Extending Rust with Support for Zero Copy
Communication

Arthur Lafrance
University of California, Irvine

Xiangdong Chen
University of Utah

Abstract

In contrast to hardware-based isolation solutions, language-
based systems support crossing of isolation boundaries with
an overhead of a function call. Moreover, the strong type
system of a safe language provides support for secure com-
munication in the face of complex, semantically-rich inter-
faces, i.e., support for fault isolation and end-to-end zero-
copy communication through isolation of object spaces and
controlled ownership on the shared exchange heap. If histor-
ically, safety was prohibitive due to overheads of a managed
runtime, today, languages like Rust achieve the performance
of unsafe C hence empowering language-based systems to
support practical isolation with fine-grained boundaries and
frequent communication.

Unfortunately, despite providing the core foundation for
isolation of object spaces, i.e., support for a special shared
heap, Rust still lacks several abstractions required to sup-
port zero-copy communication mechanisms. Existing Rust
systems restrict zero-copy passing of data to a set of hand-
coded types, hence limiting flexibility of changing interfaces
between isolated subsystems. Our work extends the Rust
compiler with a static analysis pass that reasons about as-
signments of references on the shared exchange heap and
instruments them with the code that correctly reflects own-
ership updates on cross-subsystem invocations. This allows
us to develop an isolation scheme in which a hierarchical
data structure can be passed between isolated subsystems
with a single ownership update of its root element.

1 Introduction

Despite being able to dominate the landscape of isolation
solutions for decades, hardware isolation mechanisms are in-
creasingly at odds with the systems we run today. Primarily,
hardware abstractions like segmentation and paging were

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

PLOS °23, October 23, 2023, Koblenz, Germany

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0404-8/23/10.
https://doi.org/10.1145/3623759.3624552

David Detweiler
University of California, Irvine

Vikram Narayanan
University of Utah

Zhaofeng Li
University of Utah

Anton Burtsev
University of Utah

designed to provide efficient virtualization of hardware, i.e.
provide an abstraction of a virtual address space for an oper-
ating system process. As a resut hardware primitives were
optimized for zero-overhead virtualization of long-running
computations (a typical process runs for tens of millions of
cycles before it context switches) that communicate only
infrequently with other parts of the system.

Today, however, we try to retrofit isolation into the sys-
tems that are built out of small third-party libraries that
frequently cross isolation boundaries, e.g. browser exten-
sions [1, 44, 46, 60], web applications [2, 18, 21, 37], server-
less cloud and edge platforms [3, 4, 38, 48, 58], user-defined
database functions [15, 55], virtualized network functions [5,
33, 35, 43, 51, 54], device drivers [24, 26, 56], storage stacks
and file systems [14, 23], kernel modules [12, 22, 25, 29-32],
and more. Typically, such systems perform a small computa-
tion and call into another subsysem, i.e., every few hundred
cycles — a frequency that challenges the performance of
modern hardware isolation mechanisms that even in the
ideal case require several hundred cycles to save general and
extended registers, switch to a new stack, and change the
isolation boundary [40].

In contrast to hardware isolation schemes, programming
language safety allows crossing the isolation boundary with
an overhead of a function call [6, 9, 11, 28, 34, 45, 59]. In a
safe language the execution can continue on the same stack
(safety ensures isolation of the caller and callee frames on
the stack) and does not require saving and restoring general
and extended registers (calling conventions save and restore
registers between the caller and callee, and exception han-
dling mechanisms allow recovery from a fault in a callee
subsystem). If historically safety was prohibitively expensive
due to the overhead of the managed runtime (safe languages
like Go and C# show 36-42% overhead compared to unsafe
C [20]), Rust demonstrated how safety can be enforced in a
practical manner without garbage collection (Rust achieves
overheads of only few percents [20, 45, 47]).

Along with low-overhead boundary crossings, safe lan-
guages leverage powerful type systems to implement mul-
tiple security and reliability properties. Isolation of heaps
and restricted ownership creates the foundation for fault
recovery [34, 45] and end-to-end zero-copy communica-
tion [7, 34, 45, 47]. Language-based systems rely on a special
heap construction that combines private subsystem heaps

and a shared exchange heap used for passing objects across
isolated subsystems [7, 34, 45]. A combination of heap iso-
lation and single ownership on the shared heap creates a
foundation for a true end-to-end zero-copy from user applica-
tions to operating system device drivers and hence enables
high-throughput I/O workloads that traditionally require
access to a dedicated physical device through a user-level
device driver [16, 19, 36, 41].

Unfortunately, despite providing the core foundation for
isolation and zero-copy communication, Rust still lacks ab-
stractions required to implement generic zero-copy com-
munication mechanisms. For example, several recent sys-
tems support zero-copy communication with only a set of
hand-coded types [7, 45, 47]. Netbricks supports zero-copy
communication via a single fixed interface that allows ex-
change of a single data structure that represents a batch
of network packets [47]. RedLeaf adds support for defining
exchangeable types that can be safely exchanged across iso-
lation boundaries, but fails to support recursive references
on the shared heap due to the lack of mechanisms in the
language that can control the ownership of the objects on
the shared heap (RedLeaf supports generation of getter and
setter methods to control the assignment of objects in hierar-
chical data structures, but abandons them in favor of a small
set of pre-defined types due to cumbersome, non-ergonomic
syntax). Splinter fails to support zero-copy and falls back
to marshaling complex object hierarchies between isolated
subsystems [39].

Our work extends Rust with support for abstractions
needed to support zero-copy communication on a shared ex-
change heap [34, 45], and specifically support for mediating
assignments of recursive references on the shared heap. We
extend the Rust compiler with a new static analysis pass that
reasons about assignments of references on the shared heap
and instruments them with code that correctly updates own-
ership of objects on the shared heap which is required for
safe deallocation of objects which are owned on the shared
heap by a crashing subsystem [45]. This allows us to develop
an isolation scheme in which a hierarchical data structure
can be passed between isolated subsystems with a single
ownership update of its root element. The instrumented
code then guarantees correct tracking of ownership if the
hierarchical object is updated. This ensures the enforcement
of ownership rules on the shared heap (and thus cleanup of
resources on the shared heap in case of a subsystem crash).

2 Background: Isolation and
Communication in Language-Based
Systems

The first principles of language-based isolation were laid
out by the early safe operating systems, i.e., the operating
systems that relied on programming language safety for iso-
lation of computations [8, 10, 13, 17, 27, 42, 52, 57]. SPIN

suggested to use language safety for isolation of kernel ex-
tensions [9]. While restricting extensions to safe accesses,
SPIN allowed uncontrolled exchange of references between
the kernel and isolated subsystems hence leaving the heap
in an inconsistent state if one of the extensions crashed. J-
Kernel [59] and KaffeOS [6] developed ideas of isolated heaps,
i.e., private subsystem and shared exchange heaps, as a way
to support clean termination of isolated subsystems. Singu-
larity extended isolated private and shared exchange heaps
with a single ownership on the shared heap, i.e., at any given
time, only one isolated subsystem was permitted to have
a reference to an object on the shared heap [34]. A combi-
nation of single ownership and heap isolation eliminated
state sharing across subsystems and hence provided support
for clean termination and unloading of crashing subsystems.
Singularity developed novel static analysis and verification
techniques to enforce single ownership semantics on the
exchange heap in an otherwise non-linear language, Sing#.
When a reference to an object was passed between subsys-
tems, the ownership of the object was “moved” (an attempt
to access the object after passing it to another subsystem
was rejected by the verifier). Along with fault isolation, sin-
gle ownership on the shared heap enabled secure zero-copy
communication, i.e., the move semantics guaranteed that the
sender of an object was losing access to it and hence allowed
the receiver to update the object’s state knowing that the
sender was not able to access or alter the new state.

Heap isolation in Rust Recently, RedLeaf brought ideas of
Singularity to Rust [45]. A unique property of Rust is that
it ensures single ownership on the shared heap through its
type system (i.e., borrow checker [49]), and hence avoids the
need for additional verification mechanisms. Similar to Sin-
gularity, RedLeaf separates private (per-domain) and shared
exchange heaps [45] (Figure 1). Objects on the private do-
main heap are regular Rust data structures with the restric-
tion that they cannot have pointers into other private heaps
and a guarantee that they cannot be shared across domains
via cross-domain invocations. RedLeaf introduces an idea
of exchangeable types, for objects that domains can safely
exchange across boundaries of isolated subsystems. All ob-
jects that can be exchanged across domains are allocated on
the exchange heap. RedLeaf introduces an abstraction of a
remote reference, or rRref<T>, that is similar to the default Rust
Box<T> mechanism for allocating objects on the heap. Object
on the exchange heap are allowed to have references to other
objects on the exchange heap, but are not allowed to have
references into private heaps (since Rust cannot fully enforce
this invariant RedLeaf develops a special interface definition
language compiler that checks the types of objects on the
exchange heap).

Rust does not provide support for garbage collection and
allows leaking memory. This means special care must be
taken to deallocate objects owned by a crashing subsystem

Exchange Heap

\
I
|
|
|
b.fn(e); |
A
I
|
|

Domain B

————— Error path Unwind

——————— Ownership transfer

Figure 1. Organization of the shared and private heaps in RedLeaf

on the private and shared heaps. To support deallocation of
all domain resources, RedLeaf takes the following approach.
On a crash, RedLeaf reclaims private domain heap as raw
memory. This is safe since no other object in the system
outside of the private heap is allowed to have references
into the private domain heap and eliminates the need for
garbage collection. To clean the shared heap, along with each
object on the shared heap RedLeaf maintains information
about its owner (due to single ownership on the shared heap,
only one domain (owner of the object) has access the ob-
ject through an rref<r>). On cross-domain invocations, the
communication subsystem updates the ownership of objects
moving them between domains. The system maintains a
system-wide registry of all objects allocated on the shared
heap. Upon a crash of a domain, RedLeaf walks through the
heap registry and deallocates all objects currently owned by
the crashing domain.

Tracking ownership of hierarchical data structures To
ensure clean up of the shared heap, RedLeaf track ownership
of each object on the shared heap. RedLeaf’s IPC subsystem
updates the ownership of objects on cross-subsystem invo-
cations moving them between domains. This is challenging
for hierarchical data structures as they contain pointers to
other data structures on the shared heap. A naive solution is
for the IPC subsystem to recursively change the ownerships
of all objects reachable from the root when such objects are
passed. This, however, can introduce significant overheads
as the object closure becomes enormous (e.g., large DOM
hierarchies in web browsers).

Instead, RedLeaf argues to change the ownership of only
the root object with any nested objects marked with a special
owner. During deallocation, such nested objects are deallo-
cated as part of their parent objects’ drop() methods [45].
Unfortunately, RedLeaf cannot control assignment of refer-
ences on the shared heap, owing to limitations of Rust.

Specifically, to correctly handle the clean-up of objects on
the exchange heap, one must enforce the following domain-
ownership invariants:

I1. Child objects should be marked as bottom (L)
when moved into a parent rRref<T> (i.e., the reference
is owned by a parent object and not by any of the
domains).

This invariant prevents double-free when the system scans
for rref<1>s owned by the crashing domain.

12. Objects should be assigned an appropriate do-

main owner when moved out of the Rref<1> hierar-

chy.
This invariant prevents memory leak by making sure the
rRref<T> Will be attributed to the crashing domain.

Rust does not provide support for mediating assignments
to Rref<T>s. As a result, RedLeaf makes all rref<7> fields private
and generates public get and set methods for each field to
mediate updates to the object hierarchy, at the cost of code
ergonomics (generated getter and setter methods become
cumbersome for complex data structures like nested structs,
tuples, arrays, etc.).

3 Assignment Analysis

Our work extends Rust with mechanisms that allow the
IPC subsystem to track and update the ownership of the
hierarchical data types allocated on the shared exchange
heap. We extend the Rust compiler with a static analysis pass
that tracks assignments of objects allocated on the shared
heap with a user-provided type (Rref<T> in our example), and
reasons about nesting of rRref<>s to correctly update rref<r>
ownership information on the shared heap. During the code
generation phase we perform a code transformation that
modifies the program during the mid-level intermediate rep-
resentation (MIR) phase of compilation to correctly uphold
ownership invariants for rref<r> assignments.

In order to identify which assignments in the program
must be rewritten, the analysis checks whether the right and
left sides of the assignments are part of the object hierarchies
allocated on the shared heap. Several corner-cases make this
seemingly simple task challenging (we discuss them below).

Composite types Composite types like structures, tuples, ar-
rays, and enums may contain multiple rref<7>s and therefore
have to be handled by the analysis and the code genera-
tion path. Enumerated types, e.g., options and unions, may
contain an Rref<T>, depending on which variant is present at
runtime. For example, MaybeRRef may contain zero, one or two
RRef<T>S:

enum MaybeRRef {
None,
One(RRef<i32>),
Two(RRef<i32>, RRef<i32>),
3

We generate the following rewriting code that rewrites the
assignment at runtime

// m is MaybeRRef
t.m =m;

// code injected by the code generation phase
match t.m {
MaybeRRef: :One(ref mut r) => mark_bottom(r),
MaybeRRef: : Two(ref mut ri1, ref mut r2) => {
mark_bottom(r1);
mark_bottom(r2);

3
=0,
3

During the code generation pass we emit a match on the
enumerated value to make the correct ownership decision at
runtime. Beyond user-defined enum types, this corner case
includes common rust programming patterns such as result
and option types that might contain rref<T>s.

For collection types such as array or slices, the analysis

must generate code that handles every element to modify
each of their ownership properly. Because arrays have a
statically-known length, code can be statically generated
by the analysis pass for each element. On the other hand,
slices do not carry size information at compile-time, so the
analysis pass must generate code that iterates over their
elements at runtime and modifies the ownership of each one,
similar to the runtime pattern matching-based handling of
enumerations.
Immutable borrows Rust allows existence of multiple im-
mutable references. In the example below an immutable
reference is assigned into the hierarchy of objects on the
shared heap.

struct T<'a> {
r: &'a RRef<i32>,
3

fn foo<'a>(t: &mut RRef<T<'a>>, r: &'a RRef<i32>>) {
t.r = r; // assignment of immutable reference

}

Rust lifetime rules ensure that t.r will not outlive the original
object, hence we do not need to update the ownership infor-
mation (the object behind the reference is correctly owned
by either domain or another reference).

Mutable borrows When an rref<7> is part of a type that is
borrowed mutably, determining whether or not an assign-
ment must be rewritten requires knowing whether the source
of the borrow is contained within a shared heap object.

When the mutable borrow occurs intraprocedurally (i.e.
the source of the borrow is owned within the same function
as its use), this can be done easily by marking whether or
not each borrow was taken from a shared heap object upon
creation, so that the analysis knows whether or not it was
marked as such upon assignment. Note that this is transitive:
for example, given let b1 = &mut RRef::new(3); Which borrows
from a shared heap object, a second borrow 1let b2 = &nut b1;
would transitively also be a borrow from a shared heap ob-
ject.

When the mutable borrow occurs interprocedurally (i.e.
when a function’s parameter is a mutable borrow), we can no

longer determine whether or not the movement of rref<r>s
into such parameters would create nesting based only on
the body of that function; in this case our analysis requires
context-sensitivity to operate correctly. We extend our analy-
sis to accommodate this via summary-based interprocedural
analysis and additional code generation upon return from a
call to such a function.

Such cases occur when multiple control paths through
the code create the case when on some paths assignment
has to be rewritten and on some not. In the example below,
the function f is called from two invocation contexts, i.e.
two functions inside_of_an_rref and outside_of_an_rref. On one
invocation path the assignment of r inside f has to be marked
as bottom and in another should not.

struct Foo {

r: RRef<i32>,
3

// Moves an RRef into “t°
fn f(t: &mut Foo) {
let r = RRef::new(3);
t.r =r;
// whether or not “t.r” need to be marked as a bottom
// can only be deduced based on the caller's context

}

fn outside_of_an_rref() {
let t = Foo { r: RRef::new(3) };
f(&mut t);
// in this context “t.r> in “f()° does not need to be
// marked as bottom

}

fn inside_of_an_rref() {
let rt = RRef::new(Foo { r: RRef::new(3) });
f(&mut *rt);
// in this context, “rt.r> in “f()~ needs to be
// marked as a bottom as it is nested
mark_bottom(&mut rt.r);

3

fn transitively_ambiguous(t: &mut Foo) {
f(t);
// still ambiguous, so the ambiguity propagates further to
// the caller of this function

3

We handle such cases context-sensitively. For a given func-
tion, and for each mutably-borrowed parameter, it emits
a summary of fields within the parameter into which an
RRef<T> was assigned within the function. At each call site,
our analysis of the caller uses this information to generate
code that marks all such rref<t>s as bottom if, based on the
caller context, the assignmend into these fields created nest-
ing. In the example, this is true for inside_of_an_rref, but not
fk)r outside_of_an_rref.

Note that this applies transatively as well: if a caller con-
text still cannot resolve this ambiguity and allow the analysis
to know for certain whether or not the movement of rRref<7>s
created nesting, the context-sensitive ambiguity is propa-
gated further to the caller’s callers.

Dynamic dispatch Dynamic dispatch via trait objects
presents a somewhat generalized case of interprocedural
analysis. Because the actual method implementation that

B's value

A's value

r--

S

v

T

1

1
N

>
Value Value
Owner id: X

Owner id:

T A's descriptor
|

18 descriptor

HEEEO0

Heap registry

Figure 2. Internals of the RRef<T> type. RRef<A> contains a recursive
refrence to RRef. Both RRef<T>s are initially owned by domain X,
but then ownership of RrRef is updated to bottom after assignment
is done.

runs depends entirely on the type of the trait object at run-
time, we must handle dynamic dispatch as the union of the
result of interprocedural analysis performed on each indi-
vidual implementation, because we cannot know statically
which method implementation will run. Thus, our analysis
must conservatively emit code that, upon return from the
dynamically-dispatched method call, marks as bottom any
RRef<T> that would become nested within any trait implemen-
tation. Note that because in RedLeaf the entire source is
always available during compilation, we are able to conclu-
sively detect which rref<7>s this applies to across all possible
trait implementations in the program.

3.1 Atomicity and Correctness in the Face of Crashes

To understand the logic of the cleanup algorithm in the face
of crashes, consider the following sequence of operations
that we inject around every assignment statement. Here we
assign an Rref<T> b into another Rref<T>, a.r.

1 a.r = b;
2 mark_bottom(&mut a.r);

We first execute the assignment, then update b’s ownership
to bottom.

To ensure atomicity of the above code in case of a crash
(i.e. ensure that the shared heap is cleaned up correctly if the
domain crashes between the assignment of the b and when it
is marked as bottom), we develop a special implementation
of the drop method.

Rust allows us to control behavior of the drop¢() method
for the rref<t> type. Internally each rref<7> is represented as
two separate types: descriptor and a value (Figure 2). The
descriptor part contains the identifier of the owning domain,
and an unsafe pointer to the value. The value itself may
contain nested rref<7>s. In our example, the value of a contains
areference to the descriptor part of b. The heap registry stores
pointers to the descriptor parts of all rref<1>s allocated on the
shared heap and uses them during domain cleanup.

Rust allows us to overload the drop() method for the descrip-
tor part of the rref<7>, hence controlling when we deallocate

Input: H is the set of all shared heap object descriptors, D is the
domain ID of the crashing domain
Output: None
worklist « @
for desc € H do
if owner_of (desc) = D then
rust_drop(+desc.value)
push(worklist,desc)
end

end

for desc € worklist do
| free(desc)

end

Algorithm 1: Shared heap cleanup

the value. The drop() implementation for the descriptor type is
adjusted by moving the actual implementation (including ex-
plicitly dropping the pointed-to value) to a separate method
force_drop(), and leaving drop() with the logical equivalent of:

impl<T> Drop for RRefDescriptor<T> {
fn drop(&mut self) {
if lcrashed() || self.is_bottom() {
// unconditionally drop the value
self.force_drop();
) 3
}
Normally, when rref<7> is going out of scope (such as during
reassignment), the drop() method ignores the bottom flag (the
Icrashed() is true) and invokes the Rust’s drop() method for the
value type via the force_drop() function.

When a crash has occurred, however, the system performs
the following two step algorithm (Algorithm 1). We first scan
the heap registry for all rref<t>s that are currently owned
by the domain and force drop them via the force_drop() func-
tion. The force_drop() unconditionally drops the value of the
RRef<T>, but leaves its descriptor part intact. When the value is
dropped its drop() method triggers invocations of drop() meth-
ods for recursive rref<1>s, i.e. it calls our overloaded drop()
method of the descriptor part, which if the flags allow trig-
gers recursive invocation of the force_drop(), hence dropping
the value. After the force drop pass is done, we free as raw
memory all descriptor parts that are owned by the crashing
domain.

During the first pass, the drop() method obeys the bottom
flag to avoid double free and leaks. For example, if the domain
crashes between lines 1 and 2 in the listing above, both a and
b are reachable from the heap registry (both are still reported
as owned by the crashing domain), but the drop() method
for b does not drop the value as the bottom flag is not set
(logically, the bottom flag is the presence of a “no domain”
owner). Note, it is possible that b will be dropped before a. The
drop method of a will try to recursively drop b (if assignment
in line 2 is already performed) calling the drop() method for
its descriptor part. However, since the descriptor part is not
deallocated by the force_drop() method, the descriptor part is
still on the heap and the invocation of the b’s drop() method
is safe.

If the domain crashes after marking b as the bottom (e.g.,
after line 2), b is no longer owned by the crashing domain and
hence it will not be reached from the heap registry during
the scan and will not be force dropped. Instead, a’s drop()
method will recursively invoke the drop() method for b which
in turn drop the value since the bottom flag is set.

During the second pass we drop descriptors as raw mem-
ory. This operation is correct since the descriptor, whose
value pointer no longer refers to anything, is simply plain-
old-data. At this point no other value can refer to any of the
descriptors.

Similarly, when rref<t> is being moved out of another’s
tree, the operation order is exactly reversed:

1 mark_owned(&mut a.r, current_domain());

2 let b = a.r;
We first mark rref<1> as owned by the current domain and
then move it from the hierarchy. If domain crashes in be-
tween the two operations, we have the case identical to the
above, i.e., the rref<1>, a.r, is reachable recursively through a,
but at the same time is owned by the current domain.

4 Implementation

We implement our assignment analysis as a mid-level in-
termediate representation (MIR) pass. MIR [50], a recent
addition to the Rust compilation infrastructure, is a control
flow graph-based, simplified form of Rust, whose main ben-
efit is being better suited for dataflow analysis (e.g. type and
borrow checking), as opposed to the tree-based high-level
intermediate representation (HIR). Assignment statements
in MIR are made of Places: an expression that identifies a
location in memory and Rvalues: an expression that produces
a value (e.g., let <place> = <rvalue>;).

For each function in the program, the MIR pass iterates
through all assignment statements in the control-flow graph.
Analyzed rref<T> assignments are then collected into a list of
insertion points at which ownership updates will be inserted.

Code generation In MIR, a function call is represented as a
basic block terminator that connects two basic blocks. In or-
der to insert calls to the trusted runtime, basic blocks enclos-
ing the insertion points need to be split. For each insertion
point, the pass creates a new basic block and moves subse-
quent statements to it. The two basic blocks are then joined
with the ca11 terminator pointing to the desired function in
the runtime (e.g., mark_bottom().

5 Evaluation

We run our experiments on CloudLab [53] c220g5 servers
configured with two Intel Xeon Silver 4114 10-core Skylake
CPUs running at 2.20 GHz, 192 GB RAM, and a dual-port
Intel X520 10GbE NIC. The machines run NixOS 23.05 with
the Linux 6.1 kernel configured without any speculative
execution attack mitigations (mitigations=off) reflecting the
trend of recent Intel CPUs addressing a range of speculative
execution attacks in hardware. In all the experiments, we

Array Linked List

2 600
@ 500 =
<}
S 400 F~
g 300
8 200
S 100
6}
0 ‘ ‘ ‘ ‘
20 40 60 80 100 120

Number of Child RRefs

Figure 3. Overheads of Ownership Tracking

disable hyper-threading, turbo boost, CPU idle states, and
frequency scaling to reduce the variance in benchmarking.

5.1 rref<t> Passing

To put into perspective the performance improvement en-
abled by assignment analysis, we construct a synthetic test in
which nested rref<r>s of common data structures are passed
between domains (Figure 3). For all invocations, a proxy re-
sponsible for updating the ownership of all rref<t>s passed
in the invocation is interposed between the caller and callee
domains.

The naive implementation of the proxy traverses the rref<r>
hierarchy passed by the calling domain and assigns owner-
ships for all objects in the closure recursively. In contrast,
assignment analysis only manipulates the ownerships of
top-level rref<1>s. We run two experiments. In the first ex-
periment we pass an array of rref<r>s that is reachable from
a root rref<t>. We vary the size of the array from 1 to 128
Rref<T> elements. In the second test, we pass a linked list of
RRef<T>s and again vary the size of the list from 1 to 128.

Overall, the naive proxy incurs overheads as the number
of recursive rref<r>s increases. Passing a linked list incurs
an overhead of 5 cycles per node due to pointer chasing,
whereas passing a simple fixed-size array of rref<7>s costs an
average of 1.1 cycles per element.

5.2 Network Functions

We devise an application test to measure the performance
improvement in the context of network function virtual-
ization (NFV). We implement a packet processing pipeline
similar to Netbricks [47], but with support for isolation of
heaps, and hence support for fault isolation of individual
network functions. The pipeline uses DPDK [16] to send and
receive packets. The received packets are passed through
a series of Rust network functions that are implemented
as isolated domains which exchange packets on the shared
exchange heap. We test three configurations: non-isolated
Rust, i.e., Rust that uses regular references and function call
invocations, a proxy that recursively updates ownership of
all objects passed on the shared heap, and our new system
that updates ownership of only the root element. We vary
the packet batch size passed between NFs from 1 to 32.

Non-Isolated Rust ===
Recursive Updates

Root Updates

25

1.5

Pkts/s (Million)

0.5

1 4 8 16 32
Batch Size

Figure 4. Throughput on varying batch sizes

The network functions encompass tasks commonly done
in networking equipment: TTL decrementer, NAT, ACL fire-
wall, and Maglev load balancer [19]. The NAT function
rewrites the source IP and port of outgoing packets based
on a dynamic mapping. Ports are allocated and recorded in a
hash table for each new flow. In Maglev, consistent hashing
is utilized to evenly distribute flows across all servers. For
each new flow, Maglev selects a backend server via a hash
table lookup. The size of the lookup table is proportional to
the number of backend servers. The selected backend is then
inserted into the flow tracking table, to ensure that the same
servers are chosen for established flows even when the set
of available servers have changed.

On average, the naive proxy results in 4% lower through-
put than normal Rust while the improved proxy with assign-
ment analysis has an overhead of only 1%. Arguably, the
overheads of this highly-optimized scenario that passes at
most 32 recursive rref<t>s are small. Other operating system
interfaces might be configured to pass a significantly larger
number of buffers on the shared heap. For example, large disk
accesses might pass hundreds or even thousands of buffers.

6 Conclusions

Despite active development, Rust is still lacking mecha-
nisms to support safe systems that require process-like isola-
tion guarantees and efficient zero-copy communication. Our
work develops a static analysis pass inside the Rust compiler
that allows us to reason about assignments of references on
a special exchange heap and correctly account for the own-
ership of objects on the exchange heap. While seemingly a
niche problem, we argue it is an important piece of a puzzle
that can enable fast, secure and reliable systems that utilize
language mechanisms for isolation of untrusted subsystems.

Acknowledgments

We would like to thank PLOS’23 reviewers for various in-
sights helping us to improve this work. This research is
supported in part by the National Science Foundation under
Grant Numbers NSF numbers 2313411, 1837127 and 2341138.

References

[1] WebAssembly Specification. https://webassembly.github.io/
spec/core/.
[2] OpenArena Live. https://openarena.live, 2019.

[3] Akamai. Serverless Computing with Akamai Edge Workers.
https://www.akamai.com/products/serverless-computing-
edgeworkers, 2015.

[4] Alexander Gallego. Redpanda Wasm engine architecture. https:
//redpanda.com/blog/wasm-architecture, 2021.

[5] James W. Anderson, Ryan Braud, Rishi Kapoor, George Porter, and

Amin Vahdat. XOMB: Extensible open middleboxes with commodity

servers. In Proceedings of the Eighth ACM/IEEE Symposium on Archi-

tectures for Networking and Communications Systems, ANCS’12, pages

49-60, New York, NY, USA, 2012.

Godmar Back and Wilson C Hsieh. The KaffeOS Java Runtime System.

ACM Transactions on Programming Languages and Systems (TOPLAS),

27(4):583-630, 2005.

Abhiram Balasubramanian, Marek S. Baranowski, Anton Burtsev, Au-

rojit Panda, Zvonimir Rakamari¢, and Leonid Ryzhyk. System Pro-

gramming in Rust: Beyond Safety. In Proceedings of the 16th Workshop

on Hot Topics in Operating Systems (HotOS’17), pages 156-161, 2017.

Fred Barnes, Christian Jacobsen, and Brian Vinter. RMoX: A Raw-

Metal occam Experiment. In Communicating Process Architectures 2003,

volume 61 of Concurrent Systems Engineering Series, pages 182-196,

September 2003.

B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski,

D. Becker, C. Chambers, and S. Eggers. Extensibility Safety and Perfor-

mance in the SPIN Operating System. In Proceedings of the 15th ACM

Symposium on Operating Systems Principles (SOSP’95), pages 267-283,

1995.

[10] Andrew P. Black, Norman C. Hutchinson, Eric Jul, and Henry M. Levy.
The Development of the Emerald Programming Language. In Proceed-
ings of the 3rd ACM SIGPLAN Conference on History of Programming
Languages (HOPL III), pages 11-1-11-51, 2007.

[11] Kevin Boos, Namitha Liyanage, Ramla Ijaz, and Lin Zhong. Theseus:
an experiment in operating system structure and state management.
In 14th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 20), pages 1-19, November 2020.

[12] Bromium. Bromium micro-virtualization, 2010. http: //www.bromium.
com/misc/BromiumMicrovirtualization.pdf.

[13] Hank Bromley and Richard Lamson. LISP Lore: A Guide to Programming
the Lisp Machine. Springer Science & Business Media, 2012.

[14] Anton Burtsev, Kiran Srinivasan, Prashanth Radhakrishnan, Lak-
shmi N Bairavasundaram, Kaladhar Voruganti, and Garth R Goodson.
Fido: Fast inter-virtual-machine communication for enterprise appli-
ances. In Proceedings of the 2009 USENIX Annual Technical Conference
(USENIX ATC’09), pages 25-25, 2009.

[15] Albert Chang and Mark F. Mergen. 801 Storage: Architecture and
Programming. ACM Trans. Comput. Syst., 6(1):28—50, February 1988.

[16] Intel Corporation. DPDK: Data Plane Development Kit. http://dpdk.
org/.

[17] Sean M Dorward, Rob Pike, David Leo Presotto, Dennis M Ritchie,
Howard W Trickey, and Philip Winterbottom. The Inferno operating
system. Bell Labs Technical Journal, 2(1):5-18, 1997.

[18] Dylan Schiemann. Zoom on Web: WebAssembly SIMD, WebTransport,
and WebCodecs. https://www.infoq.com/news/2020/08/zoom-
web-chrome-apis, 2020.

[19] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman
Kononov, Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wen-
tao Shang, and Jinnah Dylan Hosein. Maglev: A Fast and Reliable Soft-
ware Network Load Balancer. In Proceedings of the 13th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI’16),
pages 523-535, March 2016.

[20] Paul Emmerich, Simon Ellmann, Fabian Bonk, Alex Egger, Esau Garcia
Sanchez-Torija, Thomas Giinzel, Sebastian Di Luzio, Alexandru Obada,
Maximilian Stadlmeier, Sebastian Voit, et al. The Case for Writing Net-
work Drivers in High-Level Programming Languages. In Proceedings
of the 2019 ACM/IEEE Symposium on Architectures for Networking and

G

—

—
~
—

8

—

[9

—

—

—

= =

—

=

Communications Systems (ANCS), pages 1-13. IEEE, 2019.

Evan Wallace. WebAssembly cut Figma’s load time by 3x.
https://www.figma.com/blog/webassembly-cut-figmas-load-
time-by-3x/, 2017.

Feske, N. and Helmuth, C. Design of the Bastei OS architecture. 2007.
Linux FUSE (filesystem in userspace). https://github.com/
libfuse/libfuse.

Vinod Ganapathy, Matthew] Renzelmann, Arini Balakrishnan,
Michael M Swift, and Somesh Jha. The design and implementation
of microdrivers. In ACM SIGARCH Computer Architecture News, vol-
ume 36, pages 168-178. ACM, 2008.

Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum, and Dan Boneh.
Terra: a virtual machine-based platform for trusted computing. In
Proceedings of the nineteenth ACM Symposium on Operating Systems
Principles (SOSP’03), pages 193-206, 2003.

Alain Gefflaut, Trent Jaeger, Yoonho Park, Jochen Liedtke, Kevin J
Elphinstone, Volkmar Uhlig, Jonathon E Tidswell, Luke Deller, and
Lars Reuther. The SawMill multiserver approach. In Proceedings of the
9th ACM SIGOPS European Workshop: Beyond the PC: New Challenges
for the Operating System, pages 109-114. ACM, 2000.

Adele Goldberg and David Robson. Smalltalk-80: The Language and its
Implementation. Addison-Wesley Longman Publishing Co., Inc., 1983.
Michael Golm, Meik Felser, Christian Wawersich, and Jiirgen Kleinoder.
The JX Operating System. In Proceedings of the General Track of the
Annual Conference on USENLX Annual Technical Conference (USENIX
ATC’02), pages 45-58, 2002.

Hardy, N. KeyKOS architecture. ACM SIGOPS Operating Systems
Review, 19(4):8—25, 1985.

Heiser, G. and Elphinstone, K. and Kuz, I. and Klein, G. and Petters,
S.M. Towards trustworthy computing systems: taking microkernels
to the next level. ACM SIGOPS Operating Systems Review, 41(4):3-11,
2007.

Jorrit N Herder, Herbert Bos, Ben Gras, Philip Homburg, and Andrew S
Tanenbaum. Minix 3: A highly reliable, self-repairing operating system.
ACM SIGOPS Operating Systems Review, 40(3):80-89, 2006.

Hohmuth, M. and Peter, M. and Hértig, H. and Shapiro,].S. Reducing
TCB size by using untrusted components: small kernels versus virtual-
machine monitors. In Proceedings of the 11th ACM SIGOPS European
Workshop, page 22. ACM, 2004.

Michio Honda, Felipe Huici, Giuseppe Lettieri, and Luigi Rizzo.
MSwitch: A Highly-Scalable, Modular Software Switch. In Proceedings
of the 1st ACM SIGCOMM Symposium on Software Defined Networking
Research, SOSR’15, New York, NY, USA, 2015.

Galen C. Hunt and James R. Larus. Singularity: Rethinking the software
stack. SIGOPS Oper. Syst. Rev., 41(2):37-49, April 2007.

[35] Jinho Hwang, K. K. Ramakrishnan, and Timothy Wood. NetVM: High

Performance and Flexible Networking Using Virtualization on Com-
modity Platforms. In 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI’14), pages 445-458, Seattle, WA,
April 2014.

Intel Corporation. Storage Performance Development Kit (SPDK).
https://spdk.io.

[37] Jordon Mears. How we’re bringing Google Earth to the web. https:

//web.dev/earth-webassembly/, 2019.

Kenton Varda. WebAssembly on Cloudflare Workers. https://blog.
cloudflare.com/webassembly-on-cloudflare-workers, 2018.
Chinmay Kulkarni, Sara Moore, Mazhar Naqvi, Tian Zhang, Robert
Ricci, and Ryan Stutsman. Splinter: Bare-metal extensions for multi-
tenant low-latency storage. In 13th USENLX Symposium on Operating
Systems Design and Implementation (OSDI’18), pages 627-643, Carlsbad,
CA, October 2018.

Zhaofeng Li, Tianjiao Huang, Vikram Narayanan, and Anton Burtsev.
Understanding the overheads of hardware and language-based ipc
mechanisms. In Proceedings of the 11th Workshop on Programming

Languages and Operating Systems (PLOS’21), 2021.

Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kamin-
sky. MICA: A Holistic Approach to Fast In-Memory Key-Value Storage.
In Proceedings of the 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’14), pages 429-444, April 2014.
Peter W Madany, Susan Keohan, Douglas Kramer, and Tom Saulpaugh.
JavaOS: A Standalone Java Environment. White Paper, Sun Microsys-
tems, Mountain View, CA, 1996.

Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu,
Michio Honda, Roberto Bifulco, and Felipe Huici. ClickOS and the
art of network function virtualization. In 11th USENIX Symposium
on Networked Systems Design and Implementation (NSDI'14), pages
459-473, Seattle, WA, April 2014.

Shravan Narayan, Craig Disselkoen, Tal Garfinkel, Nathan Froyd, Eric
Rahm, Sorin Lerner, Hovav Shacham, and Deian Stefan. Retrofitting
Fine Grain Isolation in the Firefox Renderer. In Proceedings of the 29th
USENIX Conference on Security Symposium, pages 699-716, 2020.
Vikram Narayanan, Tianjiao Huang, David Detweiler, Dan Appel,
Zhaofeng Li, Gerd Zellweger, and Anton Burtsev. RedLeaf: Isolation
and communication in a safe operating system. In 14th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI’20),
pages 21-39, November 2020.

Nathan Froyd. Securing Firefox with WebAssembly. https://hacks.
mozilla.org/2020/02/securing-firefox-with-webassembly.
Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia Rat-
nasamy, and Scott Shenker. NetBricks: Taking the V out of NFV. In
12th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI’16), pages 203-216, Savannah, GA, November 2016.

Pat Hickey. Lucet Takes WebAssembly Beyond the Browser.
https://www.fastly.com/blog/announcing-1lucet-fastly-
native-webassembly-compiler-runtime., 2019.

The Rust Project. References and borrowing. https://doc.rust-
lang.org/book/ch@4-02-references-and-borrowing.html. Ac-
cessed: 2023-08-05.

The Rust Project. Introducing MIR. https://blog.rust-lang.org/
2016/04/19/MIR.html, 2016.

Kaushik Kumar Ram, Alan L. Cox, Mehul Chadha, and Scott Rixner.
Hyper-Switch: A Scalable Software Virtual Switching Architecture.
In 2013 USENIX Annual Technical Conference (USENIX ATC’13), pages
13-24, San Jose, CA, June 2013.

David D Redell, Yogen K Dalal, Thomas R Horsley, Hugh C Lauer,
William C Lynch, Paul R McJones, Hal G Murray, and Stephen C Purcell.
Pilot: An Operating System for a Personal Computer. Communications
of the ACM, 23(2):31-92, 1980.

Robert Ricci, Eric Eide, and The CloudLab Team. Introducing Cloud-
Lab: Scientific infrastructure for advancing cloud architectures and
applications. USENIX ;login:, 39(6), December 2014.

Vyas Sekar, Norbert Egi, Sylvia Ratnasamy, Michael K. Reiter, and
Guangyu Shi. Design and Implementation of a Consolidated Middlebox
Architecture. In 9th USENIX Symposium on Networked Systems Design
and Implementation (NSDI'12), pages 323-336, San Jose, CA, April 2012.
Mark Sullivan and Michael Stonebraker. Using Write Protected Data
Structures To Improve Software Fault Tolerance in Highly Available
Database Management Systems. In Proceedings of the 17th International
Conference on Very Large Data Bases, VLDB’91, pages 171-180, San
Francisco, CA, USA, 1991. Morgan Kaufmann Publishers Inc.
Michael M Swift, Steven Martin, Henry M Levy, and Susan J Eggers.
Nooks: An Architecture for Reliable Device Drivers. In Proceedings of
the 10th workshop on ACM SIGOPS European Workshop, pages 102-107,
2002.

Daniel C Swinehart, Polle T Zellweger, Richard J Beach, and Robert B
Hagmann. A Structural View of the Cedar Programming Environment.
ACM Transactions on Programming Languages and Systems (TOPLAS),
8(4):419-490, 1986.

[58] The Istio Project. WebAssembly in the Istio Proxy (Envoy). https: [60] Bennet Yee, David Sehr, Greg Dardyk, Brad Chen, Robert Muth, Tavis

//istio.io/latest/docs/concepts/wasm/. Ormandy, Shiki Okasaka, Neha Narula, and Nicholas Fullagar. Native

[59] Thorsten von Eicken, Chi-Chao Chang, Grzegorz Czajkowski, Chris Client: A Sandbox for Portable, Untrusted x86 Native Code. In IEEE
Hawblitzel, Deyu Hu, and Dan Spoonhower. J-Kernel: A Capability- Symposium on Security and Privacy (Oakland’09), IEEE, 3 Park Avenue,
Based Operating System for Java. In Secure Internet Programming: 17th Floor, New York, NY 10016, 2009.

Security Issues for Mobile and Distributed Objects, pages 369-393. 1999.

	Abstract
	1 Introduction
	2 Background: Isolation and Communication in Language-Based Systems
	3 Assignment Analysis
	3.1 Atomicity and Correctness in the Face of Crashes

	4 Implementation
	5 Evaluation
	5.1 RRef<T> Passing
	5.2 Network Functions

	6 Conclusions
	Acknowledgments
	References

