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A B S T R A C T   

Background: Digital phenotyping may detect changes in health outcomes and potentially lead to proactive 
measures to mitigate health declines and avoid major medical events. While health-related outcomes have 
traditionally been acquired through self-report measures, those approaches have numerous limitations, such as 
recall bias, and social desirability bias. Digital phenotyping may offer a potential solution to these limitations. 
Objectives: The purpose of this scoping review was to identify and summarize how passive smartphone data are 
processed and evaluated analytically, including the relationship between these data and health-related outcomes. 
Methods: A search of PubMed, Scopus, Compendex, and HTA databases was conducted for all articles in April 
2021 using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Scoping Review 
(PRISMA-ScR) guidelines. 
Results: A total of 40 articles were included and went through an analysis based on data collection approaches, 
feature extraction, data analytics, behavioral markers, and health-related outcomes. This review demonstrated a 
layer of features derived from raw sensor data that can then be integrated to estimate and predict behaviors, 
emotions, and health-related outcomes. Most studies collected data from a combination of sensors. GPS was the 
most used digital phenotyping data. Feature types included physical activity, location, mobility, social activity, 
sleep, and in-phone activity. Studies involved a broad range of the features used: data preprocessing, analysis 
approaches, analytic techniques, and algorithms tested. 55% of the studies (n = 22) focused on mental health- 
related outcomes. 
Conclusion: This scoping review catalogued in detail the research to date regarding the approaches to using 
passive smartphone sensor data to derive behavioral markers to correlate with or predict health-related out-
comes. Findings will serve as a central resource for researchers to survey the field of research designs and ap-
proaches performed to date and move this emerging domain of research forward towards ultimately providing 
clinical utility in patient care.   
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1. Introduction 

Measurements of health-related outcomes over time, such as 
mobility, mood, and physical distress, can help detect signs of decline 
and trigger steps to intervene [1] and ultimately enhance health out-
comes [2]. Measuring these health-related outcomes is typically 
accomplished by the participant actively self-reporting measures and 
answering validated questionnaires [3]. However, acquiring these data 
using a self-report approach has several limitations, including recall and 
social desirability bias [4]. One potential solution to these limitations is 
digital phenotyping, or the passive modeling of smartphone data, such 
as Global Positioning System (GPS) and accelerometer data. These data 
do not require deliberate participant input yet still detect moment-to- 
moment user actions, potentially signaling current health states. 

Digital phenotyping has been defined as the “moment-by-moment 
quantification of the individual-level human phenotype in situ using data 
from personal digital devices,” specifically from mobile devices such as 
smartphones [5]. Smartphones are now nearly ubiquitous in North 
America and provide a rich source of data about human behavior [6]. 
Using passively collected smartphones data, digital phenotyping can be 
used to model variations in an individual’s behavior over time, 
including their mobility (via GPS data), sociability (via text message and 
telephone logs), and sleep (via accelerometer data and screen activity 
logs) [7]. Digital phenotyping can model changes in behavior at the 
individual level while accounting for between-individual heterogeneity 
because each individual tends to interact with their smartphones 
uniquely [8–10]. Furthermore, passive smartphone data can be linked 
with health-related self-report measures and clinic physical examination 
findings [7]. Emerging digital phenotyping approaches could lead to 
clinically useful digital “biomarkers” that enhance diagnostic assess-
ment, tailor treatment choices, improve disease monitoring and form the 
basis of new interventions and care delivery models [11]. 

Although several reviews have examined the use of smartphones 
generally for health and well-being [12–15], to the best of our knowl-
edge, how passive smartphone data are processed and used in digital 
phenotyping, including their relationship to health-related outcomes, 
has not been systematically reviewed. Thus, the purpose of this review is 
to identify and summarize how passive smartphone data are processed 
and evaluated as behavioral markers, defined as behaviors, thoughts, 
feelings, traits, or states identified using personal sensing [16]. 

2. Methods 

We used the Joanna Briggs Institute (JBI) approach, Arskey and 
O’Malley framework [17], and the PRISMA extension of scoping reviews 
(PRISMA-ScR) [18] to guide this scoping review [19]. 

2.1. Search strategy 

Keywords were identified by reviewing relevant studies and MeSH 
terms. As shown in Table 1, search strings were derived using key words 
such as digital-phenotyp*, digital-trac*, Digital-sens*, Smartphone*, 
sensor data*, “Health Outcome Assessment”, “Quality of life”, “Health”, 
Well-being, and “health outcomes”. Databases searched included 
PubMed (MEDLINE), Scopus, Compendex, and Health Technology 
Assessment (HTA) with no specified date limits. The search was per-
formed in April 2021. Two university research librarians helped in the 
literature search (Table 1). 

2.2. Inclusion and exclusion criteria 

Studies included were: (a) peer-reviewed reports of original 
research, (b) conference proceedings, (c) published in English, and (d) 
focused on collecting passive smartphone data for digital phenotyping. 
Studies excluded were: (a) methodologically focused and did not collect 
data (e.g., design overviews, conceptual frameworks), (b) posters, 

meeting abstracts, protocols, or literature reviews, (c) non-smartphone 
(e.g., clinical lab equipment) studies, and (d) intervention or app 
development studies. 

2.3. Review process 

Articles were imported from EndNote© into Rayyan (https://rayyan. 
qcri.org/) for the screening and selection process [20] (See Fig. 1). Titles 
and abstracts of all articles were screened by two assessors (KL and TCL) 
for eligibility. Screened-in full text articles were obtained and inspected 
for inclusion by the assessors, independently. 

2.4. Data extraction 

Data extracted included citation (study site), sample (study length), 
topical focus, measures, smartphone sensors (application), analytical 
methods, and main results (Table 2). 

2.5. Data analysis 

The results were reported as a narrative summary. Consistent with 
directive content analysis [21], study team members discussed the 
findings listed in the summary table to ensure that the categories and the 
contents underneath were expansive enough to capture the findings of 
each article. 

3. Results 

The initial search yielded 3,170 articles. After removing duplicates 
and assessing each for eligibility, 138 article full text articles were 
reviewed, resulting in 40 articles that met the inclusion and exclusion 

Table 1 
Search Terms for the Literature Search.  

Database Search Terms Results 
PubMed (digital-phenotyp*[tiab] OR digital-trac*[tiab] 

OR Digital-sens*[tiab] OR Smartphone*[tiab] OR 
sensor data*[tiab]) AND (“Health Outcome 
Assessment”[Mesh] OR “Quality of life”[Mesh] 
OR “Health”[Mesh:NoExp] OR Wellness[tiab] OR 
Wellbeing[tiab] OR Well-being[tiab] OR “quality 
of life”[tiab] OR “health outcomes”[tiab] OR 
“Health”[tiab]) AND (“Mental Health”[Mesh] OR 
“ Physical Health”[Mesh] OR “Social 
Health”[Mesh]) 

821 

Scopus (digital-phenotyp* OR digital-trac* OR Digital- 
sens* OR Smartphone* OR sensor data*) AND 
(“Health Outcome Assessment” OR “Quality of 
life” OR “Health” OR Wellness OR Wellbeing OR 
Well-being OR “health outcomes”) AND (“Mental 
Health” OR “ Physical Health” OR “ Social 
Health”) AND NOT INDEX(medline) 

1891 

Compendex (digital-phenotyp* OR digital-trac* OR Digital- 
sens* OR Smartphone* OR sensor data*) WN KY) 
AND ((“Health Outcome Assessment” OR 
“Quality of life” OR Health OR Wellness OR 
Wellbeing OR Well-being OR “health outcomes”) 
WN KY)) AND ((“Mental Health” OR “Physical 
Health” OR “Social Health”) WN KY))) AND ([70] 
WN LA)) 

380 

Health Technology 
Assessment 

(digital-phenotyp* OR digital-trac* OR Digital- 
sens* OR Smartphone* OR sensor data*) AND 
(“Outcome Assessment, Health Care” OR 
“Outcome and Process Assessment, Health Care” 

OR “Health Services Research” OR “Quality of 
life” OR “Health” OR Wellness OR Wellbeing OR 
Well-being OR “quality of life” OR “health 
outcomes” OR “Health”) AND (“Mental Health” 

OR “ Physical Health” OR “ Social Health” OR 
“social health” OR “Mental health” OR “physical 
fitness”) 

78  
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criteria (Fig. 1). 
Findings were organized under six topics: 1) characteristics of the 

included studies, 2) data collection, 3) feature extraction (see appendix), 
4) data analytics, 5) behavioral markers, and 6) health-related 
outcomes. 

3.1. Characteristics of the included studies 

Among the 40 studies, 26 were conducted in the USA, six in Europe, 
two in Australia, and five in Asia. See Table 2 for study characteristics. 
Of those studies that reported a study timeframe, half (n = 20) lasted 
1–2 weeks (n = 14) or 4 weeks (n = 6). Six (15%) studies lasted 5–8 
weeks and another 15% (n = 6) lasted > 10 weeks. Study sample size 
ranged from 7 to 816. Sixty-five percent of the reviewed studies (n = 26) 
had a sample size of less than 53 participants. 12 (30%) of the selected 
studies targeted college students. A number of different smartphone 
apps were used for passive data collection; these included study team- 
developed software (n = 6), Purple Robot (n = 5), Sensus (n = 4), 
Beiwe (n = 3), StudentLife (n = 3), CrossCheck (n = 2), mindLAMP (n =
2), and myriad others in single studies. 

3.2. Data collection 

Data collection in all studies included both passive raw smartphone 

sensor data and participant-reported data, which are considered the 
“ground truth” thereby serving as validation of passive data [22]. 

3.2.1. Smartphone-based passive data collection 
Table 3 shows the smartphone passive data used in studies. GPS 

sensor data were the most frequently collected type. Over half of studies 
(n = 25, 62.5%) collected GPS data about users’ locations and move-
ments [6,23–46]. For 3 studies, GPS was the only data type collected or 
gathered in conjunction with patterns of Wi-Fi connections [25,39,46], 
or GPS in conjunction with accelerometer data (n = 11) 
[6,23,25,27,32,33,36,37,39,43,45]. Regarding the users’ location, 
Bluetooth (n = 3) which indicates the distance among people was also 
used in an attempt to examine levels of sociability [47–49]. In fact, of the 
three studies that used Bluetooth, two aimed to detect users’ physical 
encounters [47,48]. Microphone data were used in 5 studies (12.5%) 
and gyroscope data in one study. Microphone data were used to infer 
social activity [25], location [23,34,50], and physical activities [39], 
while gyroscope data were used to detect daily physical activities (i.e., 
resting, exercising, running, walking) [37]. 

Other smartphone data collected included the frequency of using text 
messages (n = 17) [23,24,27,29,31–34,39,44,49,51–56], the number of 
calls (n = 21), timings of screen on/off [29,31,33,38–40,56,57], 
ambient light values [25,29,39,43,58], and time spent on the phone 
[41,52,59]. Data in terms of battery level and status [31], browser usage 

Fig. 1. Flow diagram of study selection process.  
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Table 2 
Studies included in the review reporting digital phenotyping to understand health-related quality of life using smartphone.  

Citation 
(Study Site) 

Sample 
(Study Length) 

Topical Focus Measures Smartphone Sensors 
(Application) 

Analytical 
Methods 

Main Results 

[23] Abdullah 
et al., 2016 
(USA) 

7 bipolar disorders 
(4 weeks) 

Social rhythm  Social rhythm metrics −5  GPS, Accelerometer, 
Call/text logs, 
Microphone 
(Mood Rhythm) 

Logistic 
regression 
Classification 
(SVM) 

Root-mean-square error 
(RMSE) 0.92 for personalized, 
1.40 for the generalized. 85% 
(precision, binary), 86% recall 

[24] Barnett 
et al., 2018 
(USA) 

15 schizophrenias 
(Up to 3 months) 

Schizophrenia 
relapse 
symptoms 

Depression Sleep quality 
Warning symptoms 

GPS, Call/text logs 
(Beiwe) 

Multivariate time 
series 
linear classifiers 

The rate of behavioral 
anomalies detected in the 2 
weeks prior to relapse was 71% 
higher than the rate of 
anomalies during other time 
periods. 

[25] Ben-Zeev 
et al., 2015 
(USA) 

47 students 
(10 weeks) 

Depression 
symptom Stress 
Loneliness 

PHQ-9 
Perceived Stress Scale 
(PSS) 
UCLA Loneliness Scale 
(UCLA-LS) 

GPS, Wi-Fi, 
Accelerometer, Sound, 
Light sensor, Microphone 
(Developed software for 
study) 

Mixed-effects 
linear 
Penalized 
functional 
regression 

Stress: geospatial activity and 
sleep duration (p <.05, 
respectively). 
Depression: speech duration, 
geospatial activity, and sleep 
duration (p <.05, respectively) 
Loneliness: kinesthetic activity 
(p <.01) 

[6] Berry et al., 
2019 
(USA) 

23 amyotrophic 
lateral sclerosis 
(24 weeks) 

Amyotrophic 
lateral sclerosis 

Amyotrophic Lateral 
Sclerosis Functional 
Rating Scale (ALSFRS-R) 

Accelerometer, GPS, Call 
logs 
(Beiwe) 

Linear regression The mean pause time in speech 
had increased by 0.02 sec per 
month across the sample. 

[47] Boonstra 
et al., 2015 
(Australia) 

14 
(1 week) 

Social networks  Non-negative matrix 
factorization (NMF) 

Bluetooth 
(Purple Robot) 

Correlation  Correlation between network 
metrics and the number of 
times a smartphone scanned. 

[48] Boonstra 
et al., 2017 
(Australia) 

63 
(4 weeks) 

Social network  PHQ-9 
Generalized Anxiety 
Disorder (GAD)-7 

Bluetooth 
(BluetoothManager) 

Fruchterman- 
Reingold 

Social networks of proximity 
were estimated from Bluetooth 
data and 95% of the edges were 
scanned at least every 30 min. 

[26] Boukhechba 
et al., 2018a 
(USA) 

228 students 
(2 weeks) 

Social anxiety Social Interaction Anxiety 
Scale (SIAS) 

GPS 
(Sensus) 

Classification 
(Neural 
networks) 
Regression 

85% (accuracy, binary), 85% 
F1 score 
Social anxiety score (on a scale 
of 0–80) with RMSE 7.06 

[27] Boukhechba 
et al., 2018b 
(USA) 

72 students 
(2 weeks) 

Social Anxiety 
Depression 
symptom 
Positive/ 
Negative Affect 

SIAS 
Depression Anxiety Stress 
Scales (DASS) 
Positive and Negative 
Affect Schedule (PANAS) 

GPS, Accelerometer, 
Calls/texts logs 
(Sensus) 

Correlation Students’ social anxiety, 
depression and affect levels are 
associated with their mobility, 
activity levels, and 
communication patterns. 

[28] Canzian & 
Musolesi, 2015 
(UK) 

28 
(14 days) 

Depressive mood PHQ-9 GPS 
(MoodTraces) 

Classification 
(SVM) 

96% (precision, binary), 94% 
recall 

[29] Cao et al., 
2020 
(USA) 

13 families of 
adolescent with 
major depressive 
disorder 
(8 weeks) 

Depressive 
symptom 

PHQ-9 
Hamilton Rating Scale for 
Depression (HAM-D) 
Hamilton Anxiety Rating 
Scale (HAM-A) 

GPS, Calls/text logs, 
Light sensor, Screen 
usage 
(MobileSens) 

Linear regressor 
A support vector 
regressor 

88% (accuracy, binary) in 
teens’ PHQ-9 score 
90% accuracy in teen and 
parents’ PHQ-9 score 
RMSE 3.38 in teens vs 3.47 in 
parents. 

[59] DeMasi 
et al., 2017 
(USA) 

53 
(8 weeks) 

Well-being Mood and energy  Accelerometer, Phone 
usages 
(Funf Open Sensing 
Framework) 

Classification 
(Logistic 
regressions) 

95% (accuracy, binary)  

[51] Dissing 
et al., 2020 
(Denmark) 

816 
(4 weeks) 

Well-being UCLA-LS 
Major Depression 
Inventory (MDI) 
Knowledge, Skills and 
Abilities (KSQ) 

Call/text logs 
(Developed software for 
study) 

Multiple linear 
regression 

In baseline, a higher number of 
smartphone interactions was 
associated with lower levels of 
loneliness as well as lower 
levels of disturbed sleep for 
men. In follow-up analyses, a 
high vs low level of smartphone 
interaction was associated with 
an increase in loneliness and 
depressive symptoms over time 
for women. 

[30] Fraccaro 
et al., 2019 
(UK) 

21 
(10 days) 

Social function Activity diaries GPS 
(GPSLogger) 

Clustering 
algorithms and 
semantic 
enrichment 

75% precision, 60% recall 
All thresholds: F1 score = 0.65. 
RMSE = 1.1 (SD 0.3) 

[31] Gao et al., 
2016 
(China) 

127 
(30 days) 

Social anxiety 
Loneliness  

SIAS 
UCLA-LS 

GPS, Call/text logs, App 
usage, Screen on/off, 
Charging 
(SOLVD) 

Wilcoxon-Mann- 
Whitney test 

Correlation among smartphone 
usage and social anxiety and 
loneliness 

[32] Gong et al., 
2019 
(USA) 

52 
(2 weeks) 

Social anxiety SIAS GPS, Accelerometer, 
Call/text logs 
(Sensus) 

Correlation 
Effect size 

Behavioral metrics observed in 
temporal proximity to phone 
calls have stronger associations 
with social anxiety scores than 

(continued on next page) 
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Table 2 (continued ) 
Citation 
(Study Site) 

Sample 
(Study Length) 

Topical Focus Measures Smartphone Sensors 
(Application) 

Analytical 
Methods 

Main Results 

metrics observed in temporal 
proximity to text message 
events. 

[50] Harari 
et al., 2017 
(USA) 

48 students 
(10 weeks)  

Well-being Socio-demographic 
characteristics 

Accelerometer, 
Microphone 
(StudentLife) 

Latent growth 
curve 

Stability estimates were 
moderate to high for activity (r 
mean = 0.66) and sociability (r 
mean = 0.72) 

[33] Henson 
et al., 2020 
(USA) 

88 
(45 schizophrenias, 
43 healthy control) 
(3 months) 

Social rhythm PHQ-9 
GAD-7 
Psychosis symptoms 
Sleep 
Sociability 

GPS, Accelerometer, 
Screen on/off, Call/text 
logs 
(mindLAMP/Beiwe) 

Correlation Social rhythms were negatively 
associated with symptoms of 
anxiety, depression, psychosis, 
and poor sleep (Spearman ρ =

− 0.23 to − 0.30, p < 0.001) in 
schizophrenias. In healthy 
control, more stable social 
rhythms were positively 
correlated with 
symptomatology (Spearman ρ 

= 0.20 to 0.44, p < 0.05). 
[57] Henson 

et al., 2021 
(USA) 

88 
(54 schizophrenias, 
34 healthy control) 
(>5 days) 

Schizophrenia 
relapse 
symptoms 

PHQ-9 
GAD-7 
Sleep 
Sociability 

Screen on/off 
(mindLAMP/Beiwe)  

Linear 
regression, 
Specification 
curve analysis 

An association between 
smartphone screen time metrics 
and cognition (adjusted R2 =
0.107, P <.001) in patients with 
schizophrenia was found. 
Specification curve analysis 
revealed a wide range of 
heterogenous associations with 
screen time from very negative 
to very positive. 

[34] He-Yueya 
et al., 2020 
(USA) 

61 schizophrenias 
(14 days) 

Behavioral 
stability 

10 items: how you’ve been 
doing over the last few 
days. 

GPS, Microphone, Call/ 
text logs 
(CrossCheck) 

Classification 
(Gradient 
boosted 
regression trees) 

2.468 Mean absolute error 
(MAE) (accuracy, binary) 
Stability Index (MAE = 2.556) 
Greater stability in social 
activity (e.g., calls and 
messages) were associated with 
lower symptoms, and greater 
stability in physical activity (e. 
g., being still) appeared 
associated with elevated 
symptoms. 

[35] Huang 
et al., 2016 
(USA) 

18 
(10 days) 

Social anxiety SIAS GPS 
(Developed software for 
study) 

Linear regression Least Absolute Shrinkage and 
Selection Operator (LASSO) (λ 

= 4.4) demonstrates the 
negative relationship between 
visiting religious locations and 
social anxiety level. 

[53] Huang 
et al., 2017 
(USA) 

52 students 
(2 weeks) 

Social anxiety SIAS Accelerometer, Call/text 
logs 
(Sensus) 

Effect-size 
analysis  

The results show substantially 
different behavioral markers 
prior to outgoing phone calls 
when comparing individuals 
with high and low social 
anxiety. 

[60] Kelly et al., 
2016 
(Ireland) 

541 
(>72 h) 

Health status  Short form (SF)-36 Accelerometer 
(Health-U) 

Correlation While results have shown a 
statistically significant 
correlation between duration of 
activity and health status (r =
0.042), these correlations are 
not strong enough to make 
accurate predictions about a 
persons’ health status. 

[54] King et al., 
2020 
(Netherlands) 

27 students 
(6 weeks) 

Mood Center for Epidemiological 
Studies Depression Scale 
(CES-D) 

Call/SMS logs, App usage 
(iYouVU) 

Classification 
(SVM) 

65% (Accuracy, 4 classes), 
61.8% F-score 
* Dataset provided by 
Asselbergs et al. (2016) from 
Netherlands 

[36] Masud 
et al., 2020a 
(Bangladesh) 

33 
(11 weeks) 

Depression 
severity level 

PHQ-9 GPS, Accelerometer 
(Data Collector) 

Linear regression 
Classification 
(SVM) 

Root-mean-square deviation 
(RMSD) 3.256  

87.2% (accuracy, binary)  

[37] Masud 
et al., 2020b 
(Bangladesh) 

33 
(11 weeks) 

Depression 
symptom  

Quick Inventory of 
Depressive 
Symptomatology–Self- 
report (QIDSSR)16 

GPS, Gyroscope, 
Accelerometer 
(Purple Robot)  

Linear regression 
Classification 
(Quadratic 
discriminant) 

RMSD 3.117  

95% (accuracy, binary)  

(continued on next page) 
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Table 2 (continued ) 
Citation 
(Study Site) 

Sample 
(Study Length) 

Topical Focus Measures Smartphone Sensors 
(Application) 

Analytical 
Methods 

Main Results 

[52] Messner 
et al., 2019 
(Germany) 

157 students 
(8 weeks) 

Well-being   Stress 
Drive 
Mood  

Call/SMS logs, Phone 
usage 
(Insights) 

Multivariate 
multilevel 
models 

Stress: number of SMS (–3.539, 
SE = 0.937) 
Mood: total usage time (–0.019, 
SE = 0.004) and call duration 
(–0.016, SE = 0.007) 
Drive: Facebook usage time 
(–0.127, SE = 0.041) 

[49] Pulekar & 
Agu, 2016 
(UAS) 

9 students 
(2 Weeks)   

Social loneliness Big-Five personality traits 
UCLA-LS 

Call/text logs, App usage, 
Bluetooth, Wi-Fi, Browser 
usage 
(Socialoscope) 

Classification 
(J48) 

98% (accuracy, binary), while 
factoring in user personality 
types.   

[38] Rhim et al., 
2020 
(South Korea) 

78 students 
(4 months) 

Subjective well- 
being    

Concise Measure of 
Subjective Well-Being 
(COMOSWB)   

GPS, App usage, Screen 
on/off 
(Developed software for 
study) 

Hierarchical 
regression  

Classification 
(High 
performance 
models) 

The significance of user 
attributes (e.g., personality, 
self-esteem) on subjective well- 
being and salient factors 
derived from smartphone data 
(e.g., time spent on campus, 
ratio of standing/sitting 
stationary, expenses) that 
significantly account for 
subjective well-being. 
71% (the average F1- macro 
score for all users was 38%) 

[55] Ryan et al., 
2020 
(USA) 

26 bipolar disorder 
& 12 healthy control 
(28 days) 

Mood 
Energy 
Intellect 
(thoughts)  

mood Call/text logs 
(Developed software for 
study) 

Multivariate 
mixed effect 

An increase in rapid thoughts 
over time was associated with a 
decrease in outgoing text 
messages (β = –0.02; P =.04), 
and an increase in impulsivity 
self-ratings was related to a 
decrease in total call duration 
(β = –0.29; P =.02). 

[39] Saeb et al., 
2017 
(USA) 

208 
(6 weeks) 

Depression 
symptom Anxiety   

PHQ-9 
GAD-7  

GPS, Light sensor, 
Microphone, Screen on/ 
off, Accelerometer, Call/ 
text logs, Wi-Fi 
(Purple Robot) 

Classification 
(Decision trees 
with the gradient 
boosting 
optimization) 

Foursquare: 0.62 (Average 
AUC) 
phone sensor: 0.84 (Average 
AUC) 
Foursquare + phone sensor: 
0.88 (Average AUC, binary) 
Significant relationships 
between the time spent in 
certain locations and 
depression and anxiety were 
identified, although these 
relationships were not 
consistent. 

[40] Saeb et al., 
2016 
(USA) 

48 students 
(10 weeks) 

Depression 
symptom  

PHQ-9  GPS, Screen on/off 
(StudentLife) 

Correlation Correlation between GPS 
features and clinical PHQ-9 
*Dataset provided by Wang 
et al. (2014) from USA 

[41] Saeb et al., 
2015a 
(USA) 

28 
(2 weeks) 

Depression 
symptom 

PHQ-9  GPS, Phone usage 
(Purple Robot) 

Classification 
(Logistic 
regression) 

86.5% (accuracy, binary)  

[42] Saeb et al., 
2015b 
(USA) 

18 
(2 weeks) 

Depression 
symptom 

PHQ-9 GPS 
(Purple Robot) 

Correlation Correlation between location 
features and clinical PHQ-9 

[43] Sarda et al., 
2019 
(India) 

47 diabetes 
(2 weeks)  

Diabetes base on 
depression 

PHQ-9 Accelerometer, GPS, 
Light sensor, Call logs 
(Developed software for 
study) 

Classification 
(XGBoost)  

79.07% (accuracy, binary [ 
95% CI: 74%, 84%])  

[44] Singh et al., 
2018 
(USA) 

50 
(10 weeks) 

Individual’s risk 
propensity 

Risk Propensity 
Personality traits 

Call/text logs, GPS 
(Funf platform) 

Classification 
(SVM) 

78% (precision, binary), 90% 
recall  

[56] Stanislaus 
et al., 2020 
(Denmark) 

75 bipolar disorder, 
15 healthy control, 
& 32 unaffected 
relatives 
(>1 month) 

Activity 
Depression 
symptom Mania  

International Physical 
Activity Questionnaire 
(IPAQ) 
HAM-D 
FAST 

Accelerometer, Screen 
on/off, Call/text logs 
(Monsenso)   

Linear mixed 
model 

Patients with bipolar disorder 
had decreased physical 
(number of steps) and social 
activity (more missed calls) but 
a longer call duration compared 
with healthy control. 
Unaffected relatives also had 
decreased physical activity 
compared with healthy control 
but did not differ on daily 
self‑reported activity or social 
activity. 

(continued on next page) 
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[49], and app usage [31,38,49,54,58] were also collected in 15% (n = 7) 
of the selected studies. 

Most studies (n = 28, 70%) collected data from a combination of 
sensors. Eight studies collected data from ≥ 5 sensors 
[23,25,29,31,33,39,49,58]. Studies with > 3 sensors (n = 20, 50%) 
commonly relied on machine learning prediction models to process and 
interpret data. Twelve studies (30%) collected data from one sensor. 

3.2.2. Smartphone-based self-reported data & questionnaires 
Nine studies indicated the type of self-report data used as ground 

truth [23,28,30,31,38,41,45,46,58], while the remaining studies did not 
report ground truth data. Most studies (n = 38) administered 
participant-reported questionnaires on participants’ smartphones. 

3.3. Feature extraction 

Feature extraction means transforming the raw data acquired by 
sensors into features that allow for more meaningful information [16]. 

3.3.1. Physical activity 
Accelerometer data were used to model users’ physical activity 

[23,27,34,36,37,38,43,45,50,51,56,58]. These studies aimed to recog-
nize basic daily activities such as walking [34,36,37,39,45,50,58,59], 
standing or sitting [34,37,38,39], running [37,39,45,50,58,59], exer-
cising [36,37], lying down [59], riding a bike [34,39,58,59] being in a 
vehicle [34,39,58], or being stationary [23,25,34,36,50,58,60]. In 
addition, physical activities were explored by detecting steps taken 

Table 2 (continued ) 
Citation 
(Study Site) 

Sample 
(Study Length) 

Topical Focus Measures Smartphone Sensors 
(Application) 

Analytical 
Methods 

Main Results 

[61] Staples 
et al., 2017 
(USA) 

17 schizophrenias 
(6 weeks) 

Sleep   Pittsburgh Sleep Quality 
Index (PSQI) 

Accelerometer 
(Beiwe) 

Multiple linear 
regression 

0.75 MAE accuracy  

[45] Thakur & 
Roy, 2020 
(India) 

45 students 
(10 weeks) 

Subjective 
feeling of 
psychological 
well-being 

GT-PHQ-9 
PSS 
PSQI 
UCLA-LS 

GPS, Accelerometer, Call 
logs. 
(StudentLife) 

Classification 
(Logistic 
regression)  

Stress: 82.6% (AUC, binary) 
Depression: 74% (AUC, binary) 
*Dataset provided by Wang 
et al. (2014) from USA 

[58] Wang et al., 
2017 
(USA) 

36 schizophrenias 
(30 days) 

Schizophrenia 
relapse 
symptoms 

7-item Brief Psychiatric 
Rating Scale (BPRS)  

Audio amplitude, 
Accelerometer, Light 
Sensor, App usages, Call 
logs 
(CrossCheck) 

Classification 
(Gradient 
Boosted 
Regression Trees) 

1.45 MAE (accuracy, 3 classes) 
with r = 0.70, p < 0.0001.  

[46] Yue et al., 
2020 
(USA) 

79 students 
(15 days) 

Depression 
symptom  

PHQ-9  GPS, Wi-Fi 
(LifeRhythm) 

Classification 
(SVM)  

83% (Precision, Binary) 
F1 scores (up to 0.76 compared 
to 0.5 before data fusion)  

Table 3 
Summary of the smartphone-sensor data for behavioral markers or health-related outcomes.  

Domain Health related 
outcomes 

Behavioral 
markers 

Type of feature Smartphone Sensors 

Mental 
health  

Early symptoms of 
relapse in 
schizophrenia  

Mobility [24], Sociability [24,58], Screen [57], Physical 
activities [58], Sleep [58] 

GPS [24], Accelerometer [58], Call/text logs [24], Call logs  
[58], Screen on/off [57], Audio amplitude [58], Light sensor  
[58], App usages [58] 

Depression 
symptoms  

Location [25,37,39,40,42,46], Sleep [25,43], Speech 
duration [25], Mobility [28,36,43,59], Social activity  
[43,56,59], Physical activity [36,37,43,56], Daily-life 
behavior [41] 

GPS [25,28,36,37,39–43,46,59], Wi-Fi [25,39,46], 
Accelerometers [25,36,37,39,43,56], Gyroscope [37], Sound  
[25], Microphone [25,39], Call/text logs [39,56,59], Call logs  
[43], Light sensor [25,39,43,59], Screen [39,40,56,59], Phone 
usage [41]  

Stress Sleep duration [25], Location [25] GPS [25], Wi-Fi [25], Accelerometers [25], Sound [25], Light 
sensor [25], Microphone [25]  

Loneliness Kinesthetic activity [25], Social activity [25,49], Phone 
usage [29], Behavioral dynamics [29] 

GPS [29], Wi-Fi [49], Accelerometers [25], Sound [25], Call/ 
text logs [29,49] App usage [29,49] Bluetooth [49], Browser 
usage [49], Screen [29], Light sensor [25]  

Social anxiety Mobility [26,27,35], Physical activity [27], Social 
activity [27,53], Phone usage [29], Behavioral 
dynamics [29,32,53] 

GPS [26,27,29,32,35], Accelerometers [27,32,53], Call/text 
logs [27,29,32,53], Screen [29], App usage [29] Battery level  
[29]  

Mood Levels of valence (mood), and arousal (drive) [54], Daily 
behaviors [55] 

Call/text logs [54,55], App usage [54]  

Physical 
health 

Monitoring of Amyotrophic lateral 
sclerosis 

Speech [6] Speech [6]  

Social rhythms  Physical activity [23], Location [23] 
Mobility [23], Social activity [23], Circadian Routine 
and Weekend Day Routine [33] 

GPS [23,33], Accelerometer [23,33], Call/text logs [23,33], 
Microphone [23], Screen [33]  

Behavioral 
stability 

Physical activity [34], Speech [34], Phone usage [34] GPS [34], Call/text logs [34], Microphone [34]  

Sleep 
disturbances 

Sleep duration [61] Accelerometer [61] 

Social 
health  

Social networks A proxy for social ties [47,48] Bluetooth [47,48]  
Social function Daily activities [31] GPS [31]  

Well-being  Sleep [51], Physical activity [38,45,50,51], Social 
activity [30,45,50], Phone usage [38,52], Location  
[38], Mobility [45] 

Accelerometer [45,50,51], Phone usages [51,52], Call/text 
logs [30,52], Call logs [45], Microphone [50], GPS [38,45], 
App usage [38], Screen [38]   

Health status Mobility [60] Accelerometer [60]   
Individual’s 
risk propensity 

Location [44], Social activity [44]  Call/text logs [44], GPS [44]  
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[36,37,56] and distinguishing physical activity from activities of daily 
living [30,33,61]. 

3.3.2. Location and mobility 
Derivation of users’ mobility and location was computed in 24 

studies using data from GPS, Wi-Fi, and/or Bluetooth sensors, most (n =
19) of which aimed to identify basic daily mobility trajectories such as 
users’ daily range of movement as reported by GPS data. These studies 
assessed the number of location clusters (n = 11), total distance (n = 9), 
location entropy (n = 8), time spent at home (n = 5), normalized entropy 
(n = 4), and transition time (n = 3) (see appendix). One study that 
included 15 patients with schizophrenia showed how passive data-
—including radius of gyration, maximum diameter, the standard devi-
ation of flight length, and average flight duration—were potentially able 
to detect early warning signs of relapse [24]. 

3.3.3. Social activity 
Social activity was examined in 12 studies using call and text logs to 

detect social interaction [23,24,27,30,35,43–45,49,56,58,59], the 
number of outgoing and incoming texts (n = 4), total outgoing and 
incoming text length (n = 4), number of outgoing and incoming calls (n 
= 6), and the total duration of outgoing and incoming calls (n = 4). 
Bluetooth was used to examine social ties [47,48]. The employment of 
microphones was to assess silence, noise, and voices of sociability 
behavior [50]. Six studies estimated communication patterns, such as 
the number of text messages sent and received. Speech was detected 
with a microphone [6,23,27,34]; analyses evaluated conversation time 
[23,34], speaking rate [6], pitch variations [6,23], and speech duration 
[27,34]. 

3.3.4. Sleep 
Users’ sleep was examined [25,33,43,58,59] by detecting sleep 

duration [25,58], bedtime and rise time [58], and sleep patterns 
[33,43,59] using accelerometers [25,59], sound [25], light sensors 
[25,43,58], screen on/off [33], and smartphone usage [59]. 

3.3.5. In-phone activity 
Smartphone usage patterns were collected [31,38,41,49,52,54], 

including screen on/off [31], social media activity [31,38,49,52,54], 
browser usage [31,49], and application usage [31,38,41,49,52]. These 
data were correlated with participant-reported measures of well-being 
[38,52], social anxiety [31], loneliness [31,49], mood [54], and 
depressive symptoms [41]. For example, Saeb et al. (2015a) reported 
that phone usage duration and usage frequency were correlated with the 
severity of depressive symptoms from participant-reported PHQ-9 in 28 
adult participants (r = 0.54, p =.011, and r = 0.52, p =.015, respec-
tively) [41]. 

3.4. Data analytics 

The main analytical methods used for passive data analysis were 
regression models and predictive modeling with machine learning 
techniques [62]. 

3.4.1. Type of machine learning method 
Most studies (n = 33) reported on supervised machine learning (i.e., 

classification and regression) to classify data or predict outcomes 
accurately using self-reported data as “ground truth”. Unsupervised 
learning (i.e., clustering) was used only in a few studies (n = 4), while 10 
studies implemented both supervised and unsupervised machine 
learning approaches. A very broad range of classification of algorithms 
of machine learning techniques were applied (n = 19): support vector 
machines [23,28,36,44,46,54], logistic regression [41,45,59], linear 
classifiers [6,24], gradient boosted regression trees [34,58], neural 
networks [26], support vector regressor [29], quadratic discriminant 
[37], high-performance models [38], decision trees with the gradient 

boosting optimization [39], XGBoost [43], J48 [49], linear dynamic 
model [53], linear regressor [57], and multiple linear regression [61]. 

Among the included studies, unsupervised learning algorithms were 
often used to pre-process sensor data before using supervised methods 
for further processing. In this review, 14 studies chose to use clustering 
algorithms, including k-means [26,27,29,33,38–42] and density-based 
spatial clustering of applications with noise (DBSCAN) 
[23,30,36,37,46]. 

3.4.2. Cross validation strategies 
The most used types of cross-validation were leave-one-out 

[26,28,36,37,41,43,44,46,58,59,61], 10-fold [23,26,34,35,39], and k- 
fold [45]. Four studies did not report cross-validation. In addition, the 
most reported evaluation metrics were accuracy 
[26,29,34,36,37,41,43,49,54,58,59,61], sensitivity [23,28,30,44], area 
under the curve (AUC) [39,45], precision [23,28,30,44,46], and F1 
score [26,30,38,46]. The rates of metrics used included: accuracy from 
65 to 98%, sensitivity (i.e., recall) from 60 to 94%, precision from 75 to 
96%, AUC from 62 to 84%, F1 from 65 to 85%. 

3.5. Behavioral markers 

Behavioral markers are higher-level features, which reflect behav-
iors, cognitions, and emotions translated from low-level features (e.g., 
social activity) and sensor data (e.g., call/text logs) [16]. 

3.5.1. Mood and Stress 
Measurements of participants’ moods included positive or negative 

mood valence and arousal (i.e., the intensity an emotion or mood state) 
[54] and impulsivity self-ratings [55], which have been detected using 
app usage and call/text log patterns. For instance, a study of 47 students 
showed an association of daily stress levels (e.g., depression and lone-
liness) with a smartphone’s sensor-derived geospatial activity (using 
GPS and WiFi; p <.05) and sleep duration (using device use data, 
accelerometer inferences, ambient sound features, and ambient light 
levels; p <.05) by mixed-effects linear modeling [25]. 

3.5.2. Sleep disturbance 
One study of 17 patients with schizophrenia found that patients’ 

sleep duration could be predicted with approximately 75% accuracy 
using passively collected accelerometer data and actively collected 
Pittsburgh Sleep Questionnaire Inventory (PSQI) score [61]. 

3.5.3. Loneliness 
Passive data were used to measure the relationship of loneliness with 

phone usage behaviors [31], kinesthetic activity [25], and users’ daily 
interactions and communications [49]. For example, a study of 9 stu-
dents over 2 weeks indicated that of the big 5 personality traits, extra-
version and emotional stability could be predicted with 98% accuracy 
through smartphone-sensed loneliness from their communication and 
interaction patterns (e.g., calls and social media usage) [49]. 

3.5.4. Social rhythms 
Social rhythms refer to the day-to-day variability of daily, habitual 

behaviors (e.g., mealtimes, bedtimes, and patterns of social interaction) 
[63]. Abdullah et al. (2016) reported, with 85% accuracy, the automatic 
assessment of social rhythm metrics for location, mobility, and conver-
sation frequency in the daily lives of 7 patients with bipolar disorder 
[23]. In another study of 88 patients with schizophrenia that investi-
gated patients’ circadian rhythms, social rhythms were negatively 
associated with symptoms of anxiety, depression, and poor sleep, while 
more stable social rhythms were positively correlated with symptom-
atology [33]. 

3.5.5. Social context 
Social anxiety was measured using Bluetooth Scans to quantify the 
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proximity of social networks [47,48] or communication patterns or 
phone use patterns [31,32]. In one study of 18 college students, social 
interaction among students was associated with improved academic 
performance when they were surrounded by peers [35]. Similarly, one 
study with 21 participants reported that social functioning (e.g., 
employment, shopping, and social activities) could be predicted with 
75% precision with daily life based on GPS data. [30]. 

3.6. Health-related outcomes 

Health-related outcomes are health-related issues and disorders that 
can be potentially identified with the entire set of features and behav-
ioral markers. 

3.6.1. Depression symptoms 
Depressive symptoms (n = 12, 30%) were the most investigated 

health-related measure among self-reported outcomes 
[25,28,29,36,37,39–43,46,56], most measured by the PHQ-9 
[28,29,36,39–43,46]. Researchers used smartphone-sensor data to 
correlate depressive symptoms with features such as geographical 
location and mobility [25,28,29,36,37,39,40,42,43,46], physical activ-
ity [25,36,37,43,56], social activity [29,43,56], sleep duration [25,43], 
daily behavior [41], and speech duration [25]. The results of the studies 
showed an accuracy of 79%-96% in classifying symptoms of depression 
as seen in Table 2. 

3.6.2. Early symptoms of relapse in schizophrenia 
Passive smartphone-sensor data were used to investigate symptoms 

of schizophrenia [57,58], using features such as physical activities 
[57,58], mobility [57], sleep [58], and sociability [57,58]. The main 
intent of the studies was to predict early warning signs for relapse 
(relapse detection rate was 71% higher than in other time periods) [57] 
or schizophrenia symptoms (predicting a user’s Brief Psychiatric Rating 
Scale score within 1.59 error using only passive sensing) [58]. 

3.6.3. Monitoring of Amyotrophic lateral sclerosis 
One clinical marker reported for physical health using smartphone- 

sensor data was amyotrophic lateral sclerosis (ALS) [6]. Berry et al. 
(2019) reported the timing of speech-based call logs and found that the 

mean pause time during speech increased by 0.02 s/month across 23 
ALS patients followed for up to 24 weeks [6]. 

3.6.4. Well-being 
Well-being was associated in five studies using sleep [59], physical 

activity [50,59], social interactions [50,51], location [38], mobility 
[60], and phone usage behavior [38,52]. Kelly et al. (2016) conducted a 
study that tracked 541 participants’ movement duration and average 
stationary time using an accelerometer for at least 74 h, and findings 
reported a correlation between the duration of activity and health (r =
0.042) [60]. 

4. Discussion 

In this scoping review, we aimed to synthesize the literature, 
focusing on how researchers have used passive smartphone-sensor data 
to derive behavioral markers and correlate or predict health-related 
outcomes. Among the 40 health-related publications using digital phe-
notyping to analyze passively collected data, 55% of the studies (n = 22) 
focused on mental health-related outcomes. The findings show an area 
of imminent opportunity for advancing research and clinical insights 
because the data and methods used in schizophrenia relapse symptoms, 
depression symptoms, and mood are highly translatable and relevant to 
a range of other health related outcomes. 

Fig. 2 shows a layered, hierarchical approach to converting raw 
sensor data into knowledge, in which sensor data are converted into 
features that are integrated to estimate behaviors, emotions, and health- 
related outcomes. Automated sensing enables ubiquitous and unobtru-
sive sensing of daily life activities and behaviors with the help of 
smartphones that generate raw sensor data [64]. The layers of sensors 
represent inputs to the sensing platform in the form of raw smartphone- 
sensed data. The feature layer stands as a construct that contains in-
formation from a reliable measurement by sensor data, such as mobility 
and location. Behavioral markers are higher-level features that are 
measured using low-level features and sensor data [16]. For instance, 
Abdullah et al. (2016) reported that a behavioral marker for circadian 
sleep rhythm could include features such as bedtime and waketime, 
sleep duration, and phone usage. Markers of sleep quality might also 
include ambient sound features but may also include bedtime and wake 

Fig. 2. Hierarchical stream of digital phenotyping for health-related outcomes using a smartphone.  
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time [23]. A limited set of features have been used in the health-related 
outcomes layer to predict symptoms of early warning signs of relapse. 

This review demonstrated that the study length of passive 
smartphone-sensor data collection varied considerably across studies, 
ranging from one week to three years. In general, longer-term data 
collection is considered more advantageous due to the potential for 
producing richer information about patterns that may not be evident in 
shorter-term studies [65]. In this review, however, findings by Henson 
and colleagues demonstrated that assessing passive data for a minimum 
of 5 days was sufficient to infer over 3 months of screen time [57], 
indicating that it may not always be necessary to collect smartphone 
data over a long-time frame. Nonetheless, further study is needed on the 
appropriate time length of data collection as it is likely that the length of 
data collection for smartphone usage patterns is dependent on the 
functionalities and variables and outcomes being assessed. Hence, the 
duration of the study should be carefully considered within the specific 
context to ensure optimization of passive data monitoring. 

The wide range of data analytic approaches reported in this review 
makes it difficult to compare results across studies (see Table 2). While a 
limitation to synthesis efforts at this time, it has been a lesser priority in 
this emerging area compared to the need to experiment and explore 
different analysis approaches to digital phenotyping; hence, it is not 
surprising that a variety of different approaches have been used [66]. 
Machine learning approaches were commonly used in studies in order to 
handle the large amounts of data yet they often lacked appropriate 
procedures of validation. As the area matures, it will be important to 
shift the priority of exploring different analysis approaches to identi-
fying and standardizing the most efficient, accurate, and clinically 
pragmatic approaches. To aid in this effort going forward, it will be 
important to have standardized checklists for reporting digital pheno-
typing research, such as machine learning features, algorithm defini-
tions, missing data, and validation approaches [11]. Further, the use of 
techniques for Functional Data Analysis (FDA) [67], a subfield of sta-
tistics with focus on the analysis of data that can be naturally viewed as 
smooth curves, was not observed in this review. FDA approaches can be 
useful for frequent longitudinal data such as passive data collected from 
smartphones. FDA, however, is a relatively new subfield and therefore 
unfamiliar to practitioners, which might be the reason it did not appear 
in this review. 

30% of the studies (n = 12) in this review were conducted with a 
focus on college students. College students are particularly well suited to 
digital phenotyping as smartphone ownership among college-aged 
adults is higher than any other age group [68]. Students’ response 
rates to active data prompts show that students are accepting of and 
adherent to digital phenotyping apps on their mobile devices [69]. 
Future research on the topic should consider adding a monitoring system 
that may need to be improved to attract a more diverse type of users and 
meet their expectations. Since the need for consistent monitoring can 
sometimes be found in older populations with various functional or 
cognitive abilities, populations may differ from college students in terms 
of daily living and health care needs. In addition, most of the studies had 
a sample size of less than 53 participants in this review. Due to the 
amount of variability resulting from differences in device-usage pat-
terns, lifestyle, and the environment, personal sensing platforms will 
likely require a large user base to be widely applicable. Moreover, even 
though passive data has the potential to revolutionize healthcare, only 
five of the included studies [30,44,45,52,60] mentioned the ethical and 
privacy issues that stimulate participant protection while fostering 
innovation based on passive data. To utilize passive data ethically and 
comprehend the broad ramifications of new technology, clinicians, re-
searchers, and other healthcare professionals need a clear ethical 
framework. 

There may be limitations to this review. Because this review was 
focused on smartphone phones, diverse health-related studies (e.g., 
physical health-related) may not have been captured in our search, 
despite the use of broad terminology. Some may raise an issue regarding 

the additional limitation inherent to scoping review methodology that 
quality assessment was not performed on the included studies. 

5. Conclusion 

The implementation of digital phenotyping may enable the ubiqui-
tous and continuous identification and prediction of individuals’ health- 
related behaviors within the context of their social, mental, and physical 
functioning, reflecting the lived experiences of people in their natural 
environments. In this review, we have catalogued the research to date 
and detailed the approaches of using passive smartphone sensor data to 
derive behavioral markers to correlate with or predict health-related 
outcomes. This review has also included the types of phenotypes (e.g., 
physical activity, social activity and sleep disturbance) that can be 
captured using smartphone-sensor data. Findings will serve as a central 
resource for researchers to survey the field of research designs and ap-
proaches performed to date and move this emerging area forward to-
wards ultimately providing clinical utility in patient care. 

What was already known on the topic 

• Digital phenotyping enables the continuous identification and pre-
diction of individuals’ health-related behaviors.  

• Most studies focused on mental health indicators such as depression 
symptoms and mood. 

What this study added to our knowledge  

• We demonstrated a layer of features derived from raw sensor data 
that can then be integrated to estimate and predict behaviors, emo-
tions, and health-related outcomes.  

• Most studies collected data from a combination of sensors. GPS was 
the most used digital phenotyping data.  

• Digital phenotypes have the potential to be used to measure early 
relapse symptoms and monitor health-related disorders. 
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