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Abstract

Attribute-based encryption (ABE) generalizes public-key encryption and enables fine-grained control to encrypted
data. However, ABE upends the traditional trust model of public-key encryption by requiring a single trusted authority
to issue decryption keys. If an adversary compromises the central authority and exfiltrates its secret key, then the
adversary can decrypt every ciphertext in the system.

This work introduces registered ABE, a primitive that allows users to generate secret keys on their own and then
register the associated public key with a “key curator” along with their attributes. The key curator aggregates the
public keys from the different users into a single compact master public key. To decrypt, users occasionally need to
obtain helper decryption keys from the key curator which they combine with their own secret keys. We require that
the size of the aggregated public key, the helper decryption keys, the ciphertexts, as well as the encryption/decryption
times to be polylogarithmic in the number of registered users. Moreover, the key curator is entirely transparent and
maintains no secrets. Registered ABE generalizes the notion of registration-based encryption (RBE) introduced by
Garg et al. (TCC 2018), who focused on the simpler setting of identity-based encryption.

We construct a registered ABE scheme that supports an a priori bounded number of users and policies that can be
described by a linear secret sharing scheme (e.g., monotone Boolean formulas) from assumptions on composite-order
pairing groups. Our approach deviates sharply from previous techniques for constructing RBE and only makes
black-box use of cryptography. All existing RBE constructions (a weaker notion than registered ABE) rely on heavy
non-black-box techniques. The encryption and decryption costs of our construction are comparable to those of
vanilla pairing-based ABE. Two limitations of our scheme are that it requires a structured reference string whose size
scales quadratically with the number of users (and linearly with the size of the attribute universe) and the running
time of registration scales linearly with the number of users.

Finally, as a feasibility result, we construct a registered ABE scheme that supports general policies and an arbitrary
number of users from indistinguishability obfuscation and somewhere statistically binding hash functions.

1 Introduction

Attribute-based encryption (ABE) [SW05, GPSW06] extends traditional public-key encryption to enable fine-grained
access control to encrypted data. For instance, in a ciphertext-policy ABE, secret keys are associated with attributes,
and ciphertexts are associated with decryption policies. A secret key sk, for an attribute x can decrypt a ciphertext ctp
with policy P only if the attribute satisfies the ciphertext’s policy (i.e., P(x) = 1). In contrast, with vanilla public-key
encryption, decryption is all-or-nothing: if a user has the secret key, she can decrypt every ciphertext encrypted
under the respective public key and if the user does not know the secret key, she cannot decrypt any ciphertext.
While ABE is a versatile cryptographic primitive for enabling fine-grained control to encrypted data, it significantly
changes the trust model compared to standard public-key encryption. In an ABE scheme, a central trusted authority
is required to issue the secret decryption keys associated with each user. Critically, this central authority needs to

*Johns Hopkins University. Email: susan@cs. jhu.edu.

fUT Austin. Email: gclu@cs . utexas.edu

fUT Austin and NTT Research. Email: bvaters@cs.utexas . edu.
$UT Austin. Email: dwu4@cs.utexas . edu.



retain a long-term secret key. If the central authority is compromised by an adversary at any point, then the adversary
gains the ability to decrypt all ciphertexts in the system. This makes ABE inherently vulnerable to key exfiltration
attacks, and the long-term secret key must be carefully protected for the lifetime of the system. In contrast, with
standard public-key encryption, users can generate their own public/secret keys, and they do not have to entrust
their secret keys to any central party. Public-key encryption do not open users up to a central point of failure. The
combination of built-in key escrow and vulnerability to key exfiltration is a common impediment to deploying ABE.

Registration-based encryption. Garg et al. [GHMR18] introduced the notion of registration-based encryption
(RBE) to address the key-escrow problem in the setting of identity-based encryption (IBE). In an IBE scheme [Sha84,
BF01, Coc01], secret keys and ciphertexts are associated with identities and decryption succeeds if the identities
associated with the secret key and ciphertexts match; an IBE scheme is a special case of ABE for the equality policy.
In an RBE scheme, the central authority is replaced by a “key curator” The role of the key curator is not to issue secret
decryption keys, but instead, to aggregate public keys from registered users into a short master public key mpk.

In more detail, users in an RBE scheme generate their own public/secret keys (like in traditional public-key
encryption), and then register their public keys together with their identity with the key curator. The key curator
then updates the master public key of the scheme. Like IBE, the master public key can be used to encrypt a message
to any identity. If the identity corresponds to that of a registered user, then the user can decrypt the message using
their secret key and a publicly-computable helper decryption key that binds the user’s public key to the current master
public key. Since the master public key of the RBE scheme changes whenever new users join the system, users must
periodically refresh their helper decryption keys over the lifetime of the system. Note that the helper decryption
keys for each user can be computed publicly, and importantly, in an RBE system, the key curator does not possess
any secret information. The efficiency requirement is that if L users register, then each user only needs to update
their decryption key at most O(log L) times over the lifetime of the system. The size of each update should also be
short (i.e., poly(A,log L), where A is a security parameter). In addition, like IBE, the master public key must be short:
Impk| < poly(4,logL).

A challenge: non-black-box use of cryptography. In recent years, a number of works have constructed
registration-based encryption [GHMR18, GHM*19, GV20, CES21] from standard assumptions such as CDH, factoring,
or LWE assumptions. However, all of the existing constructions make heavy non-black-box use of cryptography.
Existing constructions either apply indistinguishability obfuscation to a cryptographic hash function [GHMR18] or
use a hash garbling scheme to traverse a Merkle tree [GHM*19, GV20, CES21]. The latter approach chains together
a sequence of garbled circuits (proportional to the length of the identity), where each garbled circuit reads one bit
of the input and outputs a set of labels for the next garbled circuit; the final garbled circuit is a garbling of the
encryption algorithm for a public-key encryption scheme. The heavy use of non-black-box cryptography in both
approaches render existing schemes completely impractical. Even in spite of recent optimization efforts [CES21], a
single ciphertext in a system supporting 2 billion users is estimated to be 4.5 terabytes.

This work: registered ABE. In this work, we introduce a generalization of RBE called registered ABE to address
the key escrow problem and remove the need for long-term secret keys in the context of ABE. We introduce a
new set of techniques for realizing registered ABE with only black-box use of cryptography. Our work extends
registration-based encryption in two key ways:

« Functionality: Our scheme is attribute-based rather than identity-based, and is capable of supporting any
access control policy that can be described by a linear secret sharing scheme (which includes monotone Boolean
formulas). This matches the state-of-the-art in pairing-based ABE schemes. We refer to our new primitive
as a registered ABE scheme. Our scheme includes RBE as a special case if we instantiate the scheme for the
class of equality policies. Much like RBE provides a solution to the key-escrow problem for the setting of IBE,
registered ABE provides an analogous solution in the setting of ABE.

« Black-box use of cryptography: Our construction does not make any non-black-box use of cryptography. The
key-generation, encryption, and decryption algorithms in our scheme is comparable to that of existing pairing-
based ABE schemes (e.g., [LOS*10]). Our approach departs from the hash garbling approach used in all existing



constructions of RBE [GHMR18, GHM*19, GV20, CES21] and instead, takes an aggregation-based approach that
is conceptually similar to those used in the construction of pairing-based vector commitments [CF13, LM19]
and batch arguments [WW22].

We construct a registered ABE scheme from static assumptions on composite-order pairing groups (Assumption 5.2).
We rely on the same assumptions as those used previously to construct IBE [LW10] and ABE [LOS*10].

A limitation of our scheme is that it imposes an a priori bound L on the number of users in the system, and
security relies on a one-time trusted sampling of a common reference string (CRS). We note that this setup only
needs to be done once and the same CRS can be reused across different systems. The size of the CRS is quadratic in L
while the registration time is linear in L. However, the size of the master public key, the size of the helper decryption
keys, as well as the encryption and decryption times, all scale polylogarithmically with L. As with standard RBE, the
key curator is a deterministic algorithm and does not need to store any secret information. We also note that our
scheme is limited to a polynomial-size attribute universe and the size of the CRS, the master public key, and each
user’s helper decryption key scale linearly with the size of the attribute universe.

While the CRS in our scheme is structured' and needs to be sampled by a trusted party (or using an MPC protocol),
this is the only trusted component in our system. Thereafter, the behavior of the key curator is deterministic and
auditable. As long as the adversary does not compromise this one-time setup, security holds. This is in contrast
to traditional ABE where users must always trust the central authority who holds the long-term secret key. If the
authority is compromised at any point in time and the adversary successfully exfiltrates the authority’s secret key,
then they gain the ability to decrypt every ciphertext in the system. Thus, even with a structured CRS, the registered
ABE model still represents a significant reduction in trust compared to the traditional ABE model.

We summarize our main instantiation with the following (informal) characterization of Corollary 6.9:

Theorem 1.1 (Informal). Let A be a security parameter. Let U be an attribute space and P be a set of policies that can
be described by a linear secret sharing scheme over U. Let L be a bound on the number of users. Then, under reasonable
assumptions on a composite-order pairing group, there exists a registered ABE scheme that supports up to L users with
attribute universe U and policy space P with the following properties:

« The size of the CRS and the size of the auxiliary data maintained by the key curator is L* - poly(A, |U|,log L).
+ The running time of key-generation and registration is L - poly(A, |U|,logL).

« The size of the master public key and the helper decryption keys are both |U| - poly(A,logL).

o The size of a ciphertext is |P| - poly(A,log L), where P is the size of the ciphertext policy.

Note that only the key-generation, registration, and update algorithms depend on the (long) CRS. The running time of
encryption and decryption are all polylogarithmic in the number of users L.

In addition to the above scheme based on composite-order bilinear maps, we also show how to construct a
registered ABE scheme for an arbitrary number of users and supporting arbitrary policies (on a super-polynomial
size attribute space) using indistinguishability obfuscation [BGI*01, BGI*12] and somewhere statistically binding
hash functions [HW15]. Coupled with the work of Jain et al. [JLS21, JLS22], this yields a registered ABE scheme from
falsifiable assumptions. We view this latter result as primarily a feasibility result for constructing registered ABE
schemes capable of supporting general policies and an arbitrary number of users.

1.1 Related Work

Many previous works have explored mechanisms to address the key-escrow limitation inherent to IBE and ABE. One
approach is based on threshold cryptography [BF01, CHSS02, PS08, KG10] where the master secret key is secret-shared
across multiple independent authorities; this way, no single authority has the ability to decrypt ciphertexts. A similar
notion in the setting of ABE is multi-authority ABE [Cha07, LCLS08, MKE08, CC09, LW11, RW15, DKW21a, DKW21b,

IPrevious constructions of registration-based encryption [GHMR18, GHM*19, GV20, CES21] only assumed a uniform random string rather than a
structured reference string.



WWW22] where anyone can become an authority and issue secret keys corresponding to the set of attributes within
their domain. Policies in a multi-authority ABE scheme are in turn formulated with respect to the attributes of one or
more authorities. Nonetheless, the keys in threshold and decentralized systems are still issued by entities other than
the user, and if a sufficient number of the key-issuing entities are compromised or corrupted, then the schemes no
longer ensure confidentiality.

Other techniques have focused on adding accountability to the central authority [Goy07, GLSW08] or introducing
hybrid notions that combine IBE and traditional public-key directories [AP03]. However, none of these approaches
completely eliminate the key-escrow problem inherent to notions like IBE and ABE.

Registration-based encryption was first introduced by Garg et al. [GHMR18] who also gave a construction from
indistinguishability obfuscation and somewhere statistically binding hash functions. They also gave a “weakly-efficient”
scheme (where registration runs in time that is polynomial in the number of registered users) from simpler assumptions
like CDH or LWE. Subsequently, [GHMR18] provided a fully-efficient construction (where registration runs in time
that is polylogarithmic in the number of registered users) from assumptions like CDH or LWE. Cong et al. [CES21]
subsequently improved the concrete efficiency of their scheme. Goyal and Vusirikala [GV20] then showed how
to augment RBE with protection against malicious key curators. All of these existing constructions (including the
weakly-efficient ones) rely on non-black-box use of cryptography (e.g., obfuscation or hash garbling techniques).

2 Technical Overview

In this work, we construct a ciphertext-policy registered ABE scheme that supports any access policy that can be
described by a linear secret sharing scheme (see Section 2.1 and Definition 3.2). In the following description, we let U
be the universe of attributes. We will assume that U is polynomial-size (i.e., we are in the small universe setting). We
additionally assume that there is an a priori bound L on the maximum number of users that can be registered, and
moreover, that there is a (trusted) setup algorithm that samples a common reference string crs that will be used for
key-generation, registration, and computing the helper information for decryption. In our setting, we allow the size
of the crs to be poly(A, L). The key curator initializes the master public key mpk to the empty string.

When a user wants to join the system, it first samples a public/secret key-pair (pk, sk). To register, the user
provides their public key pk along with their set of attributes S C U to the key curator.? The key curator then
aggregates the key into the master public key mpk and produces an updated key mpk’. In addition, the key curator
computes a helper decryption key hsk and gives it to the user. In our setting, we allow the key-generation and
registration process to be slow (i.e., running in time poly(4, L)).> However, the size of the master public key mpk,
the secret key sk, and helper decryption key hsk for each user must be short (i.e., poly(4,1log L)). Each time a user
registers, the master public key needs to be updated; this means users will need to periodically obtain an updated
helper decryption key corresponding to the most recent master public key. As in RBE, we require that over the
lifetime of the system, the user only needs to request O(log L) many updates from the key curator.

In a registered ABE scheme, encryption only requires knowledge of the master public key mpk (and not the long
common reference string). The encryption algorithm takes in the master public key mpk, the access policy P, and a
message p and outputs a ciphertext ct. In turn, every registered user whose set of attributes S satisfy the policy is
able to decrypt using their secret key sk and the helper decryption key hsk. Neither the encryption nor decryption
algorithms require knowledge of the crs, and the running time of all of these algorithms scale with poly(4,logL, |P|).
Notably, in a registered ABE scheme, there is an initial slow one-time process for generating and registering keys.
Encryption and decryption are both fast (comparable to standard ABE).

Slotted registered ABE. Our construction of registered ABE proceeds in two steps. First, we define and construct
an intermediate primitive that we call “slotted registered ABE” (Section 4.1). We then show how to compile a slotted
registered ABE scheme into a registered ABE scheme (Section 6).

ZJust like in RBE, the key curator first verifies the attributes claimed by the user before proceeding. This step is analogous to the checks certificate
authorities perform in the public-key infrastructure before issuing a certificate or what the central authority would do in a standard ABE setting
before issuing a decryption key. A difference is that the key curator possesses no secret information.

3This roughly coincides with the notion of weak efficiency in the work of Garg et al. [GHMR18].



In a slotted registered ABE scheme, we specify a fixed number of users L at setup, and moreover, each user is
associated with a slot index i € [L]. Public keys in a slotted registered ABE scheme are generated with respect to a
particular slot. In addition, we replace the registration algorithm with an aggregation algorithm that takes as input a
collection of L public keys pk;, ..., pk;, one for each slot, along with their associated attribute sets Sy,..., 5, € U,
and outputs the master public key mpk together with the helper decryption keys hskj, . .., hsk associated with each
slot. The main difference is that aggregation takes all L keys at once and outputs the master public key (which is
then fixed). In contrast, in (non-slotted) registered ABE, the public keys are registered one at a time, and the master
public key is updated after each registration. We provide the formal definition of a slotted registered ABE scheme
in Section 4.1 and show how to construct a slotted registered ABE scheme from assumptions on a composite-order
pairing group in Section 5. We note that our scheme assumes a polynomial-size attribute universe and the sizes of
the master public key and the helper decryption keys scale linearly with the size || of the attribute universe. We
provide an overview of our slotted registered ABE scheme in Section 2.1.

From slotted registered ABE to registered ABE. To go from a slotted registered ABE scheme to a registered ABE
scheme, we use a simple “powers-of-two” approach that was also used implicitly in previous constructions [GHMR18,
GHM*19]. Suppose we want to support a maximum of L = 2¢ users. Our construction uses £ + 1 copies of the slotted
registered ABE scheme, where the k™ copy is a slotted ABE with exactly 2* slots (with k ranging from 0 to ¢). The
master public key mpk consists of £ + 1 master public keys mpk,, ..., mpk,, one for each of the underlying schemes.
Initially, mpk, = L for all k. The first user registers to an empty slot in each of the £+1 instances. At this point, the first
slotted registered ABE scheme (with 1 slot) is full, and the key curator computes mpk, and updates its value in mpk.
When subsequent users join the system, they continue to register to the next vacant slot in each of the £ + 1 instances
(if one exists). If scheme k fills up (i.e., there is a key associated with each of its 2¥ slots), the key curator updates mpk;
in the master public key and then removes all of the registered keys from schemes 0, ..., k — 1 (since all of those users’
public keys are now aggregated as part of mpk;)." Subsequent registrations will reuse schemes 0, . .., k — 1 since these
are no longer full. On every registration, exactly one of the master public keys mpk, is updated. When this occurs, all
of the users who are now registered in the k' scheme will need to obtain a decryption key update from the key curator.
By design, this process can only happen at most £+ 1 = O(log L) times, so this satisfies the efficiency requirements on
the registered ABE scheme. To encrypt a message with respect to mpk = (mpk, ..., mpk,), the encrypter encrypts
the message to each mpk, to obtain ctx. The ciphertext is ct = (cto, ..., ct;). To decrypt, a user who is currently
registered in mpk, takes ct; and decrypts. Overall this powers-of-two approach incurs O(log L) overhead on the
size of the public parameters, the ciphertext size, and the encryption time compared to the slotted scheme, but now
supports efficient updates. We describe and analyze this transformation in Section 6 (Construction 6.1). We summarize
the properties of our final registered ABE scheme in Corollary 6.9 (and Theorem 1.1).

Registered ABE for unbounded users from obfuscation. Our pairing-based registered ABE construction only
supports a bounded number of users. A natural question is whether we can construct registered ABE that supports an
arbitrary number of users. In Section 7, we show the feasibility of such a scheme using indistinguishability obfusca-
tion [BGIT01, BGI"12] and somewhere statistically binding hash functions [HW15]. Our registered ABE (for arbitrary
circuit predicates) is a direct generalization of the RBE scheme of Garg et al. [GHMR18] from indistinguishability
obfuscation. Here, we describe a slotted version of the scheme. Given a collection of public keys pk, ..., pk; along
with their attribute sets Sy, ..., Sr, we first construct a Merkle hash tree on values (pk;, S1), ..., (pk;, Sr). The master
public key is the root of the Merkle tree. A ciphertext consists of an obfuscated program that takes as input an index
i € [L], the public key pk; and its accompanying secret key sk;, the set of attributes S;, and a Merkle proof of opening
for the value (pk;, S;) at index i. The obfuscated program checks that (1) the opening with respect to the hash root
(hard-coded) is valid; (2) S; satisfies the ciphertext policy (also hard-coded); and (3) sk; is the secret key associated
with pk;. If all of these checks pass, it outputs the message m. This approach directly yields a registered ABE for
an arbitrary number of users and which supports general circuit policies. We give the full construction in Section 7
(Construction 7.4). We leave the question of constructing registered ABE that supports an unbounded number of
users without obfuscation (or without needing non-black-box use of cryptography) as an intriguing open problem.

4For ease of notation in the formal description (Section 6 and Construction 6.1), we do not implement this “clearing out” step explicitly. However,
the construction is functionally behaving in this manner.



2.1 Constructing Slotted Registered ABE from Pairings

In this section, we provide a general overview of our slotted registered ABE scheme from composite-order pairing
groups. The full construction and analysis are provided in Section 5. Together with the slotted-to-full transformation
from Section 6, we obtain a registered ABE for an a priori bounded number of users.

Composite-order pairing groups. Our construction relies on composite-order pairing groups where the group
order N is a product of three primes N = p;p,ps. Then, a (symmetric) composite-order pairing group consists of
two cyclic groups G and Gr, each of order N. Let g be a generator of G. By the Chinese remainder theorem, we can
write G = G x G, x Gs, where G; is the subgroup of G order p; and is generated by g; = g™V/Pi. Additionally, there
exists an efficiently-computable, non-degenerate bilinear map e: G X G — Gr called the pairing. For all exponents
a,b € Zy, we have that e(g% g°) = e(g, g)*°. Again by the Chinese remainder theorem, the subgroups Gy, G, G3 are
orthogonal: namely e(g;,g;) = 1 for all i # j where i, j € {1,2,3}.

Linear secret sharing schemes. Like numerous other pairing-based ABE schemes [GPSW06, LOS*10, LW11],
we design a (ciphertext-policy) ABE scheme that supports access policies which can be described by a linear secret
sharing scheme (LSSS). Very briefly, a linear secret sharing scheme is specified by a share-generating matrix M € lef]x",
where each row of M is associated with a distinct attribute x1, . .., xx. We say a set of attributes {x;};cs is authorized
if and only if there exists a vector ws € le\sll such that w;MS =e] =[1,0,---,0], where Mg is the matrix formed by
taking the subset of rows indexed by S C [K]. In other words, the attributes {x;};cs satisfy the policy if and only if €]
is in the row-span of Mg. Given an LSSS matrix M, we can secret share a value s € Zy by sampling vy, ..., 0, < Zx,
constructing the vector v = [s,0,...,0,]" and computing the vector of shares u = Mv € ZX. The i component
u; € Zy is the share associated with attribute x;. Given an authorized set of attributes {x;};cs and the subset of shares
ugs € Zﬁl associated with S, reconstructing the secret corresponds to computing wyus = @Msv = e[v = s.

Slotted registered ABE overview. In a slotted registered ABE scheme with L slots, users register a public key
pk along with a set of attributes S C U to a particular slot i € [L]. In our construction, the decryption algorithm
implicitly enforces the following two checks:

« Slot-specific check: The user possesses a secret key associated with some slot i in the scheme.

« Attribute-specific check: The attributes associated with the slot i satisfy the ciphertext policy. In our
construction, this check shares a similar structure to the Lewko et al. [LOS*10] ciphertext-policy ABE scheme.

Thus, when describing our scheme, we roughly partition the components of the CRS, the master public key, and the
ciphertext based on whether they are “slot-specific” or “attribute-specific.”

A single slot scheme. We start by describing a simple version of our scheme with just a single slot.”> The single-slot
scheme highlights the core components of our construction. Subsequently, we describe how to extend the single-slot
scheme into a multi-slot scheme. An important difference between registered ABE and vanilla ABE is the fact that
the master public keys in a registered ABE can depend on the set of attributes that have been registered so far. Thus,
in the single-slot setting that just supports a single user, the user’s attributes are directly embedded into the master
public key. Let U be a (polynomial-size) universe of attributes and let G = (G, Gr, N, g, e) be a composite-order
pairing group with N = p;p,p3. We now describe the main components of the scheme:

« The components of the common reference string crs can be partitioned into three general categories:

- General components: The general component is used for blinding the message and linking together
the slot-specific and attribute-specific decryption procedures. These components will subsequently be
included as part of the master public key. Concretely, we sample exponents a, 8 < Zy and include

Z —e(g1,91)% and h glﬁ in the CRS.

>Note that a single-slot scheme by itself is trivial to construct. We can simply define the master public key to be the public key and set of attributes
associated with the slot. However, for describing our construction, it is simpler to first illustrate the mechanics in the single-slot setting and then
build up to the full multi-slot construction.



— Slot-specific components: Each slot in the CRS is associated with a set of group elements. In the
single-slot setting, we have two elements A « (g1g3)" and B « g%h'g}, where t ¢ Zy is a slot-specific
exponent, @ € Zy is the “general” exponent from above, and 7 < Zy is a blinding factor.

— Attribute-specific components: For each attribute w € U, the CRS contains a group element U, « g,
where u,, & Zy is the attribute-specific exponent associated with w.

Putting all the pieces together, the CRS in the single-slot setting consists of the following terms:
Crs = (g: 91, 93, Z, h: (AsB): {UW}WG'L()

« To sample a new public/secret key-pair, the user samples r <~ Zy and sets it as their secret key sk = . The
user sets the public key to be pk =T = g7.

« When the user registers their public key pk = T = g along with their set of attributes S C U, the key curator
sets T =Tand U, = Uy, if w ¢ Sand U,, = 1if w € S. The key curator then outputs the master public key

mpk = (g? gi; hs Za ’f’ {UW}WG(L/)- (21)

As we will see later on, T is the attribute-independent key aggregated across all of the slots while U, is the key
associated with attribute w aggregated across all of the slots.

« The helper decryption key for the user is just the slot-specific components A = (g193)‘ and B = g{h’g} from
the CRS.

« To encrypt a message y € Gt to a policy (M, p), where M € Zﬁx" is the share-generating matrix associated
with the policy, and p: [K] — U is an injective row-labeling function that maps the rows of M onto the
particular attribute to which it corresponds, the encrypter samples s <~ Zy and hy, h; <~ G; such that hhy = h.
Namely, h; and h; function as a secret sharing of h. The ciphertext then consists of the following:

- Message-embedding components: Let C; < p - Z° = j1- e(g1,91)*. Let C; « gj.

- Attribute-specific component: Let v = [s,0s,...,0,]7, where v,,...,0, < Zy. For each k € [K], set
T A
Csp h;lkap‘(sk). Here mL € ZY; denotes the k™ row of M.

— Slot-specific component: Set Cy «— hif‘s.

The ciphertext is
ct = ((M,p), C1, Cz, {Csi}ke[k] > Ca)-

Note that if we ignore the slot-specific ciphertext component, then the structure of the ciphertexts in our
scheme coincides with those in the ciphertext-policy ABE scheme of Lewko et al. [LOS*10].° However, once
we move beyond the single-slot setting, we will need to introduce additional components into the aggregated
public key. This leads to a more complex decryption procedure and requires a more intricate security analysis
compared to [LOST10]. We discuss some of these details below and refer to Section 5 for the complete details.

The decryption algorithm can be decomposed into two main components: the first ensures the user’s attributes satisfy
the policy, and the second ensures the user’s public key is bound to a specific slot. We describe these two steps below:

« Policy check: Let S’ = {k € [K] : p(k) € S} be the subset of the user’s attributes that are associated with the
policy (M, p). Suppose S’ satisfies the policy (M, p). This means there exists a vector wg € Z‘I\S, | such that

N T
w}, Mg = e]. Moreover, by construction, U,, = 1 for all w € S’. In particular, this means that Cs = hlznkv for all

%The scheme of Lewko et al. [LOS10] also includes a row-specific blinding factor sz & Zx associated with each row of M. We do not need this
additional randomization in our security analysis.
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H oM T . . .
k € §’. Using wgs and h;n"v, the decrypter can compute hzw s = h;lv = h;. Finally, the decryption algorithm

can pair A = (g193)" with j to obtain
Datrib = e(hy, A) = e(hy, (9193)t) = e(hz,gl)“,

since hy € G;. Essentially, the decrypter should only be able to recover e(h,, g;)*" if its set of attributes satisfy
the policy. We note here that if an attribute p(k) ¢ S, then U, ) # 1; this property effectively “prevents” the
decrypter from using C; . during decryption since it would not be able to remove the extra Up_(sk) component.

The formal security analysis is more delicate and we defer to Section 5 for the exact analysis.

« Slot check: For the slot component, the decrypter takes its secret key r and computes

Dot = €(Cy, A) - e(Co, A") = e(hig;sr» (9193)t) : e(gi, (9193)”)
=e(h1,91)° - e(91,91) """ - e(g1, )™
=e(h1,91)*, (2.2)

since T = g} and hy € G;. Essentially, the decrypter should only be able to recover e(hy, g1)* if it knows the
secret key associated with the slot.

Recall now that h; and h; are a multiplicative secret sharing of h (i.e., hihy; = h). This means that if both of the policy
check and the slot check passes (and in fact, only in this case), the decrypter is able to recover e(h, g;)*’. This can now
be combined with the message-embedding ciphertext components to recover the original message:

Cr-e(hg)™ p-e(gig)®e(hg)”  p-e(gg)® -e(hgi)”
e(Cy, B) e(g3, g7ht ) e(g1,91)* - e(h, g1)%

>

again using the fact that h € G;.

Extending to multiple slots via key aggregation. To extend to an L-slot scheme, we essentially “concatenate” L
independent copies of the single-slot scheme in the CRS. Specifically, for each slot i € [L], the CRS contains a set of
slot-specific components and a set of attribute-specific components (in addition to the same set of general components
from the single-slot scheme):

« Slot-specific components: Sample a slot-specific exponent t; <~ Zy and a blinding factor 7; < Zy;, and let
A; «— (9193)" and B; « g%h'ig;.

« Attribute-specific components: For each attribute w € U, sample an attribute-specific exponent u; ,, < Zy
and let U; ,, < g'f””.

The CRS consists of the general components, the slot-specific components, and the attribute-specific components for
each of the slots:

crs = (G, 91, 93, Z, h, {(Ai, Bi) Yiepr]» {Uiwlic[L]wew)-

Next, we need a way to aggregate the public keys for the different slots into a single compact master public key
mpk. Let {pk;};c[r] be a collection of public keys where pk; = T; = g}’ is the public key associated with slot i. Let
S; € U be the set of attributes associated with pk;. Our aggregation mechanism is simple: the aggregated public key
components T, U, simply correspond to the product of the components associated with each slot:

T= 1_[ T; and Uwz l_[ Uj,w-
JelL] je[L]:weS;

The structure of the mpk is the same as in Eq. (2.1). Importantly, the size of the master public key is independent of
the number of slots. The encryption algorithm also remains the same as in the single-slot case.



Cross term cancellation for decryption. When a message is encrypted with respect to an aggregated key, the
ciphertext components are now a function of the exponents associated with all of the slots. However, the decrypter
only has a key for a single slot (e.g., r;), so the decrypter needs additional helper information in order to decrypt. To
illustrate this, consider the decryption relation associated with the slot check (Eq. (2.2)). Suppose we are decrypting
for slot i (using secret exponent r;). Then,

Dyjor = e(Cy, A;) - e(ngA?) = e(hif_sg (9193)”) : e(gi, (glgs)r"t")
= e(h1,g1)%" - e(g1, 91) """ H e(g1,91) " - e(g1, g1)°"

J#i
= e(hi,g0)™ | [ e(g1,907"", (23)

J#i

using the fact that T = [Tiein) T = [jerr g:j. This is the same expression from Eq. (2.2) in the single-slot setting,
except we have an extra term [] ;; e(g1, g1) """ from the slots j # i. We refer to these terms as the “cross-terms”
since they correspond to an interaction between the secret key for slot j with the slot exponent for slot i. We thus
require a way to eliminate the cross terms. Here, we take an approach that is often encountered when using pairings
for aggregation (e.g., aggregating openings for vector commitments [CF13, LM19] or aggregating proofs in the case
of batch arguments [WW22]). The strategy is to have the user for slot i provide the cross-terms V;; = A;" = (g1g3)"1Y
for each j # i as part of its public key pk;. Given all of the cross-terms from all of the users, the key curator can
compute a helper decryption key component V; = [14i Vij = [1;2i(9193)"7" for each slot i. Given V;, the decrypter
can now compute
e(Co, V7)) = l_[ e(g1, (9193)7") = n e(g1,91)""7",
Jj#i j#i

which precisely cancels out the extra term in Eq. (2.3). Finally, observe that the additional helper decryption
component is just a single group element and is again, independent of the number of slots. This means that the size of
the master public key, the size of the helper decryption components, as well as the encryption and decryption times
are independent of the number of slots. Only the (one-time) key-generation and registration costs scale with the
number of slots. We introduce a similar cross-term cancellation approach for the attribute-specific components and
refer to Section 5.2 for the full description and analysis.

Security analysis. To prove security of our construction, we follow the dual-system methodology [Wat09, LW10].
While traditional dual-system proofs modify the distribution of the secret keys and the ciphertexts given out in the
security game, in the registered ABE setting, we modify the distribution of the slot parameters and the ciphertexts. In
more detail, in the security proof, we introduce modified ciphertexts (referred to as “semi-functional ciphertexts”)
and slot components (referred to as “semi-functional slots”). Keys registered to a semi-functional slot can be used to
decrypt normal ciphertexts (i.e., those output by the honest encryption algorithm) and keys registered to a normal
slot can be used to decrypt semi-functional ciphertexts. However, a key registered to a semi-functional slot is unable
to decrypt a semi-functional ciphertext. The proof then proceeds via a hybrid argument where we first switch the
challenge ciphertext from a normal ciphertext to a semi-functional one. Then, we switch the parameters associated
with each slot from normal to semi-functional. In the final experiment then, all of the slots are semi-functional, as is
the challenge ciphertext. Since keys associated with semi-functional slots cannot be used to decrypt a semi-functional
ciphertext, arguing semantic security in the final experiment is straightforward. We give the full proof in Section 5.
Here, we highlight two of the technical challenges that arise in the proof:

« Malformed public keys: In registered ABE, the adversary is allowed to submit arbitrary public keys to the key
curator. In the security proof (and even for correctness), it will be important that the public keys are well-formed
(and in particular, that the cross-terms are properly constructed). To enable this, we introduce a validity-check
mechanism that uses the pairing to check that the components of the public key are properly computed. In the
security proof (Claim 5.12), we show that the only public keys an efficient adversary can construct that pass
the validity check are those in the support of the honest key-generation algorithm. Note that an alternative
approach to rule out malformed public keys is to have users include a non-interactive zero-knowledge proof of



knowledge of their public key that certifies well-formedness of the public key. However, doing so generically
would either bring in random oracles [FS86] or require making non-black-box use of cryptography. Hence, we
opt for a simpler algebraic mechanism that integrates directly with the rest of our construction.

« Arguing semantic security. A standard proof strategy for arguing security of an ABE scheme based on
linear secret sharing is to construct a sequence of hybrid experiments such that in the final experiment, the
challenge ciphertext information-theoretically hides the message by the security of the linear secret sharing
scheme. This strategy applies if all of the keys the adversary possesses do not satisfy the challenge policy, and
indeed, this property is enforced in the standard ABE security experiment. In registered ABE, the scenario is
slightly different since there are two possibilities we have to consider:

— The adversary knows the secret key associated with slot i and the attributes associated with slot i do not
satisfy the challenge policy; or

— The adversary does not know the secret key associated with slot i. In this case, it could be the case that
the attributes associated with slot i do satisfy the challenge policy.

Handling these two cases requires two different information-theoretic arguments: the first relies on the linear
secret sharing scheme while the second relies on the secret key r; for slot i to be hidden from the view of the
adversary. Setting up these information-theoretic arguments requires slightly different distributions on the slot
components. Consequently, we rely on two different sequence of hybrid experiments to handle the two cases.
We refer to Section 5 (and specifically, the proof of Lemma 5.16) for more details.

We refer to Section 5 for the full construction and analysis of our slotted registered ABE scheme.

3 Preliminaries

Throughout this work, we write A to denote the security parameter. For a positive integer n € N, we write [n] to
denote the set {1,...,n}, and [0, n] to denote the set {0, ...,n}. We use bold uppercase letters (e.g., M) to denote
matrices and bold lowercase letters (e.g., v) to denote vectors. We use non-boldface letters to refer to their components
(e.g., v = [0v1,...,0,]). For a positive integer N € N, we write Zy to denote the integers modulo N.

We write poly(4) to denote a function that is O(A°) for some constant ¢ € N and negl(1) to denote a function
that is 0(17¢) for all ¢ € N. We say that an event occurs with overwhelming probability if its complement occurs with
negligible probability. We say an algorithm is efficient if it runs in probabilistic polynomial time in its input length. We
say that two families of distributions Dy = {D; )} 1ew and Dy = {D; 1} 1en are computationally indistinguishable if no
efficient algorithm can distinguish them with non-negligible probability. We say they are statistically indistinguishable
if the statistical distance A(D;, D) is bounded by a negligible function in A.

Access structures and linear secret sharing. We also recall the definition of monotone access structures and
linear secret sharing which we will use in this work.

Definition 3.1 (Access Structure [Bei96]). Let S be a set and let 25 denote the power set of S (i.e., the set of all subsets
of S). An access structure on S is a set A C 2% \ @ of non-empty subsets of S. We refer to the elements of A as the
authorized sets and those not in A as the unauthorized sets. We say an access structure is monotone if for all sets
B,Ce25ifBe Aand BC C,thenC € A,

Definition 3.2 (Linear Secret Sharing Scheme [Bei%6]). Let P be a set of parties. A linear secret sharing scheme over
aring Zy for P is a pair (M, p), where M € Z{" is a “share-generating” matrix and p: [¢] — P is a “row-labeling”
function. The pair (M, p) satisfy the following properties:

« Share generation: To share a value s € Zy, sample vy, . . ., 0, < Zy and define the vector v = [s,0,...,0,]".
Then, u = Mv is the vector of shares where u; € Zy belongs to party p(i) for each i € [¢].
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« Share reconstruction: Let S C P be a set of parties and let Is = {i € [£] : p(i) € S} be the row indices
associated with S. Let Mg € Z}\Ilslx" be the matrix formed by taking the subset of rows in M that are indexed
by Is. If S is an authorized set of parties, then there exists a vector ws € Z‘I\If‘ such that w Mg = e, where
e; = [1,0,...,0] denotes the first elementary basis vector. Conversely, if S C is an unauthorized sets of parties,

then e] is not in the row-span of M (i.e., there does not exist ws € Zgl where @ Ms = e]).

Remark 3.3 (One-Use Restriction). In this work, we construct a registered ABE scheme (Section 5) that supports
any policy that can be described by a linear secret sharing scheme (Definition 3.2), with the restriction that each
attribute is associated with at most one row of M. This corresponds to policies (M, p) where the row-labeling function
p is injective. As shown in Lewko et al. [LOS*10, §2.2], it is straightforward to extend a scheme with the one-use
restriction into one where attributes can be used up to k times by expanding the public parameters and secret keys by
a factor of k (i.e., split each attribute into k independent copies).

Remark 3.4 (Monotone Boolean Formulas). Our pairing-based registered ABE construction (Section 5) supports
monotone access policies that can be described by any (one-use) linear secret sharing scheme. As a special case, this
captures the class of monotone Boolean formulas. There are multiple ways to take a monotone Boolean formula and
express it as a linear secret sharing scheme; we refer to [LW11, Appendix G] for one such approach.

4 Registered Attribute-Based Encryption

In this section, we introduce the notion of a registered attribute-based encryption scheme for a polynomial-size
attribute space. Our definition is an adaptation of the notion of registration-based encryption (RBE) [GHMR18] to the
more general attribute-based setting. We compare some features of our definition with RBE in Remark 4.6.

Definition 4.1 (Registered Attribute-Based Encryption). Let A be a security parameter. Let U = {U)} e be
a universe of attributes and P = {P,}1cn be a set of policies on U. Let M = {M,} e be the message space.
A registered attribute-based encryption scheme with attribute universe U, policy space P, and message space
M consists of a tuple of efficient algorithms IIg_age = (Setup, KeyGen, RegPK, Encrypt, Update, Decrypt) with the
following properties:

« Setup(1%, 1141y — crs: On input the security parameter A and the size of the attribute universe U, the setup
algorithm outputs a common reference string crs.

« KeyGen(crs,aux) — (pk, sk): On input the common reference string crs, and a (possibly empty) state aux, the
key-generation algorithm outputs a public key pk and a secret key sk.

+ RegPK(crs, aux, pk, Spr) — (mpk, aux’): On input the common reference string crs, a (possibly empty) state
aux, a public key pk, and a set of attributes S, C U, the registration algorithm deterministically outputs the
master public key mpk and an updated state aux’.

« Encrypt(mpk, P, y) — ct: On input the master public key mpk, an access policy P € P, and a message y € M,
the encryption algorithm outputs a ciphertext ct.

« Update(crs, aux, pk) — hsk: On input the common reference string crs, a state aux, and a public key pk, the
update algorithm deterministically outputs a helper decryption key hsk.

« Decrypt(sk, hsk,ct) —» MU {1, GetUpdate}: On input the master public key mpk, a secret key sk, a helper
decryption key hsk, and a ciphertext ct, the decryption algorithm either outputs a message y € M, a special
symbol L to indicate a decryption failure, or a special flag GetUpdate that indicates an updated helper decryption
key is needed to decrypt.

11



Correctness and efficiency. We now define the correctness and efficiency requirements on a registered ABE
scheme. At a high level, correctness says that if a user properly registers her public key along with a set of attributes,
then she can use her secret key to decrypt all future ciphertexts ct encrypted under the resulting (and any subsequent)
master public key, provided that her set of attributes satisfy the policy associated with the ciphertext. Notably, this
should hold even if malicious users register (possibly-malformed) keys. In other words, as long as the key curator is
semi-honest, an adversary cannot register “bad” keys to cause decryption to fail for an honest user. The main efficiency
requirements we impose is that the size of the master public key and the size of each user’s helper decryption key
should be compact (i.e., polylogarithmic in the total number of users). We compare our notion with the RBE definition
in Remark 4.6. We now give the formal definition:

Definition 4.2 (Correctness and Efficiency of Registered ABE). Let IIr.agr = (Setup, KeyGen, RegPK, Encrypt,
Update, Decrypt) be a registered ABE scheme with attribute universe U, policy space , and message space M. For
a security parameter A and an adversary A, we define the following game between A and the challenger:

« Setup phase: The challenger starts by sampling the common reference string crs « Setup(1%, 11%1). It then
initializes the auxiliary input aux < L and initial master public key mpk, < L. It also initializes a counter
ctrreg] < 0 to keep track of the number of registration queries and another counter ctr[enc] < 0 to keep
track of the number of encryption queries. Finally, it initializes ctr[reg]* « oo as the index for the target key
(which will also be updated during the course of the game). Finally, it gives crs to A.

« Query phase: During the query phase, the adversary A is able to make the following queries:

— Register non-target key query: In a non-target-key registration query, the adversary A specifies a public
key pk and a set of attributes S C U. The challenger first increments the counter ctr[reg] « ctr[reg] + 1
and then registers the key by computing (mpk,[,eq)s aux’) < RegPK(crs, aux, pk, S). The challenger

updates its auxiliary data by setting aux « aux” and replies to A with (ctr[reg], mpkcy[;eq} aUX).

— Register target key query: In a target-key registration query, the adversary specifies a set of attributes
S* € U. If the adversary has previously made a target-key registration query, then the challenger
replies with L. Otherwise, the challenger increments the counter ctrreg] « ctr[reg] + 1, samples
(pk*,sk*) « KeyGen(1%), and registers (MPK gy [reg)> 2UXT) — RegPK(crs, aux, pk*, $*). It computes
the helper decryption key hsk* « Update(crs, aux, pk*). The challenger updates its auxiliary data by
setting aux «— aux’, stores the index of the target identity ctr[reg]” < ctr[reg], and replies to A with
(ctr[reg], mpk aux, pk*, hsk™, sk*).

— Encryption query: In an encryption query, the adversary submits the index ctr{reg]* < i < ctr[reg] of
a public key,” a message Hetr[enc] € M, and a policy Peirjenc] € P. If the adversary has not yet registered
a target key, or if the target set of attributes S* does not satisfy the policy Pi[enc], the challenger
replies with L. Otherwise, the challenger increments the counter ctr[enc] « ctr[enc] + 1 and computes
Ctetrfenc] < Encrypt(mpk;, Petrenc]s Hetr[enc]). The challenger replies to A with (ctr[enc], ctegrfenc])-

ctr[reg]>

- Decryption query: In a decryption query, the adversary submits a ciphertext index 1 < j < ctr[enc].
The challenger computes m « Decrypt(sk*, hsk*, ct;). If m; = GetUpdate, then the challenger
computes an updated helper decryption key hsk® « Update(crs, aux, pk*) and recomputes m;. —
Decrypt(sk®, hsk®, ct;). If m’, # m;, the experiment halts with outputs b = 1.

If the adversary has finished making queries and the experiment has not halted (as a result of a decryption
query), then the experiment outputs b = 0.

We say that ITg_agE is correct and efficient if for all (possibly unbounded) adversaries ‘A making at most a polynomial
number of queries, the following properties hold:

« Correctness: There exists a negligible function negl(-) such that for all A € N, Pr[b = 1] = negl(1) in the
above game. We say the scheme satisfies perfect correctness if Pr[b = 1] = 0.

7Since we are requiring correctness to hold with respect to the target key, we only consider ciphertexts encrypted to master public keys constructed
after the target key has been registered.
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« Compactness: Let N be the number of registration queries the adversary makes in the above game. There
exists a universal polynomial poly(-, -, -) such that for all i € [N], [mpk;| = poly(4, |U|,log i). We also require
that the size of the helper decryption key hsk* satisfy |hsk*| = poly(4, |U|,log N) (at all points in the game).

« Update efficiency: Let N be the number of registration queries the adversary makes in the above game. Then,
in the course of the above game, the challenger invokes the update algorithm Update at most O(log N) times,
where each invocation runs in poly(log N) time in the RAM model of computation. Specifically, we model
Update as a RAM program that has random access to its input; thus, the running time of Update in the RAM
model can be smaller than the input length.

Registered ABE security. The security requirement for a registered ABE scheme is analogous to the standard
ABE security notion. Namely, semantic security should hold for a ciphertext associated with a policy P if the user
only has keys registered to attribute sets Sy, . . ., Sy which do not satisfy the policy. In the security game, we allow
the adversary the ability to register users with a set of attributes that do satisfy the challenge policy, provided the
adversary does not know the user’s secret key (i.e., they are generated honestly by the challenger). In addition, the
adversary is allowed to register (arbitrary) public keys for attribute sets of its choosing, provided that none of them
satisfy the challenge policy. We give the formal definition below:

Definition 4.3 (Security of Registered ABE). Let ITg_age = (Setup, KeyGen, RegPK, Encrypt, Update, Decrypt) be a
registered ABE scheme with attribute universe U, policy space , and message space M. For a security parameter A,
an adversary A, and a bit b € {0, 1}, we define the following game between A and the challenger:

« Setup phase: The challenger samples the common reference string crs < Setup (1%, 1/%!). It then initializes
the auxiliary input aux < L, the initial master public key mpk <« L, a counter ctr « 0 for the number
of honest-key-registration queries the adversary has made, an empty set of keys C « @ (to keep track of
corrupted public keys), and an empty dictionary mapping public keys to registered attribute sets D < @. For
notational convenience, if pk ¢ D, then we define D[pk] = @. to be the empty set. The challenger gives the crs
to A.

+ Query phase: Adversary A can now issue the following queries:

- Register corrupted key query: In a corrupted-key-registration query, the adversary A specifies a public
key pk and a set of attributes S € U. The challenger registers the key by computing (mpk’, aux’) «
RegPK(crs, aux, pk, S). The challenger updates its copy of the public key mpk « mpk’, its auxiliary data
aux < aux’, adds pk to C, and updates D[pk] « D[pk] U {S}. It replies to A with (mpk’, aux’).

— Register honest key query: In an honest-key-registration query, the adversary specifies a set of
attributes S € U. The challenger increments the counter ctr « ctr + 1 and samples (pk,, sketr)
KeyGen(crs, aux), and registers (mpk’, aux’) « RegPK(crs, aux, pky,,S). The challenger updates its
public key mpk < mpk’, its auxiliary data aux < aux’, and D[pk_,] < D[pk,] U {S}. It replies to A
with (ctr, mpk’, aux’, pk,).

ctr

— Corrupt honest key query: In a corrupt-honest-key query, the adversary specifies an index 1 < i < ctr.
Let (pk;, sk;) be the ih public/secret key the challenger samples when responding to the i honest-key-
registration query. The challenger adds pk; to C and replies to A with sk;.

+ Challenge phase: The adversary A chooses two messages p;, ; € M and an access policy P* € . The
challenger replies with the challenge ciphertext ct* «— Encrypt(mpk, P, uy).

« Output phase: At the end of the game, algorithm A outputs a bit b’ € {0, 1}.

Let S = {S € D[pk] : pk € C} be the set of corrupted attributes. We say that an adversary A is admissible if the
challenge policy P* is not satisfied by any attribute set S € S. Note that it could be the case that P* is satisfied by the
attributes S from an honest key query (that was not subsequently corrupted). We say that a registered ABE scheme
is secure if for all efficient and admissible adversaries A, there exists a negligible function negl(-) such that for all
A € N, we have that |Pr[b’ =1 | b =0] —Pr[b’ = 1| b = 1]| = negl(A) in the above security game.
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Definition 4.4 (Bounded Registered ABE). We say a registered ABE scheme ITg ag is bounded if there is an a
priori bound on the number of registered users in the system. In this setting, we modify Setup to takes as input an
additional bound parameter 1> which specifies the maximum number of registered users. In the correctness and
security definitions (Definitions 4.2 and 4.3), we allow the adversary to specify the bound 1% at the beginning, and
in the games themselves, the adversary can make up to L queries (the challenger answers subsequent registration
queries with 1).

Remark 4.5 (Adaptive Corruptions). We could also consider a version of registered ABE which allows for corruption
queries after the challenge phase. However, such a definition is in fact equivalent to the current definition, since
the adversary can always make all admissible corruption queries in the pre-challenge phase before submitting the
challenge policy. This step relies on the fact that the registration algorithm is deterministic, so its behavior can
be entirely simulated by the adversary. In the slotted setting (Section 4.1), we give a formal proof of equivalence
for these two notions (see Lemma 4.10). The analogous argument applies to the full registered ABE security game
(Definition 4.3).

Remark 4.6 (Comparison with Registration-Based Encryption). The correctness and security definitions of our
registered ABE scheme are essentially generalizations of the corresponding definitions for registration-based encryp-
tion introduced by Garg et al. [GHM*19] to the setting of attribute-based encryption. The main difference is that
we do not impose efficiency requirements on the running time of the key-generation and registration algorithms
whereas Garg et al. require that they run in time poly (4, log n), where n is the number of registered users. In the
case of our main pairing-based construction (Corollary 6.9), the running time of key-generation and registration
scale with the bound on the maximum number of registered users. This roughly corresponds to the notion of “weak
efficiency” in the language of Garg et al. Our obfuscation-based registered ABE scheme in Section 7 supports efficient
key-generation and registration. It is an interesting question to construct a registered ABE scheme with efficient
key-generation and registration without obfuscation (or making non-black-box use of cryptographic primitives).

A difference in the security definition is we additionally allow the adversary to register an honest user, and then
later on corrupt the user and learn its secret key. Registration-based encryption did not allow for corruption queries.

Remark 4.7 (Transparent Key Curator). When using a registered ABE scheme, a key curator is responsible for
maintaining the auxiliary data and processing user registrations. Just like in RBE, the key curator in a registered
ABE scheme is entirely transparent and maintains no secrets. Indeed, both the registration and update algorithms
are deterministic, so an independent party (or a user) can audit the key curator and verify whether it is behaving
honestly or not. Note however that we cannot prevent a malicious key curator from registering a set of attributes
that allow it to decrypt all ciphertexts (this is analogous to a malicious key curator registering a key for a target user
of its choosing in the setting of RBE). However, such activity is always detectable by an external auditor.

Remark 4.8 (Universe Size). Definition 4.2 allows the size of the CRS, the master public key and the helper decryption
keys (and by extension, the size of the ciphertext) to scale with the size of the attribute universe U. This means our
definition is currently tailored for a polynomial-size attribute space. We could define an analogous “large-universe”
version of our definition where the size of the CRS, the master public key and helper decryption keys scale with
poly(log |U|); in this case, the Setup algorithm would take the universe size in binary rather than unary. Our
pairing-based construction (Section 5) only supports a polynomial-size attribute universe while our obfuscation-based
construction (Section 7) supports an arbitrary universe size. It is an interesting question to extend our pairing-based
construction to the large-universe setting where the set of attributes can be an arbitrary bit-string. Note that even a
small-universe ABE captures notions like identity-based encryption (e.g., the number of attributes would be linear in
the bit-length of the identity).

4.1 Slotted Registered Attribute-Based Encryption

In this section, we formally introduce the notion of a slotted registered ABE scheme which is the core building
block underlying our pairing-based construction (Section 5) and obfuscation-based construction (Section 7). Then in
Section 6, we show how to compile a slotted registered ABE scheme into a standard registered ABE scheme.
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Definition 4.9 (Slotted Registration-Based Encryption). Let A be a security parameter. Let U = {3} e be a
universe of attributes and P = {P,} en be a set of policies on U. Let M = { M} cn be the message space. A
slotted registered ABE scheme with attribute universe U, policy space P, and message space M is a tuple of efficient
algorithms II;rpe = (Setup, KeyGen, IsValid, Aggregate, Encrypt, Decrypt) with the following properties:

Setup(ll, 11Ul 1%) — crs: On input the security parameter A, the size of the universe U, and the number of
slots L, the setup algorithm outputs a common reference string crs.

KeyGen(crs, i) — (pk;, sk;): On input the common reference string crs, a slot index i € [L], the key-generation
algorithm outputs a public key pk; and a secret key sk; for slot i.

IsValid(crs, i, pk;) — {0, 1}: On input the common reference string crs, a slot index i € [L], and a public key
pk;, the key-validation algorithm outputs a bit b € {0, 1} indicating whether pk; is valid or not. This algorithm
is deterministic.

Aggregate(crs, (pky, S1), ..., (pk;,S.)) — (mpk, hsky, ..., hskg): On input the common reference string crs
and a list of public keys and the associated attributes (pk,, S1), .. ., (pk;, St), the aggregate algorithm outputs the
master public key mpk and a collection of helper decryption keys hsky, ..., hsky. This algorithm is deterministic.

Encrypt(mpk, P, u) — ct: On input the master public key mpk, an access policy P € P, and a message p € M,
the encryption algorithm outputs a ciphertext ct.

Decrypt(sk, hsk, ct) — m: On input a decryption key sk, the helper decryption key hsk, and a ciphertext ct,
the decryption algorithm outputs a message p € M U {L}. This algorithm is deterministic.

Moreover, the above algorithms should satisfy the following properties:

Completeness: For all parameters A € N, L € N, all attribute universes U, and all indices i € [L],

Pr |IsValid(crs, i, pk;) =1 : crs «— Setup(l/l, 114111y, (pk;, sk;) « KeyGen(crs,i)| = 1.

Correctness: We say Igrp is correct if for all security parameters A € N, all attribute universes U, all slot
lengths L € N, all indices i € [L], if we sample crs « Setup(l’l, 11Ul 1), (pk;, sk;) « KeyGen(crs, i), then
for all collections of public keys {pkj }j#i (which may be correlated with pk;) where IsValid(crs, j, pkj) =1,
all messages p € M, all sets of attributes Sy,...,5. € U, all policies P € P where S; satisfies policy P, the
following holds:

(mpk, hsky, ..., hskg) < Aggregate(crs, (pky, S1), ..., (pk, Sp)) | _

Pr | Decrypt(sk;, hsk;, ct) = p : ¢t — Encrypt(mpk, P, 1)

1,

where the probability is taken over the randomness in Setup, KeyGen, and Encrypt.

Compactness: There exists a universal polynomial poly(-, -, -) such that the length of the master public key
and individual helper secret keys output by Aggregate are poly(A, |U|,logL).

Security: Let b € {0, 1} be a bit. For an adversary A, define the following security game between A and a
challenger:

— Setup phase: The adversary A sends a slot count 1% to the challenger. The challenger then samples
crs « Setup(1%, 111 11) and gives crs to A. The challenger also initializes a counter ctr « 0, a dictionary
D, and a set of slot indices C « @.

- Pre-challenge query phase: Adversary A can now issue the following queries:

« Key-generation query: In a key-generation query, the adversary specifies a slot index i € [L].
The challenger responds by incrementing the counter ctr < ctr + 1, sampling (pk,,, Sketr) <
KeyGen(crs, i) and replies with (ctr, pk,,,) to A. The challenger adds the mapping ctr +— (i, pk,,, Sketr)
to the dictionary D.

ctr ctr>
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+ Corruption query: In a corruption query, the adversary specifies an index 1 < ¢ < ctr. In response,
the challenger looks up the tuple (i, pk’, sk’) < D[c] and replies to A with sk’.

- Challenge phase: For each slot i € [L], adversary A must specify a tuple (c;, S;, pk}) where either
¢; € {1,...,ctr} to reference a challenger-generated key or ¢; = L to reference a key outside this set. The
adversary also specifies a challenge policy P* € # and two messages g, i; € M. The challenger responds
by first constructing pk; as follows:

« If ¢; € {1,...,ctr}, then the challenger looks up the entry D[¢;] = (i, pk’,sk’). If i = i’, then the
challenger sets pk; < pk’. Moreover, if the adversary previously issued a “corrupt identity” query on
index c;, then the challenger adds the slot index i to C. Otherwise, if i # i’, then the experiment halts.

« If ¢; = L, then the challenger checks that IsValid(crs, i, pk}) outputs 1. If not, the experiment halts. If
the key is valid, the challenger sets pk; « pk; and adds the slot index i to C.

The challenger computes (mpk, hsky, ..., hsk;) « Aggregate(crs, (pky,S1), ..., (pk;,Sr)) and replies
with the challenge ciphertext ct* «— Encrypt(mpk, P*, i;). Note that because Aggregate is deterministic
and can be run by A itself, there is no need to additionally provide (mpk, hsky, ..., hskr) to A. Similarly,
there is no advantage to allowing the adversary to select the challenge policy and messages after seeing

the aggregated key.
— Post-challenge query phase: Adversary A can now issue the following queries:

» Corruption query: In a corruption query, the adversary specifies an index ¢ € {1,...,ctr}. In
response the challenger looks up the tuple (i’, pk’, sk’) « D[c] and replies to A with sk’. Moreover,
if the adversary registered a tuple of the form (c, S, pk*) in the challenge phase for some choice of
S € U and pk*, then the challenger adds the slot index i’ € [L] to C.

— Output phase: At the end of the experiment, algorithm A outputs a bit b” € {0, 1}, which is the output
of the experiment.

We say an adversary (A is admissible if for all corrupted slot indices i € C, the set S; does not satisfy P* (i.e., the
attributes associated with a corrupted slot does not satisfy the challenge policy). Finally, we say that a slotted
registration-based encryption scheme is secure if for all polynomials L = L(A) and all efficient and admissible
adversaries A, there exists a negligible function negl(-) such that for all 1 € N,

[Pr[b’ =1:b=0] —Pr[b' =1:b=1]| =negl(d)
in the above security experiment.

The security requirement in Definition 4.9 allows the adversary to issue additional corruption queries in a post-
challenge query phase. However, as we show below, it suffices to argue security in the simpler setting where there
are no post-challenge queries. Security in the setting without post-challenge queries implies security in the setting
with post-challenge queries.

Lemma 4.10 (Security without Post-Challenge Queries). Suppose a slotted registered ABE scheme Ilsrpe = (Setup,
KeyGen, IsValid, Aggregate, Encrypt, Decrypt) is secure against all efficient adversaries A that does not make any
post-challenge queries. Then it is also a secure slotted registered ABE scheme (in the sense of Definition 4.9).

Proof. Let A be an efficient adversary that wins the slotted registered ABE security game with non-negligible
probability e. We use A to construct an adversary B for the slotted registered ABE security game that wins with the
same advantage, but makes no post-challenge queries:

« Setup phase: Algorithm A outputs a slot count 1-. Algorithm B forwards 1” to the challenger. The challenger
replies to B with a crs « Setup(1%4,1%1,11). Algorithm B gives crs to A. Algorithm B also initializes an
(empty) dictionary D.

+ Pre-challenge query phase: Adversary A can now issue the following queries:
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- Key-generation query: When algorithm A makes a key-generation query on a slot index i € [L],
algorithm B forwards the same key-generation query to its challenger. Let (ctr, pk,,) be the challenger’s
response to the query. Algorithm B then adds the mapping ctr — (i, pk,, L) to its dictionary D. It replies
with (ctr, pkg,,) to A.

ctr>

— Corruption query: When algorithm A makes a corruption query on an index c, algorithm 8B forwards
the same query to its challenger. Let sk be the challenger’s response. Algorithm 8 then looks up the
value (i, pk,,, sk”) < D[ctr] and updates D[ctr] to (i, pk,» Sketr). It then replies to A with skc,.

ctr> ctr>

+ Challenge phase: For each slot i € [L], adversary A outputs a tuple (c;, S;, pk}) where either ¢; € [N] or
¢; = 1, where N is the number of key-generation queries the adversary made. In addition, algorithm A outputs
a challenge policy P* €  and two messages i, i; € M. For each ¢ € [N], algorithm 8 then checks if for all
slot indices i € [L] where ¢; = c, the associated set of of attributes S; does not satisfy P* (i.e., P*(S;) = 0). If
this holds, then 8 submits a corrupt-identity query on c to obtain a secret key sk.. Algorithm 8 looks up the
mapping (i, pk,, sk’) < D[c] and updates its value to (i, pk,, sk¢). At this point, algorithm B issues a challenge
query on the same challenge (u, 1}, P*, {(ci, Si, pk;) }ie[1]). Let ct* be the challenge ciphertext. Algorithm 8
forwards ct* to A.

+ Post-challenge query phase: Adversary A can now issue additional corruption queries. On input an index c,
algorithm 8 looks up the value (i, pk,, skc) <= D[c]. If sk, = L, algorithm 8 aborts. Otherwise, it replies to A
with sk..

« Output phase: At the end of the experiment, algorithm A outputs a bit b” € {0, 1}, which 8 also outputs.

By construction, algorithm 8 is a slotted registered ABE adversary that does not make any post-challenge corruption
queries. Moreover, algorithm 8 perfectly simulates an execution of the security game for A, provided that A does
not issue any post-challenge queries that cause B to abort. Now, algorithm B aborts only if the value D[c] is of the
form (i, pk, L). This will be the case only if A submits a post-challenge corrupt-identity query on an index ¢ € [N]
and there exists a tuple (c;, S, pk}) in the challenge tuple where ¢; = ¢ and S; satisfies the challenge policy P. Such
queries are not allowed if A is admissible. Thus, B perfectly simulates the security game for A. Moreover, if A’s
pre-challenge queries are admissible, then all of algorithm B’s queries are admissible. This is because the additional
queries algorithm 8B makes in the security game (after A outputs the challenge) are admissible by construction. O

5 Slotted Registered ABE from Pairings

In this section, we show how to construct a slotted registered ABE scheme for policies describable by a linear secret
sharing scheme using composite-order bilinear maps.

5.1 Preliminaries: Composite-Order Pairing Groups

Our pairing-based construction of slotted registered ABE will rely on composite-order pairing groups [BGN05]. We
recall the formal definition below:

Definition 5.1 (Three-Prime Composite-Order Bilinear Group [BGN05]). A (symmetric) three-prime composite-order
bilinear group generator is an efficient algorithm CompGroupGen that takes as input the security parameter A and
outputs a description (G, Gr, p1, p2, p3, g, €) of a bilinear group where py, p, ps are distinct primes, G and Gy are cyclic
groups of order N = p1p,ps, g is a generator of G, and e: G X G — Gr is a non-degenerate bilinear map (called the
“pairing”). We require that the group operation in G and G as well as the pairing operation be efficiently computable.

Notation. Let G be a cyclic group with order N = p;p;ps and generator g. In the following, we will write
Gy = (gP*P*) to denote the subgroup of G of order p;. We define G, and G3 analogously. By the Chinese Remainder
Theorem, if g1, g2, g3 are generators of Gy, G, Gs, respectively, then g1g2g5 € G is a generator of G, and moreover,
every element h € G can be uniquely written as g,'g,"g,> where x; € Z,,, x; € Z,,, and x3 € Z,,. In the following
description, we will say h € G has a non-trivial component in the G; subgroup if x; # 0.
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Generalized subgroup assumptions. Security of our construction relies on several variants of the subgroup
decision assumptions introduced by Lewko and Waters [LW10] for constructing adaptively-secure (hierarchical)
identity-based encryption, and subsequently by Lewko et al. [LOS*10] for constructing adaptively-secure attribute-
based encryption. The first two assumptions are special cases of the generalized subgroup decision assumption from
Bellare et al. [BWY11]. Lewko and Waters previously showed that all of the assumptions hold in the generic bilinear
group model. Finally, we state a simple implication (Lemma 5.3) from [LW10] of the assumptions that will be useful
in our security analysis.

Assumption 5.2 (Subgroup Decision Assumptions [LW10]). Let CompGroupGen be a three-prime composite-order
bilinear group generator. Let (G, Gr, p1, p2, 3, g, €) CompGroquen(l’l), N = p1paps, G = (G,Gr, N, g,e), and
g1 & Gy, g2 & G,, and g3 & G;. We now define several pairs of distributions Dy, D; where each distribution
Dy = (D, Tp) consists of a set of common components D and a challenge element T;,. We say that each assumption
below holds with respect to CompGroupGen if for all efficient adversaries A, there exists a negligible function negl(-)
such that for all A € N,

[Pr[A(D, Tp) = 1] — Pr[A(D,T1) = 1]| = negl(A).

Assumption 5.2a: Sample r <~ Zy, and let
D =(G.91.93), T =9, T = (g192)".
Assumption 5.2b: Sample s;3, sp3, 7 € Zy;, and let
D = (G, 91,93 (9192)°", (9293)°*) » To = (9195)", hi=g".
Assumption 5.2c: Sample a, s, t1, 1, 7 & Zn, and let
D=(G.91.9:95979,.9195).  To=elgg)™,  Ti=e(g.9)"

Lemma 5.3 (Hardness of Factoring [LW10, Lemma 5]). Let CompGroupGen be a composite-order bilinear group
generator where Assumption 5.2b holds. Then, for all efficient adversaries A, there exists a negligible function negl(-)
such that forall A € N,

(G, Gr, p1, p2, p3, g, €) < CompGroupGen(1%),
N « pipaps. G < (G,Gr, N, g, e), B
g1 & Gy, 95 ¢ Gs, 512,503 < Zn = negl(4).
x — A(G. 1. 93 (9192)°, (9293)*>),

Pr(1 < gecd(x,N) <N:

In words, given (G, g1, 93, (9192)°'%, (9293)*#), no efficient adversary can output a non-trivial factor of N.

5.2 Slotted Registered ABE from Composite-Order Pairing Groups

In this section, we show how to construct a slotted registered ABE scheme from composite-order pairing groups.

Construction 5.4 (Slotted Attribute-Based Registration-Based Encryption). Let CompGroupGen be a composite-
order bilinear group generator, let U = {U) } yen be a (polynomial-size) attribute space, and let P = {#) }1en be a set
of policies that can be described by a (one-use) linear secret sharing scheme (Definition 3.2 and Remark 3.3) over
U. We construct a slotted attribute-based registration-based encryption scheme ITg age = (Setup, KeyGen, IsValid,
Aggregate, Encrypt, Decrypt) with message space M = Gr, attribute space U, and policy space P as follows:

o Setup(14, 1%l 1): On input the security parameter A, the size of the attribute space U, and the number of slots
L, the setup algorithm starts by sampling (G, Gr, py, p2, p3, g, €) < CompGroupGen(1%). Let Gy, G,, G3 be the
subgroups of G of orders py, p,, p3, respectively. The setup algorithm now constructs the following quantities:

— Let N = p1psps and let G = (G, Gr, N, g, e) be the (public) group description.
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- Sample generators g; <~ Gy, g3 <~ G3 and exponents a, § < Zy. Let h < glﬂ .

— For each slot index i € [L], sample exponents t;, §; < Zx and a slot blinding factor ; & Zx. Construct
the slot components as follows:
Ai — (q193)" . B« g?Afg? . P (193

Then, for each attribute w € U and each slot i € [L], sample an exponent u; ,, <~ Zy;, and for each j € [L]
with j # i, sample a blinding factor y; ., €~ Zy. Construct the attribute components U; ,, and W; ; ,, as

follows:
Ui w Auj,w Yijw
Uiw < 9, s Wijw e A777gs.

— Finally, compute Z « e(g1,g1)* and output the common reference string
crs=(G, Z, g1, h, 93, {(A, B, P) Yierr] > {Uiws Wijiwbizjwetr) (5.1)

KeyGen(crs, i): On input the common reference string crs (with components given by Eq. (5.1)) and a slot index
i € [L], the key-generation algorithm samples r; <~ Zx and computes

Ti<—g;" , Qi<—Piri R Ri<—ggi.
Then for each j # i, it computes the cross terms V;; « A;". Finally, it outputs the public key pk; and the secret

key sk; defined as follows:
pk; = (T;, Qi, Ri, {V}i}j=) and sk; =r;.

Note that this particular key-generation algorithm does not depend on the set of attributes.

IsValid(crs, i, pk;): On input the common reference string crs (with components given by Eq. (5.1)), a slot index
i € [L], and a purported public key pk; = (T;, i, Ri, {V;,i}j2i), the key-validation algorithm first affirms that
each of the components in pk; is a valid group element (i.e., an element in G). If so, it then checks

e(gs, T;)) =1=e(g1,R;)) and e(T,P;) =e(g1,Q;) and e(R;,P;) =e(g3 Q;).
Next, for each j # i, the algorithm checks that
e(g91, Vi) =e(T;,A;) and e(gs, Vi) = e(Ry, A)).
If all checks pass, it outputs 1; otherwise, it outputs 0.

Aggregate(crs, (pky, S1), ..., (pky, St)): On input the common reference string crs (with components given by
Eq. (5.1)), a collection of L public keys pk; = (T;, Qi, Ri, {V; i} i) together with their attribute sets S; C U, the
aggregation algorithm starts by computing the attribute-independent public key T and the attribute-independent

slot key V; for each i € [L]:
t=1]1 . %=]]v
jelL] j#i
Next, for each attribute w € U, it computes the attribute-specific public key U,, and the attribute-specific slot
key W; ,, for each i € [L]:
Uw = 1_[ Uj,w s VAVvi,w = ]_[ ‘/Vvi,j,w
Jjel[L]:weS; J#EEWES;
Finally, it outputs the master public key mpk and the slot-specific helper decryption keys hsk; where
mpk = (g,gl,h,z, f,{ﬁw}weﬂ) and hSki = (mpks is SisAis Bia ‘71'5 {V{/i,w}weﬂ)-
Encrypt(mpk, (M, p), #): On input the master public key mpk = (G, g1, h, Z, T, {U,,} wew) a policy (M, p)
where M € Zg *™and p: [K] — U is an injective row-labeling function, and a message y € Gr, the encryption

algorithm starts by sampling a secret exponent s & 7Zn and by, hy & Gy such that h = hyh,. Then, it constructs
the ciphertext components as follows:
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- Message-embedding components: First, let C; < - Z° and C; < g7.

- Attribute-specific component: Sample v, ...,0v, < Zy for the linear secret sharing scheme and let
T A
Vv =[s,0s,...,0,]". For each k € [K], set C3; h?kap_(sk), where mz S Z; denotes the k" row of M.

— Slot-specific component: Set C; « hif‘s .

It then outputs the ciphertext
ct = ((M, p), C1, Co, {Ca b ke k1> Ca)-

« Decrypt(sk, hsk, ct): On input the secret key sk = r, the helper key hsk = (mpk, i,S;, A;, B;, 17, {WLW}WE(H),
where mpk = (G, g1, h, Z, T,{U.} weqs), and the ciphertext ct = ((M, p),Cl,Cg,{C3,k}ke[K],C4) where M €
Zg *"and p: [K] — U is an injective row-labeling function, the decryption algorithm proceeds as follows:

— If the set of attributes S; is not authorized by (M, p), then the decryption algorithm outputs L.

— Otherwise, let I = {k € [K] : p(k) € S;} be the indices of the rows of M associated with the attributes
Si € U. Write the elements as I = {ky,..., k| }.

- Let Mg, be the matrix formed by taking the subset of rows in M indexed by I. Since §; is authorized, let
ws, € Z]‘\Ill be a vector such that wg Mg, = e].

— Then, compute and output

N N s, j
C1-e(Cy, Aj) - e(Co, ATV) - 1_[ (e(cs,kj,Ai) - e(Cy, Wi,p(kj))) ]/e(CZ,Bi)o (5.2)
1<j<|I|

Dot Dattrib

We will refer to Dgot as the slot-specific decryption component and D,yip as the attribute-specific decryption
component.

Correctness and security analysis. We now provide the correctness (Theorems 5.6 to 5.8) and security analysis
(Theorem 5.9) of Construction 5.4. Taken together, we obtain the following corollary:

Corollary 5.5 (Slotted Registered ABE from Pairings). Let A be a security parameter, L = L(A) be the number of slots,
and M, U, P, be the message space, attribute space, and policy space from Construction 5.4, respectively. Assuming
Assumption 5.2 holds with respect to CompGroupGen, Construction 5.4 is a secure slotted registered ABE scheme with
the following efficiency properties:

« The size of the CRS is L% - |U| - poly(A).

« The size of the master public key mpk and each helper decryption key hsk; for any sloti € [L] is |U| - poly(A).
Notably, this is independent of the number of slots (i.e., registered users).

« The size of a ciphertext associated with policy P = (M, p) € P is |P| - poly(1).
Theorem 5.6 (Completeness). Construction 5.4 is complete.

Proof. Fix a security parameter A the number of slots L. Let crs «— Setup(1%, 11U1 1LY Take any index i € [L] and let
(pk;, sk;) <« KeyGen(crs, i). By construction of KeyGen, we can write pk; = (Ti, Oi, R;, {X/j,i}j;éi), where

Ti=gy ., Qi=P' , Ri=gy , Vii=A}

for some r; € Zy and where A; and P; are elements from crs. We now consider each of the pairing checks in IsValid
and appeal to orthogonality:

« e(g3.T;) =e(g3.97) = e(gs,91)" = 1.
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e(g1, Ri) = e(g1,95") = e(g1,93)"" = 1.
e(Ti, i) = e(gy, Pi) = e(g1, P}') = e(g1, Q1)
e(R;, P) = e(gy', Pi) = e(gs, P}*) = e(g3, Qi).
e(g1, Vi) = e(g1, AT) = e(gy', Aj) = e(Ti, Aj).

e(g3, Vj.i) = e(gs, AT) = e(gy', Aj) = e(Ri, Aj).

Since all of the pairing checks pass, IsValid(crs, i, pk;) outputs 1 and completeness holds. O

Theorem 5.7 (Correctness). Construction 5.4 is correct.

Proof. Take any security parameter A € N, attribute space U, slot length L € N, and index i € [L]. Consider the
following components in the correctness experiment:

Let crs « Setup(1*,11¥1,1L) where crs = (G, Z, g1, h, g5, {(Ai, B, P) YicL] s {Uiws Wijw}izjwet)- By
construction, the slot components can be written as A; = (g193)", B; = ¢¢ Aﬁ gy, and P; = (g193)% . The attribute

Yt]w

. Uj u
components can be written as Uy ,, = g, and Wjj,,, = A, g,

Let (pk;, sk;) < KeyGen(crs, i). Then, we can write sk; = r; and pk; = (T;, Qi, R;, {V};} j2i) where

Ti=g) . Qi=P' , R=gy , Vyi= A;i = (g193)"". (5.3)
Take any set of public keys {pk;} ;+; where IsValid(crs, j, pk;) holds. Since pk; satisfies the IsValid predicate,
we can write pk; = (T}, Qj, Rj, {Ve,j}ee[r1\(j3)-

For each j € [L], let S; C U be the attributes associated with pk;.
The master public key mpk and i slot-specific helper decryption key hsk; can then be written as follows:
mpk = (g,gl, h> Z, ’f>{0w}w€'u) and hSki = (mpk’ i, Si’AbBi’ ‘71'5 {VV},W}WE'L()’

where T = [T T V' [1j2i Vij. and

U, = l_[ gllb w

JEIL]:weS;

e
n po= 1 Gaggto-
Fi:wg

JEEWES;

Let (M, p) be the challenge policy where M € Zg X" and p: [K] — U is an injective row-labeling function.
Take any message y € M. The challenge ciphertext ct can be written as ct = ((M P), C1, Co, {Cs k ke (k) C4)

where P = (M, p) is the challenge policy, C; = p- Z°, C; = g5, C3 = h;n (k)’ Cy = hi T-s , hihy = h, and

i € Gr is the challenge message.

We now show that Decrypt(sk;, hsk;, ct) outputs p. Let I = {k € [K] : p(k) € S;} be the indices of the rows of M
associated with the attributes S;. Write the elements of I as I = {ky, ..., k|7 }. Let Mg, be the matrix formed by taking
the subset of rows in M indexed by I, and let ws, € le\Ill be a vector such that wg Ms, = e]. We break up the decryption
relation (Eq. (5.2)) into several pieces and analyze them individually:
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« Policy check: First, consider Darib = [11<j<|1 ((Csx,» Ai) - e(Co, Wi!p(kj)))wsi’j. By definition,

T
m v

A . timT'v —t; .

e(Capn Ai) = e (hz " Untiyyy (9193)“) =e(hy,g1) " " 1_[ e(g1,g1) "y
celLlp(k)eS:

e 1 ) ] e
te[L\{i}:p(k;) €S, te[L\{i}:p(k;) ¢S,

since hy, Up<kj) € G,. By construction, p(kj) € S;, so

tisufﬁp(kj) _ t,-su()p(kj)
- >

e(g1,91) e(g1,91)

eelLlp (k)¢S ee[LI\(iYsp(k))#S,

and so we can write
v

~ fmy
e(Cax;, Ai)e(Ca, Wip(k,)) = e(hz, g1) MY
Finally noting that e]v = s, we have
~ - i Yi<j< SisJ T.
Datteib = 1_[ (e(Cak;  Ai) - €(Co, Wipky)) ™ = e(haz, 1) e 95 By ¥
1<j<|1|

T
= e(hz,gl)t'waMsiv

= e(hy, 1) = e(hy, 1)*".
« Slot check: Next, consider the component Dgjot = e(C4,A,-)e(C2,A:’V,-). By definition,

e(Ca Ap) = (T, (919)") = e(hi,g1)*" [ | (T 9195) ™" = e(hi, g1)*" [ | e(T; A0

je[L] JeIL]
e(Cz,A;iVi) =e(g}, (9193)ri[i‘7i) =e(g1,91)"" 1_[ e(g1,Vi;)°.
i

since hy € G;. Now, since we know for all j € [L], IsValid(crs, j,pkj) = 1, we have that for all j # i,
e(g1,Vi,j) = e(Tj, A;). Thus, using Eq. (5.3), we can now write

Dgjor = e(c4,Ai)€(C2,A?Vi) = |e(hi, g1)* e(T;, Ai)~° l_[ e(T;,A)~°
j#i
= e(h1,91)°"e(T;, A;) e(g1,91)°""
= e(hi,g1)""e(g7, (9193)") *e(g1,91)°"" = e(h1,91)*"

(6(91,91)””“ [ Tetnvipy’

J#i

« Message reconstruction: Using the fact that h = hyh;, and combining the above relations, we have that
Dyjot * Dativ, = e(h1,9)*""e(hz, g1)*" = e(h, s)*"".
Next, using the fact that h = gf , we have
e(Cy, B;) = e(gi,g‘f{Aiﬂg?) =e(g1,91)"e(yq], (9193)'&") = e(gl,gl)ase(h,gl)Sti-
Thus, putting everything together, Eq. (5.2) becomes

C1 * Dyot * Dattrib - H- e(glsgl)ase(hsgl)Sti _
e(Cz, B;) e(g1,g1)%e(h, g1)st
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Theorem 5.8 (Compactness). Construction 5.4 is compact.

Proof. This follows by inspection. The master public key mpk consists of the group description and O(|U|) group
elements. Since the group description and each individual group element can be represented in poly(A) bits, the size
of the master public key is bounded by poly(4, |2, log L) bits. Likewise, the helper decryption key consists of the
master public key along with O(|U|) group elements. Thus, the size of hsk; is also poly(A, |U|,log L) bits. O

Theorem 5.9 (Security). Suppose Assumption 5.2 holds with respect to CompGroupGen. Then, Construction 5.4 is
secure.

Proof. Our proof follows the dual-system methodology [Wat09, LW10], where we introduce modified ciphertexts
(referred to as “semi-functional ciphertexts”) and slot components (referred to as “semi-functional slots”). Keys
registered to a semi-functional slot can be used to decrypt normal ciphertexts (i.e., those output by the honest
encryption algorithm) and keys registered to a normal slot can be used to decrypt semi-functional ciphertexts.
However, a key registered to a semi-functional slot is unable to decrypt a semi-functional ciphertext. The proof
then proceeds via a sequence of games where we first switch the challenge ciphertext from a normal ciphertext to a
semi-functional one. Then, we switch the parameters associated with each slot from normal to semi-functional. In
the final experiment, all of the slots are semi-functional, as is the challenge ciphertext. Since keys associated with
semi-functional slots cannot be used to decrypt a semi-functional ciphertext, arguing semantic security in the final
experiment is straightforward. We now specify the structure of our semi-functional slots and ciphertexts.

« Semi-functional ciphertext: Semi-functional ciphertexts contain additional components in the G, subgroup.
Specifically, suppose ct = ((M, P), C1, Co, {Cs ik Yke[k)s C4) «— Encrypt(crs, mpk, id, z). Then, a semi-functional
ciphertext has the following structure:

Ct/ = ((Ma P) > Cl > ng:z > {Clﬁ,kgg{k}ke[K] > (C49? > )) 5

for some choice of exponents {3, {3k, {4 € Zn. We note that while the proof does not construct ct’ by sampling
the exponents {3, {3, {4 directly, the components in the semi-functional ciphertexts can be written in this form.
We refer to the specific hybrid argument for details on how the individual components are sampled.

+ Semi-functional slot: The slot components for a semi-functional slot at index i € [L] are generated exactly
as the normal slot components except we change the distribution of B; and P;:

. a AP T; fo
Ai — (q193)" . B« gf A,/- (9293)" , Pi e g%,

We now define our sequence of hybrid experiments. By Lemma 4.10, we can assume without loss of generality that
the adversary submits all of its queries before submitting the challenge ciphertext. Let b € {0, 1} be a bit.

. Hybfiflz This is the real security game where the challenger encrypts message ;. We recall the main steps here:

— Setup phase: In the setup phase, the adversary A sends a slot count 1 the challenger, who samples the
common reference string crs according to the specification of the real setup algorithm:

» The challenger initializes a counter ctr < 0 and an (empty) dictionary D to keep track of the
key-generation queries.

« Let (G, Gr, p1, p2, P3, g, €) CompGroquen(l’l). Let N = p1p2ps and G = (G,Gr, N, g, €) be the
group description.

« Sample generators g; <~ Gy, g3 < Gs, exponents a, f < Zy, and let h « gf.

+ For each slot i € [L], sample t;, 8;, 7; €~ Zy. Construct the slot components as follows:

Ai=(q193)" . Bi= Q?Af;g;i . Pi=(g195)%.

Then, for each attribute w € U and each slot i € [L], sample an exponent u; ., <~ Zy. For each j € [L]
with j # i, sample a blinding factor y; j ., ¢~ Zy and construct the Attribute-specific component U ,
and W, j,,, as follows:

Yijw

—_ M _ AUjw
Uiw= gl’w s Wijw= Ai g3
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«» Finally, compute Z « e(g1,g1)* and output the common reference string
crs=(G. Z, g1, h, g3, {(A B, P) Yierr] s {Uiws Wijow}izjwett) (54)

— Query phase: The challenger responds to the adversary’s queries as follows:

+ Key-generation query: When algorithm A makes a key-generation query on a slot i, the chal-
lenger starts by incrementing the counter ctr « ctr + 1 and samples r; < Zy. It then com-
putes T; < gy', Q; « P[', R; « gy, and Vj;; « A" The challenger sets the public key to be
pkeyr = (Ti, Qi Ri, {V}i} j2i) and responds with (ctr, pk,). It defines sk, = r; and adds the mapping
ctr — (i, pk,y,, sketr) to the dictionary D.

ctr

ctr>
« Corruption query: If the adversary makes a corruption query on an index 1 < i < ctr, the challenger
looks up the entry (i’, pk’, sk’) « D[i] and replies to A with sk’.

— Challenge phase: In the challenge phase, the adversary specifies a challenge policy P* = (M, p), where
Me Zg *"and p: [K] — U is an injective row-labeling function, two messages i;, p1; € Gr, and for each
slot i € [L], a tuple (c;, S;, pk}). The challenger sets up the public keys pk; as follows:

« If¢; € {1,..., ctr}, the challenger looks up the entry D[¢;] = (i, pk/, sk’). If i = i’, the challenger sets
pk; < pk’. Otherwise, the challenger aborts with output 0.

= If ¢; = 1, then the challenger checks that IsValid(crs, i, pk}) outputs 1. If not, the challenger aborts
with output 0. Otherwise, it sets pk; « pk;.

For each public key pk;, the challenger parses it as pk; = (T, Q;, Ri, {Vj,i}#i). Next, the challenger
computes the attribute-independent public key T and the attribute-independent slot key V; for each

ielL]:
T= l_l T, Vi = 1_[Vi,j-
jelL] j#i

Then, for each attribute w € U, it computes the attribute-specific public key U,, and the attribute-specific
slot key W; ,, for each i € [L] as follows:

UW: l_[ Uj’w s VVLW: 1—[ Vvi,j,w-

JE[L]:w¢S; J#i:wgS;

The challenger then constructs the challenge ciphertext by sampling a secret exponent s <~ Zy and
hy, hy & Gy such that h = h;h,. It then constructs the challenge ciphertext components as follows:

+ Message-embedding components: First, let C; « p; - Z° and C; « g7.

« Attribute-specific component: Sample vy, ...,v, < Zy for the linear secret sharing scheme and
Tv .~
let v = [s,0s,...,0,]". Then, for each k € [K], set C3} «— h?kap_(Sk)’ where m; denotes the k™ row
of M.

« Slot-specific component: Set Cy < h] T-s.

It replies to A with the challenge ciphertext
ct’ = ((Ma ,D), Cl’ CZs {C3,k}k€[K]s C4) .

— Output phase: At the end of the game, the adversary outputs a bit b € {0, 1}, which is also the output of
the experiment.

. Hybib): Same as Hybfeba)I except for the following (primarily syntactic) changes:

- Setup phase: The challenger samples f31, B, <~ Zy and sets /3 < f3; + f. It sets h « g’f asin Hybff;)l. In
addition, instead of sampling the secret exponent s during the challenge phase, the challenger samples
s € Zy during the setup phase and then sets P; < (gg;)® foralli € [L].
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— Challenge phase: When simulating the challenge ciphertext, the challenger sets h; « gfl and hy «— gfz,
where f1, 2 € Zn are the exponents sampled during the setup phase. Then it constructs the challenge

ciphertext components as follows:

« Attribute-specific component: Sample v,, . . .,0, < Zy and let v/ = [1,0s,...,0,]". Then, for each
k € [K], set
CSk «— (gi')/))zmz.v/*Zie|1/|:/nk1es, ”i.p(k).

« Slot-specific component: Set

S R
C4 — (gl)/jl I—[ (;‘—1 .
ie[L] Q;'

. Hybgi): Same as Hybib), except the challenge ciphertext is replaced by a semi-functional ciphertext, and
simultaneously, we lift the P; component to be in the full group (rather than G; x Gs). Namely, during the
setup phase, the challenger constructs P; as follows for each i € [L]:

P; — ((9192)93)°".

Then, in the challenge phase, after the adversary has chosen its attribute sets S; and corresponding public keys
pk; = (Ti, Qi, Ri, {V; i} j#i) for each slot i € [L], the challenger constructs the challenge ciphertext components
as follows:

- Message-embedding components: Let C; « ;- Z° and C; < (g192)°.

- Attribute-specific component: Sample vy, ...,0, < Zy and let v/ = [1,0y,...,0,]". Then, for each
k € [K], set
Caf ((9192)S)ﬁzmlvuz"e[”:/’(""zsi Uip(k)

— Slot-specific component: Set

s R;
Cr = (g9 [ ] ==
ie[L] Q;"

. Hybg?: Same as Hybgz,)_l, except we change slot £ to a semi-functional slot. Specifically, during the setup phase,

the challenger samples the slot components A, B, and P; as follows:
a AP T s
Ace— (199" . BrgiAl(g299)" . Pr— ((9192)°93)".

. Hybf:z 4 Same as Hyb, ; except when constructing the challenge ciphertext, the challenger samples C; & Gr.
Importantly, this distribution is independent of the message.

For an adversary A and a hybrid experiment Hyb, we write Hyb(A) to denote the output of an execution of Hyb
with adversary A. We now show that the output distributions of each adjacent pair of hybrid experiments are
computationally indistinguishable.

Lemma 5.10. Suppose Assumption 5.2a holds with respect to CompGroupGen. Then, for all efficient adversaries A and
all b € {0, 1}, there exists a negligible function negl(-) such that forallA € N,
|Pr[Hyb®) (A) = 1] = Pr[Hyb{"” (A) = 1]| = negl (2.

a

Proof. As we show below, the two experiments are statistically indistinguishable if all of the public keys pk; the
adversary specifies in the challenge phase either satisfy pk; = L or pk] is in the support of the honest key-generation
algorithm (i.e., for every i € [L], there exists r; such that pk] is the public key output by KeyGen(crs, i)). We now
show that under Assumption 5.2a, the only public keys pk} that an efficient adversary can construct and which satisfy
the validity check IsValid(crs, i, pk;) are those that are in the support of the honest key-generation algorithm. To do
so, we start by characterizing the set of possible strategies available to an efficient adversary.
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Claim 5.11. For a security parameter A, define the following game between an adversary A and a challenger:

1. The challenger starts by sampling (G, Gr, py, pa, p3, g, €) «— CompGroupGen(11). It sets N = pi1pops, G =
(G,G1, N, g, e) and samples g & Gy, g5 & Gs, s & Zy, and Z < (g193)°. The challenger gives the tuple
(gsgl’g3’Z) to\?{'

2. Algorithm A outputs a tuple (A, B,C) € G°.

3. The game outputs b = 1 if the following relations are satisfied:
e(gs,A)=1=e(g;,B) and e(A Z)=¢e(g,C) and e(B,Z)=e(gs C),
and moreover, there does not existr € Zy such that A= g}, B=g}, andC=Z".

Suppose Assumption 5.2a holds with respect to CompGroupGen. Then, for all efficient adversaries A, there exists a
negligible function negl(-) such that for all A € N, Pr[b = 1] = negl(A) in the above security game.

Proof. Suppose there exists an efficient adversary A such that Pr[b = 1] = ¢ for some non-negligible ¢&. We use A to
construct an adversary 8 that breaks Assumption 5.2a:

1. At the beginning of the game, algorithm B receives a challenge (G, 91,93, T), where G = (G, Gr, N, g, e),
g1 € Gy, g3 € G3, and either T = g or T = (g192)"

2. Algorithm B samples exponents ya, yp < Zy and computes Z = g{Ag’;B .

3. Algorithm B starts running algorithm A on input (G, g1, g, Z) to obtain a triple (A, B, C).

4. Algorithm B computes Z’ < C/(AY4BYB) and outputs 1 if e(Z’, T) = 1 and 0 otherwise.

smod p; s mod ps3

In the real security game (Claim 5.11), the element Z = (g193)° = g; g5 . Since s & Zy, by the Chinese
Remainder Theorem, the individual exponents s mod p; and s mod p3 are independent and uniform over Z,, and
Zy,, respectively. Thus, algorithm 5 perfectly simulates the security game for A. Thus, with probability at least e,
algorithm A outputs a tuple (A, B,C) such that e(g;,B) = 1 = e(g3, A), e(A, Z) = e(g1,C), and e(B,Z) = e(g3,C).
Moreover, there does not exist r € Zy such that A = g7, B = g3, and C = Z". We now argue that in this case, over the
choice of y4, yp ¢ Zy;, it will be the case that Z’ € G, \ {1} with overwhelming probability.

« First, we show that Z’ does not have any non-trivial component in the G; and G subgroups (i.e., Z’ € Gj). This

is equivalent to checking that e(g;gs3, Z’) = 1. First, using the fact that e(g;,C) = e(A, Z), e(g3,C) = e(B, Z),

and Z = g!*g}®, we can write

e(9193,C) _ e(AZ)e(BZ)  e(Agi'g)")e(B,g"g)")
(9193, A¥4)e(g1g3, B'B)  e(g193, A¥4)e(g1gs, B'B)  e(g193, A¥4)e(g1g3, BY®)

e(9193,.2') =

Next, since e(g1, B) = 1 = e(gs, A), we have

e(A,g1"9:")e(B,g1"9)")  e(A gi)"e(B,g;)"®
(9193, A¥)e(g1g3, B'B)  e(g1,A)r4e(gs, B)Y8

e(9193.2') =

+ Next, at least one of the group elements A, B,C must contain a non-trivial component in the G, subgroup.
Suppose otherwise: namely that A = (g193)", B = (9193)™, and C = (g193)’¢ for some ru, rg,rc € Zn. Then,
the conditions imply the following:

ra mod pq

— Since e(gs, A) = e(g3, g3)™ ™4 P = 1, it must be the case that 74 mod p3 = 0. Thus, A = 9,

rg mod ps3

— Since e(g1, B) = e(g1,91)"® ™71 = 1, it must be the case that r5 mod p; = 0. Thus, B = g;
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~ Finally, e(g;,C) = e(A, Z) means that e(gy, g1)"¢ ™21 = e(A, Z) = e(gy, g1)"™ ™21 Analogously,
e(gs,C) = e(B, Z) means that e(gs, g3)"¢ ™35 = ¢(B, Z) = e(gs, g3)"®"® ™4 5 Putting these together, this
means that rc = yara mod p; and r¢ = yprp mod ps. Take any r € Zy such that r = r4 mod p; and
r = rg mod ps. Then, we can write

rc mod p; _rc mod ps3 yara mod p; _ygrg mod ps YA

C=(g193)"" = g, A =g 95 = (97'95") = 7"
This contradicts the assumption that there does not exist r € Zy such that A=g7, B=g;,and C = Z".
« Thus, at least one of A, B, C must contain a non-trivial component in the G, subgroup. We consider two cases:

- Suppose that at least one of A or B has a non-trivial component in the G, subgroup. By the Chinese
Remainder Theorem, y4 and yg are uniform over Zy;, so y4 mod p; and yg mod p; are uniform over Z,,
and more importantly, independent of the view of the adversary. Thus, y4 mod p, and yg mod p, are
uniform over Zy, even given A, B, C. Since at least one of A or B contains a component in G, this means
that Z’ = C/(AY4BYB) is uniform over G,. Correspondingly, Z’ # 1 with probability 1-1/p, = 1—negl(1).

— Suppose that A and B do not have a component in the G, subgroup. Then, C must have a non-trivial
component in the G; subgroup, and correspondingly, Z’ = C/(AY4BYB) must also have a non-trivial
component in the G, subgroup.

Putting the pieces together, if algorithm A succeeds, then with overwhelming probability, Z* € G, \ {1}. In this case,
if T =g}, thene(Z’,T) =1andif T = (g192)", then e(Z’,T) # 1 (unless r = 0). Correspondingly, algorithm 8 breaks
Assumption 5.2a with probability ¢ — negl(2). O

Using Claim 5.11, we now show that the only public keys pk; the efficient adversary can construct that pass the
validity check are those in the support of the honest key-generation algorithm.

Claim 5.12. For each index i € [L], let pk} be the public key algorithm A outputs for slot i in the challenge phase
in Hybffa)l. Suppose Assumption 5.2a holds with respect to CompGroupGen. Then, for all indices i € [L], all efficient
adversaries A, and all b € {0,1}, ifIsValid(crs, i, pk;) = 1, then with probability 1 — negl(A), there exists r; € Zy such
that pk} is the public key output of KeyGen(crs, i; r;).

Proof. Take any index i € [L]. Let pk be the public key algorithm A chooses for index i in Hybfeba)l. Parse pk} =
(T3, Qi Ris {V i} j#i)- Suppose IsValid(crs, i, pk}) = 1.

« We first show that there exists r; € Zy such that T; = g;", R; = ggi, and Q; = Pl.ri where P; = (glgg)5i is the
component in the CRS. Suppose otherwise. Then, we use A to construct an efficient algorithm 8 that wins the
game in Claim 5.11:

1. At the beginning of the game, algorithm B receives a tuple (G, g1, g3, Z) from the challenger, where
G = (G,Gr,N,g,e) and Z = (g193)° for some § & Zy.

2. Algorithm B guesses an index i* ¢~ [L] and uses (G, g1, g3) to construct the CRS components according
to Setup (14, 11¥1,11). It uses element Z in place of element P;-. All of the other components are sampled
according to the procedure in Setup.

3. Algorithm B gives crs to A.
4. After A outputs (i, pk;), algorithm B aborts if i # i*. Otherwise, it parses pk;. = (Ti*, Qi+, Ris, {V = }#i*)
and outputs (T, R+, Q;+).

By construction, algorithm B perfectly simulates the distribution of the common reference string, and moreover,
the index i* is perfectly hidden from A. Thus, with probability 1/L, i = i*. In this case, if IsValid(crs, i*, pki.)
holds, then

e(g3, T) =1=e(g1,Rr) and e(T+,Pi) =e(g1,Qir) and e(Ry, Pi+) = e(gs, Qi).
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Suppose now that there does not exist r;+ € Zy where T» = g}, R = g;", and Q;+ = P;*". This means that
algorithm B wins the game in Claim 5.11. Correspondingly, if algorithm A outputs a malformed key with
probability ¢, then algorithm B succeeds with probability /L, which proves the claim.

« Next, we show that for all j # i, there exists r;; € Zy such that T; = g:j’i, R = ggj’i, Vii= A;j'i, and A; = (g1,93)"
is the component in the CRS. This follows by a similar argument as in the previous case and appealing again to
Claim 5.11.

Thus, we have shown that for all tuples (i, pk}) satisfying IsValid(crs, i, pk}) = 1 output by an efficient adversary A,
it must be the case that there exists r;, r;; € Zy for all j # i such that

T, =gy = g:j’i and R =gy = ggj'i and Q;=P" and V;;= A;j’i.

1

The requirement on T; ensures that r; = r;; mod p; for all j # i. Similarly, the requirement on R; ensures that
ri = rj; mod ps. By construction, each of the A;’s are contained in G; X Gs. Then,

i i i j i j,i mod i mod
" and Ri=gy and Q;=P' and Vj; =A;" = AN pTimod pips = Al

_ T
Ti=g i J J

for all j # i, and the claim follows. O

Returning now to the proof of Lemma 5.10, we can first appeal to Claim 5.12 to conclude that for all efficient adversaries
A, in Hyb(b) the public keys pkj, ..., pkj chosen by A in the challenge phase are either 1, do not satisfy the IsValid

real’
predicate, or are in the support of the honest key-generation algorithm. Thus, if the challenger does not abort, then it

must be the case that for all i € [L], there exists r; € Zx such that pk; is the public key output of KeyGen(crs, i; r;).
In particular, all of the keys pk; sampled by the challenger in an (honest) key-generation query already satisfy this
property. Thus, for each i € [L], we can write

Tl‘ = g;l N Qi = Plrl s Ri = g;l s Vj,i = A;l (55)
Then, in both Hbea)[ and Hybib), the following relations hold:
A . ~ YielL]: i Ui,
T = 1_[ T, = 1_[ 9;1 and U, = 1_[ Uipk) = 9, (Ll (k) es; Hip(k) (5.6)
ie[L] ie[L] ie[L]:p(k)eS;
We now consider the components in the two experiments:

« Inboth experiments, k, h;, h, is uniform over G, subject to the constraint & = h; hy. Moreover, since B, 2 < Zn,
B = p1 + P2 is also uniform over Zy in Hybib), so the distribution of f matches that in Hybf:a)[.
p®)

« Consider the distribution of P; in the two experiments. In Hyb /|,

_ §; _ 6imod p; 6; mod p.
Pi=(g193)% =9, "9, ’

Since §; is uniform over Zy (and independent of all other quantities), §; mod p; and §; mod ps are independently
uniform over Z,, and Z,,, respectively, by the Chinese remainder theorem. In Hybib),

_ (.58 _ s6;modp; &; mod p;
Pi = (g193)" = ¢, 9s :

Since &; is still uniform over Zy (and independent of all other quantities), the distribution of s§; mod p; is
uniform over Z,, as long as s # 0 mod p; (which holds with overwhelming probability since s <~ Zy). As such,
the distribution of P; in these two experiments is statistically indistinguishable.
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« Consider the attribute-specific component in the challenge ciphertext. By Eq. (5.6), in Hybgb), for each k € [K],

T,/ —
— (VP =T, 5; Ui, — %YV s ™Y s
Csp = (g7)""k [Ll:p(k)es; Hip(k) = h2 Up(k) = hz Up(k)’
where v/ = sv’' = [s, svs,. .., s0,]". This matches the distribution in Hybf:a)I with the substitution v — v”’.

« Finally, consider the slot-specific component in the challenge ciphertext in Hybgb). By Eq. (5.5),

5! rid;! i i
Qil — Pi — gir g; — ST

Ri g;‘i g;i 1

By Eq. (5.6), in Hybgb),
R; —sri A
=[] 5= |=m ] o =m
ie[L] Q;" ie[L]

C4 is distributed identically to in Hybffa)l. O

Lemma 5.13. Suppose Assumption 5.2a holds with respect to CompGroupGen. Then, for all efficient adversaries A and
b € {0, 1}, there exists a negligible function negl(-) such that for all A € N,

| Pr[Hyb{” (A) = 1] - Pr[Hyb") (A) = 1]| = negl(2).

Proof. Suppose there exists an efficient adversary A that distinguishes between Hybib) and Hybg’%) with non-negligible

advantage . We use A to construct an adversary 8 that breaks Assumption 5.2a with the same advantage:

1. At the beginning of the game, algorithm B receives a challenge (G, g1, g3, T) where G = (G, G, N, g, €), g1 € Gy,
g3 € Gs, and either T = g5 or T = (g192)° for some s <~ Zy. The components that depend on the challenge
element T is colored for clarity.

2. Algorithm 8 starts by sampling a, 1, B2 < Zn. It sets Z «— e(g1,91)%, B < P1 + P2, and h — gf.

3. For each slot i € [L], sample t;,5;, 7; < Zy. Algorithm B constructs the slot components as follows:
Ai — (q193)"" , B« g‘fA,-ﬁg? , P (Tgs).

Then, for each attribute w € U and each slot i € [L], algorithm B samples u; ., < Zy. In addition, for each
Jj # i, it samples y; j . & Zn. It constructs the attribute components U;,, and W;, j,w as follows:
Ujw Yijw

Ui, w
Uiw < 9, s Wijw < A7 g5

Algorithm 8 gives the common reference string

crs=(G. Z, g1, h, g5, {(A Bi P) Yicrr) s {Uivs Wijowbizj,wetr)

to the adversary A. It also initializes a counter ctr < 0 and an (empty) dictionary D to keep track of the
key-generation queries.

4. In the query phase, algorithm B responds to the adversary’s queries as in Hybib) and Hybgf)). Namely, when
algorithm A makes a key-generation query on a slot i, algorithm 8 increments the counter ctr < ctr + 1 and
samples r; ¢~ Zy. It then computes T; « g7, Q; « P;', R; « g3/, and V;; < A’’. The challenger sets the
public key to be pk., = (T;, Qi, R, {V},i} j=i) and responds with (ctr, pk,). It defines sk = r; and adds the

mapping ctr = (i, pkg,. sketr) to the dictionary D. If the adversary A makes a corruption query on an index

1 < i < ctr, the challenger looks up the entry (i’, pk’, sk”) < D[i] and replies to A with sk’.
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5. In the challenge phase, after A specifies the challenge policy P*, the messages y, 41, and for each slot i € [L],
a tuple (c;, S;, pk}). For each i € [L], algorithm $ constructs pk; as in Hybib) and Hybgi)):
« If ¢; € {1,...,ctr}, the challenger looks up the entry D[¢;] = (i, pk/,sk’). If i = i/, algorithm B sets
pk; < pk’. Otherwise, algorithm B aborts with output 0.
« If ¢; = 1, then algorithm 8B checks that IsValid(crs, i, pk}) outputs 1. If not, it aborts with output 0.
Otherwise, it sets pk; < pk.
Finally, for each i € [L], algorithm 8B parses pk; = (T;, Qi, Ri, { Vi }j2i)-

6. Algorithm 8 parses the challenge policy as P* = (M, p) where M € fo" and p: [K] — U. Algorithm B
constructs the challenge ciphertext as follows:
+ Message-embedding components: Set C; < p; - e(g1, ) and C; « T.

« Attribute-specific component: Sample vy, ...,v, < Zy and let v/ = [1,0,,...,0,]". For each k € [K],
set
Cop TP ~Zictwrpoes; ot

« Slot-specific component: Set
R;
Cy T‘Bl ]—[ F
ie[L] Q;
7. At the end of the game, algorithm A outputs a bit b’ € {0, 1}, which B also outputs.

Observe that e(gy, T)* = e(g1, g1)*° regardless of whether T = g; or T = (g192)°. If T = g3, then algorithm 8 perfectly

simulates an execution of Hybib). Alternatively, when T = (g1¢2)°, algorithm B perfectly simulates Hybé?. Thus,
algorithm B breaks Assumption 5.2a with the same advantage ¢. O

Lemma 5.14. Suppose Assumption 5.2b holds with respect to CompGroupGen. Then, for all ¢ € [L], all efficient
adversaries A, and all b € {0, 1}, there exists a negligible function negl(-) such that for all A € N,

|Pr[Hyb;i,)_l(ﬂ) =1] - Pr[Hyb;’b[) (A) = l]i = negl(4).

Proof. We introduce an intermediate hybrid iHybgb):

. iHybt(,b): Same as Hybgi,)_l, except we change the distribution of A, in the CRS. Specifically, during the setup

phase, the challenger samples A, B, P, as

Ave g’ BeegiALG L P ((9192)°95)%.

b(b)

In the previous hybrid Hyb, , ,, we have that A, — (g193)".

We now show that for all efficient adversaries A, the output distributions of Hybgi,)_l(ﬂ) and iHybf,b) (A) are
computationally indistinguishable, as are those of iHyb;b) (A) and Hybg? (A).

Lemma 5.15. Suppose Assumption 5.2b holds with respect to CompGroupGen. Then, for all ¢ € [L], all efficient
adversaries A, and all b € {0, 1}, there exists a negligible function negl(-) such that for all A € N,

b . b
| Pr[Hyb") | (A) = 1] - Pr[iHyb{" (A) = 1]| = negl(1).
Proof. By construction, the only difference between these two hybrids is component A, in the CRS. Suppose that

there exists an efficient adversary A that can distinguish these two experiments with non-negligible probability e.
We use A to construct an adversary 8 that breaks Assumption 5.2b with the same advantage:
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1. At the beginning of the game, algorithm B receives a challenge (G, g1, g3, X, Y, T) where G = (G, G, N, g, €),
g1 € Gy, g3 € G3, X = (9192)°2, Y = (g293)°® for some s12, 533 < Zn;, and either T = (g193)" or T = g’ for some
t < Zn. The components that depend on the challenge elements X, Y, T are colored for clarity.

2. Algorithm B starts by sampling a, B, fz < Zn. It sets Z «— e(g1,91)%, B = p1 + B2, and h gf.
3. For each i € [L], algorithm B samples t;, 5;, 7; < Zn'.

« Fori < ¢, algorithm B sets
A (gigs)" . B giAlY™ | P (Xgs)*.
« For i = ¢, algorithm B sets
Ay =T , By« Q?Afg? . Ppe (Xgs).
« For i > ¢, algorithm 8B sets
A; — (9193)" ., B;i g?Afg? ., P (Xgs)2.

Then, for each attribute w € U and slot i € [L], sample u;,, < Zy and for each j # i, sample y; j ,, < Zn.

Algorithm 8 then constructs the attribute-specific slot components U; ,, and W, ; ,, as in Hybg’l:{,)_l’2 and iHybt(,b):

Yij,w

_ Uiw _ AUjw
Ui,w - 911 5 I/Vi,j,w - Ai 93

Algorithm 8B gives the common reference string

crs=(G. Z, g1, h, g3, {(A B P) Yicrr) s {Uivs Wijowbizj,wetr)

to the adversary A. It also initializes a counter ctr «<— 0 and an (empty) dictionary D to keep track of the
key-generation queries.

4. In the query phase, algorithm B responds to the adversary’s queries as in Hybgi,)_l and iHybgh). Namely, when
algorithm A makes a key-generation query on a slot i, algorithm 8 increments the counter ctr «— ctr + 1 and
samples r; < Zy. It then computes T; « g7', Q; « P;", R; « g;/, and V}; « A;i. The challenger sets the
public key to be pk, = (T;, Qi, R, {V},i} j=i) and responds with (ctr, pk,). It defines sk = r; and adds the
mapping ctr = (i, pkg,. sketr) to the dictionary D. If the adversary A makes a corruption query on an index
1 < i < ctr, the challenger looks up the entry (i’, pk’, sk’) < D[i] and replies to A with sk’.

5. In the challenge phase, after A specifies the challenge policy P*, the messages yy, pi], and for each slot i € [L],
a tuple (c;, S;, pk}). For each i € [L], algorithm B constructs pk; as in Hyb;’l:,)_1 and iHybt(,b):

« If ¢; € {1,...,ctr}, the challenger looks up the entry D[¢;] = (i, pk/,sk’). If i = i/, algorithm B sets
pk; < pk’. Otherwise, algorithm B aborts with output 0.

« If ¢; = 1, then algorithm B checks that IsValid(crs, i, pk}) outputs 1. If not, it aborts with output 0.
Otherwise, it sets pk; « pk;.

Finally, for each i € [L], algorithm B parses pk; = (T;, Qi, Ri, {V; i} j=i)-

6. Algorithm 8 parses the challenge policy as P* = (M, p) where M € Z;fx" and p: [K] — U. Algorithm 8
constructs the challenge ciphertext as follows:

+ Message-embedding components: Set C; < i - e(g1, X)® and C; « X.
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+ Attribute-specific component: Sample vy, ...,v, < Zy and let v/ = [1,0,,...,0,]". For each k € [K],
set
Cap  XPmY =Ziclwrpioes; bipo

« Slot-specific component: Set

R;
et [] =55
ie[] Q;

7. At the end of the game, algorithm A outputs a bit &’ € {0, 1}, which B also outputs.

(b)

In the reduction, the exponent s;; ¢~ Zy plays the role of s <~ Zy in Hyb, ;|

and iHybf,b). Note that in the reduction,

Ci =, - e(g1,(9192)™)" = y, - e(g1,91) " = Z°%,

which matches the distribution in Hybg’b[)_1 and iHybEb) . Next, consider the distribution of B; for i < £. As long as

sz3 # 0 mod p, and sp3 # 0 mod p3 (which holds with overwhelming probability over the choice of sy3 <~ Zy), then
the distributions

{Y" = (g2g3)*™ : 1 & Zn} and  {(gags)™ : i & Zn}
are identical. Consider now the distribution of A,:

b®)

« If T = (g1g3)" for some t & Zy;, then this is exactly the distribution in Hy 261

« If T = ¢ for some t & Zy;, then this is exactly the distribution in iHybl()b).
Thus, we conclude that algorithm B breaks Assumption 5.2b with advantage at least ¢ — negl(4). O
Lemma 5.16. Suppose Assumption 5.2b holds with respect to CompGroupGen. Then, for all ¢ € [L], all efficient

adversaries A, and all b € {0, 1}, there exists a negligible function negl(-) such that for all A € N,

Pr[iHyb{"” (A) = 1] = Pr[Hyb}} (A) = 1]| = negl(A). (5.7)

Proof. Our analysis will depend on whether the adversary knows the secret key associated with slot £ or not. Let
(ci, Si, pk;) be the tuples adversary A outputs for each slot i € [L] in the challenge phase. Let ctr be the number of
key-generation queries the adversary has made at the beginning of the challenge phase. We say that event NonCorrupt
occurs if

¢ € {1,...,ctr} and A did not make a corruption query on index c,,

Let pk,, ..., pk; be the public keys the challenger constructs during the challenge phase. If event NonCorrupt occurs,
then the public key pk, was honestly sampled by the challenger in a key-registration query, and moreover, the

adversary did not corrupt the key to learn its associated secret key. We write NonCorrupt to denote the complement
of event NonCorrupt. Now, we can write

Pr [iHybgm (A) = 1] =Pr [iHybt(,b) (A)=1A NonCorrupt] +Pr [iHybt(,b) (A)=1A NonCorrupt]
Pr [Hybg? (A) = 1] =Pr [Hybéi,) (A)Y=1A NonCorrupt] +Pr [Hybg’b{)(ﬂ) =1A NonCorrupt] .
It suffices then to show that

|Pr [iHybt(,b) (A)=1A NonCorrupt] —Pr [Hybéi) (A)=1A NonCorrupt” = negl(}) (5.8)

Pr [iHyb[(,b)(ﬂ) =1A NonCorrupt] —Pr [Hybg?(ﬂ) =1A NonCorrupt” = negl(4). (5.9)

Eq. (5.7) then follows by the triangle inequality.
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General proof strategy. As surveyed in Section 2, the proof strategy for showing Egs. (5.8) and (5.9) will construct
a sequence of hybrid experiment culminating in an information-theoretic step that ensures the adversary cannot tell
that ¢ slot has switched from normal mode to semi-functional mode. These two information-theoretic components
critically relies on different admissibility properties on the adversary:

« If event NonCorrupt occurs, then the adversary does not know the secret key sk, = r, associated with slot
¢ (i.e., r; € Zy is the secret exponent the challenger sampled when responding to the c;h key-generation
query). The final information-theoretic argument (Lemma 5.21) in the proof of Eq. (5.8) critically relies on
the distribution of r, mod p; being uniform and hidden from the view of the adversary. The full sequence of
hybrids is described in the proof of Claim 5.17.

« If event NonCorrupt occurs, then the adversary may know the secret key sk, = r; associated with slot ¢, and
as such, we cannot rely on the same information-theoretic argument as above. In this case, the admissibility
requirement ensures that the set of attributes S, associated with slot ¢ do not satisfy the challenge policy. The
final information-theoretic argument (Lemma 5.29) in the proof of Eq. (5.9) relies on information-theoretic
security of the underlying linear secret sharing scheme. The full sequence of hybrids is described in the proof
of Claim 5.26.

Analysis for the case where slot ¢ is not corrupted. We now show that Eq. (5.8) holds. As noted previously,
when the public key pk, associated with slot ¢ is not corrupted, our analysis will (eventually) rely on the secret key
sk, = rp associated with slot ¢ being hidden to argue that the semi-functional slot components look computationally
indistinguishable from normal slot components. We state the precise claim below:

Claim 5.17. Suppose Assumption 5.2b holds with respect to CompGroupGen. Then, for all ¢ € [L], all efficient
adversaries A, and all b € {0, 1}, there exists a negligible function negl(-) such that for allA € N,

|Pr[iHybt(,b) (A) =1 A NonCorrupt] — Pr[Hybé)bt,)(ﬂ) =1A NonCorrupt]| = negl(}).
Proof. To prove this claim, we introduce an additional sequence of (simpler) hybrid experiments:

. ncHybt(,f)): Same as iHybf,b) except during the challenge phase, the challenger constructs the challenge ciphertext
as follows:

— If event NonCorrupt did not occur, then the experiment halts with output 0.

- Otherwise, if event NonCorrupt occurs, let pk, be the public key associated with slot £. Since NonCorrupt
occurs, the public key pk, was constructed by the challenger in response to the c}h key-generation query
the adversary made in the query phase. Let r, € Zy be the randomness the challenger used to construct
pk, (i.e., this is the secret key stored in D[c,]). Then, pk, = KeyGen(crs, £; r;). The challenger constructs

the challenge ciphertext exactly as in iHybt(,b), except it computes Cy as follows:

sp —srp Ri
Cy « (9192)‘11(9192) o l_[ 5|
ie[L\{e} Q;'

The other components of the challenge ciphertext are constructed as in iHybl(,h). The output of the
experiment is the output of A, exactly as in iHybt(,b).

Importantly, in this experiment, the only component that depends on the exponent §, € Zy is P;. The challenge
ciphertext no longer depends on &,.

(b)

00 » except the challenger samples Py «— g% in the setup phase.

. ncHybt(,’bl): Same as ncHyb

. ncHybt(,’[;): Same as ncHyb[(,ﬁ) except the challenger samples P, < (g:¢g3)° in the setup phase.
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Hybrid A, B, P, Justification

b o T, S
HybY  (qign)  gAlgT ((9192)°95)%

iHyb[(,b) g't gf‘Afg;" ((9192)°93)%  Assumption 5.2b  Lemma 5.15
ncHybf,f,) g't g‘l"Af 95 ((9192)°93)%  Identical Lemma 5.18
ncHyb{(,,bB gt gf‘Af 95 g% Statistical Lemma 5.19
ncHybébz) gt g‘fA'f 94 (g193)% Assumption 5.2b  Lemma 5.20
ncHybg? gt g‘fAf(gzgg)” (g193)% Statistical Lemma 5.21

nCHyb{(,i) (g193)" gf’Af(gzgg)” (g193)% Assumption 5.2b  Lemma 5.22

ncHyb{(,,bS) (9193)" g‘l)’Af(gzgg)” g% Assumption 5.2b  Lemma 5.23
ncHybébG) (9193)" g‘l"Af(gzg3)T’ ((g192)°g3)%  Statistical Lemma 5.24
Hyb") (919" 9%Al(g295)"  ((9192)°g5)%  Identical Lemma 5.25

Table 1: Structure of slot parameters A, By, Py in the hybrid experiments for analyzing the NonCorrupt branch
(Claim 5.17). For each pair of adjacent hybrids, we indicate whether they are identically distributed, statistically
indistinguishable, or computationally indistinguishable. The highlighted row is the information-theoretic step that
relies on event NonCorrupt occurring (i.e., that the adversary does not know the secret key for slot ¢).

ncHybf,?: Same as ncHyb{(,? except the challenger samples B, « gf‘Af(gzgg)” in the setup phase.

ncHyb{(,)i): Same as ncHybt(,? except the challenger samples A, < (g;93)’* in the setup phase.
. ncHybt(,?: Same as ncHybt(,fl) except the challenger samples P, < ¢°* in the setup phase

. ncHybt(,,bG): Same as ncHybt(,? except the challenger samples P; < ((g192)°gs)° in the setup phase

We provide a summary of the hybrid experiments in Table 1. We now show that each pair of adjacent hybrids are
computationally indistinguishable.

Lemma 5.18. For all adversaries A and b € {0, 1}, Pr[iHyb{(,b) (A) =1 A NonCorrupt] = Pr[ncHybx’)) (A) =1].

Proof. By construction, the output ofncHyb{(,’l(’)) (A) is 1 only if event NonCorrupt occurs. Then, pk, = (T[, Qs, Ry, {Vj’[}j#) =

KeyGen(crs, £; ;). By construction of KeyGen, this means that

Q=P = ((9192)%)g3)°"

and R, = g;'. In particular, this means that

51'1 res e
O, (9192)"g;

R[ g;[

= (9192)"".

Thus, if event NonCorrupt occurs, then C4 in ncHyb%) satisfies

s —sr R; s R R; s R;
Cs = (192)P (g1g2) " 1_[ # = (g192)*P % 1_[ # = (g192)*P 1_[ # .
ie[L\{e} Q;' Q," ) \ielLi\{ey Q; ie[L] Q;
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This is exactly the distribution of C4 in iHyb, (A). Therefore, conditioned on event NonCorrupt, the output distribution
of ncHyb( )(ﬂ) is identical to the output distribution of iHyb,(A). Correspondingly,

Pr[ncHyb(b) (A) = 1] =Pr[NonCorrupt] - Pr[iHyb,(A) =1 | NonCorrupt]
Pr[iHyb,(A) = 1 A NonCorrupt],

and the claim follows. ]

Lemma 5.19. Forall ¢ € [L], all adversaries A and all b € {0, 1}, there exists a negligible function negl(-) such that for
allA € N, |Pr[ncHybt(,,%) (A)=1] - Pr[ncHyb(b) (A)=1] \ = negl(}).
Proof. The only difference between ncHybf,’}f)) and ncHybt(,’ is the distribution of P,. In ncHyb Py is uniform over

G. In ncHybf, 0)’ Py = ga"sgslsg(s’. Since §; < Zy, as long as s mod p; and s mod p, are both non-zero, then the

612

marginal distribution of P, is uniform over G (over the choice of §;). Since s & Zn, s mod p1 and s mod p, are
non-zero with probability at least 1 — 1/p; — 1/p, = 1 — negl(A). Thus, the marginal distribution of P, is statistically
indistinguishable in ncHybt(,’l(’)) and ncHybt(,ﬁ). None of the other components in ncHyb((,,%) and ncHybt(,ﬁ) depend on
the exponent &, so the outputs of the two experiments are statistically indistinguishable. O

Lemma 5.20. Suppose Assumption 5.2b holds with respect to CompGroupGen. Then, for all ¢ € [L], all efficient
adversaries A, and all b € {0, 1}, there exists a negligible function negl(-) such that for all A € N,

|Pr[ncHyb(b) (A)=1] - Pr[ncHyb{(,’l;) (A) = 1]| = negl(4).

Proof. We use a similar argument as the proof of Lemma 5.15, except we use the challenge to program P, instead of
A;. More formally, suppose there exists an efficient adversary A where

|Pr[ncHyb(b) (A)=1] - Pr[ncHyb(b) (A) =1] | =¢
for some non-negligible e. We use A to construct an adversary B for Assumption 5.2b:
1. At the beginning of the game, algorithm 8 receives a challenge (G, g1, 93, X, Y, T) where G = (G,Gr, N, g, €),
g1 € Gy, g3 € G3, X = (g192)%2, Y = (gog3)*» for some s19, S23 & Zy;, and either T = (glg3)5 orT = g‘S for some
& & Zy. The components that depend on the challenge components X, Y, T are colored for clarity.
2. Algorithm 8 starts by sampling a, 1, B2 < Zn. It sets Z < e(g1,91)%, B = p1 + P2, and h g'f.
3. For each i € [L], algorithm B samples t;, 5, 7; < Zn.
« Fori < ¢, algorithm 8B sets
Ai — (g193)" . Bj !]?Al-ﬁYTi , P — (Xg3).
« For i = ¢, algorithm B sets
Ay —g" , B <—g1Aﬁg3 , PpeT.

« For i > ¢, algorithm B sets

Ai — (919" . B Hngﬁ.% P (Xg3)o.
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Then, for each attribute w € U and slot i € [L], sample u;,, <~ Zy and for each j # i, sample Yijw & 7.

Algorithm 8 then constructs the attribute-specific slot components U; ,, and W, ; ,, as in Hyb and iHybl(,b):

2,0-1,2
Ui w _ AUiw Yijw
=9 s Wijw=A;""g5""
Algorithm 8B gives the common reference string

crs=(G. Z, g1, h, g5, {(A Bi P) Yicrr) s {Uivs Wijowbizj,wetr)

to the adversary A. It also initializes a counter ctr < 0 and an (empty) dictionary D to keep track of the
key-generation queries.

4. In the query phase, algorithm 8 responds to the adversary’s queries as in ncHybt(,ﬁ) and ncHybf,’l;). Namely,
when algorithm A makes a key-generation query on a slot i, algorithm 8 increments the counter ctr « ctr+1
and samples r; <~ Zy. It then computes T; < gi', Q; « P/", R; « g, and V}; « A;". The challenger sets the
public key to be pk, = (T;, Qi, R;, {V},i} j»i) and responds with (ctr, pk,). It defines sk = r; and adds the
mapping ctr — (i, pk,, sketr) to the dictionary D. If the adversary A makes a corruption query on an index
1 < i < ctr, the challenger looks up the entry (i, pk’, sk”) < D[i] and replies to A with sk’.

5. In the challenge phase, after A specifies the challenge policy P*, the messages pi;, 11}, and for each slot i € [L],
a tuple (c;, S;, pk}). For each i € [L], algorithm B constructs pk; as in ncHyb(1 and ncHyb(g):
« If ¢; € {1,...,ctr}, the challenger looks up the entry D[¢;] = (i, pk/,sk’). If i = i/, algorithm B sets
pk; < pk’. Otherwise, algorithm B aborts with output 0.
« If ¢; = 1, then algorithm B checks that IsValid(crs, i, pk}) outputs 1. If not, it aborts with output 0.
Otherwise, it sets pk; « pk;.
Finally, for each i € [L], algorithm B parses pk; = (T;, Q;, R, {V} i} j=i)-

6. Algorithm B parses the challenge policy as P* = (M, p) where M € Z;fx” and p: [K] — U. Algorithm B
constructs the challenge ciphertext as follows:
+ Message-embedding components: Set C; < i - e(g1, X)® and C; « X.

« Attribute-specific component: Sample vy, ...,0, < Zy and let v/ = [1,0,, ..
set

.,un]". For each k € [K],
Cap ¢ XPmY =Zietwrpioes; bipo
« Slot-specific component: Set

C4 <—Xﬂ1_r[ 1_[ il

[y
ielLI\{e}y Q"
7. At the end of the game, algorithm A outputs a bit b € {0, 1}, which 8 also outputs.

As in the proof of Lemma 5.15, the exponent s;; <~ Zy plays the role of s < Zy in ncHyb(b) and ncHyb(b)
Next, consider the distribution of B; for i < ¢. As long as s;3 # 0 mod p; and sz3 # 0 mod ps (Whlch holds with
overwhelming probability over the choice of s;3 & Zx), then the distributions

(Y7 = (g293)"*" : 1; & Zn} and  {(g2g3)™ : € Zn}
are identical. Consider now the distribution of P,:

« If T = ¢° for some § & Zy;, then the components coincide with the distribution in ncHybE’bl)

« If T = (g1g3)° for some & & Zy;, then the components coincide with the distribution in ncHybt(,’bz) .
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Thus, we conclude that algorithm B breaks Assumption 5.2b with advantage at least ¢ — negl(A). O

Lemma 5.21. Forall¢ € [L], all adversaries A, and all b € {0, 1}, there exists a negligible function negl(-) such that
[ncHyb?) (A) = 1] - Pr[ncHyb’ (A) = 1]| = negl(1).

Proof. We show that the distributions ncHybf,’l;) (A) and ncHybg? (A) are statistically close. Let (c¢, S¢, pky) be the
tuple the adversary chooses for slot £ during the challenge phase. Let r, <~ Zy be the randomness the challenger
used to answer the c}h key-generation query. For either experiment to output 1, event NonCorrupt must occur, which
means the adversary does not issue a corruption query on index c¢,. Correspondingly, the challenger never gives r, to
the adversary. This property will be critical for arguing that the two distributions are statistically indistinguishable.

Consider the distributions ncHyb{(,z) (A) and ncHyb(b) (A). By construction, the only difference between them is

the distribution of component B, in the G, subgroup. In ncHybl(, 2), =gvA l,ﬂgg.‘ while in ncHybg 3), lAf (9293)™,

l

12 € Zp,, and t;; € Zp,. Suppose that t;, # 0 and
s; # 0 mod p,. Since f;, s, <~ Zy, this holds with probability 1 —2/p, = 1 —negl(4). Consider the following relabeling

. t. t,, t
where A, = g'*. Write A, = g, g,"*g," where t;, € Z,, t

of the variables f; and r; in ncHyb(b)

« Let 07 € Zy be the unique value where o; = 0 mod p;ps and 07 = (t{',,z)_lz'g mod p;. Then, write f; = ] + oy,
for some f] & Zy.

« Let 0, € Zy be the unique value where o, = 0 mod p;p3 and o, = (s(’))_lo'l mod p;. Then write rp < r; + 03
for some r; & 7ZN.

By construction, observe that the distributions of f; and r, remain uniform over Zy in ncHybt(,’l;). Consider the
other components in the adversary’s view with the above relabeling. It suffices to only consider components that
depend on either §; or r since the other components are unchanged. Note also that by design, §; = { mod p;ps and
re = r; mod pyps.

Br+Be _ gﬁl P2

« Consider the components in the common reference string. First, h = g, . Next A; = (g193)" for all

i#fand Ay = gl" ! gg” g;”. Consider the distribution of each B;:

- Ifi < ¢, then B; = g"‘Aﬂl N (9293)7 = g”‘Aﬁ1 ﬁz(gz%)”.
- Ifi = ¢, then

Aﬂ1+ﬂzg g (1(ﬁ1+ﬁ2)gte2(ﬁ1+ﬁ2)gt(3(ﬁ1+ﬁ2)gfi Aﬁl +P2

=9 3 =919, 2 3 =9 (9293)",

since f; = ] mod pip3 and f; = B + (tlfz)_lrg mod py.
- Ifi > ¢, then B; = g“Aﬂ i+he g5 = g"‘AﬁlJrﬂzgg’
The remaining components in the CRS do not depend on either f; or r, and are thus unchanged.

«+ Consider the components in the key-generation queries. The only key- generation query that is affected by this
change of variables is the c query. When the adversary makes the c} h key-generation query, the challenger
constructs the pubhc key pk{ = (D, Qe Re, {Vje} jﬂ) using randomness re. Under the above substitution this

means T; = g1 = g1 ,Qp = =P' R, = 93 = g3 ,and Vj, = A re for all j # ¢ since r, = r; mod p;ps,
and the components P, and A for ] # ¢ do not contain any non- tr1v1al components in the G, subgroup. Here,
it is critical that P, = (g1¢3)% in ncHybt(,l;) does not contain any components in G,.

« Finally, consider the components in the challenge ciphertext. The components Cy, Cy, C5 . for k € [K] are all

b(®)

unchanged (i.e., they are independent of f5; and r). Consider now ciphertext component Cy. In ncHyb, ',

_ R; R
Cs = (9192) (9192) ™" n 57 | = (91927 (9192) 7" [T ==
elLl\{ey Q;" ie[L]\{¢} Q
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since f; = ] mod p; and r, = r; mod pq, and
sP1 —sre =s(f] +01) —s(ry + 01)) = sp; — sr; mod ps.

Observe now that this is precisely the distribution in ncHyb<b) (with the relabeling 8, — f; and r, — r;). Thus,

whenever t;, # 0 and s; # 0 mod p», hybrids ncHyb( 02 and ncHyb( ¢3 are identically distributed. Since this holds
with probability 1 — negl(4) over the choice of ¢, and s, the claim holds. Note that this argument critically relies on
the fact that r, is not given to the adversary in the game, as this allows us to reinterpret r, as r;, = r; + 0y. O

Lemma 5.22. Suppose Assumption 5.2b holds with respect of CompGroupGen. Then, for all ¢ € [L], all efficient
adversaries A, and all b € {0, 1}, there exists a negligible function negl(-) such that for all A € N,

|Pr[ncHyb(b) (A)=1] - Pr[ncHyb(b) (A) =1] | = negl(4).
Proof. This follows by a similar argument as the proof of Lemma 5.15. O

Lemma 5.23. Suppose Assumption 5.2b holds with respect to CompGroupGen. Then, for all ¢ € [L], all efficient
adversaries A, and all b € {0, 1}, there exists a negligible function negl(-) such that for all A € N,

|Pr[ncHyb§i) (A)=1] - Pr[ncHyb(b) (A) =1] | = negl(}).
Proof. This follows by a similar argument as the proof of Lemma 5.20. O

Lemma 5.24. For all¢ € [L], all adversaries A, and all b € {0, 1}, there exists a negligible function negl(-) such that
forall A e N, |Pr[ncHyb(b) (A)=1] - Pr[ncHyb(b) (A) =1] | = negl(4).

Proof. This follows by the same argument as the proof of Lemma 5.19. O

Lemma 5.25. Forall t € [L], all adversaries A, and all b € {0, 1},
Pr[ncHyb(b) (A) = 1] = Pr[Hyb, ,(A) = 1 A NonCorrupt].
Proof. This follows by the same argument as the proof of Lemma 5.18. O

Combining Lemmas 5.18 to 5.25, Claim 5.17 now follows by a hybrid argument. O
Analysis for the case where slot ¢ is corrupted. Next, we show that Eq. (5.9) holds. As noted previously, when
slot £ is corrupted (and the adversary knows the associated secret key), we are guaranteed that the set of attributes S,
associated with slot ¢ does not satisfy the challenge policy. Our analysis here will (eventually) rely on the security

of the linear secret sharing scheme to argue that that the semi-functional slot components look computationally
indistinguishable from normal slot components. We state the precise claim below:

Claim 5.26. Suppose Assumption 5.2b holds with respect to CompGroupGen. Then, for all ¢ € [L], all efficient
adversaries A, and all b € {0, 1}, there exists a negligible function negl(-) such that for all A € N,

Pr[iHybgb) (A) =1 A NonCorrupt] — Pr[Hyb(b) (A) =1 A NonCorrupt]| = negl(1).

Proof. Similar to the proof of Claim 5.17, we introduce an additional sequence of hybrid experiments:

. cHybt(,’%): Same as iHybt(,b) except during the challenge phase, when constructing the challenge ciphertext, the
challenger performs several additional checks:

— If event NonCorrupt occurs, then the experiment halts with output 0.
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- Let pk, be the public key associated with slot £ and S C U be the set of associated attributes. Let
P* = (M, p) be the challenge policy where M € ngn and p: [K] — U is an injective row-labeling
function. Let I = {k € [K] : p(k) € S;} be the indices of the rows of M associated with the attributes in
Sy, and let Mj be the corresponding submatrix of M. Since event NonCorrupt does not occur, this means
that S, does not satisfy the policy (M, p), so e] is not in the row-span of M;. This means that there exists
a vector v* € Z}, such that M;v* = 0 mod N and e{v* # 0 mod N. In this experiment, the challenger
computes v* € Z%; using Gaussian elimination.

- Ife]v’ = 0 mod p,, the experiment halts with output 0.
The rest of the experiment proceeds as in iHybgb).

. cHybt(,ﬁ): Same as cHybt(,’l(’)) except the challenger changes how it constructs the Cs . components in the challenger
ciphertext:

- Sample ¢ & Zy and 6),...,0, ¢ Zy and let V' = [f; — &0}, 05, ..., 0,]".
— Foreach k € [K], set Cs «— ((g1g2)°) ™ V)= Rictwrpboes; Uipt,

b®

All of the other components are constructed exactly as in cHyb, ;.

. cHybf,g) : Same as cHybt(,ﬁ) except the challenger samples B, « g7 Af (g2g3)™ in the setup phase.

(b)

. cHybf,?: Same as cHyb,

ciphertext:

except the challenger changes how it constructs the Cs x components in the challenge

- Sample vy,...,0, & Zy and let v/ = [1,0,...,0,]".
— For each k € [K], set Cs . «— ((glgz)s)ﬁzmI,V’—Z,Eu,y/,mes,— Uip(k)

(b)

1.3 » €xcept the experiment no longer halts with output 0 if e]v* = 0 mod p,.

. cHybf,i): Same as cHyb

We provide a summary of the hybrid experiments in Table 2. We now show that each pair of adjacent hybrids are
computationally indistinguishable.

Lemma 5.27. Suppose Assumption 5.2b holds with respect to CompGroupGen. Then, for all ¢ € [L], all efficient
adversaries A, and all b € {0, 1}, there exists a negligible function negl(-) such that

|Pr[iHyb§b) (A) =1 A NonCorrupt] — Pr[cHybE’%) (A) = 1]| = negl(4).
Proof. Suppose there exists an efficient adversary A where
|Pr[iHybf,b)(ﬂ) =1 A NonCorrupt] — Pr[cHybgf)) (A) = 1]‘ =¢

for some non-negligible ¢. Since these two experiments are identical except the additional check of whether e]v* =
0 mod p,, this means that with probability at least ¢, algorithm A outputs a challenge (M, p) such that e]v* # 0 mod N

but e]v* = 0 mod p,, where v* is the vector derived from (M, p) according to the specification of cHyb((,%) . We use A
to construct an adversary 8 that breaks Assumption 5.2b via Lemma 5.3:

1. At the beginning of the game, algorithm 8 is given a challenge (G, g1,93, X, Y) where G = (G, Gr, N, g, e),
g1 € Gy, g3 € G3, X = (9192)°2, Y = (g293)°2 for some s12, S23 & Zn. The components that depend on the
challenge elements X, Y are colored for clarity.

2. Algorithm 8 starts by sampling a, B, B2 < Zn. It sets Z < e(g1,91)%, B = p1 + P2, and h g'f.

3. For each i € [L], algorithm B samples t;, §;, 7; < Zn.
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Hybrid A, B, Cs i Justification

Hybl? ,  (9199)"  giATgY  ((giga)*)Pemiy ~Rieitinoies ot
iHybf,b) g grA fg;" ((9192)5)/}2"&"/_Z“G[L]:P“‘)ési Hip(k) Assumption 5.2b  Lemma 5.15
CHth(’,l(J)) 9" glAﬁ ((9192)5)ﬁzmlv,_ZiE[L]:ﬂ(k)ési Hip(k) Assumption 5.2b  Lemma 5.27
cHyb(b) gt g Aﬁg3 ((glgg)s)mL (VA= Licinrpoes; Yoo Identical Lemma 5.28
cHyb<b) gt “AI (g293)™ ((glgz)s)mz({”gv*)72“[”:/’(")&5:' Uip(k)  Statistical Lemma 5.29
cHybf,? gt g5 Af (9293)™ ((glgz)s)'Bzml‘vl72‘6“414"““:‘ Uip () Statistical Lemma 5.30

cHyb(b) gt g"‘Aﬁ(gggg)” ((glgz)s)ﬁzmlv’_z"e[ﬂiﬂ(wsi Hip(k) Assumption 5.2b  Lemma 5.31

Hyb(b) (9193)" "‘Aﬁ(gggg)” ((glgg)s)ﬁzmb’l_Z"E[Llﬁp(k)ési Hip(k) Assumption 5.2b  Lemma 5.32

Table 2: Structure of slot parameters A, B, and challenge ciphertext component Cs in the hybrid experiments for
analyzing the NonCorrupt branch (Claim 5.26). For each pair of adjacent hybrids, we indicate whether they are
identically distributed, statistically indistinguishable, or computationally indistinguishable. The highlighted row is
the information-theoretic step that relies on event NonCorrupt occurring (i.e., that the set of attributes S, associated
with slot ¢ does not satisfy the challenge policy P*). Note that two of the hybrid experiments either introduce or

remove an abort condition (cHyb(b) and cHyb(b)) without changing the distribution of A, B, and Cs .

« Fori < ¢, algorithm B sets
A (9199)" . Bi— giAlY™ P (Xgs)*
« For i = ¢, algorithm B sets
Ay —g'" |, By g‘l"Afg3 . P (Xgs).
« Fori > ¢, algorithm & sets
A; — (9193)" . B; « gfA ﬂ9§' ., Py (Xg3)2.

Then, for each attribute w € U and slot i € [L], sample u;,, <~ Zy and for each j # i, sample Yijow € ZN.
Algorithm 8 then constructs the attribute-specific slot components U ,, and W} ; ., as in Hyb2 ., and iHybEb) :

Uj,w _ AUiw Vijw
Ulw—gl s Vvi,j,w—Aij 93’ .
Algorithm 8 gives the common reference string

crs=(G, Z, g1, h, 93, {(A, B P) Yierr) s {Uiws Wijow}izjwetr)

to the adversary A.

4. In the query phase, algorithm $ responds to the adversary’s queries exactly as described in iHybt(,b) and cHyb{(,f]).
5. In the challenge phase, after A specifies the challenge policy P*, the messages pi;, yi;, and for each slot i € [L],
a tuple (c;, S, pk}). Algorithm B parses P* = (M, p) where M € Z;fx" and p: [K] — U, and computes v* as

(b)

described in cHyb, ',

and outputs ged(N, e v

6. In the query phase, algorithm B responds to the adversary’s queries as in iHybt(,b) and cHybf,f)).
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Like in the proof of Lemma 5.15, the exponent s;; ¢~ Zy plays the role of s <~ Zy in iHybgb) and cHyb{(,f)). Next,

consider the distribution of B; for i < ¢. Aslong as sp3 # 0 mod p; and sp3 # 0 mod p3 (which holds with overwhelming
probability over the choice of sy3 & Zy), then the distributions

{Y7 = (g2g3)™" : 7; & Zn}y and {(g293)" : 7i & Zn}

are identical. The other components are simulated exactly as in iHyb[(,b) and cHyb{(,f)), so with probability at least
e — negl(4), algorithm A outputs (M, p) such that e]v* # 0 mod N but e]v* = 0 mod p,. In this case, gcd(N, e]v")
yields a non-trivial factor of N (and wins the game in Lemma 5.3). O

Lemma 5.28. Forall ¢ € [L], all adversaries A, and all b € {0, 1}, Pr[cHybgf)) (A)=1] = Pr[cHybgﬁ) (A) =1].

Proof. Without loss of generality, we can assume that NonCorrupt does not occur and moreover, e]v* # 0 mod p,.
Otherwise, the output in both experiments is 0. The only difference between the two distributions is the distribution
of the challenge ciphertext components Csx. In cHyb(b) Csp = ((glgg)s)ml(%rgv*)_ZiEILPP(’f)eSi “ip(k) By definition,

7.1
~t % At % At % Alr
V' + & = [fo, 0 + Evs, ..., 0, + Evy] = Po¥,
where V"' = [1,97/,...,9, ], and the distribution of 3}/, .. ., 9, are independent and uniform over Zy (since 9, .. ., 9, &
Zy). Thus, we can equivalently write Cs i as
Cap = ((glgz)s)mi("’%"*)‘Ziem:p(kwsi Uip(k) — ((glgz)s)ﬁzmﬁ”—Zie[L]:p(k>es,- Uip(k)
.. . . . b
This is precisely the distribution of Cs ; in cH b(®). m]
p y J VAN

Lemma 5.29. Forall¢ € [L], all adversaries A, and all b € {0, 1}, there exists a negligible function negl(-) such that

forall A e N,

Pr[cHyb? (A) = 1] = Pr[cHyb?) (A) = 1]| = negl(2).

Proof. We show that the distributions cHyb{(,ﬁ) (A) and cHyb{(,’I;) (A) are statistically indistinguishable. This argument

will rely on the fact that the attributes Sy associated with slot £ do not satisfy the challenge policy. By construction,

(b)
01

B, = g‘l"Afg? while in cHybg?, B, = g;”Af(gzg3)T", where A; = g in both experiments. We start by defining a few
quantities that will be useful in our analysis:

the only difference between the two experiments is the distribution of component B, in the G, subgroup. In cHyb

« Write A, = gi“ g;“ g;” where t;, € Zp,, t;, € Zp,, and t;5 € Zp,.
« Let P* = (M, p) be the challenge policy where M € Zf *" and p: [K] — U is the row-labeling function.

« Let Sy € U be the set of attributes associated with slot ¢, and let I = {k € [K] : p(k) € S;} be the indices of the
rows of M associated with the attributes in S;. Let M; be the corresponding submatrix of M.

+ Let v* € ZY; be the vector where M;v* = 0 mod p, and e;v* # 0 mod p,.

Suppose that t;, # 0 mod p,. Since t, & Zn, this holds with probability at least 1 — 1/p, = 1 — negl(4). Consider the
following relabeling of the variables in cHybé’bl):

« Let 0'#) € Zy be the unique value where o =0 mod p1ps and P = (t{’,jz)’lfg mod p,. Suppose we write
Po =P+ o) for some i & 7.

« Let 6'9) € Zy be the unique value where ¢(¥) = 0 mod p;ps and ¢ = (U’l")_lo'(ﬁ) mod p,. Suppose we write
E=E + 09 for some & & Zy.
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« For each k € [K] where p(k) ¢ S, let crliu) be the unique value where crliu) = 0 mod p;ps and 0,5'” =

a(® m, v* mod p;. Suppose we write g, k) = u})p(k) + aliu) for some u;’p(k) & 7.

By construction, observe that these substitutions preserve the distribution of 8, £, and u (k) in cHybg
the remaining components in the adversary’s view with this variable substitution:

b .
1). Consider

« Consider the components in the common reference string. First, h = gf e = glﬁ P2 Next A; = (g1g3)" for all
i#tand A, = gi“g;” g;”. Consider the distribution of each B;:
— Ifi < ¢, then B; = g*AP*P(g,g5)7 = g‘{‘Aiﬁ”ﬁz (g293)".
- Ifi = ¢, then
: o (Bi4Pe) 1y, (Pi+p2) ty5(fr+fr) ; ”
By = grAp g = grgy T gt P g P g = g a T (gag ),

since f§; = f; mod p1ps and B, = B} + (1;,) "7, mod ps.
- Ifi > ¢, then B; = gf‘Afl+ﬁzg§i = g“Aﬁl+ﬂég§i.

1770

Consider the slot components Uy ,(x) and Wi ,(x) for all k € [K] where p(k) ¢ S and i # £. By definition,

_ Uept) _ HMepo
Uep(k) = 9; =9
_ AUep(k) Yitp(k) _ u:’.w Yiep(k)
Wiepk) = 4A; 93 =A;7"9, ,

since A; = (g193)" for all i # ¢. The remaining components in the CRS do not depend on f, £, or ug k), and
are thus unchanged.

« Next, the components the challenger constructs when responding to key-generation queries do not depend on
the exponents f;, £, or ug ,(x), so their distributions (given the components in the CRS) are unchanged with
this substitution.

« Finally, consider the components in the challenge ciphertext. The components Cy, C, C4 for k € [K] are all
unchanged (i.e., they are independent of f5, &, ug 5 (x)). It suffices to consider the ciphertext components Cs .
First, since B, = B + o/ and & = & + (v7)"10'P), we have

V' = [f2— &0}, 05,...,0,] =By — E'0],05,...,0,] mod N.
We now consider two possibilities:
— Suppose p(k) € S;. By definition, m; v* = 0 in this case, so we can write Cs  as

Csx = ((glgz)s)mz(‘}/"'é"*)_ZielLl:p(k)QSi Uip(k) — ((glgz)s)m};‘}/_Zi;t!:p(k)esi Uip(k)

- Suppose p(k) ¢ S;. Then, we can write Cs . as

Cx = ((g1g2)*)™ V+E) = Ziciiiphoss; o)
= ((9192)3)“‘1(‘7'+§V*>‘Zi¢e:p<k)esi Ui p(k) ~Ue,p(k)

T (&7 4 5% ’
_ s\ (V+EV) =i n(k)gs; Wip(k) —U
= ((9192) ) 3 izt:p(k)eS; Yip(k) p(k) |

since

Emy v — ug (k) Fmyv' —up ) mod pips

vt —up ) = (§' + 0'(5))miv* - (u;,’p(k) + 0(§)m£V*) mod p,

’ T % ’
&m v’ — Uy (k) mod py.
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Observe now with this relabeling of variables, we have recovered the ciphertext distribution in cHybf,I;) (with

randomness f;, ¢ and u{’,p(k)). Thus, as long as t;, # 0, the distributions cHybt(,,bZ) and cHyb;? are identically

distributed. This holds with probability 1 — negl(1) over the choice of t. O

Lemma 5.30. For all¢ € [L], all adversaries A, and all b € {0, 1}, there exists a negligible function negl(-) such that
forall A € N, | Pr[cHyb"?) (A) = 1] = Pr[cHyb'?) (A) = 1]| = negl(2).

2 ,3

Proof. This follows by the same argument as in the proof of Lemma 5.28. O

Lemma 5.31. Suppose Assumption 5.2b holds with respect to CompGroupGen. Then, for all ¢ € [L], all efficient
adversaries A, and all b € {0, 1}, there exists a negligible function negl(-) such that

| Pr[cHyb.% (A) = 1] - Pr[cHyb{" (A) = 1]| = negl(1).
Proof. This follows by a similar argument as in the proof of Lemma 5.27. O

Lemma 5.32. Suppose Assumption 5.2b holds with respect to CompGroupGen. Then, for all ¢ € [L], all efficient
adversaries A, and all b € {0, 1}, there exists a negligible function negl(-) such that for all A € N,

Pr[cHyb{(,i) (A)=1] - Pr[Hybgﬁ,) (A) =1 A NonCorrupt]| = negl(1).

(b)
2t

the challenger samples A, « g’ while in

Proof. By construction, when event NonCorrupt does not occur, the only difference between cHybt(,z) and Hyb, , is

(b)
bea s
Hybéi,), the challenger samples A; < (g1g3)". The argument now follows from a similar argument as in the proof of
Lemma 5.15. O

the distribution of A; in the common reference string. Namely, in cHy

Combining Lemmas 5.27 to 5.32, Claim 5.26 now follows by a hybrid argument. O

By Claim 5.17, we have that Eq. (5.8) holds (i.e., the case where slot £ was not corrupted). Similarly, by Claim 5.26, we
have that Eq. (5.9) holds (i.e., the case where slot £ was corrupted but the attributes S, do not satisfy the challenge
policy). The main claim (Eq. (5.7)) now follows by the triangle inequality. )

Lemma 5.14 now follows by combining Lemmas 5.15 and 5.16. O

Lemma 5.33. Suppose Assumption 5.2¢ holds with respect to CompGroupGen. Then, for all ¢ € [L], all efficient
adversaries A, and all b € {0, 1}, there exists a negligible function negl(-) such that for all A € N,

| Pr[Hyb"”) (A) = 1] - Pr[Hyb") (A) = 1]| = negl(1).

ran

Proof. Suppose there exists an efficient adversary A where |Pr[Hyb§bL) (A)=1] - Pr[Hyb(b)d (A) = 1]| = ¢ for some

ran
non-negligible e. We use A to construct an adversary 8 that breaks Assumption 5.2c with the same advantage:

1. At the beginning of the game, algorithm 8 receives a challenge (G, g1, g2, 93, X, Y, T) where G = (G,Gr, N, g, e),
g1 € G1, 92 € Gy, g5 € G3, X = gf’ggl, Y = giggz for some a,y1,y2 < Zn, and either T = e(gy,¢;)* or
T =e(g,9)", where r & Zx. The components that depend on the challenge elements X, Y, T are colored for
clarity.

B

2. Algorithm 8 starts by sampling S, f, <~ Zy and sets Z « e(g1, X), f < f1 + 2, and h «— g/’
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3. For each slot i € [L], sample t;, 8;, 7; & Zy. Algorithm B constructs the (semi-functional) slot components as
follows:
Ai — (q193)" . Bi XAl-ﬂ(gzga)Ti , Py (Yg3).

Then, for each attribute w € U and each slot i € [L], algorithm B samples u; ,, & 7. In addition, for each
Jj # i, it samples y; j . & Zy. It then constructs the attribute components Ui w and W j ., as follows:

Uiw Ujw Yijw
Ui,w — 91 5 Vvi,j,w — Al‘ 3 .

Algorithm 8 gives the common reference string

crs=(G, Z, g1, h, 93, {(A, B P) Yierr] s {Uiws Wijiw}izjwetr)

to the adversary A. It also initializes a counter ctr < 0 and an (empty) dictionary D to keep track of the
key-generation queries.

4. In the query phase, algorithm 8B responds to the adversary’s queries as in HybébL) and Hybf:: - Namely, when

algorithm A makes a key-generation query on a slot i, algorithm 8 increments the counter ctr «— ctr + 1 and
samples r; < Zy. It then computes T; « g7, Q; « P;", R; « g;', and V;; « A". The challenger sets the
public key to be pk, = (T;, Qi, Ri, {V},i} ji) and responds with (ctr, pk,). It defines sk = r; and adds the
mapping ctr = (i, pke,, sketr) to the dictionary D. If the adversary A makes a corruption query on an index
1 < i < ctr, the challenger looks up the entry (i/, pk’, sk’) « D[i] and replies to A with sk’.

5. In the challenge phase, after A specifies the challenge policy P*, the messages pi;, 11}, and for each slot i € [L],

a tuple (c;, S;, pk}). For each i € [L], algorithm B constructs pk; as in ncHybt(,’bl) and ncHybt(,)I;):

« If ¢; € {1,...,ctr}, the challenger looks up the entry D[¢;] = (i, pk’,sk’). If i = i/, algorithm B sets
pk; < pk’. Otherwise, algorithm B aborts with output 0.
« If ¢; = 1, then algorithm B checks that IsValid(crs, i, pk}) outputs 1. If not, it aborts with output 0.
Otherwise, it sets pk; « pk;.
Finally, for each i € [L], algorithm 8 parses pk; = (T;, Qi, Ri, {V; i} j=i)-

6. Algorithm B parses the challenge policy as (M, p) where M € Zf X" and p: [K] — U. Algorithm B constructs
the challenge ciphertext as follows:

+ Message-embedding components: Set C; « y; - T and C; « V.

« Attribute-specific component: Sample vy, ..., v, & Zxn andlet v/ = [1,0,,...,0,]". For each k € [K],
set
Cyp — Yﬁzmzv,_ZielLl:p(k)eSi Uip(k)

« Slot-specific component: Set

C4<_Yﬂ1 ni .

St
ie[L] Q;'
7. At the end of the game, algorithm A outputs a bit b € {0, 1}, which 8 also outputs.
We now show that depending on the challenge T, algorithm 8B either simulates an execution of HybgbL) or Hyb::rz d

where y; mod p; plays the role of s mod p,:

- First, Z = e(g1,X) = e(g1,9%95') = e(g1,91)*
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« Consider the components of the CRS:

A; = (9193)"
B = XAL (9:95)™ = 979y AL (9:95)™ = g1 AL g} g5
P; = (Yg3)% = ((99})95)%,

where 7;, §; & Zy. Since 7; < Zy;, the distribution of 7; + y; and 7; is identical. Thus, we conclude that these
(®)

rand’

components of the CRS are distributed identically to those in Hyb;bL) or Hyb
(b)
2L

with y, mod p; playing the
(b)

rand’

role of s mod p; in Hyb,; and Hybg:d. The remaining CRS components are sampled as in HybgbL) or Hyb

(®)

+ Algorithm B answers the queries using the same procedure as Hyb;bL) and Hyb .

+ Next, the challenge ciphertext components Cy, Cs , Cy are distributed exactly as in Hyb;bL) or Hybgz 4 Where

y2 mod p; plays the role of s mod p,. Since s & Zn in HybébL) or Hybf:zd, the distribution of s mod p; and
y2 mod p, are identical.
Consider now the distribution of the challenge T:
« If T = e(g1,92)*°, then C; = yj - T = iy - Z*. In this case, algorithm B correctly simulates experiment HybébL).

« If T = e(g1,92)", where r & Zy;, the distribution of C; is uniform in Gr, and algorithm B correctly simulates
experiment Hybf:z &

Thus, algorithm B breaks Assumption 5.2¢c with the same distinguishing advantage as A and the claim follows. O

By construction, the distribution Hybf:z 4 1s independent of the message yi;. Thus, for all adversaries A, Hybfe?r)1 4(A)
(1)
Hyb

ran

4(A). Security now follows by combining Lemmas 5.10, 5.13, 5.14 and 5.33. O

6 From Slotted Registered ABE to Registered ABE

In this section, we show how to generically transform a slotted registered ABE scheme (Definition 4.9) to a standard
registered ABE scheme (Definition 4.1). We refer to Section 2 for an overview of thhe construction.

Construction 6.1 (Slotted Registered ABE to Registered ABE). Let A be a security parameter. Let IIsgpe =
(sRBE.Setup, sSRBE.KeyGen, sRBE.IsValid, sSRBE.Aggregate, sSRBE.Encrypt, sRBE.Decrypt) be a slotted registered ABE
scheme with attribute universe U = {U) } 1en, policy space P = {P)}1en, and message space M = { M} 1en. We
now construct a registered ABE scheme IIg_age = (Setup, KeyGen, RegPK, Encrypt, Update, Decrypt) that supports a
bounded number of users and over the same attribute space U, policy space P, and message space M as follows. In
the description, we adopt the following conventions:

« Without loss of generality, we assume that the bound on the number of users L = 2¢ is a power of two. Rounding
the bound to the next power of two incurs at most a factor of 2 overhead.

« The registered ABE scheme will internally maintain ¢ + 1 slotted ABE schemes, where the k™" scheme is a
slotted scheme with 2 slots (for k € [0, £]).

« The auxiliary data aux = (ctr, D1, Dy, mpk) consists of the following components:

— A counter ctr that keeps track of the number of registered users in the system.

— A dictionary D; that maps a scheme index k € [0,¢] and a slot index i € [2¥] to a pair (pk, S) which
specifies the public key and attribute set currently assigned to slot i of scheme k.

— A dictionary D, that maps a scheme index k € [0, £] and a user index i € [L] to the helper decryption key
associated with scheme k and user i.
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- The current master public key mpk = (ctr, mpk, ..., mpk,).

If aux = 1, we parse it as (ctr, Dy, Dy, mpk) where ctr = 0, Dy, D, = @, and mpk = (0,L,...,L). This
corresponds to a fresh scheme with no registered users.

We construct our registered ABE scheme as follows:

. Setup(l", 11Ul 15): On input the security parameter A, the attribute universe U, and a bound on number of
registrants L = 2/, the setup algorithm runs the setup algorithm for ¢ + 1 copies of the slotted RBE scheme.

11Ul 2

Specifically, for each k € [0, £], it samples crs; < sRBE.Setup (1% ) and outputs crs = (crso, .. ., Crsy).

« KeyGen(crs, aux): On input the common reference string crs = (crs, . .., crsy) and the auxiliary data aux =
(ctr, D1, Dy, mpk), the key-generation algorithm generates a public/secret key-pair for each of the £+1 underlying
schemes. Specifically, for each k € [0, ], let iy « (ctr mod 2¥)+1 € [2*] be a slot index for the k™ scheme, and
sample a key (pky, skr) < sRBE.KeyGen(crsy, ix). Output pk = (ctr, pk,, ..., pk,) and sk = (ctr, skq, . . ., sk¢).

+ RegPK(crs, aux, pk, Spi): On input the common reference string crs = (crsy, . .., crs;), the auxiliary data aux =
(ctraux, D1, Do, mpk), where mpk = (ctrau, mpky, ..., mpk,), a public key pk = (ctry, pk, ..., pk,), and an
associated set of attributes Spy, the registration algorithm proceeds as follows:

— For each k € [0, £], let iy = (ctraux mod 25) + 1 € [2¥] be the slot index for the k™ scheme.

— For each k € [0,¢], check that sRBE.IsValid(crsy, ix, pk;) = 1. In addition, check that ctrx = ctrpy. If any
check fails, the algorithm halts and outputs the current auxiliary data aux and master public key mpk.

— Then for each k € [0, £], the registration algorithm updates D1 [k, ix] < (pk, Spk). In addition, if if = 2k
(i-e., all of the slots in scheme k are filled), the registration algorithm additionally does the following:

» Compute

(mpk’ , hsk;c’l, e hsk;(’zk) «— sRBE.Aggregate (crsk, Di[k,1],...,Dy[k, Zk]) .

« Update Dy[ctr+1 — 2K + i, k] « hsk; ; for each i € [2F].
» If i # 2K, mpk/. = mpk, is unchanged.
— Define the new master public key mpk” = (ctrayx + 1, mpkyg, . . ., mpk}).

— Finally, the registration algorithm outputs the new master public key mpk’ and auxiliary data aux’ =
(ctraux + 1, Dq, Dy, mpk’).

« Encrypt(mpk, P, p): On input the master public key mpk = (ctr, mpk,, ..., mpk,), the access policy P € £, and
a message ;1 € M, the encryption algorithm computes ct; « sRBE.Encrypt(mpk;, P, 1) for each k € [0, £]; if
mpk, = L, then it sets ct; « L. Then it outputs ct = (ctr, cto, ..., cty).

« Update(crs, aux, pk): On input the common reference string crs = (crso, . .., crs), the auxiliary data aux =
(ctraux, D1, Dy, mpk), and a public key pk = (ctrpy, pky, . . ., pk,), the update algorithm outputs L if ctry, > ctrayy.
Otherwise, for each k € [0, ], it sets hsky < Dy [ctry + 1, k] and replies with hsk = (hsk, ..., hsk,).

« Decrypt(sk, hsk, ct): On input a secret key sk = (ctrg, sk, ..., sks), a helper key hsk = (hsk,..., hsk;),
and a ciphertext ct = (ctrg, cto, ..., cty), the decryption algorithm outputs L if ctry < ctrge. Otherwise,
it computes the largest index k on which ctr and ctr’ differ (where bits are 0-indexed starting from the
least significant bit). If hsky = L, then the decryption algorithm outputs GetUpdate. Otherwise, it outputs

sRBE.Decrypt(skg, hskg, ctg).
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Correctness, compactness, and efficiency. Recall the correctness game from Definition 4.2. We will show that
that perfect correctness, compactness, and efficiency of the slotted registered ABE scheme IIrpe implies perfect
correctness, compactness, and efficiency of the registered ABE scheme from Construction 6.1.

Theorem 6.2 (Correctness). Suppose Ilsrpe is complete and perfectly correct. Then Construction 6.1 is perfectly correct.

Proof. Let crs = (crsg, ..., crs;) < Setup(14, 1Yl 11). Consider the challenger’s behavior in the correctness game.
Let aux = (ctrayx, D1, D2, mpk) be the auxiliary data maintained by the challenger at some point during the correctness
game. Here, mpk = (ctrmpk, mpk, ..., mpk,). By design, the counter ctrmp associated with the master public key
mpk always coincides with the counter ctr,,x embedded in aux. Thus, in the following description, we will often
write ctrayy to denote both counters. Let (pk*, sk™) be the target key sampled by the challenger in response to a
target-key registration query. We start by showing the following invariant:

Lemma 6.3. Let aux = (ctrayy, D1, Da, mpk) be the auxiliary data (maintained by the challenger) at any point in the
correctness game after the adversary has made a target-key registration query. Write mpk = (ctrayx, mpk, . .. mpk,).
Let pk* = (ctr*, pkg, . . ., pk}) be the target key the challenger sampled when responding to the target-key registration
query. Let k' € [0, £] be the most significant bit on which the binary representations of ctr* and ctr,,y differ (indexed as
in Decrypt). Then the master public key mpk,. was the output of a call to sSRBE.Aggregate(crsy, ) on a tuple of keys
and attributes that included the target key (pk;,, S*).

Proof. We start by showing the following simple observation on the position of the most significant differing bit
between two integers.

Claim 6.4. Letx,y < 2"*1 — 1 be nonnegative integers with binary representations x = x; - - - x1%0 and y = y; - - - y1Yo.
Suppose x < y. Let ky,,, = max{k € [0,£] : xx # yx}. Namely, k., is the index of the most significant bit on which x and
y differ. Then ky y < ky,y+1. Moreover, if ky y < kx y+1, then y +1 =0 mod 2kxyn

Proof. Let y; - - - yjy, = y + 1 be the binary representation of y’ = y + 1. We show the two properties individually:

« By construction, since x < y, we have xi,, = 0 and y,, = 1. Assume for contradiction that kyy > kx y+1.
Since ky,y+1 is the most significant differing bit between x and y + 1, this means that x,,,, = 0 and y =1L
4 X, Y+

Moreover, ki, y+1 is the most significant differing bit between x and y + 1, so if ky y > ky,y+1 and x_, = 0, then
it must be the case that yl'cx = 0. However, we also have that yi,, = 1. Since y’ = y + 1, the only way yx, , =1

andy; =0isifyx =1forall k < ks 4. This means that y; = 0 for all k < ky ;. When ky y+1 < ky,y, this now
X,y
contradicts the previous deduction thaty; = 1.
X, Y+

« For the second part of the claim, suppose that ky ; < ky,4+1. By definition of ky, 41, this means Xkyyr = 0 and

y]'cx’yﬂ = 1. Since ky 4 is the most significant bit on which x and y differ and k., < ks y+1, this means that
Yk yo1 = Xkyyo = 0. Otherwise ky 4.1 is a more significant bit on which x and y differ. Since y’ =y + 1 and y’
and y differ on bit ky, 1, this means that for all k < ky,y+1, yx = 1. Correspondingly, for all k < ky, y+1, y;. = 0.

This means that y’ = y + 1 = 0 mod 2kxv+, O

We now prove Lemma 6.3 via induction. The base case corresponds to the state of the challenger immediately after
the adversary registers the target key. Let aux = (ctr, Dy, D, mpk) be the auxiliary data at the beginning of the
adversary’s first target key query. We start by showing the invariant holds immediately following the query:

+ On a target-key registration query, algorithm A sends an attribute set S* C U to the challenger.

« The challenger samples (pk®, sk*) « KeyGen(crs, aux). By construction, for each k € [0, ¢], the challenger
computes i, « (ctr mod 2K) + 1 and samples a key (pky, sky) < sRBE.KeyGen(crsg, i ). The public key is
then pk* = (ctr, pky, . .., pkp).

« Next, the challenger runs (mpk’, aux’) « RegPK(crs, aux, pk*, S*). By completeness of IIsrgg, we have that for
all k € [0, €], sSRBE.IsValid (crsg, iy, pk;) = 1. This means the challenger sets Dy [k, i] < (pk*,$*).
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« For an index k € [0, ¢], let ctry € {0,1} denote the k™ bit of ctr (starting from 0 for the least significant bit and
¢ for the most significant bit). Let k” € [0, £] be the index of the most significant bit on which ctr and ctr + 1
differ. By construction, this means that ctrys = 0 and for all k < k’, ctrg = 1. Thus, ctr = 2K — 1 mod 2¥. In this
case, irs = (ctr mod 2¥') + 1 = 2K and the registration algorithm will compute

(mpk;c,, hsk;c,,l, e, hsk;c,’zk,) «— sRBE.Aggregate (crskf, D;[k’,1],...,Dy[K, 2k/]) .

By construction, the updated master public key mpk’” contains mpk},.

« At the end of the target-key registration query, the counter ctr,,y associated with aux satisfies ctry,x = ctr* + 1.
By construction, we have that ctr* and ctr,,x = ctr* + 1 differ on position k’. But by construction, the master
public key mpk;c, was the output to sRBE.Aggregate(crsy, D1[k’, 1],..., D1 [k, Zk']), and moreover,

D: [K, i, ] = Di[K, 2¥] = (pk*, §").
Thus, the challenge key pk* was aggregated into mpk;,, and the invariant holds.

Next, we consider the auxiliary state aux after each subsequent non-target-key registration query made by A. Since
the only queries that affect aux are non-target-key registration queries, we ignore the encryption and decryption
queries in the following analysis.

« Let aux = (ctrayy, D1, D2, mpk) and mpk = (ctrauy, mpk,, ..., mpk,) be the auxiliary state and master public
key at the time of the key-generation query. The inductive hypothesis is that the invariant holds for aux.

+ In a non-target-key registration query, algorithm A sends a public key pk = (ctrpy, pky,...,pk,) and an
associated attribute set Sy to the challenger. The challenger then runs (mpk’, aux’) <= RegPK(crs, aux, pk, Spk)
and updates aux « aux’, mpk « mpk’. It replies to A with the updated parameters mpk” and aux’. In the
following, we will write mpk” = (ctrmpi, mpky, . .., mpkp).

« Let i = (ctrau mod 25) + 1 for each k € [0, £]. First, if ctrpk # ctrauy or SRBE.IsValid(crsy, ik, pki) = 0, then
the challenger does not update aux or mpk (i.e., aux’ = aux and mpk’ = mpk). Since the invariant holds for
auy, it also holds for aux’.

+ Consider the case where ctrp, = ctrayx and moreover, sRBE.IsValid(crs, ix, pk;) = 1 for all k € [0, f]. Let
koa € [0, £] be the index of the most significant bit on which ctr* and ctr,, differ, and let knew € [0, £] be the
index of the most significant bit on which ctr* and ctrayy + 1 differ. By Claim 6.4, kolg < kpew. In addition, since

ctraux > ctr®, this means ctryyx,,, = 1. We now consider two possibilities:

— Suppose kold = knew. This means that the k(t)}lld bit of ctr and ctr + 1 are the same. Correspondingly, this
means that (ctr mod 2Fe4) + 1 < 2504, This means that mpk;. W= mpk,. , is unchanged by the registration

algorithm. By the inductive hypothesis, the challenge key pk* was aggregated in mpk; . Correspondingly,
the challenge key pk™ is aggregated in mpk;cmw, and the invariant holds.

— Suppose koig < knpew- By Claim 6.4, this means that ctry,y + 1 = 0 mod 2knew This means that i, = 2Knew,

new

In this case, the challenger updates mpk;Cnew « sRBE.Aggregate(crsg,., D1[knews 1], - . ., D1 [knew, 2knew]).

By construction of the registration algorithm, the entries D1 [knew 1], . . ., D1 [knews 2Knew | correspond to
(pk;, S;) for i € [ctrau — 2knew 41, ctrauy], where (pk;, S;) denotes the key that was registered in the ith
successful invocation of RegPK (in response to either a target-key registration query or a non-target-key
registration query). Since the most significant differing bit between ctr,,x and ctr* is ko1, we have that
Clraux — ctr < 2K+l — 1 < 2knew — 1 This means that ctr* € [ctrauy, — 25% + 1, ctrayy], and so (pk*, S*)
is aggregated in mpk; _ . Finally, since mpk’ = (ctraux + 1, mpky, . .., mpk;) where mpkj = mpk; for all
k # kpew, the invariant again holds.

The above argument shows that if the invariant holds at the beginning of a non-target-key registration query, then it
continues to hold after the query. The claim now follows by induction. O
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To complete the proof, we now argue that the output on each of the decryption queries is correct. Let (i;, my, P;) be
the t™ encryption query made by the adversary A, and let ct, « Encrypt(mpk;,, Pr, m;) be the resulting ciphertext.
Consider a decryption query on any index j € [t]. Here, the challenger computes m’; «— Decrypt(sk*, hsk*, ct;):

« By construction, we can write sk* = (ctr®,sky, ..., sk;), ct; = (ctre, ctjo, ..., ctje), hsk® = (hskg, ..., hsk}),
and aux = (ctraux, D1, D2, mpk) where mpk = (ctrayy, mpk,, . .., mpk,).

« Let k* € [0, ] be the index of the most significant bit on which which ctr.; and ctr* differ.
« If hsky. # L, the challenger replies with m; <= sRBE.Decrypt(sk-, hski-, ct; k).

« If hsk;. = L, the challenger first computes hsk® < Update(crs, aux, pk”). By construction, this sets hsk;. «
D, [k* ctr® + 1]. The challenger then replies with m'; — sRBE.Decrypt(sk”, hsk®, ct; ;).

We now show that m’, = m;. Recall that ct; is the output of Encrypt(mpk;,, P, m;) from an encryption query. Let
mpk;, = (ctr;,, mpk; o, ..., mpk;, ,). By definition of the encryption algorithm, it must be the case that ctr;, = ctre.
The correctness game requires that the i}h master public key mpk; is constructed after the target key pk” is registered,
so ctrey > ctr”. By Lemma 6.3, this means that the target key-attribute pair (pk®, $*) was aggregated in mpk; . via a
call to sRBE.Aggregate. By construction of sSRBE.Aggregate, this means that Dy[ctr* + 1, k*] = hskg« ¢+. Moreover,
by construction of RegPK, the value of D [ctr* + 1, k*] will never be updated after the first time it is assigned in a
call to RegPK (since the counter ctry,y is monotonically increasing). Now, by correctness of Il;rge, we have that
sRBE.Decrypt(skg« ctrs, hskgs, ct;x+) = m;, and correctness follows. O

Theorem 6.5 (Compactness). Suppose Ilsrpe is a compact slotted registered ABE scheme. Then Construction 6.1 is
compact.

Proof. Observe that the master public key mpk simply consists of an £-bit counter indicating the current number of

registered users along with £+1 master public keys mpk,, . .., mpk, for the underlying slotted scheme. Since each mpk;
is a public key for a slotted scheme with at most L = 2’ slots, the length of each mpk; is bounded by poly (2, ||, log L)
by compactness of II;rge. Thus, the overall public parameters mpk have size at most poly (4, ||, log L). O

Theorem 6.6 (Update Efficiency). Suppose Ilsrae is a compact slotted registered ABE scheme. Then, Construction 6.1
satisfies update efficiency.

Proof. We consider each requirement separately:

« Number of updates: The number of updates is at most £ + 1 = log L since each helper decryption key hsk
contains at most ¢ + 1 helper decryption keys hskq, ..., hsk,, one for each of the underlying schemes. The
Update algorithm is only invoked when one of the underlying helper decryption keys hsk; is L, and after the
update, the key is no longer L in hsk.

« Running time of update: By construction, the GetUpdate operation simply looks up and updates the £ + 1
helper decryption keys hskq, ..., hsk,. By compactness of II;rge, each helper decryption key hsk; has size
poly(A, |U|,logL). Since the auxiliary data maintains a dictionary D, mapping each index slot index k to its
set of helper decryption keys, the update operation can be implemented in poly (A, |U|,log L) time in the RAM
model of computation. O

Theorem 6.7 (Security). Suppose Isrpe is a secure slotted registered ABE scheme. Then Construction 6.1 is secure.

Proof. Let A be an adversary for the registered ABE scheme, and let L = 2¢ be a bound on the number of slots algorithm
A selects. We start by defining a sequence of hybrid experiments, each parameterized by an index k* € [0, £]:

+ Hyb,.: This is the (bounded) registered ABE security game, except when generating the challenge ciphertext
ct” = (ctres, cty, ..., cty), the first k* ciphertexts ct,...,ct;. | are encryptions of yj while the remaining
ciphertexts ct;., ..., ct; are encryptions of ;5. More specifically, the game proceeds as follows:
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- Setup phase: At the beginning of the game, algorithm A chooses a bound 1* and sends it to the challenger.

The challenger then samples crs « Setup(1%, 1Yl 11). Tt then initializes the auxiliary input aux < 1, an
initial master public key mpk «— L, a counter ¢ «— 0, an empty set of keys C = @, and an empty dictionary
D mapping public keys to registered attribute sets (with default value @). It gives crs to A.

— Query phase: Adversary A can now issue the following queries:

= Register corrupt key: In a corrupted-key-registration query, algorithm A specifies a public key
pk and a set of attributes S C U,. The challenger registers the key by computing (mpk’, aux’) «
RegPK(crs, aux, pk,S). The challenger updates its copy of the public key mpk « mpk’ and its
auxiliary data aux < aux’, adds pk to C, and updates D[pk] « D[pk] U {S}. It replies to A with
(mpk’, aux’).

» Register honest key: In an honest-key-registration query, algorithm A specifies a set of at-
tributes S C U). The challenger increments the counter t « ¢ + 1 and samples (pk,,sk;) «
KeyGen(crs, aux) and (mpk’, aux’) < RegPK(crs, aux, pk,, S). The challenger updates its public key
mpk « mpk’, its auxiliary data aux < aux’, and D[pk,] < D[pk,] U {S}. Finally, it replies to A
with (¢, mpk’, aux’, pk,).

» Corrupt honest key: In a corrupt-honest-key query, algorithm A specifies an index i € [¢].
Let (pk;, sk;) be the it public/secret key-pair the challenger sampled when responding to the ith
honest-key-registration query. The challenger adds pk; to C and replies to A with sk;.

- Challenge phase: In the challenge phase, algorithm A chooses two messages p;, u; € M and a challenge

policy P*. The challenger then generates the challenge ciphertext ct* as follows:

« Let the current auxiliary data be aux = (ctrayx, D1, D2, mpk) where mpk = (ctraux, mpk,, . .. mpk,).

« For each k € [0,¢], if mpk, = L, then set cty <« L. Otherwise, if k < k*, compute cty «
SRBE.Encrypt(mpky, P, i), and if k > k*, compute ct; < sRBE.Encrypt(mpk,, P, ji7).
» The challenger replies to A with the ciphertext ct = (ctrayy, cto, . . -, ctr).

— Output phase: At the end of the game, algorithm A outputs a bit b’ € {0, 1}, which is also the output of

the experiment.

Lemma 6.8. IfIlrpe is secure, then for all efficient adversaries A, there exists a negligible function negl(-) such that for
allA € N, allk* € [0,¢ - 1], | Pr[Hybs.(A) = 1] = Pr[Hyb;..;(A) = 1]| = negl(A).

Proof. Suppose A is an efficient algorithm such that |Pr[Hyb,.(A) = 1] — Pr[Hyb;..,;(A) = 1]| = ¢ for some
non-negligible e. We use A to construct an efficient algorithm B for the underlying slotted scheme IIsrgE:

« Setup phase: Algorithm B starts running A, who starts by outputting the number of slots 1L. Algorithm B
then proceeds as follows:

Algorithm 8 sends 12° to the challenger, who replies with a common reference string crsy-. Note that by
construction, 25" < L, so if L is polynomially-bounded, so is

zk* 8

Algorithm 8 internally initializes the auxiliary input aux = L, the master public key mpk = L, and
an (initially empty) dictionary D to keep track of the secret keys associated with each key-generation
query. In addition, algorithm 8B maintains two ordered lists Scur, Snew Which will track the public keys and
attribute sets aggregated as part of mpk,.. Initially, Scyy <= L and Spew = (L, ..., L) is an (uninitialized)
list of length 2K For an index i € [2X'], we write Spew[i] to denote the i element of Spey.

Then, for each k € [0, £]\{k*}, algorithm B samples a common reference string crs; « Setup(1%, 1141, 1 ).

Finally, algorithm 8 sets crs = (crsy, . . ., crsy) and gives crs to A.

8Note that if the underlying slotted registered ABE scheme has an efficient setup that runs polylogarithmically in the number of slots L, then we
can allow the adversary A to output the number of slots L encoded in binary instead. In this case, the reduction algorithm would also output 2k*
in binary. In other words, if the underlying slotted scheme supports an arbitrary polynomial number of users, then the transformed scheme also
does. We provide additional discussion on this in Remark 6.10.
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+ Query phase: In the query phase, algorithm 8 simulates the queries A makes as follows:

- Register corrupt key: When algorithm A issues a corrupt-key-generation query on public key pk
and attribute set S, let ctr be the current counter associated with aux. Let ix- = (ctr mod 2%) + 1.
Algorithm 8 first runs (mpk’, aux’) < RegPK(aux, mpk, pk, S) and replies to A with mpk” and aux’.
In addition, if aux’ # aux (i.e., the registration process updated the auxiliary input), then 8 updates
Snew [ik+] < (L, S, pk). Moreover, if ix- = 25" then algorithm B sets Scyr ¢— Shew- Finally, algorithm 8
updates its local state by assigning mpk” « mpk and aux’ « aux.

— Register honest key: When algorithm A makes an honest-key-registration query on a set of attributes S,
algorithm B proceeds as follows:

« Let ctr be the current counter in aux. For each k € [0, £], let iy « (ctr mod 2) + 1.

« For each k # k*, sample (pk,, ski) < sRBE.KeyGen(crsg, ix).

« Next, algorithm B makes a key-generation query on slot ix- to obtain a public key (t, pky.). It sets the
public key to pk = (ctr, pky, .. ., pk,) and adds the mapping t +— (ctr, sko, ..., skgr_1, skge41, . . ., sk¢)
to the dictionary D. Here, ¢ is the counter on the number of honest-key-generation queries maintained
by the challenger (which coincides with the number of honest-key-generation queries made by A).

Next, algorithm B runs (mpk’, aux’) « RegPK(crs, aux, pk, S) and updates mpk < mpk” and aux = aux’.
It replies with (t, mpk’, aux’, pk) to A. In addition, algorithm B updates Syew[ix+] < (£, S, L). Moreover,
if ip- = 2K, then algorithm B sets Scyr «— Spew- Finally, algorithm B updates its local state by assigning
mpk’ « mpk and aux’ « aux.

— Corrupt honest key: When algorithm A makes a corruption query on index i, algorithm 8 first looks
up (ctrsk, sko, . . ., Skk=—1, SKk=41, - - ., sky) <= D1[i]. Algorithm B makes a corruption query on index i to
obtain a secret key skg-. It replies with the secret key sk = (ctrgy, sko, . . ., ske).

+ Challenge phase: After algorithm A outputs a pair of messages i,y along with the challenge policy P,
algorithm B constructs the challenge ciphertext ct* as follows. Let mpk = (ctr, mpk,, ..., mpk,) be the current
master public key. Algorithm $ gives the challenge ciphertext ct* = (ctrau, ctg, ..., ct;) to A where the
components ct; are constructed as follows:

- If mpk;, = L, then Ctz — 1.
- If mpk; # L and k < k%, let ct; « sRBE.Encrypt(mpk, P*, u7).
- If mpk; # L and k > k", let ct; « sRBE.Encrypt(mpk, P*, ).

- If mpk, # L and k = k*, algorithm 8 makes a challenge query using the components of S, as the
attribute/public-keys for the slots, P* as the challenge attribute, and p5, 1] as the pair of challenge messages.
Algorithm B sets ct;. to be the challenger’s response.

« Output phase: At the end of the experiment, algorithm A outputs a bit b’ € {0, 1}, which 8 also outputs.

First, we show that if A is an admissible adversary, then 8 is also admissible. By construction, the set S, exactly
tracks the public keys currently aggregated in mpk,.. If mpk,. = L, then 8 does not make a challenge query, and
is admissible by definition. Suppose mpk;. # L. In this case, Sc;y # L. Consider each component S, [i] in the
challenge phase:

« Suppose Seur[i] = (J, S, L). By construction, this corresponds to the case where algorithm A made an honest-
key-generation query with attribute S. Since A is admissible, either S does not satisfy the challenge policy P*,
or alternatively, if S satisfies P*, then algorithm A did not make a corruption query on index j. Correspondingly,
this means that either S does not satisfy P* or algorithm 8 does not make a corruption query on index j. In
both cases, this is an admissible input for slot i.

« Suppose Seir[i] = (L, S, pk). By construction, this happens if algorithm A made a corrupt-key-registration
query with public key pk and attribute S. Since A is admissible, it must be the case S does not satisfy the
challenge policy P*.
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Next, algorithm B perfectly simulates an execution of the registered ABE security game for A. In the case where
ct,. < sRBE.Encrypt(mpk;., P*, ), algorithm B simulates an execution of Hyb,. whereas in the case where
« sRBE.Encrypt(mpk,., P*, u}), algorithm $ simulates an execution of Hyby._,. Correspondingly, algorithm 8

cty
k*
wins the registered ABE security game with the same non-negligible advantage «. O

To conclude the proof, observe that in Hyb, the challenge ciphertext is an encryption of yj and corresponds to the
registered ABE security game with b = 0, while in Hyb,, the challenge ciphertext is an encryption of yij and corresponds
to the registered ABE security game with b = 1. Since ¢ = poly(A4), the claim now follows by Lemma 6.8. O

Registered ABE from pairings. Combining Construction 6.1 with our slotted registered ABE scheme (Construc-
tion 5.4) from Section 5, we now obtain the following corollary:

Corollary 6.9 (Bounded Registered ABE from Pairings). Let A be a security parameter. Let U = {U) } e be any
(polynomial-size) attribute space, and let P = {P)}1en be a set of policies that can be described by a one-use linear secret
sharing scheme over U. Then, under Assumption 5.2, for every polynomial L = L(A), there exists a bounded registered
ABE scheme with attribute universe U, policy space P, and supporting up to L users with the following properties:

« The size of the CRS and the size of the auxiliary data maintained by the key curator is L? - poly(A, |U|,log L).
« The running time of key-generation and registration is L - poly (4, |U|,log L).
« The size of the master public key and the helper decryption keys are both |U| - poly(A,logL).

« The size of a ciphertext is K - poly(A, log L), where K denotes the number of rows in the linear secret sharing matrix
M associated with the access policy.

Remark 6.10 (Efficiency Preserving). Our transformation in Construction 6.1 preserves the efficiency of the underly-
ing slotted registered ABE scheme with respect to the following properties:

. Large universe: If the underlying slotted registered ABE scheme supports a large universe (i.e., |U| = 2°(1°81),
then the transformed scheme also supports a large universe. As discussed in Remark 4.8, we would formally
model this by having the Setup algorithm take as input the bit-length of the attributes rather than the size
of the attribute space in both the slotted scheme and the full scheme. Our obfuscation-based construction in
Section 7 (Construction 7.4) supports a large universe.

« Arbitrary number of users: If the running time of Setup in the underlying slotted scheme is polylogarithmic
in the bound on the number of users L, then the running time of Setup in the transformed scheme is also
polylogarithmic in the number of users L. Note that if Setup runs in time that is polylogarithmic in L, the size
of the CRS must also be polylogarithmic in L. In this case, we can set L = 2 to support an arbitrary polynomial
number of users. Formally, we would model this setting by having Setup take the bound L in binary rather than
unary in both the slotted scheme and the full registered ABE scheme. While our pairing-based construction
(Construction 5.4) does not support this notion, our obfuscation-based construction (Construction 7.4) does.

7 Registered ABE from Indistinguishability Obfuscation

In this section, we show how to build a registered ABE scheme that does not impose an a priori bound on the
number of users in the system (in contrast to the pairing-based construction from Section 5 (Corollaries 5.5 and 6.9))
using indistinguishability obfuscation (iQ) [BGI*12, GGH"13], a somewhere statistically binding (SSB) hash func-
tion [HW15] and a pseudorandom generator (PRG). Our approach is similar to but generalizes the RBE construction
of Garg et al. [GHMR18] which uses iO, SSB hash functions and public-key encryption.

52



7.1 Construction Building Blocks

Our construction uses three main building blocks: an indistinguishability obfuscation scheme, a pseudorandom
generator, and an SSB hash function [HW15]. We specifically require SSB hash functions that satisfy a local opening
property; which can be built from standard number-theoretic assumption including DDH, ¢-Hiding, DCR, and
LWE [HW15, OPWW15]. We review each of these notions below:

Definition 7.1 (Indistinguishability Obfuscation [BGI"12, GGH"13]). Let C = {Cj} 1ew be a family of polynomial-size
circuits. An indistinguishability obfuscator iO is an efficient algorithm that takes as input the security parameter A, a
circuit C € C; and outputs a circuit C’. An iO scheme should satisfy the following properties:

« Functionality-preserving: For all security parameters A € N, all C € C;, and all inputs x, we have that
C'(x) = C(x) where C" «— iO(1%,C).

+ Security: For all efficient (possibly non-uniform) adversaries A = (Samp, A’), there exists a negligible function
negl(-) such that the following holds: if for all security parameters A € N,

Pr[Vx, Co(x) = C1(x) : (Co, Cy, st) «— Samp(ll)] =1 - negl(1),
then
|Pr[ A’ (st,i0(1%, Cy)) = 1] = Pr[A' (st, iO(1*, (1)) = 1]| = negl(A),
where (Co, C, st) « Samp(14).
Definition 7.2 (Pseudorandom Generator). Let A be a security parameter, n = n(4) be a seed length, and ¢ = £(1) be

an output length. A pseudorandom generator PRG: {0,1}" — {0, 1} is an efficiently-computable function such that
for all efficient adversaries A, there exists a negligible function negl(-) such that for all A € N,

| Pr [_?{(PRG(S)) =1:5 & o, 1}"] —Pr [.?’I(r) =1:r & {0, 1}‘)] | = negl(A).

Definition 7.3 (Somewhere Statistically Binding Hash Function [HW15, OPWW15]). Let A be a security parameter.
A somewhere statistically binding (SSB) hash function with block length £, = £ (4), output length fhash = fhash (4),
and opening length fypen = fopen(4) is a tuple of efficient algorithms ITssg = (Setup, Hash, Open, Verify) with the
following properties:

. Setup(lA, 16k, N, i*) — hk: On input the security parameter A, the block size 4, the message length N < 2
and an index i* € [N], the setup algorithm outputs a hash key hk. Both N and i* are encoded in binary; in
particular, this means that |hk| = poly(A, fy, log N). We let £ = {0, 1}% denote the block alphabet.

« Hash(hk,x) — h: On input the hash key hk and a message x € =V, the hash algorithm deterministically outputs
a hash h € {0, 1}ash,

« Open(hk,x,i) — 7;: On input the hash key hk, an input x € >N, and an index i € [L], the open algorithm
outputs an opening 7; € {0, 1}%pen,

« Verify(hk, h, i, x;, m;) — {0, 1}: On input the hash key hk, a hash value h € {0,1}%=", an index i € [N], a value
x; € ¥, and an opening 7; € {0, 1}%ren, the verification algorithm outputs a bit b € {0, 1} indicating whether it
accepts or rejects.

We require the following properties:

+ Correctness: For all security parameters A € N, all block sizes ik = #ik (1), all integers N < 2%, all indices
i,i* € [N], and any x € >N

hk « Setup(l’l, 1%k, N, i*);

Pr | Verify(hk, b, i, x;, 7;) = 1 : h « Hash(hk,x); m; < Open(hk, x, i) -

1.
+ Index hiding: For a bit b € {0, 1} and an adversary A, define the index hiding game ExptIH 4 (4, b) as follows:
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1. Algorithm A(1%) chooses an integer N and two indices iy, iy € [N].
2. The challenger samples hk « Setup (1%, 1%, N, i) and gives hk to A.
3. Algorithm A outputs a bit b’ € {0, 1}, which is also the output of the experiment.

We require that for all polynomials &k = fik(A) and all efficient adversaries A, there exists a negligible function
negl(-) such that for all 1 € N,

[Pr[ExptlH 4(4,0) = 1] — Pr[ExptIH 4 (A, 1) = 1]| = negl(2).

- Somewhere statistically binding: We say that a hash key hk is statistically binding for an index i* € [N] if
there does not exist h € {0, 1}%sh, x # x’ € %, and 7, 7’ where Verify(hk, h, i*, x, 7) = 1 = Verify(hk, h, i*, x', 7).
We require that for all polynomials #y = £ (1) and all N < 2%, there exists a negligible function negl(-) such
that forall A € Nand all i € [N],

Pr[hk is statistically binding for index i : hk « Setup(l’l, 1% N, i)] = 1 — negl(1).

+ Succinctness: The hash length ,,sh, and opening length £y,en are all fixed polynomials in the security parameter
A and the block size 4,k (and independent of N).

7.2 Registered ABE from Indistinguishability Obfuscation

Our construction follows the slotted RBE specification from Definition 4.9. It can be compiled into a standard RBE
scheme using the generic transformation in Section 6 (Construction 6.1). Our slotted construction here supports
a large universe (Remark 4.8) and moreover, the running time of the Setup algorithm is polylogarithmic in the
number of users L. Formally, the Setup algorithm in the following slotted construction takes only the bit-length of
the attributes and the bit-length of L as input. As such, when we apply Construction 6.1 to the construction, we
obtain a large-universe registered ABE for general circuit policies that supports an arbitrary polynomial of users
(Remark 6.10). Our construction below supports arbitrary (possibly non-monotone) policies that can be computed
by a Boolean circuit. Following the convention for circuit ABE [GVW13, BGG*14], we model the attributes as an
arbitrary bit-string of length ¢, = £.(1) and the policy as a Boolean circuit C: {0, 1}% — {0, 1}. In particular, instead
of associating users with a set of attributes S € U = {0, 1}%, in the circuit-based setting below, we associate each user
with a bit-string S € U = {0, 1}%.

Construction 7.4 (Slotted Registered ABE from iO). Let A be a security parameter. Let PRG: {0,1}} — {0,1}?4
be a length-doubling pseudorandom function. Let £, = £.(1) be the attribute length and let U = {0, 1} be the
attribute space. Let # = {#,} be a family of Boolean circuits on inputs of length £,. Let IIssg = (SSB.Setup,
SSB.Hash, SSB.Open, SSB.Verify) be a somewhere statistically binding hash function. We construct a slotted registered
attribute-based encryption scheme IIsgge = (Setup, KeyGen, IsValid, Aggregate, Encrypt, Decrypt) with message
space M = {0,1}*, attribute space U, and policy space P as follows:

« Setup(1%,1%, L): On input the security parameter A, the bit-length £, of the attributes, and the number of users
L (in binary), the setup algorithm sets £ = 21 + £, and samples a hash key hk « SSB.Setup (14, 1%k, L, 1). It
outputs crs « hk.

« KeyGen(crs,i): On input the common reference string crs = hk, the key-generation algorithm samples a
random seed s « {0, 1}*. It outputs the public key pk = PRG(s) and the secret key sk = s.

« IsValid(crs, i, pk;): On input the common reference string crs, an index i, and a public key pk, the validation
algorithm outputs 1 if pk € {0, 1}?4.

- Aggregate(crs, (pk;, S1) ..., (pk;, Sp)): On input the common reference string crs = hk and a collection of
public keys pk; along with their associated attributes S; € {0, 1}, the aggregation algorithm computes the
master public key

mpk « (hk,SSB.Hash(hk, ((pky, S1). ..., (pk..S1)))) -
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Here we treat each pair (pk;, S;) as a binary string of length {0, 1}?*/c, which is the length of an SSB hash
block. Then, for each user i € [L], the aggregate algorithm computes

n; < SSB.Open(hk, ((pky, S1), ..., (pkg, St)), i),

which is the local opening of the SSB hash for index i, and sets the helper secret key to hsk; « (i, pk;, S;, ;).
Finally, it outputs mpk and hsk; for all i € [L].

« Encrypt(mpk, C, ): On input the master public key mpk = (hk, h), the ciphertext policy C € # and a message
p € {0,1}*, the encryption algorithm sets j = 0 and defines the following program:

Constants: mpk = (hk, k), Boolean circuit C: {0, 1}% — {0, 1}, message y € {0, 1}*, index j € [0,L +1]
Inputs: index i € [L], public key pk; € {0, 1}%4, attribute S; € {0, 1}, opening 7; € {0,1}%ren, and secret key
sk; € {0, 1},

1. If SSB.Verify(hk, h, i, (pk;, Si), 7;) = 1 and C(S;) = 1 and pk; = PRG(sk;) and i > j, output p.
2. Otherwise, output L.

Figure 1: Program Embed[mpk, C, , j].

Here we assume that the circuit Embed[mpk, C, y, j] is padded to the maximum size of any program ap-
pearing in the proof of Theorem 7.6. The encryption algorithm then computes the obfuscated program
C' « iO(Embed[mpk, C, y, j]) and outputs ct = C’.

« Decrypt(sk, hsk, ct): On input the the secret key sk, the helper secret key hsk = (i, pk;, S;, 71;), and a ciphertext
ct = C’, the decryption algorithm outputs C’ (i, pk;, S;, 73, sk).

Theorem 7.5 (Completeness, Correctness, and Compactness). Suppose iO is functionality-preserving and Ilgsp is
correct and succinct. Then, Construction 7.4 is complete, correct and compact.

Proof. We consider each property separately:

. Completeness: Completeness holds since RBE.IsValid always outputs 1 on all public keys pk € {0, 1}*}, and
by construction, the public keys output by KeyGen are 24-bit strings.

« Correctness: For correctness, take any security parameter A € N, any attribute length ¢, = £.(1), any number
of slots L € N, and index i € [L]. Consider the following components in the correctness experiment:
— Let crs « Setup(14, 1%, L). In this case crs = hk, where hk « SSB.Setup(1%, 1%k L, 1).
- Let (pk;, sk;) <= KeyGen(crs, i). Then sk; = s € {0, 1} and pk; = PRG(s).
- Take any set of public keys {pk;};+ where each pk; € {0, 1}*. For each j € [L], let S; € {0, 1}% be the
attribute associated with pk;.

- Let (mpk, hsky, ..., hsky) < Aggregate(crs, ((pky,S1),..., (pk;,St))). By construction, mpk = (hk, h)
and hsk; = (i, pk;, S;, ;) where

h = SSB.Hash(hk, ((pky,S1), ..., (pk;,SL)))
7; = SSB.Open(hk, ((pky, S1), ..., (pky, Sr)), ).

- Take any Boolean circuit C: {0,1}* — {0,1} where C(S;) = 1 and message y € {0,1}. Let ct «
Encrypt(mpk, C, p1), and consider Decrypt(sk;, hsk;, ct). By construction ct = C’ where C’ is an obfusca-
tion of the program Embed[mpk, C, i, 0]. By correction of the obfuscation scheme, C’ (i, pk;, S;, 7;, sk) =
Embed[mpk, C, p, 0] (i, pk;, Si, 7, sk). We consider each of the conditions:

+ By correctness of the SSB scheme, SSB.Verify(hk, h, (pk;, S;), 7;) = 1.
« By assumption, C(S;) = 1. By construction, pk; = PRG(s) = PRG(sk;).
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« Since j=0and i€ [L],i> j.

By construction, Embed outputs y, and decryption succeeds.

« Compactness: Consider the length of the master public key mpk and helper decryption keys hsk; output
by RBE.Aggregate. The mpk consists of the SSB hash key hk and the SSB hash h. Since SSB.Setup is an
efficient algorithm it must be the case that |hk| = poly(4, &k, log L). Moreover, by succinctness of the SSB
hash function, the size of the SSB hash h is poly(A, fk). Finally & = 24 + £, = 24 +log |U|. Correspondingly,
|mpk| = poly(A,log |U|,logL). Next, hsk; = (i, pk;, S;, 7;). Again by succinctness of the SSB hash function,
|7;| = poly (4, &) = poly (A, log |U|). Thus, |hsk;| = poly(A,log |U|,log L), as required. O

Theorem 7.6 (Security). IfiO is secure and Issp is correct and secure, then Construction 7.4 is secure.
Proof. We prove this theorem via a sequence of games (parameterized by a bit b € {0, 1} and an index i € [0, L + 1]):

. Hyb(()b) : This is the real security experiment where the challenger encrypts message ;. We recall the main
steps here:

— Setup phase: In the setup phase, the adversary A chooses a slot count L who then samples hk «
SSB.Setup(lA, 1%k, I, 1), where #c = 21 + £.. The challenger gives crs = hk to A. The challenger also
initializes a counter ctr <— 0 and an (empty) dictionary D to keep track of the key-generation queries.

— Query phase: In the query phase, the challenger responds to queries as follows:

» Key-generation query: When A makes a key-generation query on a slot i, the challenger increments
its counter ctr « ctr + 1 and samples a seed s & {0, 1}*. It responds with the counter value ctr and
the public key pk = PRG(s). The challenger adds the mapping ctr — (i, pk, s) to D.

» Corruption query: Whenever the adversary makes a corruption query on an index ¢ € {1,...,ctr},
the challenger looks up the tuple (i, pk,s) <= D[c] and replies to A with s.

— Challenge phase: In the challenge phase, the adversary A outputs a tuple (c;, S;, pk;) for each slot
i € [L], a challenge policy P* = C: {0,1} — {0, 1} and two messages y;, i} € {0, 1}*. The challenger
now proceeds as follows:

« If ¢; € {1,...,ctr}, the challenger looks up the entry (i, pk’,sk’) « D[¢;]. If i # i/, then the
challenger aborts. Otherwise, the challenger sets pk; « pk’.

« If ¢; = L, then the challenger checks that pk; € {0, 1}”. If not, the challenger aborts. Otherwise, the
challenger sets pk; < pk:.

The challenger then sets j = 0 and constructs the obfuscated program C’ « iO(Embed[mpk,C, 1}, j]),
where Embed is the program in Fig. 1. The challenger gives ct = C’ to the adversary A.

— Output phase: At the end of the game, the adversary outputs a bit b’ € {0, 1}, which is the output of the
experiment.

. Hybgb): Same as Hybgﬂ except when constructing the challenge ciphertext, the challenger sets j = i and
computes C’ « iO(Embed[mpk, C, p;, j]) as before.

. Hybg)l: Same as Hyb(b), except when constructing the challenge ciphertext, the challenger computes C” «
iO(Creject), where Creject is the program that takes an index i € [L], a public key pk; € {0, 1}, an attribute
S; € {0,1}%, an opening m; € {0,1}%en, and a secret key sk; € {0, 1}/1, and outputs L. We assume that the
circuit Creject is padded to the maximum size of any program appearing in the proof of Theorem 7.6.

For an adversary A, we write Hybgb) (A) to denote the output of game Hybgb) with adversary A. We now show
that the outputs of each adjacent pair of hybrid experiments are computationally indistinguishable.

Lemma 7.7. IfiO is secure, PRG is secure, and Ilssp satisfies index hiding and somewhere statistical binding, then for
all efficient and admissible adversaries A, there exists a negligible function negl(-) such that forallA € N, b € {0, 1},
andie€ [0,L —1],

| Pr[Hyb{" (A) = 1] - Pr[Hyb'") (A) = 1]| = negl(}).

i+1
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Proof. We begin by introducing an intermediate experiment:

. iHybgb): Same as Hybgb), except during the setup phase, the challenger samples hk < SSB.Setup(1%, 1% L, i+1)
(i.e., the hash key binds on index i + 1 instead of index 1).

We now show that Hybl(h) and iHybEb) are computationally indistinguishable (Claim 7.8) and that iHybl@ and iHybl.(fl)
are computationally indistinguishable (Claim 7.9) for all b € {0,1} and i € [0,L — 1].

Claim 7.8. IfIlssg satisfies index hiding, then for all efficient and admissible adversaries A, there exists a negligible
function negl(-) such that for all A € N, b € {0,1}, andi € [0,L — 1],

|Pr [Hyb\” (A) = 1] - Pr [iHyb\" (A) = 1]| = negl(A).

Proof. The only difference between Hybgb) and iHbeb) is the hash key hk is binding on index 0 in Hybgb) and it
is binding on index i + 1 in iHybgb). The claim thus holds by index hiding of IIssg. Formally, suppose there exists
an efficient and admissible adversary A such that |Pr [Hybgb) (A) = 1] - Pr [iHybl@ (A) = 1” = ¢. for some
non-negligible e. We use A to construct an adversary $ that breaks index hiding of ITssg:

1. Algorithm 8 starts by running algorithm A. Algorithm A outputs the number of slots L € N.

2. Algorithm B outputs the message length L and (1, + 1) as its challenge indices. It receives a hash key hk from
the challenger.

3. Algorithm 8 sets crs = hk and gives crs to A.

4. Algorithm B simulates the rest of Hybgb) and Hybg’[i) exactly as prescribed. At the end of the game, adversary
A outputs a bit b’ € {0, 1}, which 8 also outputs.

By construction, if hk « SSB.Setup(l’\, 1%k, I, 1), then algorithm B perfectly simulates Hybfb) for A. Likewise, if

hk « SSB.Setup (1%, 1%k, L, i + 1), algorithm B perfectly simulates iHybgb) for A. Thus, algorithm B succeeds with
the same advantage ¢, and the claim follows. m|

Claim 7.9. IfiO is secure, PRG is secure, and Issg is somewhere statistically binding, then for all efficient and admissible
adversaries A, there exists a negligible function negl(-) such that forallA € N, b € {0,1}, and i € [0,L — 1],

|Pr [iHyb"” (A) = 1] - Pr [iHyb{") (A) = 1]| = negl(2). 7.1)
Proof. As in Lemma 5.16, our analysis will depend on whether the adversary knows the secret key associated with
slot i + 1 or not. Let (c¢;4+1, Si+1, pk},;) be the tuple the adversary provided for slot i + 1 in the challenge phase. We say
that event NonCorrupt occurs if both of the following conditions hold:

th

« The index c;; satisfies ¢;11 € {1, ..., ctr}. This means that pk i

key-generation query.

;+1 Was generated by the challenger on the ¢
« Adversary A does not make a corruption query on index cj;.
We write NonCorrupt to denote the complement of event NonCorrupt. Now, we can write
Pr [iHybl@ (A)=1] =Pr [iHybgb) (A) =1 A NonCorrupt| + Pr [iHybl@ (A)=1A Wcrrupt]
Pr [iHybEfl) (A)=1] =Pr [iHybEfl) (A) =1 A NonCorrupt| + Pr [iHybEfl) (A) =1 A NonCorrupt|

It suffices then to show that

|Pr [iHybEb) (A)=1A NonCorrupt] -Pr [iHybEfl) (A)=1A NonCorrupt“ = negl(}) (7.2)
|Pr [iHybib) (A)=1A NonCorrupt] - Pr [iHybgl) (A)=1A NonCorrupt“ = negl(4). (7.3)

Eq. (7.1) then follows by the triangle inequality. We now show Eqs. (7.2) and (7.3) in Claims 7.10 and 7.16, respectively.
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Analysis for the case where slot i + 1 is not corrupted. We now show that Eq. (7.2) holds. Our analysis relies on
the secret key s;4; associated with slot i + 1 being hidden (and uniform) from the view of the adversary. We state the
precise claim below:

Claim 7.10. Suppose iO is secure, PRG is secure, and Ilssp is somewhere statistically binding. Then, for all efficient and
admissible adversaries A, there exists a negligible function negl(-) such that forallA € N, b € {0,1}, andi € [0,L — 1],
we have that

|Pr [lHyb(b) (A) =1 A NonCorrupt]| — Pr[lHyb(b) =1A NonCorrupt” = negl(4).
Proof. We proceed via a sequence of games:

. ncHyb(b) Same as lHyb( ) except at the beginning of the game, the challenger samples k < [K], where
K=K (/1) is a bound on the the number of key-generation queries algorithm A makes during the query phase.
Let pk;. be the public key the challenger samples in response to the k™ key-generation query (if there is one).
The challenger now aborts with output 0 if either of the following events occurs:

- In the challenge phase, the tuple (c;41, Si+1, pki,;) the adversary provides for slot i + 1 satisfies ¢4 # k.
— The adversary makes a corruption query on index k.

Otherwise, the experiment proceeds exactly as in iHybEb).

. ncHyb( ): Same as ncHyb( except on the k' key-generation query, the challenger samples pk, <- {0, 1},
Note that in this experiment, the challenger does not need to answer a corrupt query on index k (since the
challenger immediately aborts if the adversary were to make such a query).

. ncHyb( ). Same as ncHyb( ), except during the challenge phase, the challenger sets j = i + 1 instead of j = i
when constructing the challenge ciphertext.

. ncHybg’i): Same as ncHybE’g) except on the k' key-generation query, the challenger reverts to sampling
sk & {0,1}* and sets pk, < PRG(s;).

As usual, for an adversary A, we write ncHyb®) (A) to denote the output of an execution of ncHyb®) (A) with
adversary A. We now show that the outputs of each adjacent pair of hybrid experiments are computationally
indistinguishable.

Lemma 7.11. For all admissible adversaries A and allA € N, b € {0,1}, andi € [0,L — 1],
Pr [iHybgb)(ﬂ) =1A NonCorrupt] =K Pr [ncHybg) (A) = 1].

Proof. By construction, iHybEb) and ncHybE’i) are identical experiments except for the additional abort condition in

ncHybEli). If ncHybf’;) outputs 1, then it must be the case that the output in iHybgb) is also 1, and moreover, ciy1 = k,
and the adversary does not make a corruption query on index k = c;11. By definition, this means event NonCorrupt
must also occur. Thus, we can write

Pr[ncHyb(} () = 1] = Pr[iHyb!"”’ (A) = 1 A NonCorrupt A k = ci41]
=Prlk = ci1 | iHybEb) (A) =1 A NonCorrupt] -Pr[iHybEb) (A) =1 A NonCorrupt]
=1/K- Pr[iHybl(b) (A) =1 A NonCorrupt],
since if event NonCorrupt occurs, then ¢;1 € {1,...,ctr} C [K], and the challenger in iHybgb) samples k < [K]. O

Lemma 7.12. IfPRG is secure, then for all efficient and admissible adversaries A, there exists a negligible function
negl(-) such that forallA € N, b € {0,1}, and i € [0,L — 1],

\Pr [ncHyb(b) (A) = 1] Pr [ncHybE,Z) (A) = 1]| = negl(1).
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Proof. Suppose there exists an efficient adversary A such that
|Pr [ncHybi’i) (A) = 1] -Pr [ncHybg) (A) = 1]| >,

for some non-negligible . We use A to construct an adversary 8 that breaks security of PRG:
1. At the beginning of the game, algorithm B receives a PRG challenge ¢ € {0, 1}**,

2. Algorithm 8B now starts to simulate an execution of ncHybE,ll') and ncHybg) for A. In particular, at the
beginning of the game, algorithm B samples an index k < [K]. It then simulates the setup phase and the
query phase exactly as prescribed in ncHybg) and ncHybg,l;) . On the k™ key-generation query, algorithm 8
responds with pk, = t. If algorithm A ever makes a corruption query on index k, algorithm 8 aborts with
output 0 as in ncHybg) and ncHybg).

3. When A enters the challenge phase with output (c;, S;, pk}) for each i € [L], algorithm B aborts with output 0
if ¢;41 # k. Otherwise, algorithm constructs mpk, hsky, ..., hsky, as well as the challenge ciphertext ct exactly
according to the specification of ncHybiI;) and ncHybf’Z).

4. At the end of the game, algorithm B outputs whatever A outputs.

By construction, algorithm B does not need to know the PRG seed s € {0, 1}* (the only quantity in the game that
would depend on s is the response to a corruption query on index k, but if A makes such a query, the output in both

experiments is 0). By construction, if t = G(s) where s & {0, 1}*, then algorithm 8B perfectly simulates ncHyb%)

whereas if t < {0, 1}, algorithm B perfectly simulates ncHybl{l;) for A. Thus algorithm B breaks pseudorandomness
of PRG with the same advantage ¢. O

Lemma 7.13. Suppose iO is secure and Ilssp is somewhere statistically binding. Then, for all efficient and admissible
adversaries A, there exists a negligible function negl(-) such that for allA € N, b € {0,1}, andi € [0,L — 1],

\Pr [ncHybg) (A) = 1] —Pr [ncHybg) (A) = 1]| = negl(4).

Proof. The only difference between ncHybl()Z) and ncHybg) is that during the challenge phase, the challenger sets
the challenge ciphertext to be an obfuscation of Embed[mpk, C, ,u;, i + 1] instead of Embed[mpk, C, ,u;;, i]. We argue
that with overwhelming probability over the choice of hk and the public key pk;, these two programs have identical
input/output behavior. The claim then follows by iO security. Take any input (x, pk,, S, 7x, sky) and consider the
behavior of the two programs on this input:

« Suppose x # i + 1. Then the logic in the two programs is identical (i.e., x > i if and only if x > i + 1 when
x # i+ 1and x is an integer).

« Suppose x =i + 1 but (pk,,Sx) # (pk;.;, Si+1). In ncHybg) and ncHybE’Z), the hash key hk is sampled to be
binding on index i + 1. Moreover, in both experiments, the challenger computes the hash value h as

h « SSB.Hash(hk, ((pk;,S1), ..., (pk;,SL)))-

Since ITssp is somewhere statistically binding, with overwhelming probability over the choice of hk, there does
not exist any (pk*,5*) # (pk;,, Si+1) and 7* where SSB.Verify(hk, h,i + 1, (pk*, $*), 7*) = 1. In particular, this
means that SSB.Verify(hk, h, x, (pk,, Sx), 7x) = 0, and both programs output L.

+ Suppose x =i+ 1 and (pk,, Sx) = (pk;,, Si+1). Assuming ncHybfsg) and ncHybE? does not abort, this means
that pk, = pk,,,; = pk;, where pk, < {0,1}?* is the public key sampled on the k'! key-generation query.
Over the randomness of pk;, the probability that there exists sk* € {0,1} such that PRG(sk*) = pk, is at
most 2% / 224 = 94 Thus, with overwhelming probability over the choice of pk;, for all inputs sk* € {0, 1}1,
PRG(sk*) # pk;. Correspondingly, this means that PRG(sky) # pk,, and once more, both programs output L.
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Thus, with overwhelming probability over the choice of hk and pk, the input/output behavior of Embed[mpk, C, 1}, i]
or Embed[mpk, C, iy, i + 1] is identical. The claim now follows by iO security. O

Lemma 7.14. IfPRG is secure, then for all efficient and admissible adversaries A, there exists a negligible function
negl(-) such that forallA e N, b € {0,1}, andi € [0,L — 1],

\Pr [ncHybg’l;) (A) = 1] —Pr [ncHybEz) (A) = 1]| = negl(1).
Proof. This follows by the same argument as the proof of Lemma 7.12. O

Lemma 7.15. For all admissible adversaries A and allA € N, b € {0,1}, andi € [0,L — 1],

Pr [iHyb(b)(ﬂ) =1A NonCorrupt] =K Pr [ncHyb{Z) (A) = 1].

i+1
Proof. This follows by the same argument as the proof of Lemma 7.11. O
Combining Lemmas 7.11 to 7.15, we now have the following relations:
Pr [iHybEb) (A)=1A NonCorrupt] =K-Pr [ncHybf’li) (A) = 1]
Pr [iHybgfl) (A)=1A NonCorrupt] =K-Pr [ncHybfz) (A) = 1]

)Pr [ncHybE’i) (A)=1] -Pr [ncHybE’I;) (A) = 1]| = negl(A).

Thus, we conclude that

Pr [iHybgb) (A)=1A NonCorrupt] - Pr [iHyb(b) (A)=1A NonCorrupt” < K - negl(Q),

i+1
which is negligible since the adversary can make at most K = poly(A) queries. Eq. (7.2) holds. O
Analysis for the case where slot i + 1 is corrupted. We now show that Eq. (7.3) holds. Our analysis here will

require that the set of attributes S;;1 do not satisfy the challenge policy. We state the precise claim below:

Claim 7.16. Suppose iO is secure and Issg function is somewhere statistically binding. Then, for all efficient and
admissible adversaries A, there exists a negligible function negl(-) such that for allA € N, b € {0,1}, andi € [0,L — 1],

|Pr [iHybl@ (A)=1A NonCorrupt] - Pr [iHyb(b) (A)=1A NonCorrupt” = negl(4).

i+1
Proof. We proceed via a sequence of games:

. cHybflI): Same as iHybgb) except the challenger aborts with output 0 if event NonCorrupt occurs. For an
admissible adversary, this condition ensures that the experiment outputs 1 only if the attribute S;;; chosen by
the adversary for slot i + 1 does not satisfy the challenge policy.

. cHybg,l;) : Same as cHybg) except during the challenge phase, the challenger sets j = i + 1 instead of j = i when
constructing the challenge ciphertext.

By definition, we have that
Pr [iHyb!” (#) = 1 A NonCorrupt| = Pr[cHyb?) (A) = 1]
Pr [iHyb!?) (#A) = 1 A NonCorrupt| = Pr[cHyb'% (A) = 1].
Thus, it suffices to argue that for all efficient and admissible adversaries A,
‘Pr [cHybEﬁ) (A) = 1] - Pr [cHybE,lz') (A) = 1]| = negl(A).
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This follows by security of iO and the somewhere statistically binding property of IIssg. The only difference
between cHyb( ) and cHyb( ) is that during the challenge phase, the challenger sets the challenge ciphertext to
be an obfuscatlon of Embed[mpk, C, Hy, i+ 1] instead of Embed[mpk, C, p;, i]. We argue that with overwhelming
probability over the choice of hk, these two programs have identical input/output behavior. Then the claim follows
by iO security. Take any input (x, pk,, Sy, 7x, sky) and consider the behavior of the two programs on this input:

« Suppose x # i + 1. Then the logic in the two programs is identical (i.e., x > i if and only if x > i + 1 when
x # i+ 1 and x is an integer).

« Suppose x = i+ 1 but (pk,,Sx) # (pky, Siv1). In cHybg) and cHybl.(,Z), the hash key hk is sampled to be
binding on index i + 1. Moreover, in both experiments, the challenger computes the hash value h as

h « SSB.Hash(hk, ((pk;,S1), ..., (pk;,SL)))-

Since ITssp is somewhere statistically binding, with overwhelming probability over the choice of hk, there does
not exist any (pk*,S*) # (pk;,;, Si+1) and 7* where SSB.Verify(hk, h,i + 1, (pk*, S*), 7*) = 1. In particular, this
means that SSB.Verify(hk, h, x, (pk,, Sx), mx) = 0, and both programs output L.

« Suppose x = i + 1 and (pk,, Sx) = (pk;,;, Si+1). Assuming cHyb( ) and cHyb( ) does not abort (so NonCorrupt
occurs) and A is admissible, this means that Sy does not satisfy the challenge pollcy C. In other words, C(Sy) = 0.
Once more, both programs output L.

Thus, with overwhelming probability over the choice of hk and pk, the input/output behavior of Embed[mpk, C, y;, i]

or Embed[mpk, C, ;i + 1] is identical. The claim now follows by iO security. O
Combining Claims 7.10 and 7.16 both Eqgs. (7.2) and (7.3) hold. Then, Eq. (7.1) follows by the triangle inequality, and
Claim 7.9 holds. O
Combining Claims 7.8 and 7.9, Lemma 7.7 follows. o

Lemma 7.17. Assuming iO is secure, then for all efficient and admissible adversaries A, there exists a negligible function
negl(-) such that forall A € N, b € {0, 1},

|Pr [Hyb\” (A) = 1] - Pr [Hyb\”) (A) = 1]| = negl(1)

Proof. The only difference between these two experiments is the obfuscated program used to construct the challenge

ciphertext. In Hybih), the challenge ciphertext is an obfuscation of the program Embed[mpk, C, yi;, L] whereas in
Hyb; ., the challenge ciphertext consists of an obfuscation of the program Crejec:. It suffices to argue that these two
programs have identical behavior. The claim then follows by iO security. Take any input (x, pk,, Sy, 7x, sky) and
consider the behavior of the programs on this input:

+ The program Creject always outputs L by construction.
« Since x € [L], it will never be the case that x > L. Thus, Embed[mpk, C, ,u;;, L] also outputs L by construction.

We conclude that the programs Embed[mpk, C, pi;, L] and Creject have identical input/output behavior. The claim now
follows by iO security. o

Lemma 7.18. For all adversaries A, Pr [Hybgi)l(ﬂ) = 1] =Pr [Hybl(jr)l(ﬂ) = 1],

Proof. In Hyb, ,, the challenger’s behavior and correspondingly, the adversary’s view, is independent of the bit b. O

Since the adversary is efficient (and thus, can only output a collection of polynomial number of public keys and
attribute sets), we have that L = poly(4). Security now follows by combining Lemmas 7.7, 7.17 and 7.18. O
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