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Estimation and Distributed Eradication of SIR Epidemics on
Networks

Ciyuan Zhang, Humphrey Leung, Brooks A. Butler, and Philip E. Paré*

Abstract—This work examines a discrete-time networked SIR
(susceptible-infected-recovered) epidemic model, where the infec-
tion, graph, and recovery parameters may be time-varying. We
propose a stochastic framework to estimate the system states
from observed testing data and provide an analytic expression
for the error of the estimation algorithm. We validate some of
our assumptions for the stochastic framework with real COVID-
19 testing data. We identify the system parameters with the
system states from our estimation algorithm. Employing the
estimated system states, we provide a novel eradication strategy
that guarantees at least exponential convergence to the set of
healthy states. We illustrate the results via simulations over
northern Indiana, USA.

I. INTRODUCTION

The main goal of epidemic model development is to identify
conditions that lead to the eradication of the pathogen and then
leverage the knowledge of these conditions to design mitiga-
tion strategies. Various infection models have been proposed,
based on characteristics of individual pathogens, and studied
in the literature, the most basic including susceptible-infected-
susceptible (SIS), susceptible-infected-removed (SIR), and
susceptible-infected-removed-susceptible (SIRS) [1], [2].

The SIR model is the basis of a class of widely-used
epidemic models for diseases which hosts will recover with
permanent or close to permanent immunity after infection [3].
Diseases belonging to this category contributed to a wide range
of airborne diseases, including but not limited to Spanish Flu,
SARS [4], MERS [5], Influenza [6], and COVID-19 [7]. In
particular, seasonal Influenza claimed 28,000 lives in the US
during the 2018-2019 flu season [8], a more extreme example
of the outbreak of Spanish Flu in 1918, which caused 25–50
million deaths [9], and the more recent SARS-CoV-2 virus,
which claimed 5.1 million lives and infected 255 million
individuals worldwide [10].

Other SIR model variants, such as susceptible-exposed-
infection-recovered (SEIR), susceptible-asymptomatic-
infection-recovered (SAIR) [11], and SIDARTHE-V [12],
model different immune responses and public health reactions
to epidemic spread. These multi-compartmental models are
accurate in estimating the propagation of specific diseases with
sufficient data. However, recent research has demonstrated
that viruses, such as SARS-CoV-2, are not detected accurately
during the incubation period [13]. As a result, inferring the
states associated with the exposed/asymptomatic phases is not
possible due to the lack of credible data/widespread testing.
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Therefore, in this paper, we focus on the SIR epidemic model,
capturing the delay with a stochastic observation model. We
expand on the SIR model by exploring mutating viruses over
time-varying networks, the estimation of the underlying states,
and the development of distributed eradication strategies.

The patchwork response to some of the above diseases,
such as MERS [14] and COVID-19 [15], gives rise to sus-
ceptible community subpopulations, with heterogeneous time-
varying factors not previously explored by the SIR model.
Extensions on the SIS model, studied in [16], [17], augment
the compartmental epidemic models originated in [18] to
include interactions between subpopulations of susceptible
communities. Additionally, various advanced epidemic models
consider time-varying factors [19]–[21].

In this paper, we study the estimation of the system states
of a networked SIR epidemic, where we focus on the effect
of the delay between infection and testing data collection on
the state estimation accuracy. The delay can be caused by
factors such as the incubation period of a virus [14], [22],
people’s willingness to obtain a test [23], [24], different testing
strategies [25], etc. We use COVID-19 as our case study
for the epidemic state estimation problem, but our estimation
framework can be applied to any SIR-type outbreak. The
delay in onset of COVID-19 has led to large asymptomatic
infectious populations, estimated between 17 − 81% [26]–
[29], and the delay in test results [30] compromise the ability
for accurate estimation of the current infection prevalence.
An estimation algorithm that incorporated a constant delay
between the change in infection proportion and testing data
was introduced in [31]. They studied the inference problem
by using a Bayesian approach. Inspired by the delay charac-
terization suggested in [31], we propose a stochastic delay
to model the unpredictability of incubation period of any
virus and its testing strategies. We have developed methods
for estimating the underlying epidemic states from testing
data with a delay sampled from a geometric distribution,
which cannot be completely filtered by the method suggested
in [31]. We study the aggregated effect of the individual
delays on the trajectory of confirmed cases and devise a
method for estimating the underlying epidemic states of an
SIR model from these delayed measurements. The geometric
distribution which we utilize is the discrete analogy of the
exponential distribution in the limit, and recall that standard
compartmental models assume an exponential holding time
of a host in each compartment [32]. However, our proposed
stochastic framework is distinctive from the compartmental
model with exponential holding time, as our model investigates
the confirmed cases as the observation from the system in
discrete time. We also investigate the proposed method’s
estimation error, which provides insights for achieving an
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accurate estimation of the system states. We then employ this
more realistic estimation to strategically eradicate a disease.

As proven in [31], the SIR epidemic model converges
to a healthy state, however, an exponential convergence is
not shown. Combining the modeling and inference approach
allows us to develop a distributed control algorithm capable of
eradicating epidemic spread exponentially, at an equilibrium
with a higher proportion of susceptible population. Decreasing
the removed (recovered) and increasing the susceptibility
proportion is of exceptional importance for controlling a pan-
demic, as long term and severe health complications have been
documented in the recovered populations, including impaired
cognition [33] and damage to cardiac tissue [34]. Our main
result shows that by applying the estimated susceptible states
of each node, our proposed eradication strategy will guarantee
global exponential stability of a healthy state.

A. Paper Contributions

We summarize the main contributions of this paper:
• We propose a stochastic framework which estimates the

trajectories of the system states of the networked SIR
model from testing data.

• We provide a closed form solution for the error of the
estimation algorithm we propose; see Proposition 1.

• We utilize real data to validate our choice of the geometric
distribution for our estimation algorithm; see Section IV.

• We identify the system parameters with the estimated
system states; see Section V.

• We propose a distributed eradication strategy for adjust-
ing healing rates that is based on the inferred system
states. The eradication method guarantees that the virus
is eradicated at an exponential rate see Theorem 1.

B. Paper Outline

We organize this paper as follows: Section II lays down
some basic assumptions and restates the well-known SIR
model in the networked fashion, and it presents the main
problems studied in this paper. Section III covers the proposed
techniques of estimating hidden epidemics states with the
stochastic delay of tested individuals and testing data. Using
real COVID-19 testing data, Section IV validates the choice
of the geometric distribution for the stochastic framework
proposed in Section III. Section V presents the method which
indentifies the system parameters using the estimated system
states from Section III. Section VI covers the distributed
control strategy which ensures that the system converges to
a healthy state exponentially fast. Section VII illustrates the
results from Section III, V, and VI with numerical simulations.
Finally, in Section VIII, we summarize the main conclusions
of this paper and discuss future directions.

C. Notation

We denote the set of real numbers, the non-negative integers,
and the positive integers as R, Z≥0, and Z≥1, respectively.
For any positive integer n, we have [n] = {1, 2, ..., n}. The
spectral radius of a matrix A ∈ Rn×n is ρ(A). A diagonal
matrix is denoted as diag(·). The transpose of a vector x ∈ Rn
is x>. The Euclidean norm is denoted by ‖·‖. We use I

to denote identity matrix. We use 0 and 1 to denote the
vectors whose entries all equal 0 and 1, respectively. The
dimensions of the vectors are determined by context. Given
a matrix A, A � 0 (resp. A � 0) indicates that A is positive
definite (resp. positive semidefinite), whereas A ≺ 0 (resp.
A � 0) indicates that A is negative definite (resp. negative
semidefinite). Let G = (V,E) denote a graph or network
where V = {v1, v2, ..., vn} is the set of subpopulations, and
E ⊆ V × V is the set of edges. We denote the expectation
of a random variable as IE[·]. We use w.p. to represent with
probability in equations.

II. MODEL AND PROBLEM FORMULATION

Consider a time-varying epidemic network of n subpopula-
tions, where the size of subpopulation i is Ni ∈ Z>0, and the
infection rates and healing rates could be time-varying. We
denote βij(k) as the infection rate from node j to node i at
time step k, we denote γi(k) as the healing rate of node i at
time step k. The proportions of the subpopulation at node i
which are susceptible, infected, and recovered at time step
k are denoted by si(k), xi(k), and ri(k), respectively. For a
small sampling time h > 0, the discrete-time evolution of the
SIR epidemic is given by

si(k + 1) = si(k) + h[−si(k)

n∑
j=1

βij(k)xj(k)], (1a)

xi(k + 1) = xi(k) + h[si(k)

n∑
j=1

βij(k)xj(k)− γi(k)xi(k)],

(1b)
ri(k + 1) = ri(k) + hγi(k)xi(k). (1c)

Equation (1b) can be rewritten as

x(k + 1) = x(k) + h[S(k)B(k)− Γ(k)]x(k), (2)

where S(k) = diag(s(k)), B(k) is the matrix with (i, j)th
entry βij(k), and Γ(k) = diag(γi(k)). The spread of a virus
over a network can be captured using a graph G = (V,E),
where E = {(vi, vj)|βij(k) 6= 0} is the set of directed edges.

We make the following assumptions in order for the system
in (1) to be well defined.

Assumption 1. For every i ∈ [n], hγi(k) > 0 and ∀j ∈
[n], βij(k) ≥ 0, for every k ∈ Z≥0.

Assumption 2. For every i ∈ [n], hγi(k) ≤ 1 and
h
∑
j βij(k) ≤ 1, for every k ∈ Z≥0.

We have the following result which shares the same idea as
the time-invariant model, proven in [31].

Lemma 1. Suppose si(0), xi(0), ri(0) ∈ [0, 1], si(0)+xi(0)+
ri(0) = 1, and Assumptions 1 and 2 hold. Then, for all k ∈
Z≥0,

1) si(k), xi(k), ri(k) ∈ [0, 1],
2) si(k) + xi(k) + ri(k) = 1,
3) si(k + 1) ≤ si(k), and
4) there exists k̄, such that xi(k) converges linearly to 0 for

all k ≥ k̄, i ∈ [n].

Definition 1. We define the set of healthy states of (1) as
{s∗i (k), x∗i (k), r∗i (k) : i ∈ [n], k ∈ Z≥0}, where x∗i (k) = 0,
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s∗i (k) ∈ [0, 1], r∗i (k) ∈ [0, 1], and s∗i (k) + r∗i (k) = 1, for all
i ∈ [n].

Given a network that is infected by a virus, our goal is
to guarantee that the convergence rate of each subpopulation
vi to the set of healthy states is exponentially fast regardless
of the initial conditions. From Lemma 1 we know that the
well-defined SIR networked model converges to the set of
healthy states linearly, on the other hand, the importance
of exponential convergence can be interpreted as a speedy
recovery from the outbreak and fewer individuals becoming
infected over the duration of the epidemic. Here are the
questions being studied in this paper:

(i) Given the testing data, how can the stochastic frame-
work be constructed to estimate the susceptible, infected,
and recovered proportions, denoted by ŝi(k), x̂i(k), and
r̂i(k), respectively, for each subpopulation vi in the
network?

(ii) What is the estimation error of the stochastic framework
that we proposed?

(iii) How does our proposed stochastic framework match with
real data?

(iv) How do we identify the system parameters with the
estimated system states?

(v) Given ŝi(k) inferred from testing data, how can we devise
a dynamic control algorithm which applies new healing
rates γ̂i(k) to each agent in (2) so that the epidemic is
eradicated at an exponential rate?

III. STATE ESTIMATION FROM TESTING DATA

In this section, we study how to estimate the epidemic states
(s(k), x(k), r(k)) from testing data in order to design a feed-
back controller in the following section. One of the challenges
of estimating the underlying system states is that the testing
data on a given day does not capture the new infections on the
same day. Instead, the testing data is a delayed representation
of the change in the system. Characterizing the delay of each
individual is difficult, because the delay is determined by
numerous factors such as the incubation period of the virus,
the duration of obtaining test results, the willingness of each
individual to get tested, etc. Therefore, we propose a stochastic
framework in this section to capture the factors which cause
the testing delay.

Definition 2. The testing delay τi is the length of time between
when an individual from subpopulation vi is infected and when
their positive test result is reported.

In our discrete-time model, we assume that τi ∈ Z≥0.
We model the testing delay of each infected individual τi as
two aggregate components to represent the uncertainty in the
testing process:

τi = ηi + Yi, (3)

where ηi ∈ Z≥0 is a constant and Yi is a discrete time random
variable whose measurable space is Z≥0.

Remark 1. In (3), the constant component ηi can be inter-
preted as the length of time needed to acquire testing results.
The random variable can be interpreted as the incubation

Testing data:
Ω[k] = (Ci[k], Di[k])
k ∈ [T1 + 1, T2 + 1]

Inferred System States:
(ŝi[k], x̂i[k], r̂i[k])

k ∈ [T1, T2]

Estimation
Algorithm

FIGURE 1: Estimation of system states from testing data, where
Ci(k) is the number of confirmed cases and Di(k) is the
number of removed (recovered) cases at time k

period and/or the amount of time that it takes an individual
to get tested after becoming infected.

First, we denote the set of estimated system states for
subpopulation vi at time k as Θ̂i(k) =

(
ŝi(k), x̂i(k), r̂i(k)

)
,

we denote the set of testing data recorded at time k to be
Ωi(k) =

(
Ci(k), Di(k)

)
, where Ci(k) is the number of

confirmed cases at time k, and Di(k) represents the number
of removed (recovered) cases at time k. In addition, the
cumulative number of confirmed and removed cases at node vi
are written as Ci(k) =

∑k
j=0 Ci(j) and Di(k) =

∑k
j=0Di(j),

respectively. Therefore, the number of active cases is cal-
culated by Ai(k) = Ci(k) − Di(k). Recall that the size
of each subpopulation is Ni; we define ci(k) = Ci(k)

Ni
and

di(k) = Di(k)
Ni

as the proportion of daily confirmed cases and
removal, respectively. Note that ci(k), di(k) ∈ [0, 1], for all
i ∈ [n], k ∈ Z≥0. The estimation procedure is illustrated in
Figure 1.

We then study how to relate ci(k) to the underlying states.
We define a vector space ΠT1

as the space of all the propor-
tions of daily number of confirmed cases, ci(k), from time step
k = T1 to time step k = T2+1. We define ΞT1 as the vector of
all the decreases in the proportion of susceptible individuals,
−∆si(k), from time step k = T1 to time step k = T2 + 1. We
denote Φ(T1, T2) as the transfer matrix:

ΠT1 = Φ(T1, T2)ΞT1 , (4)

where Φ(T1, T2) is a (T2 − T1 + 2) × (T2 − T1 + 2) matrix,
which depends on the SIR dynamics, the testing strategies,
and the delay.

When the testing delay is a constant, i.e., τi = ηi > 0,
the only non-zero entries in Φ(T1, T2) are: Φl+ηi,l = 1, l ∈
[T2−T1 +2−ηi]. Since ci(k) = 0 when k ∈ [T1, T1 +ηi−1],
we can write ci(k) as

ci(k) = −∆si(k − ηi), (5)

for all k ∈ [T1 + ηi, T2 + 1]. When the delay ηi = 0, the
transfer matrix Φ(T1, T2) = I , as for all k ∈ [T1, T2 + 1], we
can write that ci(k) = −∆si(k). (6)

We now propose a stochastic testing framework to capture
the delay between when an individual is infected and when
they receive a positive test result. We first let ηi = 0 in (3),
without the loss of generality. Furthermore, we assume that
each infected individual at node vi has an equal probability
pxi ∈ (0, 1] of receiving a diagnostic test each day starting from
the day after they are infected. Therefore, we model Yi in (3)
as a random variable following the geometric distribution, with
the probability of an infected individual acquiring a positive
test δ days after infection being:

P (Yi = δ) = pxi (1− pxi )δ−1 (7)

This article has been accepted for publication in IEEE Transactions on Control of Network Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2023.3306491

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on October 05,2023 at 18:26:47 UTC from IEEE Xplore.  Restrictions apply. 



4

for δ ∈ Z≥1. The geometric distribution of the testing delay
models the number of days before an infected individual
obtains a diagnostic test which represents the incubation period
of the virus and/or the unwillingness of each individual getting
a test. We now make the following assumptions for our
stochastic model:
• We assume that the delay distributions are indepen-

dent and identically distributed (i.i.d.) for each infected
individual. In other words, the delay of one infected
individual does not effect other infected individuals’
delays nor does it change due to the delays of other
patients, and each infected individual has an identical
delay distribution.

• We assume that only the infected individuals obtain a
test and the susceptible individuals who are not infected
do not acquire a test; this assumption aims to represent
the shortage of testing equipment in the early stage
of an unknown virus outbreak. Alternatively, we could
assume that the negative tests are not reported by test
organizations during the data collection.

• Furthermore, we assume that an infected individual can
be tested only once due to the deficiency of available
tests at the beginning of the spread. In our proposed
framework, duplicate test results would double count
infected individuals. Alternatively, we could assume that
once an infected individual gets a positive test result, any
subsequent test results will not be not included in the
daily counts.

• We assume that all the tests collected are PCR (Poly-
merase Chain Reaction) tests and an infected individual
has equal probability of acquiring a PCR test before and
after recovery.

• In addition, we assume that a recovered individual will
still test positive after recovering from the virus. Using
COVID-19 as an example, patients would still test pos-
itive with PCR tests after recovering from the SARS-
CoV-2 virus, albeit showing no symptoms, and being not
contagious [35].

• We also assume that all the tests generate accurate results.
We will justify our choice of geometric distribution with real
COVID-19 data from [13] in Section IV.

We now relate the proportion of confirmed cases ci(k)
with the underlying states of the system. We define a binary
random variable Xi(ν), with Xi(ν) = 1 (resp. Xi(ν) = 0) if
a randomly chosen individual from subpopulation vi became
(resp. did not become) infected at time ν. Its pmf can be
written as

Xi(ν) =

{
1 w.p. −∆si(ν)

0 w.p. 1 + ∆si(ν),
(8)

where, from (1), −∆si(ν) = si(ν − 1) − si(ν) = hsi(ν −
1)
∑
j βijxj(ν − 1) ≥ 0 for all ν ≥ 0.

We define the binary random variable Ti(µ, δ), with
Ti(µ, δ) = 1 if a randomly chosen individual acquired a
positive test at time µ and was infected δ days before µ.
Now we rewrite ν, in (8), as µ− δ. From (7), the conditional
probability P (Ti(µ, δ) = 1|Xi(µ − δ) = 1) is given by the
geometric probability mass function (pmf) pxi (1− pxi )δ−1 and

represents the probability of an infected individual acquiring a
positive test specifically δ days after being infected. Hence, the
joint pmf of the two random variables Xi(µ− δ) and Ti(µ, δ)
is written as:

PXi,Ti(µ− δ, µ) = P (Xi(µ− δ) ∩ Ti(µ, δ)), (9)

which is interpreted as the probability that a randomly chosen
individual became infected at time µ−δ and acquired a positive
test at time µ, where µ− δ, µ ∈ [T1, T2].

Therefore, the joint pmf PXi,Ti(µ− δ, µ) is calculated as:
PXi,Ti(Xi(µ− δ) = 1 ∩ Ti(µ, δ) = 1)

= P (Ti(µ, δ) = 1|Xi(µ− δ) = 1)P (Xi(µ− δ) = 1)

= pxi (1− pxi )δ−1[−∆si(µ− δ)], (10)

PXi,Ti(Xi(µ− δ) = 0 ∩ Ti(µ, δ) = 1)

= P (Ti(µ, δ) = 1|Xi(µ− δ) = 0)P (Xi(µ− δ) = 0)

= 0[1 + ∆si(µ− δ)] = 0, (11)

since we assume that the test results are accurate. Similarly,
PXi,Ti(Xi(µ− δ) = 1 ∩ Ti(µ, δ) = 0)

= [1− pxi (1− pxi )δ−1][−∆si(µ− δ)],

PXi,Ti(Xi(µ− δ) = 0 ∩ Ti(µ, δ) = 0) = 1 + ∆si(µ− δ).
Let Wi(µ) be the marginal distribution of Ti(µ, δ) over the

set of feasible delays, δ, with its pmf being the probability of
a random individual acquiring a positive test at time µ:

PWi
(Wi(µ) = 1)

=

µ−T1∑
δ=1

PXi,Ti(Xi(µ− δ) = 1 ∩ Ti(µ, δ) = 1)

=

µ−T1∑
δ=1

pxi (1− pxi )δ−1[−∆si(µ− δ)],

by combining (10) and (11). Therefore, the expected number
of confirmed cases at time k is calculated as

Ci(k) = IE

[
Ni∑
l=1

Wi(k)

]

=

Ni∑
l=1

IE[Wi(k)] (12)

= Ni

k−T1∑
δ=1

pxi (1− pxi )δ−1[−∆si(k − δ)], (13)

where (12) holds because of the linearity of expectation
and since the testing delays are i.i.d.. We now connect the
daily expected proportion of confirmed cases with the actual
proportion of confirmed cases at time k, by first demonstrating
that the Wi(µ) are i.i.d..
Lemma 2. W1(µ), · · · ,WNi(µ) are i.i.d. when the size of
subpopulation approaches infinity.

Proof. The distribution of Wi(µ) is a function of the random
variables: Xi(ν) and Ti(µ, δ). We know that Ti(µ, δ), for
all i ∈ [Ni], are i.i.d. by assumption. We also obtain that
Xi(ν) are i.i.d. for each individual, because as the number
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of subpopulation Ni goes to infinity, the probability of a
randomly chosen individual testing positive should be equal
for each individual and should not affect others.

Lemma 3. By assuming ci(k) = 0 for all k /∈ [T1+1, T2+1],
we obtain that the proportion of daily new cases almost surely
equals

ci(k) = pxi (−∆si(k − 1)) + (1− pxi )ci(k − 1), (14)

as the subpopulation size approaches infinity, where k ∈ [T1+
1, T2 + 1].

Proof. We denote WNi(k) as the actual proportion of con-
firmed cases at time k. which can be calculated as:

WNi(k) =
1

Ni

Ni∑
i=1

Wi(k). (15)

Based on the strong law of large numbers [36], Lemma 2, and
the definition of ci(k) = Ci(k)

Ni
, we obtain that the average

proportion of daily confirmed cases converges almost surely
to the expected value when the size of the subpopulation goes
to infinity, namely:

Pr
(

lim
Ni→∞

1

Ni

Ni∑
i=1

Wi(k) = ci(k)
)

= 1, (16)

where we can interpret limNi→∞
1
Ni

∑Ni
i=1Wi(k) as the actual

proportion of confirmed cases at time k when Ni → ∞.
Therefore, we obtain that as the subpopulation size goes to
infinity for all i ∈ [n], the actual proportion is equal to the
expected value almost surely:

Pr

(
lim

Ni→∞
WNi(k) =

k−T1∑
δ=1

pxi (1− pxi )δ−1[−∆si(k − δ)]

)
= 1.

(17)
Hence,we acquire that

ci(k) =

k−T1∑
δ=1

pxi (1− pxi )δ−1[−∆si(k − δ)]

= pxi (−∆si(k − 1))

+

k−T1∑
δ=2

pxi (1− pxi )δ−1[−∆si(k − δ)]

= pxi (−∆si(k − 1))

+ (1− pxi )

{
k−T1∑
δ=2

pxi (1− pxi )δ−2[−∆si(k − δ)]
}

= pxi (−∆si(k − 1)) + (1− pxi )ci(k − 1) (18)

almost surely for all k ∈ [T1 +1, T2 +1], as the subpopulation
size Ni goes to infinity, where (18) follows from the definition
of ci(k − 1).

Finally, we relate the the daily number of recoveries, i.e.,
Di(k), with the underlying states. In the data collected, Di(k)
corresponds to the change in the number of recovered individ-
uals and the total number of known active cases Ai(k − 1).
We assume

Di(k) ∼ Bin
(
Ai(k − 1), hγi(k − 1)

)
. (19)

Namely, each known active case recovers with healing rate
hγi(k − 1).

The above analysis links the collected data proportions
with the underlying states of the system. If we acquire the
parameter: pxi , we will be able to estimate the state systems.

Definition 3. We assume that: x̂i(k) = x̂i(0), r̂i(k) = r̂i(0),
and ŝi(k) = ŝi(0), where x̂i(0), r̂i(0), ŝi(0) ∈ [0, 1] for all
i ∈ [n], k < T1. Given the testing data set Ωi(k) collected
from time step T1 + 1 to T2 + 1, according to (14), we define
the estimated proportion of new infections at node vi as

−∆̂si(k) =
ci(k + 1)− (1− pxi )ci(k)

pxi
, k ∈ [T1, T2]. (20)

Notice that when pxi = 1, (20) becomes:

−∆̂si(k) = ci(k + 1), k ∈ [T1, T2],

which can be interpreted as: every infected individual will
be tested the day after being infected. Hence, the estimated
change in proportion of infection on a given day k exactly
equals to the fraction of the number of positive cases on the
next day k + 1.

Moreover, we let ∆̂ri(k) = 0 for k = T1. Note that
the following equality holds from the formulation of the SIR
model:

∆̂si(k) + ∆̂xi(k) + ∆̂ri(k) = 0.

We further define, for k ∈ [T1, T2],

ŝi(k) = ŝi(k − 1) + ∆̂si(k),

x̂i(k) = x̂i(k − 1) + ∆̂xi(k), (21)

r̂i(k) = r̂i(k − 1) + ∆̂ri(k).

Similar to the proof of Lemma 3, based on (19) and the
strong law of large numbers [36], when the number of active
cases Ai →∞, i.e., the size of subpopulation i, Ni approaches
infinity, the number of daily removed cases Di(k) is almost
surely equal to the expected value of the binomial distribution
in Eq. (19): hγi(k − 1)Ai(k − 1). Hence, we acquire that
the number of daily removed cases Di(k) and the expected
value hγi(k − 1)Ai(k − 1) are almost surely equivalent, and
hγi(k − 1) can be calculated by Di(k)/Ai(k − 1) when the
subpopulation size goes to infinity for all i ∈ [n]. Therefore,
the change in the proportion of recovered individuals at node
vi can be inferred as

∆̂ri(k) =
Di(k)

Ai(k − 1)
x̂i(k − 1), k ∈ [T1 + 1, T2], (22)

where x̂i(k−1) is calculated from (20) and (21). When Ai(k−
1) = 0, we assume ∆̂ri(k) = 0.

Therefore, if the testing data Ωi(k) is available over an
interval k ∈ [T1 + 1, T2 + 1], we can estimate the states of
the system by repetitively applying (20), (21), and (22) with
the initial conditions, i.e., ŝi(0), x̂i(0), and r̂i(0), assumed for
the geometric distribution model. This addresses question (i)
in Section II.

Assumption 3. We assume that ci(k) = 0 for all k ∈
[T1] ∪ {0} and the estimated initial susceptible proportion is
indicated as ŝi(0).

Assumption 3 can be interpreted as follows: even though
there possibly exist positive infection cases in subpopulation i
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before the testing starts, we may not be able to collect all
the data on these positive cases. We now present the close
form solution for the estimation error that accounts for this
discrepancy.

Proposition 1. Under Assumption 3, the error of the inference
method in (20)-(22), for all k ≥ T1, is almost surely:

|ŝi(k)− si(k)| =
∣∣∣∣∣ŝi(0)− si(0)−

T1−1∑
l=1

∆si(l)

∣∣∣∣∣ , (23)

as the subpopulation size Ni approaches infinity.

Proof. From (1a), we first represent si(k) by:

si(k) = si(0) +
k∑
l=1

∆si(l). (24)

Now, we characterize ŝi(k):

ŝi(k) = ŝi(0) +
k∑
l=1

∆̂si(l)

= ŝi(0) +

k∑
l=T1

∆̂si(l) (25)

= ŝi(0)− ci(k + 1)

pxi
−

k∑
l=T1+1

ci(l), (26)

where (25) is written because −∆̂si(l) = 0 for all l ≤ T1− 1

in (20). We acquired (26) through representing each ∆̂si(l),
l ≥ T1 by (20) and following Assumption 3. By applying (14),
we calculate the

∑k
l=T1+1 ci(l) on the R.H.S. of (26) as

k∑
l=T1+1

ci(l) = −pxi
k−1∑
l=T1

∆si(l) + (1− pxi )
k−1∑

l=T1+1

ci(l) (27)

= −pxi
k−1∑
l=T1

∆si(l) + (1− pxi )
[ k∑
l=T1+1

ci(l)− ci(k)
]
,

(28)
since

∑k−1
l=T1+1 ci(l) =

∑k
l=T1+1 ci(l) − ci(k). We can reor-

ganize (28) and acquire:
k∑

l=T1+1

ci(l) = −
k−1∑
l=T1

∆si(l)−
1− pxi
pxi

ci(k). (29)

Hence, we replace
∑k
l=T1+1 ci(l) on the R.H.S. of (26)

with (29) and obtain:

ŝi(k) = ŝi(0)− ci(k + 1)

pxi
+

k−1∑
l=T1

∆si(l) +
1− pxi
pxi

ci(k)

(30)

= ŝi(0) +
k∑

l=T1

∆si(l), (31)

where (31) follows from writing ci(k + 1) in (30) as
pxi (−∆si(k)) + (1− pxi )ci(k), using (14). Therefore, we can
calculate |ŝi(k)−si(k)| by comparing (24) with (31) and yield
the result.

Prop. 1 provides a closed form solution to the estimation
error given the initial susceptible level assumed and the start

testing time. Hence, Prop. 1 solves question (ii) in Section II.
Note that in Prop. 1, the time interval is k ≥ T1 instead of k ∈
[T1, T2], as there may not be an end time for data collection,
hence T2 →∞ in this case.

Corollary 1. In Prop. 1, if ŝi(0) ≥ si(0), then ŝi(k) ≥ si(k),
for all k ≥ T1. Moreover, if ŝi(0) = si(0), and T1 = 1, then
ŝi(k) = si(k), for all k ≥ T1.

Corollary 2. Under Assumption 3,

|ŝi(k)− si(k)| = |ŝi(0)− si(T1 − 1)| , (32)

for all k ≥ T1.

Remark 2. The error expression presented in Corollary 2
consists of two parts: ŝi(0) and si(T1−1). The first component
depends on the initial condition for the estimation algorithm.
The second component depends on the day we begin testing.
Therefore, more data does not compensate the loss of mea-
surement in the change of susceptible level, it is crucial to
begin testing early for an accurate estimation of the states of
an outbreak.

We will explore this error via simulations in Section VII.
By estimating the proportion of infected individuals in

a subpopulation of a network, we are able to acquire the
estimation of the infection prevalence in the whole system.
These inferred states provide an understanding of the epidemic
and important factors for designing eradication schemes for
infectious diseases.

IV. VALIDATION OF GEOMETRIC DISTRIBUTION

In this section, we employ four sets of real COVID-19
data [37]–[40] to justify the choice of stochastic observation
model proposed in Section III and learn the parameters of the
geometric distribution for all data sets. We generate a random
sample of 100 observations from a geometric distribution with
a delay ηi and compare the sample mean to the real data. We
then find the optimal parameters for each data set by solving
the following minimization problem:

min
ηi,pxi

Ti∑
k=0

‖Ci(k)− Ĉi(k)‖2, (33)

where Ti represents the number of days of each data set, Ci(k)
is the number of cases on the k-th day in the i-th data set, and
Ĉi(k) is the average number of cases on the k-th day from
the 100 Monte Carlo simulations.

In Figure 2, we calculate the optimal parameters for each
data set by solving Eq. (33). From Figure 2, we can see
that the data generated by the geometric distribution captures
the behavior of the real collected data, thus, our stochastic
framework can model practical scenarios sufficiently well.

In Table I, we evaluate the fit of the geometric distribution
by calculating the optimal cost function for each data set.
We see that the data set from [38] has the best fit (under
this metric). Moreover, we can see that the delay ηi and pxi
generated from each data set are distinct from those generated
from the other data sets. The different values of pxi , ηi for
each data set validate that distinct regions have heterogeneous
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Data set [37] [38] [39] [40]∑Ti
k=0 ‖Ci(k)− Ĉi(k)‖

2 461.43 34.16 173.78 174.74∑Ti
k=0
‖Ci(k)−Ĉi(k)‖2∑
k Ci(k)

2.24 0.61 1.66 1.12
ηi 3 2 1 2
pxi 0.110 0.130 0.069 0.074

TABLE I: The performance of using the geometric distribution
for fitting each data set in Figure 2 and the learned optimal
parameters for each data set

[37] [38]

[39] [40]

FIGURE 2: Comparing the real COVID-19 cases data with the
cases generated by the geometric distribution proposed in (7)
with a delay ηi. The learned parameters are: η1 = 3, px1 =
0.110 (upper left); η2 = 2, px2 = 0.130 (upper right); η3 =
1, px3 = 0.069 (lower left); η4 = 2, px4 = 0.074 (lower right).
The corresponding costs can be found in Table I

testing delays caused by shortages of testing kits in the early
outbreak, individuals’ unwillingness to obtain a test, and/or
the incubation period of patients. Therefore, the stochastic
modeling framework proposed in Section III is a practical
method for capturing the delay between the infection and
testing data collection times and it enables the estimation of
the system states networked SIR epidemics when the system
parameters are unknown.

V. PARAMETER IDENTIFICATION

Our control strategy proposed in the next section assumes
the infection parameters are known. Leveraging the ideas
from [41], we can estimate the spreading parameters from
time series data. Assuming we have time series data for
k ∈ [T1, T2], the parameters are static, and by factoring βij
into βiaij , the dynamics in (1) can be rewritten as



xi(T1 + 1) − xi(T1)

.

.

.
xi(T2) − xi(T2 − 1)
ri(T1 + 1) − ri(T1)

.

.

.
ri(T2) − ri(T2 − 1)


=



−si(T1)

n∑
j=1

aijxj(T1) −x(T1)

.

.

.

.

.

.

−si(T2 − 1)

n∑
j=1

aijxj(T2 − 1) −xi(T2 − 1)

0 xi(T1)

.

.

.

.

.

.
0 xi(T2 − 1)



[
hβi
hγi

]
.

(34)

Therefore, as long as the data matrix on the right-hand side
is full column rank and we know the aij’s, the spreading

parameters for subpopulation i can be uniquely identified [41].
When there is noise in the state measurements, parameter
identification is less accurate, but still can produce viable
results [42]. We illustrate how the parameter identification
performs when there is error in the estimated states via
simulations in Section VII.

VI. DISTRIBUTED ERADICATION STRATEGY

In this section we focus on how to eradicate the virus at
an exponential rate by adjusting the healing rates. This ap-
proach can be understood as boosting the healing rate of each
subpopulation separately by providing effective medication,
medical supplies, and/or healthcare workers. For example,
research has quantified the reduction of recovery/removal time
from COVID-19 with certain types of treatment such as taking
baricitinib plus remdesivir, receiving noninvasive ventilation,
or inhaling high-flow oxygen [43]. In addition, monoclonal
antibodies were also confirmed to be able to speed up the
recovery from COVID-19 as since they targeted the SARS-
CoV-2 virus directly [44]. Moreover, as the healing rate
can represent the inverse of the average duration of being
infectious, the healing rates can be increased by enforcing
isolation and quarantine for the patients so that they are
not able to infect other individuals. These are just several
examples of special medicines/treatments for the SARS-CoV-2
virus; there are validated methods for other infectious diseases
as well. For instance, when controlling the epidemic spread
over animals, rapid livestock destruction of all the infected
animals is considered as an effective removal method [45].
The control’s literature on networked epidemics often employs
the healing rate as an actuator [21], [46], [47].

We propose a distributed strategy that employs the estimated
states and guarantees the eradication of the virus in at least
exponential time. We propose the following healing rate to
control the epidemic spread over the network:

γ̃i(k) = ŝi(k)
n∑
j=1

βij(k) + εi, i ∈ [n], (35)

where ŝi(k) is the inferred susceptible rate from (21) and εi >
0, for each i ∈ [n].

Theorem 1. Consider the system in (1) and assume that
1) 0 ≤ h∑j βij(k) < 1, ∀i ∈ [n] and ∀k ∈ Z≥0,
2) B(k) is symmetric and irreducible ∀k ∈ Z≥0,
3) ∃εi > 0 such that hγ̃i(k) < 1, ∀i ∈ [n] and ∀k ∈ Z≥0,
4) ŝi(0) ≥ si(0), ∀i ∈ [n].

Then (35) guarantees GES of the set of healthy states.

Proof. By substituting (35) into (1), we obtain

xi(k + 1) = xi(k)+

h{si(k)
n∑
j=1

βij(k)xj(k)− [ŝi(k)
n∑
j=1

βij(k) + εi]xi(k)}.

(36)
The state transition matrix of (36) can be written as

M̃(k) = I+h[S(k)B(k)−(Ŝ(k)diag(B(k)1n×1)+diag(εi))],
(37)
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where Ŝ(k) = diag(ŝi(k)). For any i, j ∈ [n], j 6= i, the
entries of the i-th row of M̃(k) are

m̃ii(k) = 1 + h[si(k)βii(k)− ŝi(k)
n∑
j=1

βij(k)− εi], (38)

m̃ij(k) = hsi(k)βij(k), (39)

which satisfies the following inequality

m̃ii(k) +
n∑
j 6=i

m̃ij(k) ≤ 1− hmin{εi}, ∀i ∈ n, (40)

since from Corollary 1 we know that when we assume that
ŝi(0) ≥ si(0), ∀i ∈ [n] and ∀k ∈ Z≥0, we obtain ŝi(k) ≥
si(k) for all i ∈ [n] and k ∈ Z≥0. Therefore, by Gershgorin
circle theorem, the spectral radius of M̃(k) is upper bounded
by 1− hmin{εi}:

ρ(M̃(k)) ≤ 1− hmin{εi}. (41)

Since we have x(k+ 1) = M̃(k)x(k) and x(k) ≥ 0 for all k,
we can write that ‖x(k+ 1)‖ ≤ [1−hmin{εi}]‖x(k)‖ for all
k. Since εi > 0, ∀i ∈ n, we obtain that, for all xi(0) ∈ [0, 1]n,

‖x(k)‖ ≤ [1− hmin{εi}]k‖x(0)‖ ≤ e−khmin{εi}‖x(0)‖,
(42)

where the second inequality holds by Bernoulli’s inequal-
ity [48],

ex = lim
n→∞

(1 +
x

n
)n ≥ 1 + x. (43)

Hence, x(k) converges to 0 with an exponential rate of at least
hmin{εi}. Therefore, the set of healthy states is GES.

Remark 3. The control strategy proposed in Theorem 1 can
be interpreted as follows: if the healing rate of each subpop-
ulation is appropriately increased according to its estimated
susceptible proportion, for example by distributing effective
medication, medical supplies, and/or healthcare workers to
each subpopulation, then the epidemic will be eradicated
with at least an exponential rate. This theorem provides
decision makers insight into, given sufficient resources, how to
allocate medical supplies and healthcare workers to different
subpopulations so that the epidemic can be eradicated quickly.
Furthermore, Theorem 1 provides sufficient conditions for
guaranteeing an exponentially decreasing ‖x(k)‖ for all k
when the conditions apply. In other words, implementing the
control strategy in Theorem 1 at full length will prevent the
potential upcoming waves of the epidemic in the 2-norm sense
of x(k). We note that the implementation of (35) relies on the
knowledge of infection rates βij(k) for all k ∈ Z≥0, which
can be learned from the method in Eq. (34), and we will
illustrate that the distributed eradication works efficiently with
the identified parameter β̂ij(k) in Section VII.

Theorem 1 has proven that given the estimated susceptible
state the distributed eradication strategy proposed eradicates
the virus with at least an exponential rate. Therefore, ques-
tion (v) from Section II has been addressed here.

In this section, we have presented a distributed eradication
strategy based on the estimated system states. The strategy
ensure that the SIR epidemics converge to the sets of healthy
states exponentially. We illustrate the eradication strategy with
numerical simulations in Section VII, and study how a system
will react if the eradication strategy is removed too early.

FIGURE 3: Graph topology in the map of the state of Indi-
ana [49] analyzed and the evolution of infected proportion in
each city

βij G L I F S
G 0.08 0.15 0.24 0 0.06
L 0.15 0.12 0.13 0 0
I 0.24 0.13 0.25 0.05 0.04
F 0 0 0.05 0.11 0.15
S 0.06 0 0.04 0.14 0.09
γi 0.075 0.115 0.085 0.125 0.1
Ni 500000 160000 900000 350000 300000

TABLE II: Simulation Network Parameters

VII. SIMULATIONS

In this section, we simulate a virus spreading over a static
network with 5 nodes in Fig 3 to illustrate our results. The
nodes are modeled after the five metropolitan areas with a
population over 150,000 in northern Indiana, U.S.: Gary (G),
Lafayette (L), Indianapolis (I), Fort Wayne (F) and South Bend
(S). Two nodes are neighbors if there is a major highway con-
necting them. We set the initially infected proportion to be 0.02
at node I and 0.01 at node G and 0 elsewhere. The infection
rates, healing rates, and the size of each subpopulation are
static and presented in Table. II. The evolution of the infected
proportion for each city is shown in Figure 3.

Considering the stochastic framework, we simulate testing
data using (14) and (19), with pxi = 0.2, ∀i ∈ {G, L, I, F, S}
from T1 = 6 to T2 = 300. The number of daily and cumulative
confirmed cases and removed (recovered) cases over time at
node L are shown in Fig. 4. When k ≥ 80, the proportion of
infected individuals at node L begins to decrease in Fig. 3,
which reduces the number of active cases in Fig. 4.

We now use the method proposed in Section III to estimate
the susceptible proportion at node I. We assume that the initial

C
L

,D
L

k

C
L
,D

L
,A

L

k

FIGURE 4: Simulated daily and cumulative number of cases
for node L with pxi = 0.2
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ŝ I
(0

)

T1
FIGURE 5: The absolute value of susceptible state estimation
error at k = 100 with respect to start testing date and the
initial susceptible level assumed at node I, where the red points
represent the estimation error: |ŝI(k)− sI(k)| < 0.01. Both of
the plots are illustrations of Prop. 1

condition of the recovered state is r̂I(0) = 0. Hence, the
initial infected state is written as: x̂I(0) = 1 − ŝI(0). In
Fig. 5, we plot the absolute value of the estimation error
of the susceptible state at k = 100 versus the start testing
time T1 and initial condition assumed, ŝI(0). It can be seen
in Fig. 5 (left) that the estimation error increases linearly
with the initial susceptible level assumed. When the initial
condition is assumed correctly for node I, with a later start
testing date, the estimation error at k = 100 builds up from
0 to rI(k) eventually. The increase in the estimation error
with T1 signifies the importance of an early testing during
an outbreak: with appropriate initial conditions assumed, we
should initiate testing as quickly as possible to improve the
accuracy of the state estimation. Further, we can see from
Fig. 5 that: if we start collecting the testing data late, we
must compensate by assuming lower initial conditions for the
susceptible proportion in order to acquire accurate estimation
results. The intuition behind this finding is that since, by
Definition 3, ŝi(k) = ŝi(0), for all k < T1, the lower initial
condition can compensate for missed tests from k ∈ [0, T1−1],
captured by the last term in (23). However, guessing ŝi(0)
correctly, namely ŝi(0) = si(0) +

∑T1−1
l=1 ∆si(l), for T1 > 0

is quite difficult. Additionally, if we assume that ŝi(0) = 1, the
estimated ŝi(k) is always larger than the true susceptible state
in Fig. 5. The overestimation of susceptible level encourages
us to design a stronger strategy to eradicate the virus, as will
be seen in the subsequent simulations.

A. Stochastic Estimator vs Luenberger Observer

We now provide a thorough numerical comparison between
a traditional observer design and the stochastic framework
which we proposed in Section III. We build a traditional state
observation model:
x̂i(k + 1) = x̂i(k) + h

{
ŝi(k)

n∑
j=1

β′ij x̂j(k)− γ′ix̂i(k)

}
+ Li[yi(k)− ŷi(k)], (44)

where ŷi(k) = x̂i(k) and yi(k) = xi(k) are our estimated and
observed infection level at time k, respectively, β′ij and γ′i are
our assumed infection and recovery parameters, respectively,
Li is the observer gain such that the estimator error converges
to zero, ŝi(k) = 1− x̂i(k)− r̂i(k) and
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FIGURE 6: Each estimator’s error at the healthy state (left) and
total accumulated error (right) vs the scaling factor λ

r̂i(k) = h
k∑
q=0

γ′ix̂i(q).

However, in our system model, we do not know any of the
system parameters in the beginning of the outbreak. Hence,
while performing the system states estimation through the
Luenberger observer, we assume a set of the system parameters
such that the estimated system states stay well-defined, namely
x̂i(k), ŝi(k), r̂i(k) ∈ [0, 1], for all k ∈ Z≥0. Furthermore, no-
tice that the measurement yi(k) in Eq. (44) is the current value
of the system state, assuming no delay in the measurement,
while our estimation algorithm accounts for random delays
caused by the incubation period of the virus or other factors.

We now investigate the robustness of the Luenberger ob-
server with incorrect system parameters in comparison with
our stochastic estimation framework. We introduce a scaling
factor λ > 0 such that the assumed system parameters are:

β′ij = λβij , γ
′
i =

1

λ
γi (45)

for all i, j ∈ [n]. We choose to tune the original system
parameters with the method in Eq. (45) so that the approximate
reproduction number, namely

β′ij
γ′i

= λ2
βij
γi

, also changes
accordingly with λ. We denote s∗i as the susceptible level of
the equilibrium at subpopulation i for the true system. We
denote ŝ∗Li as the final estimated susceptible level via the
Luenberger observer in (44) at subpopulation i. Finally, we
denote ŝ∗Pi as the final estimated susceptible level from our
stochastic framework. We compare the offset of each estimator
at the healthy state: |s∗i − ŝ∗Li |, |s∗i − ŝ∗Pi | against the scaling
factor λ in Figure 6. We choose the range for the scaling
factor to be λ ∈ [0.5, 2] to represent the possible errors within
100% of the original system parameters’ scales. The error
of the Luenberger observer first decreases and then increases
with the change of the scaling factor λ and reaches 0 when
λ = 1, which means that the assumed parameters are correct
and, as would be expected, there is no estimation error. Thus,
unless you have accurate knowledge of the system parameters
(in our example λ ∈ [0.97, 1.03]) and there is no delay
between the change of infection level and its measurement,
our stochastic estimation framework outperforms a standard
observer framework.
B. Parameter Identification

By factoring the βij in Table II into βiaij and, for simplicity,
letting aij = βij , assuming we acquire the network structure
via, e.g., interstate traffic data, we can write βi = 1 for all
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FIGURE 7: Identified parameters for nodes I (left) and F (right)
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FIGURE 8: Average system states over time

i ∈ [n]. We then use the parameter identification method in
Eq. (34) with the system states estimated from the data in
Fig. 4 using the algorithm in (21) to learn β̂i and γ̂i with
T1 = 6 (recall, if T1 = 0, the estimation error will be small by
Prop 1) and T2 ∈ [7, 300]. In Fig. 7 we plot the ratio between
the estimated system parameters and the true parameters. We
see the ratios at both nodes are close to 1 which demonstrates
that our estimation algorithm can provide state inference that
enables us to identify the system parameters. Notice that there
is a slight decrease in β̂i(k)

βi(k)
around k = 100, as the infection

levels reach their peaks, and estimating the infection rates
becomes difficult without becoming infected.

C. Control Implementation

We simulate three scenarios over the network in Fig. 3
with the parameters of Table. II: no control, the distributed
eradication strategy utilizing estimated states in (35), and the
distributed eradication strategy in (35) but with βij(k) replaced
by identified parameters β̂ij(k) from Fig. 7:

γ̃i(k) = ŝi(k)
n∑
j=1

β̂ij(k) + εi, i ∈ [n]. (46)

The inferred states were produced by the algorithm in
Section III with pxi = 0.5 ∀i ∈ {G, L, I, F, S}. The average
states for each scenario are plotted in Fig. 8. Note that both
eradication strategies are able to eliminate the virus at a much
higher speed than the case where no control strategy applied.
Furthermore, when k ≥ 200, the healthy states with the erad-
ication strategies applied achieve higher susceptible fraction
than the healthy state without control. We can interpret the
higher susceptible proportion as fewer individuals becoming
sick during the entire outbreak and the eradication algorithms
prevent resurgences of the virus over the network. Even though
our system parameter estimation is not completely accurate
due to the state estimation error, the control strategy utilizing
the identified parameters is still able to eradicate the virus at a

1 n

∑ n ix
i
(k

)

k

1 n

∑ n ix
i
(k

)

k
FIGURE 9: Average infection proportion of the virus over time
with the eradication strategy enforced at k ∈ [0, 50] (left) and
at k ∈ [0, 100] (right)
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)
k

1 n

∑ n ix
i
(k

)

k
FIGURE 10: Average infection proportion of the virus over
time with the eradication strategy imposed at k ∈ [20, 50]
(left) and at k ∈ [20, 150] (right)

faster rate than no control, ensuring fewer individuals become
infected over the course of the outbreak.

In Fig. 9, we remove the eradication strategy when k =
50 and k = 100 and do not reinstate it. It can be seen that
the infection curve rises up immediately when k ≥ 50 (resp.
k ≥ 100), and reach peaks before it slowly dies out. Fig. 9
can be interpreted as removing the allocation of resources and
healthcare workers from a subpopulation too early during a
pandemic, resulting in the increase in infection level and a
potential outbreak. In Fig. 10, we only enforce our eradication
strategy within time interval: k ∈ [20, 50] and k ∈ [20, 150],
respectively. By implementing the control algorithm for more
time, we are able to relatively flatten the infection curve. We
can see that although the control strategy reduces the infection
level, a resurgence of the outbreak occurs instantly upon the
removal of the eradication strategy. Hence, policy makers are
suggested to enforce the eradication strategy during the entire
outbreak to avoid subsequent waves of infections.

In Fig. 11, we consider a time-varying system where the
initial infection rates are set to the values from Table II and
then increased linearly over time (by adding 0.0005 at each
time step k) to capture the effect of a mutating virus. We utilize
the eradication strategy proposed in (35) and the resulting
average healing rates are shown in Figure 11 (right). We can
see from Figure 11 (left) that our control strategy is able to
flatten the curve and eradicate the epidemic.

We now explore how the algorithm performs if a resource
constraint c is introduced: n∑

i=1

γ̃i(k) ≤ c.

To meet this constraint, we introduce a uniform limitation on
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FIGURE 12: Average infection level when using (47) (left) and
resource limitation coefficient b(k) from (48) (right) over time
with different resource limitations

the total amount of medical resources:̂̃γi(k) = b(k)γ̃i(k), ∀k ∈ Z≥0, (47)

where γ̃i(k) is the eradication control strategy proposed in
Eq. (35) and b(k) is the resource limitation coefficient:

b(k) =

{
c∑n

i=1 γ̃i(k)
if
∑n
i=1 γ̃i(k) > c

1 if
∑n
i=1 γ̃i(k) ≤ c.

(48)

In Fig. 12, we choose c = {0.6, 0.8, 1.2, 1.6, 2, 2.4,∞} and
plot the average infection level and b(k) over time, notice
that when c = ∞ the controller is identical to Eq. (35). We
can see from Figure 12 that with more resources available,
namely a larger value of c, the performance of the eradication
strategy progresses as fewer individuals become infected over
the outbreak. Therefore, when there are no constraints over
medical resources, our proposed eradication strategy ensures
speedy convergence to the set of healthy states.

VIII. CONCLUSION

This paper studied the inference and control of discrete time,
time-varying SIR epidemics over networks. We proposed a
stochastic framework for estimating the underlying epidemic
states from collected testing data. We provided analytic expres-
sions for the error of the estimation algorithm and validated
some of our assumptions with real COVID-19 testing data.
We identified the system parameters with the system states
from the estimation algorithm proposed. We also proposed a
distributed control strategy that is able to eradicate the virus
exponentially fast. The control strategy provides insights for
decision makers on how to eliminate an ongoing outbreak.

In future work, we plan to study the stability and control
of models with more states than SIR such as SEIRS
(susceptible-exposed-infected-recovered-susceptible) and
SAIR (susceptible-asymptomatic-infected-recovered) as they
can possibly capture the asymptomatic phase of COVID-19
better than the SIR model. In our stochastic testing framework,
we did not consider the existence of inaccurate testing kits,
which appear frequently and cause confusion for policy
makers. Hence, we plan to include false positive/negative test
results into our testing and estimation model and investigate
the new model’s estimation accuracy.
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