorem 1.2.

2.1. The smooth topology. In the introduction, we introduce the space

M = {pointed, connected, complete Riemannian manifolds (M, p)}/pointed isometry,

endowed with the topology of pointed smooth convergence. Here, a sequence (M,, pn)
converges smoothly to (M, p-) if there is a sequence of smooth embeddings

(1) $n :Bm.(p=, Rn) —> M,

with R, = o= and ¢,(p~) = pn, such that d)gH - g in the C™-topology, where g, are the
Riemannian metrics on M,. We call (¢,) a sequence of almost isometric maps coming from
smooth convergence. Note that each metric ¢$%g, is only partially defined on M., but their
domains of definition exhaust M., so it still makes sense to say that ¢,8, - g~ on all of

M., even if the language is a bit abusive. Alvaréz Lopez, Barral Lij6 and Candel [4] have
shown that M, with the smooth topology, is a Polish space. See also the appendix of Abert-
Biringer [2] for a slightly simpler proof.

2.2. Metric measure spaces. A metric measure space (or mm-space) is a proper, sepa-
rable metric space M equipped with a Radon measure vol. Let

M = {pointed mm-spaces (M, vol, p)}/pointed measure preserving isometry.

Following Bowen [10, Definitions 28 and 29], an (9, R)-relation between pointed mm-
spaces My = (My, voly, p1) and M, = (M,, vol,, p,) is a pair of isometric embeddings

M -> 2, i=1,2

into some common metric space Z having the following properties:

(a) dz(p1,p2) < o,
(b) Bm,(p1, R) B (M3), and By {p,R) B (M1),, (c)
for all Borel subsets F; & Bpm,(pi, R), we have

voli(F1) < (1 + @)voly((F1)e) + @, voly(F2) < (1+ @)voli((F2),) + o.
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Here, if F is a subset of a metric space, the notation (F), refers to the @-neighborhood of
F. See also §3.2. The multiplicative factors of (1 + 9) in (c) are not really necessary, and
are not present in [10]. However, some of our statements, e.g. Lemma 2.1 below, are simpler
because of them.

For each M = (M, vol, p) @ M and ¢, R > 0, define the (9, R)-neighborhood of M to be the
set Ny r(M) of all M B M that are (¢, R')-related to M for some ¢ < gand R" > R. Note
that if M" B N, r(M), then for all sufficiently small § > 0 and large r > 0, we have

(2) Né,r(M,)NQ,R(M)-

This follows from the fact that one can ‘concatenate’ a relation between M; and M, with
one between M, and M3, by gluing the two metric spaces Z together along M.

If we endow M with the topology generated by all (9, R)-neighborhoods, then the neigh-
borhood nesting property referenced in (2) implies that

M; 2 M. & B p—> 0,R; & oo such that M; is (9;, Rj)-related to M.

The next lemma will help us relate smooth convergence of Riemannian manifolds to their
convergence as metric measure spaces.

Lemma 2.1. Suppose that (M;, pi), i = 1, 2, are pointed Riemannian d-manifolds and for
some R > 0 there is an embedding ¢ : By, (p1, R) == My with ¢(p;1) = p2 and
(3) (1= 06)|v] < [dd(v)| < (1+ 8)|v], BVETBwm,(p1,R).

Then if 6 = 6(o,d) is small, the triples (M;, vol;, pi) are (9, R)-related, where vol; is the
Riemannian measure on M.

Proof. Take 6 < gand let ¢ be as in the statement of the lemma. We want to produce an
(0, R) relation between M; and M,. Define the common space Z as the disjoint union
Z = M]_ Mz,
endowed with a metric that restricts to the given metrics on My, M,, and where for x
ery MZ;
d(x,y) = inf{d(x,x’) + & + d(d(x),y) |x BBwm,(p1, R+ 1)}.
We now verify that Z gives an (9, R)-relation. First, dz(p1,p2) = 6 < 0. Second, if
x B My nBz(p1,R) = Bm (p1,R), then d(x, d(x)) = & < @, s0 x @ (Mz),. Third, ifF4
Bz(p1, R) is a Borel subset, then we have
voli(F1) = voli(F1 n M1)€ (1+ 8)%voly(d(F1 n M1)€ (1+ 8)%voly((F1)s),

where the first inequality follows from (3), and the second follows from the fact that
d(x, ®(x)) = 6. So, as long as & is small, the right side will be at most (1 + @)vol,((F1),). The
two remaining parts of properties (a) and (b) follow similarly.

As an immediate corollary, we get the following:

Corollary 2.2. The natural inclusion M --> M from the space of pointed Riemannian
manifolds (with the smooth topology) to the space of pointed mm-spaces is continuous.
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2.2.1. Extended mm-spaces. We will need a slight variant of M for our work below. Let
Mt = {(M, vol, p, E) | (M, vol,p) @M, E B M a super-metric space}/ [,

where a super-metric space is just a proper, separable metric space that contains M as a
submetric space. We call a quadruple (M, vol, p, E) an extended pointed mm-space; two
quadruples are identified in Me** if there is a pointed isometry between the super-metric
spaces E that restricts to a measure preserving isometry from one mm-space M to the
other. The topology on M®&*t is similar to that on M: we say that (M;, vol;, pi, Ei), i = 1,2,
are (o, R)-related if there are isometric embeddings

Ei——>7,i=1,2
that restrict to give an (g, R)-relation between the triples (M;, vol;, pi), and where also
(4) Be,(p1, R) @(E2)q, Be,(p2, R) B (E1),.

One then defines (9, R)-neighborhoods just as before and the topology on Me* is that
generated by these neighborhoods, in which M; = M. if and only if there are 9 = 0 and R;
- oo such that M; is (9;, Rj)-related to M. for all i.

We then have the following variant of Lemma 2.1.

Lemma 2.3. Suppose that (M;, p;i), i = 1,2, are pointed Riemannian d-manifolds with
distinguished subsets T; @ M; and that for some R > 0 there is an embedding

¢ :Bm,;(p1,R) > My
with ¢(p1) = p2 that satisfies the following three properties:
(i) (1= 8)|vl< [db(v)| < (1+ §)|v], BVvETBm (p1,R).

(ii) $7(T2) B (T1)s, and &(T1 N Bm (p1, R)) B (T2)s,
(iii) voly(¢~H(T2)@Ty) < 6,

where B is the symmetric difference. Then if 6 = 6(9g, d) is sufficiently small, the quadruples
(Ti, voli|+,, pi, M) are (9, R)-related, where here vol; is the Riemannian measure on M;.

Proof. The proof is similar to that of Lemma 2.1. With Z = M; B M, and d the metric
defined in Lemma 2.1, equation (4) above follows exactly as before as long as 6 < 9. So, we
just need to verify that Z gives an (o, R)-relation between the subsets T, T,. Property (a) is
immediate from the definition of the metric on Z. For (b), if x B Bt (p1, Ril) then ¢(x)
(T2)s, so dz(x, T2) < 26. So, (b) holds if 6 < 9/2, as the proof of the other part is similar.
For (c), suppose F B Bz(p1, R) is Borel. Then

voly |1, (F1) = voli(F1 N Ty)
< voli(F1 N ¢ H(T3)) + voli (¢ HT,)BT,)
< (14 8)%voly(d(F1) NTy)) + &
= (1+ 8)%voly|r,(d(F1)) + &
So since ¢(F1) B (F1)s, (c) holds if (1 + 8)4 < (1+ ). The other part of (c) is similar.
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2.2.2. Extended mm-spaces with multiple measures or distinguished subsets. Let
M-ext .= {(M, voly, vol,, ..., vol,, p,E)}/ B,

where here (M, p) is a pointed metric space embedded in some super metric space E @ M, the
vol; are Radon measures on M, and the equivalence relation is pointed isometry that
preserves all the measures. The space M™®t comes equipped with projection maps

i MEUN -S> Mt (M, voly, voly, ..., vol, p, E) == (M, vol;, p, E)
foreachi = 1,...n, and we say that two tuples
M = (M, voly, voly,...,vol,, p,E), M = (M, vol,,vol,,...,vol ,p,E)

are (o, R)-related if there are fixed embeddings E "> Z,E' "> Z of the two super metric
spaces into some common metric space Z that induce (g, R)-relations between the pro-
jections m;(m), i(M') for all i. The (g, R)-neighborhood N, r(M) of M Mextn js again
defined to be the set of all M’ that are (¢, R')-related to M for some 9 < gand R" > R, and
we endow M®*t" with the topology generated by these neighborhoods, in which M; > M
when there are ¢; & 0 and R; = o= such that M;, M are (9;, R;)-related for large i.

We also consider the space

MS®** := {(M, vol, p, E, 5)}/ B,

of pointed, extended mm-spaces equipped with locally finite subsets S @ M. The topology is

defined so that the natural map MF®** == M?2e*t that interprets a locally finite set S as the
atomic Radon measure 1s is a homeomorphism onto its image. Finally, we let

MF®* := {(M, vol, p, E, S, f)}/ B,

be the space of pointed, extended mm-spaces equipped with locally finite subsets S that
come weighted with functions f : S == [0, 1]. We topologize MF®*' so that the natural
map MF®' - M?3®t js 3 homeomorphism onto its image; here, the three measures on
the image of (M, vol, p, E, S, f) are vol, the atomic Radon measure 15 determined by S,
and the atomic Radon measure 1 where points s @ S have mass f(s) instead of unit
weight. Note that the natural projection MF®' - MS®*! is continuous, and that there is
also an embedding Ms®* - MF®* obtained by letting f be the constant function whose
values are all 1. With this embedding in mind, we state most results below just for MF*',
knowing that they also apply to the subspace MS®*. Finally, an (o, R)-relation between
two elements of MS®*, or between two elements of MF®*, is just an (g, R)-relation between

their images in M2t or in M3, The topologies on Ms®** and MF®*' can then also be
described via these relations, just as above.

One difficulty that arises when working with (9, R)-relations is that you have a different
pair of embeddings for each relation. In order to work with probability measures on sets of
pointed mm-spaces, it is more convenient to have all our spaces be subsets of a fixed metric
space. So, let Z be some proper separable metric space. A pointed, extended mm-space,
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possibly with a distinguished discrete set and a function, is embedded in Z if the extended
space E is a subset of Z, and we write the associated spaces of such spaces as

M®Y(Z), MS®*t(z), MF®(Z).

We say that two spaces are (9, R)-related within Z if their inclusions into Z induce an
(9, R)-relation, and we equip the spaces of spaces above with the topologies generated by
(9, R)-relations within Z. In particular, we say that M; = M. within Z if for any (¢, R) we
have that for large i, M;, M. are (9, R)-related within Z. R R

A sequence of Radon measures WY on Z weak® converges to Heo if f dyi 2 f due
for all continuous functions f : Z - R with compact support®>. When a sequence of
mm-spaces with weighted subsets is embedded in a single Z, convergence of the weighted
subsets can be interpreted as weak* convergence.

Lemma 2.4 (c.f. Lemma A.2 of [10]). Suppose that M; = (M, vol;, pi, Ei, Si, fi) @ MF®*'(2),
where i = 1,2,...,o°. Then M; - M. within Z if and only if the embedded extended
pointed mm-spaces (M;, vol;, pi, Ei) > (Mw, VOlw, P, E«) and the measures 1s. and ¢,
converge in the weak* topology to 1s_ and 1f._.

Fext

In fact, every convergent sequence in M can be embedded in some Z.

Lemma 2.5. Suppose that M; = (M, vol;, pi, Ei, Si, fi) @ MF®**, where i = 1,2,..., 0o,
and M; > M... Then there is a proper, separable metric on
G

such that M; > M., within Z. Furthermore, we can assume that for all i, j,
dz(Ei, Ej) 2 1/i + 1/j.

Note that this lemma also applies to sequences of extended mm-spaces without weighted
subsets, just by taking S; = B. The proof is a modification of Lemma B.2 in [10].

Proof. For each i, choose an (9;, Rj)-relation between M; and M.., where ¢ > 0 and
Ri = o=. Instead of writing this relation as a pair of embeddings of E;, E. into some third
metric space, we can consider it as a pseudometric on the disjoint union E; @ E. that restricts
to the original metrics on E; and E... We can then change each such pseudometric into a
metric d by adding 1/i to the distance between any point in E; and any point in E., and

combine all of them into a single partially defined metric d on the disjoint union
G
Z = Ei,
iENE{oo}

—3tthispaper weak* convergence involves integrating against continuous functions with compact sup-
port, while weak convergence integrates against bounded continuous functions. Bowen uses weak* conver-
gence in [10] when defining Benjamini-Schramm convergence on M, but it really should be weak conver-
gence. Indeed, M is not locally compact at any point, so there are no nonzero continuous functions with
compact support on M.
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which we extend to a (fully defined) metric d by setting

d(xi, xj) := inf d(Xi, Xe) + d(Xj, X )
Xoo BIE oo

for all finite i, j and x; B E;, x; B Ej. The reader can verify the desired properties.

In order to talk about convergence of measures on MF®**(z) we will need an explicit
basis of neighborhoods. Of course, one could just take the sets N, z(M) of all M" that are
(0, R)-related to M within Z, but then it is a little unclear exactly what condition this
places on the weighted discrete subsets. The following system of neighborhoods is more
convenient in that respect.

Lemma 2.6. Suppose that M1 := (M4, volq, p1, E1, S1, f1) @ MF®*(Z). For o,R > 0, let
Bo,r @ MF ¢t be the set of all M, := (M3, voly, p2, E2, Sz, f2) @ MF ©¢(Z) such that
e the pointed extended mm-spaces (M, pi, vol;, E;) are (o', R')-related in Z, for some @
< gand R < R, and where
e there is a bijection

d) . Sl n BMl(pll R) _% SZ N Bl\/.|2(p21 R)

such that dz(s, d(s)) < @and [fi(s) - f2(d(s))| < ¢for all s@S; N Bwm,(p1, R).
Then there is a family of ‘admissible’ pairs (¢, R) such that the sets B & form a basis of
open neighborhoods of M; @ MF®**(z). Moreover, for every Ro, there is some R > Rgsuch
that (¢, R) is admissible for all sufficiently small o.

Here, B7(E, B) denotes the closed ball of the given center and radius, while Bp(®, B) is
the open ball. A pair (¢, R) is admissible if the following conditions hold:
(1) d(s,t) > 3oforalls,t@S; NnB(p1, R), and
(2) there are no points s @ S; with d(py, x) @ (R- 29,R + 20).
Since S; is locally finite, for any given R condition (1) holds whenever g is sufficiently small,
and if we perturb R so that there are no s @ S; with d(p1,s) = R and then shrink g further,
we can ensure that (2) holds as well. This justifies the last line of the lemma.
Note also that if we drop the condition on f |, f, from ¢, then the above gives a description
of a neighborhood basis for a point in Ms®**(Z) rather than in MF¢**(Z).

Proof. Suppose (o, R) is an admissible pair as defined above. Below, one should consider
all relations as taken within Z.

We first want to show that B, g is open. If M, := (M, voly, pa, Ez, So, f2) B By g, it
suffices to find some 6, T such that any M3 that is (§, T)-related to M, lies in B, g. So, let
Ei">2Z,i=1,2,9,R and ¢ be the data witnessing that M, B B, z, and let § be very small
and T be very large. Take some M3 that is (6, T)-related to M,.

Given s; B S; N Bm (p1,R), as long as T is large we can apply the definition of a
(6, T)-relation to get that

1= [{d(s1)} nSa] < (1+ 8)[Ss n ({b(s1)Dsl + 6.
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As long as § < 1 this implies that there is at least one element s3 @ S3 that is within § of
d(s1). Since d(s1, d(s1)) < o, we then have d(s1,s3) < @ as well as long as 6 is small.
(The set of all s; is finite, so 6 can be chosen small enough that this works for all s;
simultaneously.) Now if we had two elements s3, s’ Sgawithin o of s;, we have2 = |S;3
N{ss,s } < (1+8)]|S2n ({s3,5 })s| + 8, so there are at least two elements s,, s of S, within
6+ gof s;. As long as & is small, property (2) in the definition of admissibility implies that
these two points lie in the image of ¢, so ¢~ 1(s2), d™*(s ) both lie within §+20 of s,
contradicting property (1) of admissibility. So, if we let {(s1) be the unique element of Ss
with d(s1, d(s3)) < o, we get a map

P :S1NBm,(p1,R) —> S3

such that dz(s1, Y(s1)) < @foralls @S; nBm (p1, R). By property (2) of admissibility, the
image of ¢ lies in S3 N Bm (p3,,R). The argument above shows that ¢ is an injection. And
if s3 BM3(p3;R), we have that

(1+6)|S2n ({s3}sl + 62 [S3n{s3}| =1,

implying there’s some s, @ S, within a distance of & of s3. If § is very small relative to the
minimum distance from an element of S, \ B* (p2, m toB* (p», R)/(zwe can assume that this
s; @S, NnB* (p2, R), sl\c/)lzthat s, = ¢(s1) for somes;. Taking 6 small again, we have d;(ss, s1)
< 0, s0 sz is in the image of { as desired. This proves | is a bijection. The fact that |fi(s1) -
fa(P(s1))] < qif & is small follows from similar techniques. This verifies that M3 & B, g, so
the set B, g is open. Note also that condition (2) in the definition of admissibility implies
that M1 @ B, g, S0 By r is an open neighborhood as required.

Next, we need to show that the sets B, g with (o, R) admissible form a neighborhood
basis for M;. For this, it suffices to fix (6, T) and show that for sufficiently small ¢ and
large R, any M, B By g is (6, T)-related to M1. By choosing g < & and T < R, we get
automatically that the embeddings E; "> Z that verify that M, Bo,r induce (5, T)-
relations of the corresponding pointed extended mm-spaces. If F B By (p1, T)is Borel, then
foranys; @ F NnS; we have ¢(s;) B (F)s NS, and hence '

|S1nF|] < |S2n(F)s].

Moreover, as long as 9< 8/|S1 N Bm,(p1, T)|, we have
X X X X
(fi(s1) - @) < fa(s2) == fi(s1) < fa(sy) + 6.

s1@S1NF 285, N (F)s s1ES1NF 5205, (F)s

The two inequalities associated to a subset F B B, (p2, T) are proved similarly, using ¢~*
instead of ¢, so we have a (6, T)-relation between M; and M,.

2.2.3. Poisson processes on mm-spaces. The reason we introduce so many spaces of spaces
above is that we need to make precise the notion that the Poisson process on a pointed
mm-space varies continuously with the space.

Let (M, vol) be a mm-space and let S be the set of all locally finite subsets of M.
Regarding a locally finite subset S as an atomic Radon measure pus on M, we endow S
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with the weak* topology, where measures are tested against continuous functions with
compact support, as discussed before Lemma 2.4. The Poisson process of M (of intensity 1)
is the unique Borel probability measure pp on S such that the following hold.
e When A4, ..., A, are disjoint Borel subsets of M, the random variables that record
the sizes of the intersections s N A; are independent.
e |f A @ M is Borel, the size of SN A is a random variable having a Poisson distribution
with expectation vol(A).

For a finite volume subset A @M and n @ N, we have

for (x4,...,xn)BA", we have DNA={x 4...,xn},

= dvol”(x Xn)
given that DN A has n elements. 1y++-s%nj-

(5) Prob

In other words, if D is chosen randomly, the elements of D N A are distributed within A
independently according to vol. See [12, Example 7.1(a)] for details on Poisson processes in
R". The general case is similar. In fact, every mm-space is measure-isomorphic modulo null
sets to the union of an interval in R with a countable set of atoms, c.f. [28], so as the
definition of the Poisson process is totally measure theoretic, most analyses of it can be
performed on the latter space.
Suppose now that M = (M, vol, p, E) is a pointed, extended mm-space. Push forward

the Poisson process on M to a measure py on MS®*, using the map

(6) S -> MS®™, sEM -> (M, vol,p,E,S).
Note that the map in (6) is continuous: if S is weakly close tos’, the identity inclusions E
“ > E generate an (9, R)-relation between (M, vol, p, E, s) and (M, vol, p, E, S).

The following is the main result of this subsection. A variant of it is claimed, but not
proved, in the proof of Claim 1 on pg 582 in Bowen [10].

Lemma 2.7 (Poisson processes vary continuously with the mm-space). The map
Mt == p(MSTF), M - py
is continuous.

Proof. Suppose that we have M; = (M;, vol;, p;, E;) @ M®t and M; > M. By Lemma 2.5,
we can assume thatall E; are embedded in some fixed Z, and that the convergence happens
within Z. Let S(Z) be the set of all S @ Z that are locally finite subsets of M; for some i =
i(s); endow S(Z) with the weak* topology. Then for each i, the Poisson process on M; can
be considered as a probability measure p; on S(Z). By Lemma 2.4, the map

(7) S(Z) -—> MS®, S => (My(s), volis), pits), Ei(s), Sics)),

is continuous, and each p; pushes forward under this map to the measure pm, on Ms
So, to prove the lemma it suffices to show that p; > p~ weakly.

Let TRS(Z) with T B M., let 9,R > 0 and let By,r(T) be the set of all S @S(Z) such
that there is a bijection

ext

f T NBm.(Pw, R) => S N By (Pi(s), R)
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such that d(t, f(t)) < ofor all t. Lemmas 2.5 and 2.6 imply that for admissible pairs (9, R),
the sets B, r(T) form a basis of neighborhoods for T B S(Z). So by the Portmanteau
theorem and the fact that p. is supported on subsets of M., it suffices to show that

(8) liminfpi(B) 2 pe(B)

forall B := B, r(T), where T, @, R are as above.
Fixing some such B, let t @ T N Bw.. (P, R) and define

Vi(t) := voli(Bz(t, 9)).

By the definition of the Poisson process and the fact that the points of T N By (pe, R)

are 39-separated when (o, R) is an admissible pair, we have
|

(9) pi(B) = Y Vi(t)e‘V‘(t). ce” volilBy, (pi,R)) =P Vi(t)
' !
— Y v, (t) _e—V0|i(B,\',|i(pi,R))

’

t
where t BT N By _(pe, R) and Vi(t) = voli(Bz(t, o) N M;). For a pi-random S, the product
in the first line of (9) is the probability that there is exactly one point of s within ¢ of each t,
and the second factor is the probability that there are no points of S nB* (pimiR) other than
those within ¢ of the various t.

Recall that the inclusions of E; and E . into Z form an (9;, R;) relation where g; > 0 and
Ri > oo. Pick any 0 < ¢ < gand apply property (c) in the definition of an (g;, R;)-relation
toBm.(t,0). Then ifi is large enough so that ¢ + ¢; < o, we have for all t that

Voleo(Bm.. (t,07)) < (14 @i)voli( (Bm.(t,0))e) + 01 < (1+ 0i)voli(Bm.(t,0)) + o

By taking ¢ close enough to ¢, we can make vol..(Bm _ (t, @) arbitrarily close to vole.(Bm _(t, Q).
Combining this with the fact that ¢; = 0, we get that

(10) volw(Bz(t, @) = vole(Bm..(t, Q)) £ liminfvoli(Bz(t,)).

We now apply property (c) in the definition of an (g, Ri)-relation to B\, (pi, R), giving
voli(Bp,. (pi, R)) < (1+ @i)vole((By, (Pi, R))g) + Qi

But since d(pi, p=) < i, we have (By; (pi, R))¢; " Mw B Bm.. (P, R + 20;), which implies

voli(Bp, (Pi, R)) < (1+ Qi)volw(Bm. (P, R + 29i)) + o
As i - oo, the right hand side converges to vole(B,;_(p-, R)), so we get

(11) Iim'sup voli(BYy. (pi, R)) £ volw(Bg,. (Pe, R)).

Combining (10) and (11) proves (8), so we are done.
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2.3. Normalized Betti numbers of mm-spaces. If (M, vol) is a finite volume mm-
space, let Ym,vol) be the measure on M obtained by pushing forward the vol under

M -=> M, p-=> (M, vol, p).

A sequence of finite volume mm-spaces (M,, vol,) Benjamini-Schramm (BS) converges if
the associated sequence of probability measures pm voi )/Voln(M,) weakly converges to
some limit probability measure on M. o

An mm-space M is special if M has finitely many path components®, the measure vol
is non-atomic and fully supported, and metric spheres have measure zero. In [10], Bowen
claims the following result, and justifies it by fleshing out an argument of Elek.

Theorem 2.8 (Compare [10, Theorem 4.1]). Suppose (M,, vol,) is a BS-convergent se-
quence of finite volume special mm-spaces and that there are constants r, vg, v such that

(1) all r/2-balls in M, have volume at least vo,

(2) all 20r-balls have volume at most vy,

(3) all p-balls in M,, with p < 10r are strongly convex, meaning that for any two points
X,y in a p-ball B, there is a unique point z @ B with d(x, z) = d(y, z) = 1/2d(x, vy).

Then the normalized Betti numbers by (M,)/vol(M,) converge for all k.

As mentioned in the introduction, Bowen’s proof of the Theorem 2.8 is not quite com-
plete. Briefly, the Elek/Bowen argument is to construct, for each n, a random o-net
Sh, @ M, i.e. a set of point that are ¢/2-separated in M, and where every point in M, is
within gof a point of S,,. Letting N, be the nerve complex associated to the cover of M, by
0-balls centered at the points of S,,, they then say that the random complexes N, BS-
converge, and then they use Elek’s Theorem 1.1 to conclude that the expected normalized
Betti numbers of the N, converge. By the strong convexity in condition (3) above and the
Nerve Lemma (c.f. [20, Corollary 4G.3]), each N, is homotopy equivalent to M,,, so bx(N,)
= byx(M,). One can also relate the number of vertices of N, to the volume of M,, so this
implies the convergence of the normalized Betti numbers of M,,.

Above, the random nets S, are constructed as subsets of the union of infinitely many
randomly chosen discrete subsets of M, each of which is chosen according to a Poisson
process. In order to ensure separation of the net, Elek/Bowen enumerate all the discrete
subsets and their points, and add them into S, one by one, throwing out the points that are
too close to the previously added points. The problem with this is that it is very hard to
prove that such random nets vary continuously when the underlying space is changed, which
is essential for BS-convergence of the associated nerve complexes. In [10], this issue is not
really addressed. The construction of these subsets is the content of Lemma 4.2 of [10], and
the last line of the proof (see the end of the first paragraph of pg 584) seems to indicate that
continuity of the ¢-nets follows immediately from continuity of the ‘almost nets’ one would
obtain by superimposing only a fixed number of Poisson processes, instead

— “Bowen requires M to be path connected in his definition of special, but finitely many components
suffices everywhere below.
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of infinitely many of them. However, this is not true; it is like saying that the limit
of continuous functions is always continuous. The question of whether the Elek/Bowen
random nets do vary continuously with the underlying mm-space seems quite subtle in
general, and while we do not have a counterexample, we think that a proof of this would be
more difficult than the alternative approach we take in the current paper.

Below, we will prove a slightly more (and less) general result, Theorem 2.9. While it
does not strictly imply Theorem 2.8, it can be used in all Bowen’s applications. The proof
essentially follows the Elek/Bowen argument, but we get around the continuity issue by
only superimposing a fixed finite number of Poisson processes, creating an ¢/2-separated
‘almost net’ S, @ M,. While S, may not be a net, we show that it can be completed to a net
using a small number of points, so the Betti numbers of the associated nerve complex still
approximates that of My, allowing us to run the rest of the Elek/Bowen argument.

To motivate the statement of the more general result, look again at the statement of
Theorem 2.8. Condition (3) is only used to say that the nerve complex is homotopy
equivalent to M,, so we should be able to state a version of Theorem 2.8 in which (3) is
omitted, if we talk about the Betti numbers of the nerve complexes directly instead of the
Betti numbers of the M,,. Next, to make a result that is compatible with the machinery of
Gelander described in §3.2, it is also important for us to take nets in the M,,, but construct
the corresponding nerves using balls in larger spaces E,,. In other words, we need to work
with the extended mm-spaces of §2.2.

To that end, we say that an extended mm-space M = (M, vol, E) is finite volume or
special if the mm-space M is. When M has finite volume, we can construct a finite measure
Um on Me by pushing forward vol under the map

pEM = (M,vol,p, E).

If My = (M, vol,, E,) is a sequence of extended mm-spaces, then we say that (M)
BS-converges if the sequence of measures iy n/voIn(Mn) weakly converges.
We define an (rg, r1)-net in M to be a subset s B M such that

(1) s is ro-separated, i.e. d(x,y) > ro forall x = y@&S,

(2) s ry-covers M, i.e. for every p @ M, there is some x B'S with d(p, x) < rq,
and an [r,, r3]-weighted (rg, r1)-net is a (ro, r1)-net S with a function

p: S _9 [rZI r3];

where here ro < r; £ ry < r3. Given any weighted net (S, p) in M, we let N¢(S, p) be the
nerve complex associated to the collection of E-balls Be(x, p(x)), where x &I's.

Theorem 2.9. Fix k, let My, = (M,, vol,, E,) be a BS-convergent sequence of extended
finite volume special mm-spaces and suppose we have constants vimin > 0, r1 > ro> 0, andrs
> rp 2 2rq, a function vmax : R+ —— R, such that

(1) all ro/2-balls in every M, have volume at least vmin,

(2) for all r @R,, every r-ball in M, has volume at most vmax(r).

Now suppose that we have a sequence B, of positive numbers such that



18 MIKLOS ABERT, NICOLAS BERGERON, IAN BIRINGER, AND TSACHIK GELANDER

(3) for any sequence of [r,, r3]-weighted (ro, 2r1)-nets (S, pn) in My,
bi(Ne,(Sn, Pn)) - By
vol,(M,) ~ 0.
Then the ratios B,/vol,(M,) converge.

In our two applications, Theorem 1.6 and Theorem 1.7, the numbers B, will be the
Betti numbers by(M,) and the Betti numbers by (E,), respectively. We state it as above to
have a single unified statement that applies in both situations. Note that when applying
Theorem 2.9, one has to show that the Betti numbers of the nerve complexes associated to
all nets in (3) are approximated by a single sequence B,. This usually requires an
argument that goes through the Nerve Lemma at some point.

Given a sequence (M, vol,) of finite volume special mm-spaces, we can apply Theo-
rem 2.9 to the extended mm-spaces (M,, vol,, M,), with B, = by(M,), to get a slightly
weaker version of Theorem 2.8. The difference is that hypothesis (2) in Theorem 2.9 is
formally stronger than it is in Theorem 2.8, but in basically all applications, upper bounds on
ball volumes come from curvature lower bounds, which imply both versions of (2). Note,
however, that by the Nerve Lemma the nerve of any covering of M, by strongly convex
balls is homotopy equivalent to M, so condition (3) in Theorem 2.8 implies condition (3) in
Theorem 2.9 with B, = by(M,), after adjusting the constants appropriately.

Before starting the proof, we also record two brief lemmas. First, as mentioned above
Elek’s Theorem 1.1 is crucial in the proof below. Here is a formal consequence of his result
with a more general sounding statement.

Lemma 2.10. Suppose that forn= 1,2, ..., we have a probability measure n, on the space
of pointed complexes K that is of the form

Mn
m=1 tn,m p'xn,m

Nh = ¥
mzl th,mvol(Xn,m) '

where X, m are finite complexes with universally bounded degree, and ux __ is the measure

on K obtained by pushing forward the counting measure on the vertex set of Xn,m, asin §1.

Then if the measures n, weakly converge, the ratios

P
n mzl th,m bk(xn,m)

r ’
mll tn,mVO|(Xn,m)

converge for all k.

The reader can compare this with Lemma 2.2 in Bowen [10], although that lemma is
incorrectly stated”.

5In Lemma 2.2 of [10], Bowen sets n; = P t