Multi-Layer SIS Model with an Infrastructure Network

Philip E. Paré, Axel Janson, Sebin Gracy, Ji Liu, Henrik Sandberg, and Karl H. Johansson

Abstract—In this paper, we develop a layered networked
spread model for a susceptible-infected-susceptible (SIS)
pathogen-borne disease spreading over a human contact network
and an infrastructure network, and refer to it as a layered
networked susceptible-infected-water-susceptible (SIWS) model.’
We identify sufficient conditions for the existence, uniqueness
and stability of various equilibria of the aforementioned model.
Further, we study an observability problem, where, assuming that
the measurements of the pathogen levels in the infrastructure
network are available, we provide a necessary and sufficient
condition for estimation of the sickness-levels of the nodes in
the human contact network. Our results are illustrated through
an in-depth set of simulations.

Index Terms—Epidemic Processes, Infrastructure Networks,
Stability, Observability

I. INTRODUCTION

The spread of diseases has been a prominent feature of
human civilization. The devastation that epidemics can bring
worldwide, both from loss of life, and, less importantly,
from hindrance to economic activity, has been brought into
stark relief by the ongoing Covid-19 crisis. Consequently,
understanding the causes of spread of diseases, and, as a result,
possibly mitigating (or eradicating) the spread have been
questions of longstanding interest for the scientific community.
The earliest work in this area can be traced back to [1]. In
recent times, modeling and analysis of spreading processes has
attracted the attention of researchers across a wide spectrum
ranging from mathematical epidemiology [1, 2] and physics
[3] to the social sciences [4].

Various models have been proposed in the literature for
studying spreading processes, and, in particular, epidemics.
Nevertheless, a vast majority of such models factors in only
person-to-person interaction. However, diseases can spread
also through other medium, such as water [5]-[7] (or infected
surfaces, e.g., in hospitals [8], public transit vehicles [9], etc).
Water-borne pathogens could spread through infrastructure
networks, water distribution systems (e.g., rivers, groundwater,
and reservoirs) [10]. Moreover, while water quality issues
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'The “W” in SIWS represents any infrastructure network contamination,
not necessarily restricted to a water distribution network.

are very prevalent in developing countries with less advanced
plumbing and sewage infrastructure, such issues occasionally
affect more prosperous countries as well. Notably, Sweden has
had a number of water contamination incidents which have
affected thousands of residents. For example, in Ostersund in
Northern Sweden, approximately 27, 000 people (~45% of the
population) became ill and had a water-boil order for over
two months as the result of Cryptosporidium contamination
of the drinking water [11]. Thus, there is a need for epidemic
models that also account for the spread of diseases as a con-
sequence of contamination of shared infrastructure resources
2. Observe that representing the entire network as a single
layer (which, in context, means that the population nodes and
resource nodes are treated on an equal footing) could possibly
lead to erroneous conclusions [12]. Therefore, in order to
better capture the coupled dynamical processes involved, it is
prudent to devise an epidemic model that has two layers (one
representing the interaction between the human population;
another representing the interaction between the infrastructure
resources), referred to as multilayer networks [13, 14].

The present paper relies on the susceptible-infected-
susceptible (SIS) model. In an SIS model, an agent (resp.
node), which can be interpreted as either an individual or,
equivalently, a community, is either in the infected state or in
the susceptible state. Assuming there is a non-trivial disease-
spread in a population, an agent that is in the susceptible
state, as a consequence of interactions with its neighbors,
and depending on its infection rate, transitions to the infected
state; an agent that is in the infected state recovers from the
infections based on its healing rate. SIS networked models
have been studied extensively in the literature [3, 15]-[19].

More recently, in order to account for the spread of diseases
through infrastructure resources such as water distribution
networks, a variant of the SIS model called the Susceptible-
Infected-Water-Susceptible (SIWS) model has been developed
in [20], and a multi-virus single resource SIWS model in
[21]; an analogous model, inspired from the susceptible-
infected-recovered (SIR) framework, had been proposed in
[22]-[24]. The paper [20] provides sufficient conditions for
global asymptotic stability (GAS) of the healthy state (see
[20, Theorem 1]), but it does not provide any theoretical guar-
antees regarding endemic behavior. More recently, sufficient
conditions for GAS of the healthy state, and also for the
existence, uniqueness, and GAS of the endemic state have been
provided in [21]; see [21, Theorem 2], and [21, Theorem 3],
respectively. However, both [20] and [21] consider only the
presence of a single resource. Notice that if there are multiple
water resources being accessed by the population, then the
spread of virus could be due to not only a) interaction between

23 node in an infrastructure network is referred to as resource.



an individual in a population node and another individual in
(possibly) another population node, and b) interaction between
an individual in a population node and a resource node in
the infrastructure network, but also due to interaction between
two resource nodes in the infrastructure network. The present
paper aims to develop such a model (called the layered
networked SIWS model), and provide an in-depth analysis of
its various equilibria viz. existence, uniqueness, and stability.
Based on the aforementioned analysis, we would also focus on
understanding the effect on the endemic level of the population
nodes in the presence of shared resource(s) as opposed to the
absence of the same.

While the discussion insofar has been centered around
modeling and analysis, another pressing challenge that health
administration officials face is to estimate the sickness levels of
the population. In particular, for large-scale modern societies it
is not economically viable to install sensors in each and every
household for measuring the respective household’s infection
levels. Given that the pathogen levels of infrastructure net-
works could be measured more easily, the following problem is
of interest: under what conditions can we estimate the infection
levels of individuals in the population by only measuring the
pathogen levels in the infrastructure network? In fact, this
problem has been of strong interest in the context of several
epidemics such as Ebola [25], Zika [26], Covid [6, 7, 27],
etc. It turns out that by employing system-theoretic notions
such as observability3, the aforementioned problem can be
addressed by deploying as few sensors as possible. One of
the earliest works in this direction is [28], where the problem
of which subset of nodes in a network should be measured
S0 as to improve observability of a SIS network is addressed;
the condition therein involves checking the determinant of the
inverse of the observability Grammian. The key theoretical
tool that we would be using is the notion of local weak
observability of non-linear systems*.

Paper Contributions: For the layered networked SIWS
model that accounts for the presence of multiple resources,
our main contributions are as follows:

(i) We identify conditions such that regardless of whether
or not a population node (resp. infrastructure resource) is
infected or healthy, the model converges to the healthy
state, i.e., conditions for GAS of the healthy state; see
Theorem 1.

We provide conditions that guarantee the existence,
uniqueness, and GAS of the endemic equilibrium; see
Theorem 2.

We show that the endemic equilibrium in the population
nodes for the layered networked SIWS model is greater
than or equal to the endemic equilibrium of the population
nodes in the networked SIS model, with at least one of the
population nodes in the former having a strictly greater
endemic level than in the latter; see Proposition 5.

(ii)

(iii)

3A system has the property of observability, if, given a series of output
measurements, the initial state of the system can be uniquely determined.

4We say that two initial states are indistinguishable if the corresponding
outputs are equal for all time instants. A system is locally weakly observable if
one can instantaneously distinguish each initial state from its neighbors [29].

(iv) Given knowledge of the pathogen levels in the infras-
tructure network, we provide a necessary and sufficient
condition for estimating the sickness levels in the human
contact network; see Theorem 3.

Additionally, we also have the following auxiliary contribu-

tions: a necessary, and sufficient, condition for the healthy state

to be the unique equilibrium of the model; see Corollary 1.

A sufficient (but not necessary) condition for local weak

observability of the layered networked SIWS model, and,

based off of this sufficient condition, we present a design of
the observability matrix that results in the layered networked

SIWS model being locally weakly observable; see Proposi-

tion 6 and Corollary 2, respectively.

A preliminary version of this paper appeared in [30]. The
present paper involves a more comprehensive treatment by
providing theoretical guarantees for the endemic behavior,
studying a different observability problem, providing novel
sufficient conditions for local weak observability, complete
proofs of all assertions, and, finally, an in-depth set of simu-
lations.

Paper Organization: The paper unfolds as follows. We
conclude the present section by collecting all the notation
used in the rest of the paper. The layered networked SIWS
model is developed in Section II, where, we subsequently,
also state the problems of interest. The analysis of the various
equilibria of the model, namely stability of the healthy state
and existence, uniqueness, and stability of the endemic state,
is given in Section III. The observability problem is studied
in Section IV. Simulations illustrating our theoretical findings
are provided in Section V. Finally, some concluding remarks,
together with some research directions of possible interest to
the wider community, are provided in Section VI.

Notation: For any positive integer n, we use [n] to denote
the set {1,2,...,n}. The ith entry of a vector x will be
denoted by x;. We use 0 and 1 to denote the vectors whose
entries all equal 0 and 1, respectively, and use I to denote the
identity matrix. For any vector z € IR", we use diag(z) to
denote the n x n diagonal matrix whose ¢th diagonal entry
equals z;. For any two sets A and B, we use A\ B to denote
the set of elements in .A but not in B. For any two real vectors
a,b € R", we write a > b if a; > b; for all i € [n], a > b
ifa>band a #b, and a > b if a; > b; for all ¢ € [n]. For
a square matrix M, we use o(M) to denote the spectrum of
M, use p(M) to denote the spectral radius of M, and s(M)
to denote the largest real part among the eigenvalues of M,
ie., s(M) = max{Re(\) : A € o(M)}. Given a matrix A,
A <0 (resp. A < 0) indicates that A is negative definite (resp.
negative semidefinite), whereas A > 0 (resp. A = 0) indicates
that A is positive definite (resp. positive semidefinite).

II. THE MODEL

In this section, we develop a distributed continuous-time
pathogen model. This model will be hereafter referred to as
the layered networked SIWS model; see Figure 1.

A. The Layered Networked SIWS Model

Consider a pathogen spreading over a two-layer network
consisting of n > 1 groups of individuals and m > 1



infrastructure resources. The individuals in a group could
become contaminated as a consequence of their interactions
with other infected individuals and/or as a consequence of
their interactions with infected infrastructure resources.

We denote by I;(t) and S;(¢f) the number of infected
and susceptible individuals, respectively, in group ¢ at time
t > 0. We denote by N; the total number of individuals
in group ¢, and assume that /V; does not change over time,
ie., S;(t) + I;(t) = N; for all ¢ € [n] and t > 0, This
assumption implies that the birth and death rates for each
group are equal. Thus, it simplifies the model. The healing
rate of each group 7 is denoted by ~;, the birth rate by u;,
the death rate by ji; (which equals y;), the person-to-person
infection rates by a;; and the infrastructure-to-person infection
rates by a;5. We denote by w;(t) the pathogen concentra-
tion in the jth infrastructure resource, with 5;“.” denoting the
corresponding decay rate of the pathogen, (j; denoting the
person-infrastructure contact rate of group k to infrastructure
node j, and oy, representing the flow of the pathogen from
node k to node j in the infrastructure network. In the rest
of this paper, we will assume that all of the aforementioned
parameters are nonnegative. We assume that the individuals
are susceptible at birth regardless of whether (or not) their
parents are infected. The evolution of the numbers of infected
and susceptible individuals in each group ¢ is, consistent with
the ideas in [31, 32], as follows:

Si(t) = palNi — @Si(t) + wLit) — Y0y ai 52 1(1)
— it agw; (1) Si(t)
= (i +v)Li(t) - Z;L 1 @ij S[\gt) I;(t)
— it agw;(t)Si(t), (1
Bi(t) = —li(t) = ii(t) + Xy ay 2L (¢)
+Z;” 1 agjw; () S(t)
= (= — ) L) + ) a2 15 (0)
+Zj:1 ajjw; (t)Si(t), (2)
Wy = =07 w4 Xy Gk + 2kl agwk
—W; Zaj;g. 3)
k=1

It is clear from (1) and (2), that S;(t) + I;(t) = 0, which is
consistent with our assumption that N; is a constant.

We simplify the model further by defining the fraction of
infected individuals in each group 7 as

By defining the following parameters

N;
ﬁzg = Qijj 7 N
and from (1), (2), and (3), it follows that
i‘i = —(Sﬂ?i + (1 — .131) <E;L 1 BUZ‘] + Zm ) 5

0i =i + i = Niaj, cjy, :q’]@/Nk

“4)
wj = =07 wj + YL okjwi

®)
Note that, we also allow for the healing rate of an infrastructure
resource 7, 5}”, to be zero.

—wj Yoy + Zk:l T

Human Contact
Network

Infrastructure
Network

Fig. 1: Multi-layered SIWS model: The disease (depicted
by red) spreads between household nodes (squares) and the
pathogen (green) spreads through infrastructure network nodes
(circles). Blue indicates healthy. The model permits transmis-
sion from the infrastructure network to the human contact
network, vice versa, and not necessarily symmetrically. We
use the terms “infrastructure network” and “water network”
interchangeably.

The model from (4)-(5) in vector form becomes:

(6)

i=(B-XB-D)z+ (I - X)Byw
' (7)

—Dyw+ Ayw + Cy,

where B = [Bij]lnxn, X = diag(x), By = [ﬁg‘]’»]nxm, A, has

off diagonal entries equal to «y; and diagonal entries equal
- gy, and Cyy, = [c Jk]mxn Therefore, the columns of

Aw sum to zero.

System (6)-(7) could be written more compactly using

(1) = j;((?)] X (:(t) = {diagéz(t)) 8} |
B B

By = Cw  Aw diag(Aw)} ; and (8)
‘D .

Dy = 10 Dy diag(Aw)]

With the new notations in place, (6)-(7) can be rewritten as:
=

Remark 1. We highlight how the model considered in the
present paper is connected with similar models in the existing
literature

i) If m = 1, (9) coincides with the model in [20], and
with the multi-virus model in [21], when the latter is
particularized for the single-virus case.

ii) If wi(t) = 0 for all t and all j € [m], or equivalently,
there is no coupled infrastructure network, (9) reduces to
the regular networked SIS model in [33].

The spread of viruses over infrastructure networks has been
studied in [34], but the model therein only accounts for spread
between the nodes in infrastructure network; the coupling with
a human population network is not considered. Note that, in
contrast to [34], the model in (9) admits three media for
spread, namely, population-population, population-resource,
and resource-resource.

— Dj 4 (I — X(2))By)=. ©9)



B. Problem Statements

In the sequel, for the model in (9), we will be interested in
addressing the following problems:

(i) Identify a condition such that z(t) converges asymptoti-

cally to the healthy state, i.e., z = 0.

(i1) Under what conditions does there exist an endemic equi-
librium 2z > 0, and under such conditions, does the system
converge asymptotically to Z from any non-zero initial
condition?
Let 2 = [&" ﬁzT]T, where # (resp. W) denotes the
endemic equilibrium of the population nodes (resp. the
shared resources). Let & denote the unique endemic
equilibrium of the SIS model without a shared resource.
What is the relation between £ and 2?
Identify a necessary, and sufficient, condition such that
2(0) can be uniquely recovered given z(t).

(iii)

(iv)

C. Positivity Assumptions
We impose the following assumptions on the parameters.

Assumption 1. Suppose that §; > 0 for all i € [n], 65 +
Yok e > 0 forall j € [m], B;j >0 forall i,j € [n], and
Bi; > 0 whenever group j is a neighbor of group i.

Assumption 1 says, among other things, that the healing and
infection rate of each population group is strictly positive.

Since each x; represents the fraction of infected individuals
in group 1, it is immediate that the initial value of ; is in [0, 1],
because otherwise the value of x; will lack physical meaning
for the epidemic model considered here. Similarly, it is also
natural to assume that the initial value of w; (measured, for
instance, in milligrams per litre) is nonnegative. Hence, we
can restrict our analysis to the set:

D= {y(t) : 2(t) € [0,1]",w(t) € [0,00)™}.

The following lemma establishes that, under Assumption 1,
the set D is positively invariant.

(10)

Lemma 1. Suppose that Assumption 1 holds. Suppose that
x;(0) € [0,1] for all i € [n] and w;(0) > 0 for all j € [m).
Then, x;(t) € [0,1] for all i € [n] and w;(t) > 0 for all
j € [m], forall t > 0.

Proof: Suppose that at some time 7, x;(7) € [0,1] for all
i € [n] and wj(7) > 0 for all j € [m]. First consider any
index j € [m]. If w;(7) = 0, then from (5) and Assumption 1,
w;(7) > 0. Therefore w;(t) > 0 for all ¢ > 7.

Now consider any index ¢ € [n]. If z;(7) = 0, then from
(4) and Assumption 1, z;(7) > 0. If z;(7) = 1, then again
from (4) and Assumption 1, &;(7) < 0. Therefore, x;(t) will
be in [0, 1] for all times ¢ > 7.

Since the above arguments hold for any ¢ € [n] and any j €
[m], we have that z;(t) € [0, 1] for all ¢ € [n] and w;(t) >0
for all j € [m], t > 7. Since it is assumed that x;(0) € [0, 1]
for all ¢ € [n] and w;(0) > 0 for all j € [m], the lemma
follows by setting 7 = 0. [J

III. STABILITY ANALYSIS OF THE EQUILIBRIA

A. Local Stability of the Healthy State

Consider (Z,w), an equilibrium of (6)-(7). The Jacobian
matrix of the equilibrium, denoted by J(&,w), is

- B—-XB-D-F —F, (I-X)B,
= 11
J(x7 w) Cw 7Dw + Aw ’ ( )
where X, Iy, F, are diagonal matrices given by
X = diag (#1, 82, , ), (12)

Py = diag (X7 B1y@5, 25—y BojTj o5 25—y Bujdi),
(13)
(14)

In the case when = 0 and w = O, i.e., at the healthy state
(also referred to as the disease-free equilibrium),

B-D By,
C’w Aw_Dw

If either B, = 0 or C,, = 0, i.e., the pathogen does not
affect the population or humans can not contaminate the
infrastructure network by using it, we have the following
result.

Proposition 1. If s(B — D) < 0, s(A, — Dy) < 0, and
By, =0 or Cy, =0, then the healthy state (0,0) of (6)-(7) is
locally exponentially stable.

Proof: If B, = 0 or C,, = 0 then J(0,0) is a triangu-
lar matrix (lower or upper, respectively), and therefore the
spectrum of the matrix is equal to the union of the spectrum
of the two block matrices on the diagonal. Consequently, if
s1(B = D) < 0 and s1(Ay — Dy) < 0 then J(0,0) is
Hurwitz and by Lyapunov’s indirect method [35] the healthy
state (0, 0) of (6)-(7) is locally exponentially stable. (]

For nonzero B,, and C,,, we have the following result.

Proposition 2. Let Assumption 1 hold. If p(DjilB ) < 1and
By is irreducible, then the healthy state (0,0) of (6)-(7) is
locally exponentially stable.

Proof: See Appendix. [

Fy = diag (Y], Biyws, 25— By, -

J(0,0) = — By — Dy.

B. Global Stability of the Healthy State

To state our first main result, we need the following concept.
Consider an autonomous system (t) f(x(t)), where
f : D — IR" is a locally Lipschitz map from a domain
D C R" into R". Let & be an equilibrium of the system
and £ C D be a domain containing z. The equilibrium Z is
called asymptotically stable with the domain of attraction & if
for any x(0) € &, there holds lim;_, o z(t) = Z.

The global stability of the healthy state is characterized by
the following theorem.

Theorem 1. Let Assumption 1 hold. If p(D]le) <1
and By is irreducible, then the healthy state of (6)-(7) is
asymptotically stable with the domain of attraction D, with
D given in (10).

Proof: See Appendix. [J

In this section, we analyze the equilibria of the proposed Theorem 1 addresses Question (i) in Section II-B.

model and their stability both locally and globally.

4



C. Reproduction Number

In epidemiology the reproduction number, Ry, is the average
number of people that become infected from one infected
individual. If Ry > 1 the disease will lead to an outbreak; if
Ry < 1 the disease will die out. For the networked SIS model
with no water resources, it has been shown that p(D~!B)
is the reproduction number, and that if p(D~'B) < 1, the
model will asymptotically converge to the healthy state for
all initial conditions, and if p(D_lB) > 1, the model will
asymptotically converge to a unique epidemic state for all
initial conditions except for the healthy state [31].

For the layered networked SIWS model (6)-(7), Theorem 1
implies that when ,o(D;le) < 1, the model will asymptot-
ically converge to the healthy state for all initial conditions,
which implies that the healthy state is the unique equilibrium.
We call p(Dj?lB ¢) the basic reproduction number of the
layered networked SIWS model (6)-(7), and compare its value
with that of the networked SIS model, p(D_lB), to illustrate
the effect of the water distribution network. Note that

1, _ [D7* 0 B B
Dy By = [ 0 (Duw —diag(Aw))*l} [cw Ay — diag(Aw)]
_ D™'B D™ 'B,
T [(Dw — diag(Ay)) "0
We need the following lemma.

Lemma 2. [36, Lemma 2.6 | Suppose that N is an irreducible
nonnegative matrix. If M is a principal square submatrix of
N, then p(M) < p(N).

Since D;lB ¢ is an irreducible nonnegative matrix by
Assumption 1, and since D! B is a principal square submatrix
of D;le), from Lemma 2 it follows that p(D}T.IBf) >
p(D~1B). Therefore we have the following result.

Proposition 3. Suppose that Assumption 1 holds. Then, the
basic reproduction number of the layered networked SIWS
model (6)-(7) is greater than that of the networked SIS model.

Proposition 3 implies that eradication of the disease in the
population in itself does not guarantee that the system is
disease-free. That is, the presence of infrastructure network
makes the system more vulnerable to SIS-type diseases than
otherwise.

D. Analysis of the Endemic Behavior

It turns out that the condition in Proposition 1 being violated
results in the instability of the healthy state (0, 0) of (6)-(7),
as we show in the following proposition.

Proposition 4. Suppose that B,, = 0 or Cy, = 0. If s(B —
D) > 0 or s(Ay — Dy,) > 0, then the healthy state (0,0) of
(6)-(7) is unstable.

Proof: Since by assumption, B,, = 0 (resp. C, = 0), it
follows that the Jacobian matrix of the equilibrium evaluated
at the healthy state, i.e., J(0,0), is a block lower triangular
(resp. upper triangular) matrix. Hence, the eigenvalues of
J(0,0) are same as those of matrices B — D and A, — D,,.
Consequently, if s(B — D) > 0 and/or s(A,, —D,,) > 0, then
s(J(0,0)) > 0. Hence, the healthy state (0,0) of (6)-(7) is

(Do — diag(Ay)) 1A, — diag(Aw)

unstable. [

Simulations indicate the existence of an endemic state (also
referred to as the endemic equilibrium) when the eigenvalue
condition in Theorem 1 is violated (see Figure 5 in Section V),
a rigorous result, however, remains missing. Therefore, we
consider the following variant of Assumption 1.

Assumption 2. Assume that 6; > 0, 6" > 0, 8;; > 0, 85 > 0,

and that, for j # k, aji, > 0, with ajj = — 37,7 5 ajy.

Assumption 2 states that the system parameters, with the
exception of the rate of flow of pathogen within a resource
node, are nonnegative. It is easy to show that Assumption 2
implies Assumption 1, and, is, thus, more restrictive. Hence,
we only need Assumption 2 in the sequel.

Theorem 2. Consider (9) under Assumption 2. Suppose that
By is irreducible and p(D?le) > 1. Then there exists
a unique endemic equilibrium Z >> 0. Furthermore, Z is
asymptotically stable with the domain of attraction D \ {0},
with D given in (10).

Proof: See Appendix. [J

} - Theorem 2 says that as long as the reproduction number of

the layered SIWS network is greater than one, then, assuming
that there is at least one node (population or infrastructure)
that is infected initially, the spreading process converges to
a unique proportion in each population node, and a unique
infection level in each infrastructure node. Thus, Theorem 2
addresses Question (ii) in Section II-B. Note that Theorem 2
improves upon [21, Theorem 3] since it also accounts for
multiple shared resources.

Combining Theorems 1 and 2 yields a necessary, and
sufficient, condition for the healthy state to be the unique
equilibrium of (6)-(7). Hence, we have the following result:

Corollary 1. Consider the layered networked SIWS model
in (6)-(7) under Assumption 2. Suppose that By is irreducible.
Then the healthy state is the unique equilibrium in the domain
D if, and only if, p(D;'By) < 1.

Rewriting the condition in Corollary 1 in view of [19,
Proposition 1] tells us that insofar the linearized state matrix
of system (9) (linearized around the healthy state) is Hurwitz,
the healthy state is the only equilibrium of system (9).

Remark 2. Assuming that p(D]?IBf) < 1, if the weights
on the multi-layer network increase or if new edges are
added to the multi-layer network, then the entries in the By
matrix increase. Consequently, since D;le is irreducible
nonnegative, from [19, Lemma 5, 4)] it follows that if the
weights are increased sufficiently well, then p(D?lB ) > 1
Hence, the system transitions from the healthy to endemic state
due to the changes in the structure of the multi-layer network.

A very pertinent question that could arise at this point is as
follows: focusing solely on the population, is there a relation
between the endemic equilibrium of the layered networked
SIWS model, and that of the networked SIS model. In order
to answer this, we recall the latter:

i=(B—XB- D). (15)



In order to ensure that the model in (15) is well-defined, we
need to particularize Assumption 2, for the setting without
shared resource(s). This is given as follows:

Assumption 3. Suppose that 6; > 0 and B;; > 0 for all
i,7 € [n].

Let z denote the unique endemic equilibrium of (15)
and recall that Z = [ @']" denotes the unique endemic
equilibrium of (9). With this notation and Assumption 3 in
place, we present the following result.

Proposition 5. Consider (9) under Assumption 2, and (15)
under Assumption 3. Suppose that By and B are irreducible,
and that p(D; ' By) > 1, and p(D™'B) > 1. Then & > .

Proof: See Appendix.
Proposition 5 says that the endemic level in each of the popu-
lation nodes for the layered networked SIWS model is greater
than or equal to the endemic level of the population nodes
in the absence of shared resource(s). As such, it addresses
Question (iii) in Section II-B.

IV. OBSERVABILITY PROBLEM

In this section, we aim to address the following question:
Assuming there are not enough tests available to measure the
sickness levels of the population, can measurements of the
pathogen levels in the water network, be used to estimate the
sickness levels of the population, or the source of the outbreak
(the initial states of the system)? We introduce the following
notation:

(16)

where G € R?7*™ is a measurement matrix, with ¢ € Zy
denoting the number of measurements. The problem posed
in Question (iv) could be re-written as follows: Given B, D,
Ay, By, Cy, Dy, G, and measurements y, find conditions
for when x(0) can be recovered.

We derive conditions such that, given measurements of
pathogen levels in the water network, it is possible to uniquely
recover the initial state of population network. Towards this
end, we appeal to the rank of the Jacobian of the Lie
derivatives, and apply the results from [29]. Consequently, the
Lie derivative calculations are as follows:

y = Guw,

y=Guw
y=Gw=GCupx+ G(Ay — Dy)w
H/_/
A
j=Gio=GCuW((B-—XB—-D)z+ (I - X)B,w)

+GA,Cypr +GAZw
'll)‘/z: + A?U C'IU‘/I: + A C'IU‘/I: + AS

w wW )

y® = Gu® = ¢(C

where & and w are defined in (6) and (7) and X = diag(z).

We explore the case when we assume that all nodes in the
human contact network are initially healthy, that is, (0) = 0.
This case is especially interesting because the early part of an
outbreak is when tests are the scarcest and, therefore, using
water sensors could be of most utility. Thus, we explore the
Jacobian of the above Lie derivatives evaluated at x(0) = 0,
called O, where O =

_ 0 G -
GCly GA,
GCuy(Fuy — Buw) G(A% + CwBuw)
Xz
G(A?UC Acw Xo  G(AL + AyCuwBy + Cu(BuFuy |
+Cw (X2 B 3)) +X:Bw — BuwBuw))

amn
with F,, = (B — D), Fy, = (Aw — Dy), B, = diag(B,w)
and B = diag(BB,w + By Fu,w). Note, O has q(n + m)
rows and n -+ m columns.

Therefore, from [29, Theorems 3.1 and 3.12], and since the
system is analytic, we have the following theorem.

Theorem 3. The layered networked SIWS model in (6)-(7)
with measurements in (16) is locally weakly observable at
2(0) = 0 if and only if O, as defined in (17), has full rank.

Observe that Theorem 3 provides a necessary and sufficient
condition for checking whether (or not) the layered networked
SIWS model is locally weakly observable at 2(0) = 0, and
thus answers Question (iv) in Section II-B. However, the
condition therein involves checking the rank of the O matrix,
which in turn, involves too many computations, since O has
g(n+m) rows. This drawback motivates us to seek a simpler,
easier to check, sufficient condition for the layered networked
SIWS model to be locally weakly observable at z(0) = 0, and
is presented next.

Proposition 6. Suppose that the matrices G and GC, have
full column rank. Then the layered networked SIWS model in
(6)-(7) with measurements in (16) is locally weakly observable
at (0) = 0.

Proof: Define the matrices

g._[0 G G 0
"~ lGo, GA, GA, GC,

Observe that since JF is just a permutation of the block
columns of G, rank(F) = rank(G). Since F is a block
lower triangular matrix, rank(F) > rank(G) + rank(GCy).
By assumption, matrices G and GC,, have full column rank,
which implies that rank(F) > n 4+ m. Observe also that the
total number of columns in F equals n + m. Therefore, it

ana 7= | | as

G(Aw+ A2 Cypa + CpFla + A, Cy Fyxfollows that rank(F) < n-+m. Hence, rank(F) = n—+m, i.e.,

w w

+ A, CuwFyw + CpwFlyCuwt + CyFy Foyw
+CFyAyw — CwX(Bx + wa))

y(’rn+n) _ Gw(7n+n) — G(AZ)H_TLIU + AZL+n_1Cw$
+CwF:£m+n71)l, 4 )’

F has full column rank. Now note that F is a submatrix of O,
that has the same number of columns as . Also observe that
adding more rows to F does not lead to matrix F becoming
rank deficient. This implies that matrix O has full column
rank, and therefore, from Theorem 3, we conclude that the
layered networked SIWS model in (6)-(7) with measurements
in (16) is locally weakly observable at z(0) = 0. O



Fig. 2: The contact net-
work of population and
resource nodes used for
o simulations, represented
by squares and circles,
respectively.

Given that both Proposition 6 and Theorem 3 provide sufficient
conditions for local weak observability, it is natural to ask how
the two conditions are related. The following remark addresses
this question.

Remark 3. Proposition 6 implies Theorem 3. The converse,
however, is not true. To see this, consider the following
example: Let n =2,m =2 WithG=1, D=1, D, = I,

11 1 0
p=ly o] me=i o]
11 1 1
Cw:|:1 1:|7A’LU:|:1 1:|7

it is clear that GB,, does not have full column rank, so the
conditions for Proposition 6 are not met. However, allowing
w = (w1, ws) to be free, we obtain

1-— 27.1.)1 1:|

GWo = [22101 1

Therefore, independent of the value of w, the rightmost column
of O is linearly independent of the other three columns of
O, that is, O has full column rank. Thus, the condition in
Theorem 3 is met. B

We now highlight an interesting consequence of Proposi-
tion 6.

Corollary 2. Let n > m. If G = Lyxm and Cy, has full
column rank, then the layered networked SIWS model in (6)-
(7) with measurements in (16) is locally weakly observable at

z(0) = 0.

Proof: Suppose that, by assumption, G = I,,xm,. Conse-

quently, rank(G) = m. Moreover, GC,, = C,,, and hence
rank(GC,,) = rank(C,,). Since, by assumption, rank(C,,) =
n, it follows that the conditions in Proposition 6 are satisfied,
and hence the result follows. [
Observe that the result in Corollary 2 could potentially inform
sensor placement (in the infrastructure network) strategies for
detecting infection levels of the population in the layered
networked SIWS model.

V. SIMULATIONS

For all simulations, we consider a network of 10 population
nodes and 15 resource nodes. This network is depicted in
Fig. 2, with population nodes as squares and resource nodes
as circles. We denote the average infection proportion of the
virus across the population nodes by Z(t), and the average
contamination across the resource nodes by w(t). The terms
Bij» BZ‘J’ and oy; are all binary, i.e. equal to one whenever

Average
Infection

0.5 1
t

Fig. 3: D =51, D,, = 51, and the matrices B, B,, and C,,
are binary. Since p(Dj?lB ) < 1, the virus gets eradicated.

o
3

7
\

Average
Infection

o

o

0.5 1

Fig. 4: D = 21, D,, = 2I, and the matrices B, B,, and C,,
are binary. Since p(Djile) > 1, the virus becomes endemic.

nodes ¢ and j are neighbors, for all simulations. For the
simulations in Fig. 3, Fig. 4, and Fig. 5 we set ¢} to be
binary which results in the network being irreducible. By
choosing D = 51, D,, = 51, we see that p(DJlef) < 1.
Consequently, consistent with the result in Theorem 1, the
virus is asymptotically eradicated across the network; see
Fig. 3. Choosing D = 21, D,, = 21 results in p(DJTIBf) > 1.
Therefore, consistent with the result in Theorem 2, the virus
becomes endemic across all population and resource nodes,
asymptotically approaching some positive equilibrium; see
Fig. 4. Choosing D = 4I and D,, equal to a zero matrix,
except for one diagonal entry equal to 100, Assumption 1 is
fulfilled but Assumption 2 is violated. Therefore Theorem 2
does not apply, despite p(D}lB §) > 1, yet the virus still
appears to converge to some positive equilibrium; see Fig. 5.

For the simulations depicted in Fig. 6 we chose D = 31,
D,, = 0.21. Since D,, is a positive diagonal matrix, the re-
source network requires some non-zero ¢;; to sustain a positive
level of contamination. Choosing ¢; = 0 for all ¢, j ensures
that the contamination across all resource nodes decays to
zero; see the blue curve in the left of Fig. 6. However, B is an
irreducible matrix, and we still have p(D~!B) > 1. Therefore,
the infection levels in the population network converge to an
endemic equilibrium, consistent with the results in [19, 31];
see the red curve in the left of Fig. 6. Setting ¢;; to be binary
as before results in the contamination of the resource network
converging to a positive equilibrium; see the blue curve in the
right of Fig. 6. Consistent with the result in Proposition 5,
it can be seen that in the absence of contamination in the re-
sources, the endemic state in the population is smaller, whereas
if the resources are also contaminated then the endemic state
in the population is larger; see the red curves in the left of
and the right of Fig. 6, respectively.

Finally, for the simulation in Fig. 7 we set matrices B, B,,
and C,, to be binary. The healing rates for each node in the
population and the resource are set to the same value and
varied. Fig. 7 illustrates how the equilibrium of the system
changes as a function of the healing rate (left) and the spectral
radius p(DJTle) (right).
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Fig. 5: Simulation only employing Assumption 1. We choose
D = 41, while the matrices B, B,,, and C,, are binary. We
choose [D,,);; = 100 if ¢ = j = 15; [D,,];; = 0, otherwise.
Observe that, in contrast to the system in Fig. 4, for this -
simulation we allow some of the resource nodes to not be

able to heal itself. Nonetheless, even this system converges to
some endemic equilibrium, thus indicating that the claim in
Theorem 2 could possibly be established under less restrictive
assumptions on the healing rate.

VI. CONCLUSION

In this paper, we have developed a multi-network-
dependent, continuous-time SIWS epidemic model, also re-
ferred to as a layered networked SIWS model. This model
captures a networked system, which can be interpreted as
individual people or multiple groups of individuals, coupled
with an infrastructure network, which can be understood
as a contaminated water (or some other utility) distribution
network. We have analyzed the stability of the healthy state,
both locally and globally. We compared the basic reproduction
number of the model with the standard networked SIS model
without a pathogen. We have established conditions for the
existence, uniqueness, and stability of an endemic equilibrium.
We have also provided a necessary and sufficient condition
for the healthy state to be the only equilibrium of this model.
Lastly, we have established conditions under which the initial
infection levels of the shared resources could be recovered
based on the measurements of the infection levels of the
population.

One line of future investigation could focus on understand-
ing the spread of diseases in infrastructure networks with time-
varying topologies. Another problem of interest would be to
develop control algorithms that exploit the topology of the
infrastructure network for virus mitigation. Still on the topic of
control of epidemics, it would be interesting to mitigate (resp.
eradicate) epidemics subject to constraints on the availabil-
ity of healing resources. Likewise, as mentioned previously,
studying local weak observability under partial measurements
remains a very interesting and challenging problem.
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APPENDIX

Proof of Prosition 2

To prove Proposition 2, we need the following lemma.

Lemma 3. [19, Proposition 1] Suppose that N is an
irreducible nonnegative matrix in R™*" and A is a neg-
ative diagonal matrix in R™*". Let M = N + A. Then,
s(M) < 0 if and only if p(—A"IN) < 1, s(M) = 0 if
and only if p(~A"'N) = 1, and s(M) > 0 if and only if
p(—A7IN) > 1.

Proof of Proposition 2: By Assumption 1, 6% +> pan; >0
for all j € [m], Dy is invertible. From Lemma 3, the condition
p(DJTle) < 1 is equivalent to s(By — Dy) < 0, which
implies that .J(0, 0) is a continuous-time stable matrix. Thus,
by Lyapunov’s indirect method the healthy state (0, 0) of (6)-
(7) is locally exponentially stable. [J

Proof of Theorem 1

To prove the claim in Theorem 1, we need the following
lemmas.

Lemma 4. [36, Lemma 2.3] Suppose that M is an irreducible
Metzler matrix. Then, s(M) is a simple eigenvalue of M and
there exists a unique (up to scalar multiple) vector x > 0
such that Mz = s(M)z.

Lemma 5. [37, Proposition 2] Suppose that M is an irre-
ducible Metzler matrix such that s(M) < 0. Then, there exists
a positive diagonal matrix P such that M P 4+ PM < 0.

Lemma 6. [I8, Lemma A.1] Suppose that M is an irreducible
Metzler matrix such that s(M) = 0. Then, there exists a
positive diagonal matrix P such that MT P + PM < 0.

Lemma 7. [35] Let & be an equilibrium of x(t) = f(x(t))
and & C D be a bounded domain containing x. Let V
E — IR be a continuously differentiable function such that
V(E) =0, V(z) >0in E\{Z}, V(£) =0, and V(z) < 0
in E\{z}. If £ is an invariant set, then the equilibrium % is
asymptotically stable with the domain of attraction &.

Proof of Theorem 1: Recalling the notation in (8), we
first consider the case when p(DJTle) < 1. By Lemma 3,
in this case, s(Byf — Dy) < 0. Since (By — Dy) is an
irreducible Metzler matrix, by Lemma 5, there exists a positive
diagonal matrix P such that (By — Dy)" P+ P(By — Dy) is
negative definite. Consider the Lyapunov function V (z(t)) =
2(t) " Pz(t). Then, from (6)-(9), when z(t) # 0, we have

V(z(t)) = 22(t) T P(t)
= 22(t)" P(By — Dy)2(1)

+2z(t)TP{ _Xét)B _X%)Bw }z(t)
<=2z(t)" P [ X(S)B X(%B“’ } z(t)
S 07

where the strict inequality holds by Lemma 5 since
22(t) " P(By — Dy)z(t) = 2(t)"(By — Dy)" P + P(By —
Dy)z(t). Thus, in this case, V(2(t)) < 0 if 2(t) # 0. From
Lemma 1 and Lemma 7, the healthy state is asymptotically
stable with domain of attraction D, with D given in (10).
Next we consider the case when p(DjTle) = 1. By
Lemma 3, s(By — Dy) = 0. Since (By — Dy) is an
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irreducible Metzler matrix, by Lemma 6, there exists a positive
diagonal matrix Q such that (Bf — Df)'Q + Q(By — Dy)
is negative semi-definite. Consider the Lyapunov function
V(2(t)) = 2(t) " Qz(t). Then, from (6)-(9), we have

V(2(t) = 22(t) " Q(By — Dy)=(t)

—~X(t)B —X(t)B,
+2z(t)TQ[ 0 0

X(@t)B X(t)B,
0 0
—22(t)T [ %1 } [ X%)B X<t83“’ ]Z(t)

0
Q2

—2 (z(t) " Q1 X (t)Bx(t) + () ' Q1. X (t) Byw(t))

g Oa

] 2(t)
} 2(t)

IN

—22(1)"Q [

where ()1 is the nth principal subarray of (), which is an
n X n positive diagonal matrix, and Qs is the m X m
positive diagonal matrix that is composed of the rest of the
block diagonal entries of Q. We claim that V (z(t)) < 0 if
z(t) # 0. To establish this claim, we first consider the case
when z(t) > 0. Since By is irreducible and non-negative
we have Byz(t) > 0. As such, Bxz(t) + B,w(t) > 0, and
due to ()1 being a positive diagonal matrix, it follows that
()T Q1 X (t)(Bx(t) + Byw(t)) > 0. Thus, V(z(t)) < 0.

Next we consider the case when z(t) > 0 and z(¢)
has at least one zero entry. If (B — Df)'Q + Q(By —
Dy) does not have an eigenvalue at zero, then (By —
Dy)TQ + Q(By — Dy) is negative definite, which implies
that z(t)" ((By — Dy)"Q + Q(By — Dy)) z(t) < 0 when
z(t) > 0 and, thus, in this case,

V(z(t) = 22(t) " Q(By — Dy)=(t)
+22(1)"Q _Xét)B
<22(t)"Q(By — Dy)2(t) < 0.

—X(t)Buw

Sl FIO

Now suppose that (By — Dy)TQ + Q(B; — Dy) has an
eigenvalue at zero. Since (By — Dy) is an irreducible Metzler
matrix and @ is a positive diagonal matrix, (By — Ds)' Q +
Q(Bf — Dy) is a symmetric irreducible Metzler matrix. Since
(Bf — Dy)TQ + Q(By — Dy) is negative semi-definite,
s((Bf — Dy)TQ + Q(By — Dy)) = 0. By Lemma 4, zero
is a simple eigenvalue of (By — Df)"Q + Q(By — Dy)
and it has a unique (up to scalar multiple) strictly posi-
tive eigenvector corresponding to the eigenvalue zero. Thus,
2(t)" ((Bf = Dy)'Q+ Q(By — Dy)) 2(t) < 0 when z(t) >
0 and z(t) has at least one zero entry (because the only vector
for which it equals zero is the strictly positive eigenvector).
Therefore, V(z(t)) < 0 if z(t) # 0. From Lemma 1 and
Lemma 7, the healthy state is asymptotically stable with
domain of attraction D, with D given in (10). O

Proof of Theorem 2

To prove the claim in Theorem 2, we will be making use
of the following variant of the Perron-Frobenius theorem for
irreducible matrices.
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Lemma 8. [38, Chapter 8.3] [36, Theorem 2.7 [Suppose that
N is an irreducible nonnegative matrix. Then,
(i) r = p(N) is a simple eigenvalue of N.
(ii) There is an eigenvector ¢ > 0 corresponding to the
eigenvalue r.
(iii) x > 0 is an eigenvector only if Nx = rx and x > 0.

Proof of Theorem 2: The proof is split in three parts: First
we show existence of an endemic equilibrium provided the
conditions in Theorem 2 are satisfied. Subsequently, we show
that this equilibrium is unique, and that for all non-zero
initial conditions the dynamics converge asymptotically to
this equilibrium.

Part 1 -Proof of existence

Note that if z > 0, diag(D}?lez) is a nonnegative diagonal
matrix, and therefore the inverse of (I + diag(D;lez))
exists. Define a map T'(2) : R*™ — R such that

0

T(z) = (I+diag(D} ' Byz))~"(D; ' Byz+diag(D; ' Byz) LU

Observe that the components of T'(y) are

_ (Dy'By2);

1+ (D;'Byz);

(Dy'By2)jz + (D; ' Byz),
1+ (D7 ' By2);

Note that the scalar function s/(1 + s) is increasing in s, and

that D7'B + is a nonnegative matrix. Therefore, v > z implies
T(v) > T(z). Notice that a fixed point of T'(z) fulfills

Ti(z)

, for i € [n],

Tj(z) = , for j € [n+ m]\[n].

).

z= (I-l—diag(DJIlez))*l(Df_lez-l-diag(DJIlez) L?)]
9)

(
Multiplying (19) by (I + diag(D; ' Byz)) gives us

D' Bjz + diag(D; ' Byz) m = (I + diag(D} ' Byz))z.

(20)
Using the identity diag(u)v = diag(v)u, (20) is equivalent to

D} ' Bz + diag( m )D; ' Byz = (I + diag(z) D ' By)z.

2D
Recall that the definition of X (z) means that subtracting

diag( Lﬂ )D;lez from (21) yields

D;'Bz = (I + X(2)D; ' By)z. (22)

Since X (z) and DJ?l are diagonal matrices, they commute.
Furthermore, by pre-multiplying (22) with Dy, and suitably
rearranging terms, we obtain

(—=Dj + (I — X(2))By)z = 0. (23)

A solution of equation (23) is clearly an equilibrium of (9).

As such, it suffices to show that 7'(z) has a fixed point Z >> 0.

We will now show that at least one such fixed point exists.
We have p(Df_le) > 1. Note that Df_le is an irreducible

nonnegative matrix. Hence, by Lemma 4, \* = p(Df_le)



is a simple eigenvalue of D}TIB ¢ and the eigenspace of \*
is spanned by a vector z* > 0. Then, since \* > 1, there
exists some € > 0 such that, for all i € [n + m], we have
ez < (A* —1)/X*, which implies that 1 < X\*/(1 + A*ez}).
Hence, ez < A*ez}/(1 + A*ez}), and thus

. (Dy ' Brez*);
" T 14 (D; ' Byez*);

€z , for all ¢ € [n]. (24)
Noting that (D;leez*)jez; > 0 for all j € [n+m]\[n], we
also have

(D;leez*)jez; + (D;leez*)j

1+ (D;leez*)j

*

€z , (25)

<.

for all j € [n+m]\[n]. Due to the inequalities (24) and (25),
we have T'(ez*) > ez*. Since z > r implies T'(z) > T(r), it
follows that for any z > ez* we have T'(z) > ez*. Define the
vector

N

Z:= ,

w

where w := —(A4, — D,) 'Cy,1. Note that (A, — D,,) is

invertible because of it being diagonally dominant. Consider
T;(z) for i € [n] while noting that s/(1 + s) is bounded from
above by 1 for any positive s. Then

(D} 'Byz);

1—|—(Df BfZ)i

<1, forallien].  (26)

Before considering 7(z) for j € [n 4+ m]\[n], first note that

(D, — diag(Ay)) " [Cow Ay — diag(Ay)] [vlv}
= (D, — diag(Ay)) 'Cywl — (D, — diag(A,)) !
x (A, — diag(Ay))(Aw — Do) 1CW1
= (Dy — diag(Aw))*l([ — (A — diag(Ay))(Ay —
x Cpl
(Do — diag(Aw)) " ((Aw — Du) — (Aw — diag(Aw)))
X (Ay — Dy) 1CW1
= —(Dy — diag(Aw))il(Dw — diag(Ay))(Aw
—(Ay — Dy)tCy1

=Ww.
Hence (1 .
Ti(z) = 17(1::]) =1z;, forall j € [n+m]\[n]. (27)

Due to (26) and (27), we have T(z) < z. Since v > w
implies T'(v) > T(w), it follows that T'(z) < z if z < z.
By Brouwer’s fixed-point theorem, there is at least one
fixed point of T'(z) in the domain {z : ez* < z < z}. In
conclusion, the map T'(z) has at least one fixed point in the
domain {z : ez* < z < z}, and therefore (9) has at least one
equilibrium z > 0. O

Part 2 — Proof of uniqueness

We will now prove that the endemic equilibrium is unique.
Suppose that there are two endemic equilibria, Z and z. Note
that, by similar arguments as in [21, Lemma 6], Z > 0 and

- Dw)ilcw

Du)™)

1
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zZ > 0. Let kK = maX;c[+m] Zi/Z;. It turns out that « is given
by
K = max Z; /Z;.
i€[n]
To see this, assume by way of contradiction that
Zn+j/Znt; for some j € [m], and thus k > Z;/2;, for all
i € [n]. Since both Z and z are equilibria of system (9), it
follows that, for each j € [m)]
Entj = Doi CiiTi + 2op ket QiU

~ n ~ m ~.
Zotj = D CjiXi + D kot Oej Wk

(28)

(29)

Since we have that k > Z;/z;, for all 7 € [n], then kz; > Z;,
for all ¢ € [n]. Since by assumption k = Z,,{/Z,; for some
j € [m], it follows that, for each k € [m|, Z,4x < KZnpik-
Then, (29) yields

= _ n s m L~
Intj = D CjiTi + Zk,k;ﬁj Qfj Wk
n s m ~

<Ky, ciXi + Zk,kij Qg W

= /’iZn+]‘ .

Hence, for all j € [m], kK > Z,4;/Zpn+,, wWhich contradicts the
assumption that x = 2, ;/Zy;, for some j € [m]. Therefore,
% must be given by (28). Now, by (28) we know that z < kz.
For some j € [n] we have Z; = kZ;. Assume, by way of
contradiction, that x > 1. Then, since an equilibrium of (9)
also constitutes a fixed point of T'(z), we have

z; = (D' By2);/(1 + (D7 ' By2),)

< (D;'Bykz); /(14 (D; ' Byrz);) (30)
< k(D' Byz);/(1 4 (D; ' Bu2);) (31)
= KZ; (32)
=z, (33)

where (30) follows from Z < kz and that T'(v) > T(w)
whenever v > w, (31) follows from the assumption x > 1,
and (32) follows from the fact that z is an equilibrium
of (9). Note that (33) is a contradiction, following from our
assumption that £ > 1. Hence, x < 1, meaning that z < z.
Switching the roles of Z and z, we see that z < z. Therefore,
Z = 7z, and thus the equilibrium is unique.

Part 3— Proof of asymptotic convergence: The proof of asymp-
totic convergence is quite similar to that of [21, Theorem 3,
part 3], and is, in the interest of space, omitted here. For
details, please see proof of [39, Theorem 2].

Proof of Proposition 5

We need the following result to proceed ahead.
Lemma 9. Consider system (15) under Assumption 3. If
p(D™1B) > 1, then there exists a unique endemic equilibrium
Z such that 0 < & < 1.

Proof: The result follows by particularizing [21, Theorem 3]
for the networked SIS model. [

Proof of Proposition 5: By assumption, the matrices By
and B are irreducible. Moreover, p(D}le) > 1, and
p(D7'B) > 1. Therefore, from Theorem 2, and from
Lemma 9, we know that there exists a unique endemic
equilibrium Z = [ Z] for (9), and a unique endemic equilibrium



Z for (15), respectively. Moreover, 0 < & < 1.
Note that since & is an equilibrium of (15), we have

(I - X)D™'Bi = 2. (34)

Consider a solution z(t) = (z(t),w(t)) to (9) for t > 0, with
x;(0) € [0,1] and w;(0) > 0 for all ¢ € [n], j € [m]. By
Lemma 1 we have z;(t) € [0, 1] and w;(t) > 0 for all ¢ € [n],
j € [m] and ¢ > 0. Suppose that, for some ¢t > 0, x(¢t) > %,
with x;(t) = &; for some i € [n]. Then
@i(t) = (1 - 2i(t)) (D} ' By(t)i — @i(t)
= (1 —2;)(D7'Bx(t) + D' Byw(t)); — &
> (1—4;)(D™'B#); — &
= O7

(35)
(36)

where (35) follows from D~ B,w(t) > 0, and (36) follows
from (34). Since the same argument holds for any ¢ and ¢ € [n]
we have x(t) > & for all ¢ > 0 if 2(0) > 2. Furthermore, due
to (a): £ < 1, and (b): 2 being the unique equilibrium of (9)
with a region of attraction including {z = (z,w) : 1 > = >
%}, we must have & > Z. In order to show & # &, assume by
way of contradiction that £ = 2. Note that

i=(I—-X)(D 'Bi+ D 'B,w). (37)
With the assumption that £ = 2, (37) is equivalent to
i=(-X)(D 'Bi+ D 'B,w)
<(I-X)D 'Bi (38)
=3, (39)

where (38) is due to the following: (i): D;le is an irre-
ducible Metzler matrix, (ii): w > 0, and (iii)): £ < 1, so we
have (I—X)D_lew > 0. Moreover, (39) follows from (34).
Clearly, (39) is a contradiction, and therefore ¥ > 2. [
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