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ARTICLE INFO ABSTRACT
Keywords: Background: Digital phenotyping may detect changes in health outcomes and potentially lead to proactive
Digital phenotyping measures to mitigate health declines and avoid major medical events. While health-related outcomes have

Health outcomes
Scoping review
Smartphones

traditionally been acquired through self-report measures, those approaches have numerous limitations, such as
recall bias, and social desirability bias. Digital phenotyping may offer a potential solution to these limitations.
Objectives: The purpose of this scoping review was to identify and summarize how passive smartphone data are
processed and evaluated analytically, including the relationship between these data and health-related outcomes.
Methods: A search of PubMed, Scopus, Compendex, and HTA databases was conducted for all articles in April
2021 using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Scoping Review
(PRISMA-ScR) guidelines.

Results: A total of 40 articles were included and went through an analysis based on data collection approaches,
feature extraction, data analytics, behavioral markers, and health-related outcomes. This review demonstrated a
layer of features derived from raw sensor data that can then be integrated to estimate and predict behaviors,
emotions, and health-related outcomes. Most studies collected data from a combination of sensors. GPS was the
most used digital phenotyping data. Feature types included physical activity, location, mobility, social activity,
sleep, and in-phone activity. Studies involved a broad range of the features used: data preprocessing, analysis
approaches, analytic techniques, and algorithms tested. 55% of the studies (n = 22) focused on mental health-
related outcomes.

Conclusion: This scoping review catalogued in detail the research to date regarding the approaches to using
passive smartphone sensor data to derive behavioral markers to correlate with or predict health-related out-
comes. Findings will serve as a central resource for researchers to survey the field of research designs and ap-
proaches performed to date and move this emerging domain of research forward towards ultimately providing
clinical utility in patient care.
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1. Introduction

Measurements of health-related outcomes over time, such as
mobility, mood, and physical distress, can help detect signs of decline
and trigger steps to intervene [1] and ultimately enhance health out-
comes [2]. Measuring these health-related outcomes is typically
accomplished by the participant actively self-reporting measures and
answering validated questionnaires [3]. However, acquiring these data
using a self-report approach has several limitations, including recall and
social desirability bias [4]. One potential solution to these limitations is
digital phenotyping, or the passive modeling of smartphone data, such
as Global Positioning System (GPS) and accelerometer data. These data
do not require deliberate participant input yet still detect moment-to-
moment user actions, potentially signaling current health states.

Digital phenotyping has been defined as the “moment-by-moment
quantification of the individual-level human phenotype in situ using data
from personal digital devices,” specifically from mobile devices such as
smartphones [5]. Smartphones are now nearly ubiquitous in North
America and provide a rich source of data about human behavior [6].
Using passively collected smartphones data, digital phenotyping can be
used to model variations in an individual’s behavior over time,
including their mobility (via GPS data), sociability (via text message and
telephone logs), and sleep (via accelerometer data and screen activity
logs) [7]. Digital phenotyping can model changes in behavior at the
individual level while accounting for between-individual heterogeneity
because each individual tends to interact with their smartphones
uniquely [8-10]. Furthermore, passive smartphone data can be linked
with health-related self-report measures and clinic physical examination
findings [7]. Emerging digital phenotyping approaches could lead to
clinically useful digital “biomarkers” that enhance diagnostic assess-
ment, tailor treatment choices, improve disease monitoring and form the
basis of new interventions and care delivery models [11].

Although several reviews have examined the use of smartphones
generally for health and well-being [12-15], to the best of our knowl-
edge, how passive smartphone data are processed and used in digital
phenotyping, including their relationship to health-related outcomes,
has not been systematically reviewed. Thus, the purpose of this review is
to identify and summarize how passive smartphone data are processed
and evaluated as behavioral markers, defined as behaviors, thoughts,
feelings, traits, or states identified using personal sensing [16].

2. Methods

We used the Joanna Briggs Institute (JBI) approach, Arskey and
O’Malley framework [17], and the PRISMA extension of scoping reviews
(PRISMA-ScR) [18] to guide this scoping review [19].

2.1. Search strategy

Keywords were identified by reviewing relevant studies and MeSH
terms. As shown in Table 1, search strings were derived using key words
such as digital-phenotyp*, digital-trac*, Digital-sens*, Smartphone*,
sensor data*, “Health Outcome Assessment”, “Quality of life”, “Health”,
Well-being, and “health outcomes”. Databases searched included
PubMed (MEDLINE), Scopus, Compendex, and Health Technology
Assessment (HTA) with no specified date limits. The search was per-
formed in April 2021. Two university research librarians helped in the
literature search (Table 1).

2.2. Inclusion and exclusion criteria

Studies included were: (a) peer-reviewed reports of original
research, (b) conference proceedings, (c) published in English, and (d)
focused on collecting passive smartphone data for digital phenotyping.
Studies excluded were: (a) methodologically focused and did not collect
data (e.g., design overviews, conceptual frameworks), (b) posters,
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Table 1
Search Terms for the Literature Search.

Database Search Terms Results

PubMed (digital-phenotyp*[tiab] OR digital-trac*[tiab] 821
OR Digital-sens*[tiab] OR Smartphone*[tiab] OR
sensor data*[tiab]) AND (“Health Outcome
Assessment”[Mesh] OR “Quality of life”[Mesh]

OR “Health”[Mesh:NoExp] OR Wellness[tiab] OR
Wellbeing[tiab] OR Well-being[tiab] OR “quality

of life”[tiab] OR “health outcomes”[tiab] OR
“Health”[tiab]) AND (“Mental Health”[Mesh] OR

“ Physical Health”[Mesh] OR “Social

Health”[Mesh])

(digital-phenotyp* OR digital-trac* OR Digital- 1891
sens* OR Smartphone* OR sensor data*) AND

(“Health Outcome Assessment” OR “Quality of

life” OR “Health” OR Wellness OR Wellbeing OR
Well-being OR “health outcomes™) AND (“Mental
Health” OR “ Physical Health” OR “ Social

Health”) AND NOT INDEX(medline)

(digital-phenotyp* OR digital-trac* OR Digital- 380
sens* OR Smartphone* OR sensor data*) WN KY)

AND ((“Health Outcome Assessment” OR

“Quality of life” OR Health OR Wellness OR

Wellbeing OR Well-being OR “health outcomes™)

WN KY)) AND ((“Mental Health” OR “Physical

Health” OR “Social Health”) WN KY))) AND ([70]

WN LA))

(digital-phenotyp* OR digital-trac* OR Digital- 78
sens* OR Smartphone* OR sensor data*) AND
(“Outcome Assessment, Health Care” OR

“Outcome and Process Assessment, Health Care”

OR “Health Services Research” OR “Quality of

life” OR “Health” OR Wellness OR Wellbeing OR
Well-being OR “quality of life” OR “health

outcomes” OR “Health”) AND (“Mental Health”

OR “ Physical Health” OR “ Social Health” OR

“social health” OR “Mental health” OR “physical
fitness™)

Scopus

Compendex

Health Technology
Assessment

meeting abstracts, protocols, or literature reviews, (c) non-smartphone
(e.g., clinical lab equipment) studies, and (d) intervention or app
development studies.

2.3. Review process

Articles were imported from EndNote© into Rayyan (https://rayyan.
qcri.org/) for the screening and selection process [20] (See Fig. 1). Titles
and abstracts of all articles were screened by two assessors (KL and TCL)
for eligibility. Screened-in full text articles were obtained and inspected
for inclusion by the assessors, independently.

2.4. Data extraction

Data extracted included citation (study site), sample (study length),
topical focus, measures, smartphone sensors (application), analytical
methods, and main results (Table 2).

2.5. Data analysis

The results were reported as a narrative summary. Consistent with
directive content analysis [21], study team members discussed the
findings listed in the summary table to ensure that the categories and the
contents underneath were expansive enough to capture the findings of
each article.

3. Results
The initial search yielded 3,170 articles. After removing duplicates

and assessing each for eligibility, 138 article full text articles were
reviewed, resulting in 40 articles that met the inclusion and exclusion


https://rayyan.qcri.org/
https://rayyan.qcri.org/
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Literature database search (n =3170):
.5 PubMed: 821, Scopus: 1891, Compendex: 380, Health Technology Assessment: 78
g
[ =4
o]
S v
S
Articles after duplicates removed (n =2770)
—
‘o .
Articles excluded (n = 127):
l Description of a service with no data: 28
w ’ (i.e., review and protocol articles)
' Articles screened R Not focused on health outcome: 34
§ (n =265) "| Not using only smartphone: 33
a Not relevant to study questions:32
(i.e., algorithm, app development,
model, method, and intervention
— .
studies)
o
Full-text articles excluded (n = 98):
- A 4 Description of a service with no data: 16
= . . s .
= Full-text articles assessed for eligibility (i-e., review and qualitative studies)
& (n=138) » Not focused on health outcome: 19
w Not using only smartphone: 24
Not relevant to study questions: 39
(i.e., app development, model, method,
and intervention studies)
'
= A4
(]
3 Primary dataset (n = 37) and secondary data analysis (n=3) studies included in synthesis
§ (n =40)
|

Fig. 1. Flow diagram of study selection process.

criteria (Fig. 1).

Findings were organized under six topics: 1) characteristics of the
included studies, 2) data collection, 3) feature extraction (see appendix),
4) data analytics, 5) behavioral markers, and 6) health-related
outcomes.

3.1. Characteristics of the included studies

Among the 40 studies, 26 were conducted in the USA, six in Europe,
two in Australia, and five in Asia. See Table 2 for study characteristics.
Of those studies that reported a study timeframe, half (n = 20) lasted
1-2 weeks (n = 14) or 4 weeks (n = 6). Six (15%) studies lasted 5-8
weeks and another 15% (n = 6) lasted > 10 weeks. Study sample size
ranged from 7 to 816. Sixty-five percent of the reviewed studies (n = 26)
had a sample size of less than 53 participants. 12 (30%) of the selected
studies targeted college students. A number of different smartphone
apps were used for passive data collection; these included study team-
developed software (n = 6), Purple Robot (n = 5), Sensus (n = 4),
Beiwe (n = 3), StudentLife (n = 3), CrossCheck (n = 2), mindLAMP (n =
2), and myriad others in single studies.

3.2. Data collection

Data collection in all studies included both passive raw smartphone

sensor data and participant-reported data, which are considered the
“ground truth” thereby serving as validation of passive data [22].

3.2.1. Smartphone-based passive data collection

Table 3 shows the smartphone passive data used in studies. GPS
sensor data were the most frequently collected type. Over half of studies
(n = 25, 62.5%) collected GPS data about users’ locations and move-
ments [6,23-46]. For 3 studies, GPS was the only data type collected or
gathered in conjunction with patterns of Wi-Fi connections [25,39,46],
or GPS in conjunction with accelerometer data (n = 11)
[6,23,25,27,32,33,36,37,39,43,45]. Regarding the users’ location,
Bluetooth (n = 3) which indicates the distance among people was also
used in an attempt to examine levels of sociability [47-49]. In fact, of the
three studies that used Bluetooth, two aimed to detect users’ physical
encounters [47,48]. Microphone data were used in 5 studies (12.5%)
and gyroscope data in one study. Microphone data were used to infer
social activity [25], location [23,34,50], and physical activities [39],
while gyroscope data were used to detect daily physical activities (i.e.,
resting, exercising, running, walking) [37].

Other smartphone data collected included the frequency of using text
messages (n = 17) [23,24,27,29,31-34,39,44,49,51-56], the number of
calls (n = 21), timings of screen on/off [29,31,33,38-40,56,57],
ambient light values [25,29,39,43,58], and time spent on the phone
[41,52,59]. Data in terms of battery level and status [31], browser usage
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Table 2
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Studies included in the review reporting digital phenotyping to understand health-related quality of life using smartphone.

Citation Sample Topical Focus Measures Smartphone Sensors Analytical Main Results
(Study Site) (Study Length) (Application) Methods
[23] Abdullah 7 bipolar disorders Social rhythm Social rhythm metrics —5 GPS, Accelerometer, Logistic Root-mean-square error
et al., 2016 (4 weeks) Call/text logs, regression (RMSE) 0.92 for personalized,
(USA) Microphone Classification 1.40 for the generalized. 85%
(Mood Rhythm) (SVM) (precision, binary), 86% recall
[24] Barnett 15 schizophrenias Schizophrenia Depression Sleep quality GPS, Call/text logs Multivariate time  The rate of behavioral
etal., 2018 (Up to 3 months) relapse Warning symptoms (Beiwe) series anomalies detected in the 2
(USA) symptoms linear classifiers weeks prior to relapse was 71%
higher than the rate of
anomalies during other time
periods.
[25] Ben-Zeev 47 students Depression PHQ-9 GPS, Wi-Fi, Mixed-effects Stress: geospatial activity and
et al., 2015 (10 weeks) symptom Stress Perceived Stress Scale Accelerometer, Sound, linear sleep duration (p <.05,
(USA) Loneliness (PSS) Light sensor, Microphone Penalized respectively).
UCLA Loneliness Scale (Developed software for functional Depression: speech duration,
(UCLA-LS) study) regression geospatial activity, and sleep
duration (p <.05, respectively)
Loneliness: kinesthetic activity
(p <.01)
[6] Berry et al., 23 amyotrophic Amyotrophic Amyotrophic Lateral Accelerometer, GPS, Call Linear regression The mean pause time in speech

2019
(USA)

[47] Boonstra
et al., 2015
(Australia)

[48] Boonstra
et al., 2017
(Australia)

[26] Boukhechba
et al., 2018a
(USA)

[27] Boukhechba
et al., 2018b
(USA)

[28] Canzian &
Musolesi, 2015
(UK)

[29] Cao et al.,
2020
(USA)

[59] DeMasi
et al., 2017
(USA)

[51] Dissing
et al., 2020
(Denmark)

[30] Fraccaro
et al., 2019
(UK)

[31] Gao et al.,
2016
(China)

[32] Gong et al.,
2019
(USA)

lateral sclerosis
(24 weeks)

14

(1 week)

63
(4 weeks)

228 students
(2 weeks)

72 students
(2 weeks)

28
(14 days)

13 families of
adolescent with
major depressive
disorder

(8 weeks)

53
(8 weeks)

816
(4 weeks)

21
(10 days)

127
(30 days)

52
(2 weeks)

lateral sclerosis

Social networks

Social network

Social anxiety

Social Anxiety
Depression
symptom
Positive/
Negative Affect
Depressive mood

Depressive
symptom

Well-being

Well-being

Social function

Social anxiety
Loneliness

Social anxiety

Sclerosis Functional
Rating Scale (ALSFRS-R)
Non-negative matrix
factorization (NMF)

PHQ-9
Generalized Anxiety
Disorder (GAD)-7

Social Interaction Anxiety
Scale (SIAS)

SIAS

Depression Anxiety Stress
Scales (DASS)

Positive and Negative
Affect Schedule (PANAS)
PHQ-9

PHQ-9

Hamilton Rating Scale for
Depression (HAM-D)
Hamilton Anxiety Rating
Scale (HAM-A)

Mood and energy

UCLA-LS

Major Depression
Inventory (MDI)
Knowledge, Skills and
Abilities (KSQ)

Activity diaries

SIAS

UCLA-LS

SIAS

logs

(Beiwe)
Bluetooth
(Purple Robot)

Bluetooth
(BluetoothManager)

GPS
(Sensus)

GPS, Accelerometer,
Calls/texts logs
(Sensus)

GPS
(MoodTraces)

GPS, Calls/text logs,
Light sensor, Screen
usage

(MobileSens)

Accelerometer, Phone
usages

(Funf Open Sensing
Framework)

Call/text logs
(Developed software for
study)

GPS
(GPSLogger)

GPS, Call/text logs, App
usage, Screen on/off,
Charging

(SOLVD)

GPS, Accelerometer,
Call/text logs

(Sensus)

Correlation

Fruchterman-
Reingold

Classification
(Neural
networks)
Regression
Correlation

Classification
(SVM)

Linear regressor
A support vector
regressor

Classification
(Logistic
regressions)

Multiple linear
regression

Clustering
algorithms and
semantic
enrichment
Wilcoxon-Mann-
Whitney test

Correlation
Effect size

had increased by 0.02 sec per
month across the sample.
Correlation between network
metrics and the number of
times a smartphone scanned.
Social networks of proximity
were estimated from Bluetooth
data and 95% of the edges were
scanned at least every 30 min.
85% (accuracy, binary), 85%
F1 score

Social anxiety score (on a scale
of 0-80) with RMSE 7.06
Students’ social anxiety,
depression and affect levels are
associated with their mobility,
activity levels, and
communication patterns.

96% (precision, binary), 94%
recall

88% (accuracy, binary) in
teens’ PHQ-9 score

90% accuracy in teen and
parents’ PHQ-9 score

RMSE 3.38 in teens vs 3.47 in
parents.

95% (accuracy, binary)

In baseline, a higher number of
smartphone interactions was
associated with lower levels of
loneliness as well as lower
levels of disturbed sleep for
men. In follow-up analyses, a
high vs low level of smartphone
interaction was associated with
an increase in loneliness and
depressive symptoms over time
for women.

75% precision, 60% recall

All thresholds: F1 score = 0.65.
RMSE = 1.1 (SD 0.3)

Correlation among smartphone
usage and social anxiety and
loneliness

Behavioral metrics observed in
temporal proximity to phone

calls have stronger associations
with social anxiety scores than

(continued on next page)
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Citation Sample Topical Focus Measures Smartphone Sensors Analytical Main Results

(Study Site) (Study Length) (Application) Methods
metrics observed in temporal
proximity to text message
events.

[50] Harari 48 students Well-being Socio-demographic Accelerometer, Latent growth Stability estimates were
et al., 2017 (10 weeks) characteristics Microphone curve moderate to high for activity (r
(USA) (StudentLife) mean = 0.66) and sociability (r

mean = 0.72)

[33] Henson 88 Social rhythm PHQ-9 GPS, Accelerometer, Correlation Social rhythms were negatively
et al., 2020 (45 schizophrenias, GAD-7 Screen on/off, Call/text associated with symptoms of
(USA) 43 healthy control) Psychosis symptoms logs anxiety, depression, psychosis,

(3 months) Sleep (mindLAMP/Beiwe) and poor sleep (Spearman p =

Sociability —0.23to — 0.30, p < 0.001) in

schizophrenias. In healthy
control, more stable social
rhythms were positively
correlated with
symptomatology (Spearman p
= 0.20 to 0.44, p < 0.05).

[57] Henson 88 Schizophrenia PHQ-9 Screen on/off Linear An association between
et al., 2021 (54 schizophrenias, relapse GAD-7 (mindLAMP/Beiwe) regression, smartphone screen time metrics
(USsA) 34 healthy control) symptoms Sleep Specification and cognition (adjusted R2 =

(>5 days) Sociability curve analysis 0.107, P <.001) in patients with
schizophrenia was found.
Specification curve analysis
revealed a wide range of
heterogenous associations with
screen time from very negative
to very positive.

[34] He-Yueya 61 schizophrenias Behavioral 10 items: how you’ve been GPS, Microphone, Call/ Classification 2.468 Mean absolute error
et al., 2020 (14 days) stability doing over the last few text logs (Gradient (MAE) (accuracy, binary)
(USA) days. (CrossCheck) boosted Stability Index (MAE = 2.556)

regression trees) Greater stability in social
activity (e.g., calls and
messages) were associated with
lower symptoms, and greater
stability in physical activity (e.
g., being still) appeared
associated with elevated
symptoms.

[35] Huang 18 Social anxiety SIAS GPS Linear regression Least Absolute Shrinkage and
et al., 2016 (10 days) (Developed software for Selection Operator (LASSO) (A
(USA) study) = 4.4) demonstrates the

negative relationship between
visiting religious locations and
social anxiety level.

[53] Huang 52 students Social anxiety SIAS Accelerometer, Call/text Effect-size The results show substantially
et al., 2017 (2 weeks) logs analysis different behavioral markers
(USA) (Sensus) prior to outgoing phone calls

when comparing individuals
with high and low social
anxiety.

[60] Kelly et al., 541 Health status Short form (SF)-36 Accelerometer Correlation While results have shown a
2016 (>72h) (Health-U) statistically significant
(Ireland) correlation between duration of

activity and health status (r =
0.042), these correlations are
not strong enough to make
accurate predictions about a
persons’ health status.

[54] King et al., 27 students Mood Center for Epidemiological ~ Call/SMS logs, App usage  Classification 65% (Accuracy, 4 classes),
2020 (6 weeks) Studies Depression Scale (iYouVvu) (SVM) 61.8% F-score
(Netherlands) (CES-D) * Dataset provided by

Asselbergs et al. (2016) from
Netherlands

[36] Masud 33 Depression PHQ-9 GPS, Accelerometer Linear regression Root-mean-square deviation
et al., 2020a (11 weeks) severity level (Data Collector) Classification (RMSD) 3.256
(Bangladesh) (SVM)

87.2% (accuracy, binary)

[37] Masud 33 Depression Quick Inventory of GPS, Gyroscope, Linear regression RMSD 3.117
et al., 2020b (11 weeks) symptom Depressive Accelerometer Classification
(Bangladesh) Symptomatology-Self- (Purple Robot) (Quadratic 95% (accuracy, binary)

report (QIDSSR)16 discriminant)

(continued on next page)
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Citation Sample Topical Focus Measures Smartphone Sensors Analytical Main Results

(Study Site) (Study Length) (Application) Methods

[52] Messner 157 students Well-being Stress Call/SMS logs, Phone Multivariate Stress: number of SMS (-3.539,
et al., 2019 (8 weeks) Drive usage multilevel SE = 0.937)

(Germany) Mood (Insights) models Mood: total usage time (-0.019,
SE = 0.004) and call duration
(-0.016, SE = 0.007)
Drive: Facebook usage time
(-0.127, SE = 0.041)

[49] Pulekar & 9 students Social loneliness Big-Five personality traits Call/text logs, App usage,  Classification 98% (accuracy, binary), while
Agu, 2016 (2 Weeks) UCLA-LS Bluetooth, Wi-Fi, Browser  (J48) factoring in user personality
(UAS) usage types.

(Socialoscope)

[38] Rhim et al., 78 students Subjective well- Concise Measure of GPS, App usage, Screen Hierarchical The significance of user
2020 (4 months) being Subjective Well-Being on/off regression attributes (e.g., personality,
(South Korea) (COMOSWB) (Developed software for self-esteem) on subjective well-

study) Classification being and salient factors
(High derived from smartphone data
performance (e.g., time spent on campus,
models) ratio of standing/sitting
stationary, expenses) that
significantly account for
subjective well-being.
71% (the average F1- macro
score for all users was 38%)

[55] Ryan et al., 26 bipolar disorder Mood mood Call/text logs Multivariate An increase in rapid thoughts
2020 & 12 healthy control ~ Energy (Developed software for mixed effect over time was associated with a
(USA) (28 days) Intellect study) decrease in outgoing text

(thoughts) messages (f = -0.02; P =.04),
and an increase in impulsivity
self-ratings was related to a
decrease in total call duration
(p =-0.29; P =.02).

[39] Saeb et al., 208 Depression PHQ-9 GPS, Light sensor, Classification Foursquare: 0.62 (Average
2017 (6 weeks) symptom Anxiety GAD-7 Microphone, Screen on/ (Decision trees AUC)

(USA) off, Accelerometer, Call/ with the gradient phone sensor: 0.84 (Average

text logs, Wi-Fi boosting AUQC)

(Purple Robot) optimization) Foursquare + phone sensor:
0.88 (Average AUC, binary)
Significant relationships
between the time spent in
certain locations and
depression and anxiety were
identified, although these
relationships were not
consistent.

[40] Saeb et al., 48 students Depression PHQ-9 GPS, Screen on/off Correlation Correlation between GPS
2016 (10 weeks) symptom (StudentLife) features and clinical PHQ-9
(USA) *Dataset provided by Wang

et al. (2014) from USA

[41] Saeb et al., 28 Depression PHQ-9 GPS, Phone usage Classification 86.5% (accuracy, binary)
2015a (2 weeks) symptom (Purple Robot) (Logistic
(USA) regression)

[42] Saeb et al., 18 Depression PHQ-9 GPS Correlation Correlation between location
2015b (2 weeks) symptom (Purple Robot) features and clinical PHQ-9
(USA)

[43] Sarda et al., 47 diabetes Diabetes base on PHQ-9 Accelerometer, GPS, Classification 79.07% (accuracy, binary [
2019 (2 weeks) depression Light sensor, Call logs (XGBoost) 95% CI: 74%, 84%])

(India) (Developed software for
study)

[44] Singh et al., 50 Individual’s risk Risk Propensity Call/text logs, GPS Classification 78% (precision, binary), 90%
2018 (10 weeks) propensity Personality traits (Funf platform) (SVM) recall
(USA)

[56] Stanislaus 75 bipolar disorder, Activity International Physical Accelerometer, Screen Linear mixed Patients with bipolar disorder
et al., 2020 15 healthy control, Depression Activity Questionnaire on/off, Call/text logs model had decreased physical
(Denmark) & 32 unaffected symptom Mania (IPAQ) (Monsenso) (number of steps) and social

relatives HAM-D activity (more missed calls) but
(>1 month) FAST a longer call duration compared

with healthy control.
Unaffected relatives also had
decreased physical activity
compared with healthy control
but did not differ on daily
self-reported activity or social
activity.

(continued on next page)
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Citation Sample Topical Focus Measures Smartphone Sensors Analytical Main Results

(Study Site) (Study Length) (Application) Methods

[61] Staples 17 schizophrenias Sleep Pittsburgh Sleep Quality Accelerometer Multiple linear 0.75 MAE accuracy
et al., 2017 (6 weeks) Index (PSQI) (Beiwe) regression
(USA)

[45] Thakur & 45 students Subjective GT-PHQ-9 GPS, Accelerometer, Call Classification Stress: 82.6% (AUC, binary)
Roy, 2020 (10 weeks) feeling of PSS logs. (Logistic Depression: 74% (AUC, binary)
(India) psychological PSQI (StudentLife) regression) *Dataset provided by Wang

well-being UCLA-LS et al. (2014) from USA

[58] Wang et al., 36 schizophrenias Schizophrenia 7-item Brief Psychiatric Audio amplitude, Classification 1.45 MAE (accuracy, 3 classes)
2017 (30 days) relapse Rating Scale (BPRS) Accelerometer, Light (Gradient with r = 0.70, p < 0.0001.
(USA) symptoms Sensor, App usages, Call Boosted

logs Regression Trees)
(CrossCheck)

[46] Yue et al., 79 students Depression PHQ-9 GPS, Wi-Fi Classification 83% (Precision, Binary)

2020 (15 days) symptom (LifeRhythm) (SVM) F1 scores (up to 0.76 compared
(USA) to 0.5 before data fusion)
Table 3

Summary of the smartphone-sensor data for behavioral markers or health-related outcomes.

Domain Health related Behavioral Type of feature Smartphone Sensors
outcomes markers
Mental Early symptoms of Mobility [24], Sociability [24,58], Screen [57], Physical ~ GPS [24], Accelerometer [58], Call/text logs [24], Call logs
health relapse in activities [58], Sleep [58] [58], Screen on/off [57], Audio amplitude [58], Light sensor
schizophrenia [58], App usages [58]
Depression Location [25,37,39,40,42,46], Sleep [25,43], Speech GPS [25,28,36,37,39-43,46,59], Wi-Fi [25,39,46],
symptoms duration [25], Mobility [28,36,43,59], Social activity Accelerometers [25,36,37,39,43,56], Gyroscope [37], Sound
[43,56,59], Physical activity [36,37,43,56], Daily-life [25], Microphone [25,39], Call/text logs [39,56,59], Call logs
behavior [41] [43], Light sensor [25,39,43,59], Screen [39,40,56,59], Phone
usage [41]
Stress Sleep duration [25], Location [25] GPS [25], Wi-Fi [25], Accelerometers [25], Sound [25], Light
sensor [25], Microphone [25]
Loneliness Kinesthetic activity [25], Social activity [25,49], Phone GPS [29], Wi-Fi [49], Accelerometers [25], Sound [25], Call/
usage [29], Behavioral dynamics [29] text logs [29,49] App usage [29,49] Bluetooth [49], Browser
usage [49], Screen [29], Light sensor [25]
Social anxiety Mobility [26,27,35], Physical activity [27], Social GPS [26,27,29,32,35], Accelerometers [27,32,53], Call/text
activity [27,53], Phone usage [29], Behavioral logs [27,29,32,53], Screen [29], App usage [29] Battery level
dynamics [29,32,53] [29]
Mood Levels of valence (mood), and arousal (drive) [54], Daily Call/text logs [54,55], App usage [54]
behaviors [55]
Physical Monitoring of Amyotrophic lateral Speech [6] Speech [6]
health sclerosis
Social rhythms Physical activity [23], Location [23] GPS [23,33], Accelerometer [23,33], Call/text logs [23,33],
Mobility [23], Social activity [23], Circadian Routine Microphone [23], Screen [33]
and Weekend Day Routine [33]
Behavioral Physical activity [34], Speech [34], Phone usage [34] GPS [34], Call/text logs [34], Microphone [34]
stability
Sleep Sleep duration [61] Accelerometer [61]
disturbances
Social Social networks A proxy for social ties [47,48] Bluetooth [47,48]
health Social function Daily activities [31] GPS [31]
Well-being Sleep [511], Physical activity [38,45,50,51], Social Accelerometer [45,50,51], Phone usages [51,52], Call/text

activity [30,45,50], Phone usage [38,52], Location

[38], Mobility [45]
Health status Mobility [60]
Individual’s

risk propensity

Location [44], Social activity [44]

logs [30,52], Call logs [45], Microphone [50], GPS [38,45],
App usage [38], Screen [38]

Accelerometer [60]

Call/text logs [44], GPS [44]

[49], and app usage [31,38,49,54,58] were also collected in 15% (n = 7)
of the selected studies.

Most studies (n = 28, 70%) collected data from a combination of
sensors. Eight studies collected data from > 5 sensors
[23,25,29,31,33,39,49,58]. Studies with > 3 sensors (n = 20, 50%)
commonly relied on machine learning prediction models to process and
interpret data. Twelve studies (30%) collected data from one sensor.

3.2.2. Smartphone-based self-reported data & questionnaires

Nine studies indicated the type of self-report data used as ground
truth [23,28,30,31,38,41,45,46,58], while the remaining studies did not
report ground truth data. Most studies (n = 38) administered
participant-reported questionnaires on participants’ smartphones.

3.3. Feature extraction

Feature extraction means transforming the raw data acquired by
sensors into features that allow for more meaningful information [16].

3.3.1. Physical activity

Accelerometer data were used to model users’ physical activity
[23,27,34,36,37,38,43,45,50,51,56,58]. These studies aimed to recog-
nize basic daily activities such as walking [34,36,37,39,45,50,58,59],
standing or sitting [34,37,38,39], running [37,39,45,50,58,59], exer-
cising [36,37], lying down [59], riding a bike [34,39,58,59] being in a
vehicle [34,39,58], or being stationary [23,25,34,36,50,58,60]. In
addition, physical activities were explored by detecting steps taken
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[36,37,56] and distinguishing physical activity from activities of daily
living [30,33,61].

3.3.2. Location and mobility

Derivation of users’ mobility and location was computed in 24
studies using data from GPS, Wi-Fi, and/or Bluetooth sensors, most (n =
19) of which aimed to identify basic daily mobility trajectories such as
users’ daily range of movement as reported by GPS data. These studies
assessed the number of location clusters (n = 11), total distance (n = 9),
location entropy (n = 8), time spent at home (n = 5), normalized entropy
(n = 4), and transition time (n = 3) (see appendix). One study that
included 15 patients with schizophrenia showed how passive data-
—including radius of gyration, maximum diameter, the standard devi-
ation of flight length, and average flight duration—were potentially able
to detect early warning signs of relapse [24].

3.3.3. Social activity

Social activity was examined in 12 studies using call and text logs to
detect social interaction [23,24,27,30,35,43-45,49,56,58,59], the
number of outgoing and incoming texts (n = 4), total outgoing and
incoming text length (n = 4), number of outgoing and incoming calls (n
= 6), and the total duration of outgoing and incoming calls (n = 4).
Bluetooth was used to examine social ties [47,48]. The employment of
microphones was to assess silence, noise, and voices of sociability
behavior [50]. Six studies estimated communication patterns, such as
the number of text messages sent and received. Speech was detected
with a microphone [6,23,27,34]; analyses evaluated conversation time
[23,34], speaking rate [6], pitch variations [6,23], and speech duration
[27,34].

3.3.4. Sleep

Users’ sleep was examined [25,33,43,58,59] by detecting sleep
duration [25,58], bedtime and rise time [58], and sleep patterns
[33,43,59] using accelerometers [25,59], sound [25], light sensors
[25,43,58], screen on/off [33], and smartphone usage [59].

3.3.5. In-phone activity

Smartphone usage patterns were collected [31,38,41,49,52,54],
including screen on/off [31], social media activity [31,38,49,52,54],
browser usage [31,49], and application usage [31,38,41,49,52]. These
data were correlated with participant-reported measures of well-being
[38,52], social anxiety [31], loneliness [31,49], mood [54], and
depressive symptoms [41]. For example, Saeb et al. (2015a) reported
that phone usage duration and usage frequency were correlated with the
severity of depressive symptoms from participant-reported PHQ-9 in 28
adult participants (r = 0.54, p =.011, and r = 0.52, p =.015, respec-
tively) [41].

3.4. Data analytics

The main analytical methods used for passive data analysis were
regression models and predictive modeling with machine learning
techniques [62].

3.4.1. Type of machine learning method

Most studies (n = 33) reported on supervised machine learning (i.e.,
classification and regression) to classify data or predict outcomes
accurately using self-reported data as “ground truth”. Unsupervised
learning (i.e., clustering) was used only in a few studies (n = 4), while 10
studies implemented both supervised and unsupervised machine
learning approaches. A very broad range of classification of algorithms
of machine learning techniques were applied (n = 19): support vector
machines [23,28,36,44,46,54], logistic regression [41,45,59], linear
classifiers [6,24], gradient boosted regression trees [34,58], neural
networks [26], support vector regressor [29], quadratic discriminant
[371, high-performance models [38], decision trees with the gradient
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boosting optimization [39], XGBoost [43], J48 [49], linear dynamic
model [53], linear regressor [57], and multiple linear regression [61].

Among the included studies, unsupervised learning algorithms were
often used to pre-process sensor data before using supervised methods
for further processing. In this review, 14 studies chose to use clustering
algorithms, including k-means [26,27,29,33,38-42] and density-based
spatial  clustering of applications with noise (DBSCAN)
[23,30,36,37,46].

3.4.2. Cross validation strategies

The most used types of cross-validation were leave-one-out
[26,28,36,37,41,43,44,46,58,59,61], 10-fold [23,26,34,35,39], and k-
fold [45]. Four studies did not report cross-validation. In addition, the
most reported evaluation metrics were accuracy
[26,29,34,36,37,41,43,49,54,58,59,61], sensitivity [23,28,30,44], area
under the curve (AUC) [39,45], precision [23,28,30,44,46], and F1
score [26,30,38,46]. The rates of metrics used included: accuracy from
65 to 98%, sensitivity (i.e., recall) from 60 to 94%, precision from 75 to
96%, AUC from 62 to 84%, F1 from 65 to 85%.

3.5. Behavioral markers

Behavioral markers are higher-level features, which reflect behav-
iors, cognitions, and emotions translated from low-level features (e.g.,
social activity) and sensor data (e.g., call/text logs) [16].

3.5.1. Mood and Stress

Measurements of participants’ moods included positive or negative
mood valence and arousal (i.e., the intensity an emotion or mood state)
[54] and impulsivity self-ratings [55], which have been detected using
app usage and call/text log patterns. For instance, a study of 47 students
showed an association of daily stress levels (e.g., depression and lone-
liness) with a smartphone’s sensor-derived geospatial activity (using
GPS and WiFi; p <.05) and sleep duration (using device use data,
accelerometer inferences, ambient sound features, and ambient light
levels; p <.05) by mixed-effects linear modeling [25].

3.5.2. Sleep disturbance

One study of 17 patients with schizophrenia found that patients’
sleep duration could be predicted with approximately 75% accuracy
using passively collected accelerometer data and actively collected
Pittsburgh Sleep Questionnaire Inventory (PSQI) score [61].

3.5.3. Loneliness

Passive data were used to measure the relationship of loneliness with
phone usage behaviors [31], kinesthetic activity [25], and users’ daily
interactions and communications [49]. For example, a study of 9 stu-
dents over 2 weeks indicated that of the big 5 personality traits, extra-
version and emotional stability could be predicted with 98% accuracy
through smartphone-sensed loneliness from their communication and
interaction patterns (e.g., calls and social media usage) [49].

3.5.4. Social rhythms

Social rhythms refer to the day-to-day variability of daily, habitual
behaviors (e.g., mealtimes, bedtimes, and patterns of social interaction)
[63]. Abdullah et al. (2016) reported, with 85% accuracy, the automatic
assessment of social rhythm metrics for location, mobility, and conver-
sation frequency in the daily lives of 7 patients with bipolar disorder
[23]. In another study of 88 patients with schizophrenia that investi-
gated patients’ circadian rhythms, social rhythms were negatively
associated with symptoms of anxiety, depression, and poor sleep, while
more stable social rhythms were positively correlated with symptom-
atology [33].

3.5.5. Social context
Social anxiety was measured using Bluetooth Scans to quantify the
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proximity of social networks [47,48] or communication patterns or
phone use patterns [31,32]. In one study of 18 college students, social
interaction among students was associated with improved academic
performance when they were surrounded by peers [35]. Similarly, one
study with 21 participants reported that social functioning (e.g.,
employment, shopping, and social activities) could be predicted with
75% precision with daily life based on GPS data. [30].

3.6. Health-related outcomes

Health-related outcomes are health-related issues and disorders that
can be potentially identified with the entire set of features and behav-
ioral markers.

3.6.1. Depression symptoms

Depressive symptoms (n = 12, 30%) were the most investigated
health-related measure among self-reported outcomes
[25,28,29,36,37,39-43,46,56], most measured by the PHQ-9
[28,29,36,39-43,46]. Researchers used smartphone-sensor data to
correlate depressive symptoms with features such as geographical
location and mobility [25,28,29,36,37,39,40,42,43,46], physical activ-
ity [25,36,37,43,561, social activity [29,43,56], sleep duration [25,43],
daily behavior [41], and speech duration [25]. The results of the studies
showed an accuracy of 79%-96% in classifying symptoms of depression
as seen in Table 2.

3.6.2. Early symptoms of relapse in schizophrenia

Passive smartphone-sensor data were used to investigate symptoms
of schizophrenia [57,58], using features such as physical activities
[57,58], mobility [571, sleep [58], and sociability [57,58]. The main
intent of the studies was to predict early warning signs for relapse
(relapse detection rate was 71% higher than in other time periods) [57]
or schizophrenia symptoms (predicting a user’s Brief Psychiatric Rating
Scale score within 1.59 error using only passive sensing) [58].

3.6.3. Monitoring of Amyotrophic lateral sclerosis

One clinical marker reported for physical health using smartphone-
sensor data was amyotrophic lateral sclerosis (ALS) [6]. Berry et al.
(2019) reported the timing of speech-based call logs and found that the
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mean pause time during speech increased by 0.02 s/month across 23
ALS patients followed for up to 24 weeks [6].

3.6.4. Well-being

Well-being was associated in five studies using sleep [59], physical
activity [50,59], social interactions [50,51], location [38], mobility
[60], and phone usage behavior [38,52]. Kelly et al. (2016) conducted a
study that tracked 541 participants’ movement duration and average
stationary time using an accelerometer for at least 74 h, and findings
reported a correlation between the duration of activity and health (r =
0.042) [60].

4. Discussion

In this scoping review, we aimed to synthesize the literature,
focusing on how researchers have used passive smartphone-sensor data
to derive behavioral markers and correlate or predict health-related
outcomes. Among the 40 health-related publications using digital phe-
notyping to analyze passively collected data, 55% of the studies (n = 22)
focused on mental health-related outcomes. The findings show an area
of imminent opportunity for advancing research and clinical insights
because the data and methods used in schizophrenia relapse symptoms,
depression symptoms, and mood are highly translatable and relevant to
a range of other health related outcomes.

Fig. 2 shows a layered, hierarchical approach to converting raw
sensor data into knowledge, in which sensor data are converted into
features that are integrated to estimate behaviors, emotions, and health-
related outcomes. Automated sensing enables ubiquitous and unobtru-
sive sensing of daily life activities and behaviors with the help of
smartphones that generate raw sensor data [64]. The layers of sensors
represent inputs to the sensing platform in the form of raw smartphone-
sensed data. The feature layer stands as a construct that contains in-
formation from a reliable measurement by sensor data, such as mobility
and location. Behavioral markers are higher-level features that are
measured using low-level features and sensor data [16]. For instance,
Abdullah et al. (2016) reported that a behavioral marker for circadian
sleep rhythm could include features such as bedtime and waketime,
sleep duration, and phone usage. Markers of sleep quality might also
include ambient sound features but may also include bedtime and wake

Health-related ] Early symptoms of relapse in Manitoring of Amyotrophic Wellbein
s Depression symptoms schizophrenia lateral sclerosis 6
Mood Socal hth Lone Socal func stes Seep
ocial rhythm oneliness cial function disturbance
|
Features it e o . e .
Physical activity Mobility Location Social activity In-phone activity Sleep
Sensors Gyroscope Accelerometer ’ Wii Bluetooth Screen Accelerometer
‘ Accelerometer GRS ‘ @S Microphone App uszge Microphone
Bluetooth | Bluetooth al | browserusage | Sound
SMS / text Battery level Screen
Light sensor
Device Smartphones

Fig. 2. Hierarchical stream of digital phenotyping for health-related outcomes using a smartphone.
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time [23]. A limited set of features have been used in the health-related
outcomes layer to predict symptoms of early warning signs of relapse.

This review demonstrated that the study length of passive
smartphone-sensor data collection varied considerably across studies,
ranging from one week to three years. In general, longer-term data
collection is considered more advantageous due to the potential for
producing richer information about patterns that may not be evident in
shorter-term studies [65]. In this review, however, findings by Henson
and colleagues demonstrated that assessing passive data for a minimum
of 5 days was sufficient to infer over 3 months of screen time [57],
indicating that it may not always be necessary to collect smartphone
data over a long-time frame. Nonetheless, further study is needed on the
appropriate time length of data collection as it is likely that the length of
data collection for smartphone usage patterns is dependent on the
functionalities and variables and outcomes being assessed. Hence, the
duration of the study should be carefully considered within the specific
context to ensure optimization of passive data monitoring.

The wide range of data analytic approaches reported in this review
makes it difficult to compare results across studies (see Table 2). While a
limitation to synthesis efforts at this time, it has been a lesser priority in
this emerging area compared to the need to experiment and explore
different analysis approaches to digital phenotyping; hence, it is not
surprising that a variety of different approaches have been used [66].
Machine learning approaches were commonly used in studies in order to
handle the large amounts of data yet they often lacked appropriate
procedures of validation. As the area matures, it will be important to
shift the priority of exploring different analysis approaches to identi-
fying and standardizing the most efficient, accurate, and clinically
pragmatic approaches. To aid in this effort going forward, it will be
important to have standardized checklists for reporting digital pheno-
typing research, such as machine learning features, algorithm defini-
tions, missing data, and validation approaches [11]. Further, the use of
techniques for Functional Data Analysis (FDA) [67], a subfield of sta-
tistics with focus on the analysis of data that can be naturally viewed as
smooth curves, was not observed in this review. FDA approaches can be
useful for frequent longitudinal data such as passive data collected from
smartphones. FDA, however, is a relatively new subfield and therefore
unfamiliar to practitioners, which might be the reason it did not appear
in this review.

30% of the studies (n = 12) in this review were conducted with a
focus on college students. College students are particularly well suited to
digital phenotyping as smartphone ownership among college-aged
adults is higher than any other age group [68]. Students’ response
rates to active data prompts show that students are accepting of and
adherent to digital phenotyping apps on their mobile devices [69].
Future research on the topic should consider adding a monitoring system
that may need to be improved to attract a more diverse type of users and
meet their expectations. Since the need for consistent monitoring can
sometimes be found in older populations with various functional or
cognitive abilities, populations may differ from college students in terms
of daily living and health care needs. In addition, most of the studies had
a sample size of less than 53 participants in this review. Due to the
amount of variability resulting from differences in device-usage pat-
terns, lifestyle, and the environment, personal sensing platforms will
likely require a large user base to be widely applicable. Moreover, even
though passive data has the potential to revolutionize healthcare, only
five of the included studies [30,44,45,52,60] mentioned the ethical and
privacy issues that stimulate participant protection while fostering
innovation based on passive data. To utilize passive data ethically and
comprehend the broad ramifications of new technology, clinicians, re-
searchers, and other healthcare professionals need a clear ethical
framework.

There may be limitations to this review. Because this review was
focused on smartphone phones, diverse health-related studies (e.g.,
physical health-related) may not have been captured in our search,
despite the use of broad terminology. Some may raise an issue regarding
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the additional limitation inherent to scoping review methodology that
quality assessment was not performed on the included studies.

5. Conclusion

The implementation of digital phenotyping may enable the ubiqui-
tous and continuous identification and prediction of individuals’ health-
related behaviors within the context of their social, mental, and physical
functioning, reflecting the lived experiences of people in their natural
environments. In this review, we have catalogued the research to date
and detailed the approaches of using passive smartphone sensor data to
derive behavioral markers to correlate with or predict health-related
outcomes. This review has also included the types of phenotypes (e.g.,
physical activity, social activity and sleep disturbance) that can be
captured using smartphone-sensor data. Findings will serve as a central
resource for researchers to survey the field of research designs and ap-
proaches performed to date and move this emerging area forward to-
wards ultimately providing clinical utility in patient care.

What was already known on the topic

Digital phenotyping enables the continuous identification and pre-
diction of individuals’ health-related behaviors.

Most studies focused on mental health indicators such as depression
symptoms and mood.

What this study added to our knowledge

e We demonstrated a layer of features derived from raw sensor data
that can then be integrated to estimate and predict behaviors, emo-
tions, and health-related outcomes.

Most studies collected data from a combination of sensors. GPS was
the most used digital phenotyping data.

Digital phenotypes have the potential to be used to measure early
relapse symptoms and monitor health-related disorders.
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