Evolving Operating Systems Towards Secure
Kernel-Driver Interfaces

Anton Burtsev
University of Utah

Kaiming Huang
Pennsylvania State University

Abstract

Our work explores the challenge of developing secure kernel-
driver interfaces designed to protect the kernel from isolated
kernel extensions. We first analyze a range of possible attack
vectors that exist in current isolation frameworks. Then, we
suggest a new approach to building secure isolation bound-
aries centered around ideas that originate in safe operating
systems: isolation of heaps and single ownership.

CCS Concepts
« Security and privacy — Operating systems security.

ACM Reference Format:

Anton Burtsev, Vikram Narayanan, Yongzhe Huang, Kaiming Huang,
Gang Tan, and Trent Jaeger. 2023. Evolving Operating Systems

Towards Secure Kernel-Driver Interfaces. In Workshop on

Hot Topics in Operating Systems (HotOS °23), June 22-24, 2023,
Providence, RI, USA. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3593856.3595914

1 Introduction

A steady increase in the number of security attacks (com-
bined with a growing level of attack complexity and automa-
tion) triggered a renewed interest in hardware support for
isolation. After decades of relatively slow adoption, recent
generations of commodity CPUs introduced a range of new
hardware isolation mechanisms. Intel Memory Protection
Keys (MPKs) develop support for memory isolation with
overheads gradually approaching the overhead of a func-
tion call [16, 40]. The latest ARM CPUs introduce 16-byte-
granularity memory isolation with the Memory Tagging

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

HotOS ’23, June 22—24, 2023, Providence, RI, USA

© 2023 Association for Computing Machinery.

ACM ISBN 979-8-4007-0195-5/23/06. .. $15.00
https://doi.org/10.1145/3593856.3595914

Vikram Narayanan
University of Utah

Gang Tan

Pennsylvania State University

Yongzhe Huang

Pennsylvania State University

Trent Jaeger
Pennsylvania State University

Extensions (MTE) [2, 5], which can potentially enable low-
overhead bounds checks and zero-copy exchange of data.
Moreover, both ARM and x86 provide support for control
flow integrity (CFI) [29] and stack protection [1, 28]. Finally,
safe programming languages like Rust are becoming first-
class citizens in modern systems [15, 43].

In response to lowering overheads of hardware and soft-
ware isolation, a range of projects started to explore tech-
niques for isolating legacy systems, many targeting isolation
of the kernel subsystems like device drivers [9, 30, 31, 34, 36].
Furthermore, recent static analysis techniques demonstrated
largely automated isolation of the kernel code [17]. With
breakthroughs addressing two key isolation challenges—
performance and complexity—it is likely that isolation will
soon find its way into modern kernels.

A natural question, however, is what kind of security guar-
antees are achieved by current isolation frameworks? Unfor-
tunately, even using the most advanced isolation boundary
approaches that enforce temporal memory safety across the
isolation boundary [30, 31], the kernel can be attacked in
numerous ways.

Our work explores a possibility to develop new secure
kernel-driver interfaces designed to protect the kernel from
isolated drivers. We first analyze a range of possible attack
vectors that exist in current isolation frameworks. Then we
suggest a new isolation boundary centered around two ideas
that originate from safe operating systems [6, 18, 35, 41]:
isolation of heaps and single ownership. These ideas allow us
to enforce safety of access to the data structures exchanged
with isolated subsystems (even if the driver is malicious)
as well as provide clean termination and restart of isolated
drivers in case of a crash.

2 Modern isolation mechanisms

Historically, x86 CPUs supported two isolation mechanisms:
segmentation and paging. Segmentation was demonstrated
as a low-overhead isolation mechanism by L4 microker-
nels [27] and by recent WebAssemby implementations [22].
Moving to the 64-bit mode of execution, x86 CPUs depre-
cated segmentation, leaving paging as the only isolation

HotOS ’23, June 22-24, 2023, Providence, RI, USA

mechanism available in x86 CPUs. Despite many optimiza-
tions, paging remains prohibitively expensive for isolation
of subsystems that require frequent communication.

Trying to improve isolation overheads, CPU vendors ex-
plore the space of isolation mechanisms and introduce sup-
port for lightweight in-process isolation, control flow in-
tegrity (CFI), and software fault isolation (SFI).

Intel MPK Starting with SkyLake, Intel supports memory
protection keys (MPK), which enforce isolation within a
single address space by tagging individual pages with a 4-bit
tag (saved in the unused bits of the page table entries). A
special register, pkru, holds a bitmap that allows access to a
combination of tags (i.e., any combination from none to all is
possible by setting individual bits). The read or write access
to a page is allowed only if the value of the pkru register
matches the tag of the page. Switching between isolated
subsystems is performed by writing a new tag value into
the pkru register with an unprivileged wrpkru instruction that
takes 20-26 cycles [16, 37]. The total cost of a cross-subsystem
invocation is higher as it requires zeroing out general and
extended registers, and choosing a new stack inside the caller
subsystem [26]. These overheads can be lowered through
additional guarantees on the structure of isolated code [22].

ARM MTE Starting with ARMv8.3-A, ARM SoCs introduce
support for memory tagging extensions (MTE) that allow
partitioning the address space into 16-byte regions that are
colored with one of 16 tags. The hardware maintains a table
that stores a mapping between addresses and tags allowing
access to the region only if the tag of the pointer (the tag
is stored in the upper bits of the pointer) matches the tag
of the memory region. MTE itself does not directly support
isolation — the attacker can change the upper bits of the
pointer that contain the tag. To enforce isolation, it is possible
to combine MTE with techniques of software fault isolation
(SFI), i.e., rely on compile-time instrumentation to enforce a
specific tag on every load and store operation.

ARM PAC Along with MTE, ARMv8.3-A introduced support
for cryptographic pointer authentication (PAC). PAC imple-
ments the ability to cryptographically sign a pointer and
store the signature in the “unused” upper bits of the pointer.
The signature is generated from 1) the pointer value, 2) a
secret key protected by the operating system, and 3) a 64-bit
program-defined “signing context” that allows the isolation
scheme to restrict the use of a pointer in a custom way, for
example, allowing use of the pointer only if the value of
the stack pointer is identical at signing and authenticating
the signature. A signed pointer cannot be used directly, but
instead has to be authenticated with the same secret key
and context. If either the pointer, its signature, or the con-
text is different from the values used during signing, the

Anton Burtsev, Vikram Narayanan, Yongzhe Huang, Kaiming Huang, Gang Tan, and Trent Jaeger

authentication results in an invalid pointer value that trig-
gers a hardware exception when used. PAC is a powerful
mechanism that can be used to enforce control flow [28],
spatial [29] and temporal [14, 25] safety and isolation of
subsystems [31]. Isolation with PAC requires maintaining
metadata about each memory object, i.e., the size, type, and
liveness of an object that is used to enforce type, memory,
temporal safety, and the access rights for a currently execut-
ing isolated subsystem.

Rust Language safety allows enforcing isolation through
rules of spatial and temporal safety combined with the ac-
cess control model of the language (e.g., visibility of public
and private fields and modules). Historically, the overhead
of managed runtimes was prohibitive for low-level systems
(Emmerich et al. provide a performance comparison of ten
different languages used for a development of a fast network
device driver [12]). A number of research prototypes ex-
plored language-based isolation [6, 7, 18, 42], but it remained
impractical due to the overhead of managed language run-
times (traditionally, safe languages rely on garbage collection
to enforce safety). Rust enabled practical, near zero-cost lan-
guage safety through a restricted ownership model that al-
lows ensuring safety without garbage collection. Today, Rust
is accepted into both Linux and Windows kernels [15, 43].

CHERI Morello Hardware capability pointers describe the
lower and upper bounds of a memory location and recursive
pointer fields [44]. Effectively, hardware capabilities imple-
ment memory safety in hardware [10]. Two main benefits
of hardware capability architectures are ability to propagate
metadata along with pointers and low-overhead metadata
checks. ARM Morello is the first silicon implementation of
the CHERI architecture [3].

3 Attacks across isolation boundaries

Isolation frameworks Historically, isolation frameworks uti-
lized the following mechanisms to enforce isolation: hard-
ware isolation primitives, software fault isolation (SFI), and
programming language safety. Hardware-based approaches
execute an isolated subsystem, e.g., a device driver, on a
private, isolated copy of all data structures shared between
the driver and non-isolated kernel [36, 39]. Shared state is
synchronized on cross-subsystem invocations and around
synchronization primitives. Code annotations [39] or a gen-
eral interface definition language (IDL) [17, 34, 36] specifies
the access rights for the fields exchanged across subsystems.
An attacker that has a write primitive inside the isolated sub-
system cannot access the state of the kernel, but can modify
any of the shared fields hence affecting the kernel.
SFI-based approaches execute the driver and the kernel on
a single copy of the shared state [9, 13, 30, 31] and instead en-
force access control on every memory access limiting the iso-
lated subsystem to a set of allowed data structures and their

Evolving Operating Systems Towards Secure Kernel-Driver Interfaces

fields. This eliminates the need for maintaining two copies
of the shared state, but requires frequent access-control
checks (i.e., on every memory access) [30, 32]. Compared to
hardware-based approaches, SFI solutions enforce control-
flow integrity, yet allowing an attacker to leverage control
flow bending [8] and automated data-only attacks [19, 45]
possibly giving them access to the same set of data structures
and fields shared with the isolated subsystem. SFI techniques
enforce a subset of memory safety; e.g., HAKC [31] enforces
spatial and type safety, but not temporal safety.

Finally, while being impractical for decades due to the
overheads of managed runtime, Rust is now used for devel-
opment of subsystems in modern commodity kernels [15, 43].
Rust (and specifically its safe subset) significantly limits the
space of possible low-level attacks. Yet even subsystems im-
plemented in safe Rust can have code that breaks high-level
invariants of the kernel that result in unsafe accesses in the
kernel, missing security checks, denial of service and more.

In general, kernel and drivers share the entire address
space, i.e., drivers have access to complex, hierarchical data
structures inside the kernel through a collection of driver
and helping kernel functions. In practice, each driver ac-
cesses only a subset of recursively reachable data structures
and their fields. These fields can be pointers to other data
structures and scalar (non-pointer) fields. Many of the non-
pointer fields, however, have complex semantics, e.g., can
be involved in allocation operations (e.g., define the size and
number of allocated memory regions), participate in pointer
arithmetic (e.g., define the size of dynamically-sized objects),
specify types (e.g., the kernel uses tagged unions and other
schemes to implement polymorphism), control liveness of
memory objects and interfaces through state flags and refer-
ence counting, trigger protocol transitions, and more. Even
if the isolated subsystem is safe, modification of these fields
can be unsafe in the kernel.

Below, we discuss a range of attacks that are possible even
with the strongest isolation schemes that enforce control-
flow integrity and memory safety inside the isolated subsys-
tem. While enforcing safety inside the isolated subsystem, a
typical isolation solution leaves non-isolated kernel unpro-
tected [30, 31]. We assume that in general isolated drivers
are not malicious, but, since they are developed by third-
party maintainers that have only partial understanding of
the kernel security idioms, they might have arbitrary errors
in their implementation. We use the Linux kernel for our
examples although arguably other commodity kernels are
subject to similar attacks.

Memory bounds An attacker can trigger an out-of-bounds
access through the fields that control offsets into memory
regions and their sizes. The accesses to non-pointer fields are
safe inside the isolated driver, but can trigger unsafe behavior
inside the kernel. For example, the sko data structure that

HotOS ’23, June 22-24, 2023, Providence, RI, USA

describes a network packet in the kernel contains scalar
fields, tail and end, that are used as offsets into the data buffer
and are used as pointers by the kernel. An accidental update
of the tai1 offset past the allocated data memory will result in
an out-of-bounds access in the kernel.

Pointer aliases While typically an attacker cannot break type
safety of a pointer (i.e., assign a pointer to an object of a
different type), they can confuse the kernel and trigger a
use-after-free or double free by creating duplicate aliases to
the same object.

skb1->data = skb2->data;

When the kernel frees skb1 it deallocates its data area, hence
making the data pointer dangling in skb2, which results in a
use-after-free or a double free.

Function pointers To implement interfaces, Linux relies on
function pointers. An isolated driver can initialize a function
pointers of the same type but incompatible semantics. In the
example below, the driver initializes the .ndo_open field of the
network interface with the netdev_reset_tc() function instead
of ixgbe_open() (functions have identical type).

struct net_device_ops netdev_ops = {
// .ndo_open = ixgbe_open,
.ndo_open = netdev_reset_tc,
¥
The function mismatch can result in a protocol violation

confusing the kernel in multiple ways.

Lifetimes (use-after-free and double free) While it is possi-
ble to enforce temporal safety inside an isolated subsystem,
the interface of a kernel leaves opportunities for breaking
lifetimes of objects on the kernel side. For example, an iso-
lated driver can invoke free_netdev(dev) to deallocate the dev
data structure that is supposed to be live until the driver
is unloaded by the kernel. Similarly, for reference counted
objects like skb, the driver can drop the reference to the same
skb structure twice by invoking the consume_skb(skb) function
twice. Since additional references might exist in the kernel,
there is a possibility of a use-after-free inside the kernel.

Resource exhaustion The kernel’s use of data from isolated
subsystems leaves plenty of opportunities for resource ex-
haustion attacks. The attacks range from simple requests
for more memory to more sophisticated examples in which
an isolated subsystem can trigger allocation of an object on
the kernel side though one of the available interfaces, or
refuse to deallocate one of the resoures that it is supposed
to deallocate asynchronously.

Denial of service Denial of service attacks can range from a
simple attack in which the subsystem never returns to more
sophisticated attacks in which an isolated subsystem returns
an error value that triggers shutdown of the driver.

Synchronization and consistency A range of attacks can trig-
ger a deadlock by acquiring and never releasing a lock or

HotOS ’23, June 22-24, 2023, Providence, RI, USA

breaking consistency guarantees about data structures by
accessing them without a lock. For example, the network
subsystem in the kernel allows any device driver to acquire
a global rTnL kernel lock, hence blocking the execution of the
entire network subsystem.

Protocol violations A driver can confuse the kernel by vio-
lating one of implicit initialization or operation protocols,
i.e., invoking kernel functions out of order. In fact, nearly
every shared scalar and some shared pointer fields control
the logic of the kernel enabling and disabling functionality,
triggering allocation and deallocation of objects, specifying
types and sizes of objects, etc.

Security checks In some cases drivers are responsible for
performing security checks.

if (!capable(CAP_SYS_RAWIO))
return -EPERM;
The driver can fail to implement the capability check to allow
a user process to access an otherwise inaccessible resource.

Unrestricted hardware access Device drivers can access any
hardware and software resources of the system. For exam-
ple, a character driver can register or unregister a character
device for any major or minor number. In case of an isolated
MSR driver, the driver has unrestricted access to write to any
of the MSR registers.

Discussion Even advanced safety and control-flow enforce-
ment mechanisms fail to block the attacks exploiting a logical
flow in the driver. While arguably some of the above attacks
can be fixed with static code analysis, e.g., enforcing specific
instances of the function pointers in driver interfaces, check-
ing that the driver performs a security check on the path of
an invocation, etc., and some require techniques orthogonal
to the interface of the driver, e.g., DMA protection [4], a
range of attacks can only be stopped through a redesign of a
driver-kernel interface. Such interface should enforce a range
of restrictions on pointer references exchanged across the
isolation boundary, control object lifetimes, and provide fine-
grained access control to hardware and systems resources.

4 Towards secure boundaries

Securing complex, semantically-rich interfaces of the kernel
is challenging. We leverage ideas from safe operating sys-
tems [6, 18, 35, 41]—isolation of heaps and single ownership—
a discipline that creates a foundation for clean termination
and restart of isolated subsystems in case of a crash. We
then suggest several ways of enforcing safety of access to
the data structures exchanged with the driver. Finally, we
adapt the idea of interfaces, or traits, as a way to implement
object capability proxy pattern [11, 33], i.e., mediate access
to hardware resources and data structures in the kernel. Fine-
grained control over what kernel functions and with what
arguments can be invoked at any given moment of driver’s

Anton Burtsev, Vikram Narayanan, Yongzhe Huang, Kaiming Huang, Gang Tan, and Trent Jaeger

Private heap

int ixgbe_xmit(struct sk_buff *skb) {

b‘r"ogidmaibuffers(skb);

int xmit_proxy(struct skibuff*\skb) {
move(skb);
move(skb->data);
ops->xmit(skb);

¥ Trusted proxy

Kernel

DMA queues

LBl

Figure 1: We split the shared skb into private and shared
parts and only the shared part is passed across the isolation
boundary. The ownership of these shared objects are moved
to the destination domain via trusted proxies.

)
|
|
|
|
|
1
|

} 1
|
1
|
|
1
|
)

execution allows us to limit access to a specific subset of
software and hardware resources of the kernel and enforce
a specific protocol on the driver interface.

Heap isolation We execute isolated device drivers as isolated
subsystems with private heaps and a special shared exchange
heap—a heap that allows allocation of objects that can be
exchanged between the main kernel and isolated subsystems.
Clean separation of private and exchange heaps allows us to
enforce safety of accesses to objects exchanged with isolated
subsystems as well as support clean termination semantics.
In other words, while accesses to the private heap inside the
isolated subsystem can be unsafe, they only affect the isolated
subsystem itself. The isolated subsystem cannot break spatial
or temporal safety of objects on the shared heap, hence all
accesses to the shared heap from the kernel are safe.

Fault isolation Safety is critical to enforce confidentiality and
integrity of the kernel, i.e., protect it from low-level vulner-
abilities. However, safety alone is insufficient for making
progress in case of a crash; when an isolated driver crashes
it leaves its heap and objects exchanged with the kernel in
an inconsistent state. Cleaning the state of the driver and es-
pecially cleaning the objects that are shared with the kernel
is challenging. To support clean termination and unloading
of crashing subsystems, we enforce several additional invari-
ants: 1) Inv 1: heap isolation — subsystems never hold point-
ers into each others’ private heaps, 2) Inv 2: single ownership
- objects on the shared heap are owned and can be accessed
by exactly one subsystem at a time and are moved between
them on cross-subsystem invocations, 3) Inv 3: linearity —
objects on the shared heap do not have cyclic references.

Evolving Operating Systems Towards Secure Kernel-Driver Interfaces

The IPC subsystem tracks ownership of objects on the
shared exchange heap (in the following sections we suggest
several ways of enforcing single ownership and providing
ownership tracking specific to each isolation mechanism).
When a subsystem crashes, the kernel deallocates all objects
on the shared heap owned by the crashing subsystem as well
as deallocates its shared heap. Due to Inv 1 we can deallocate
the entire heap without worrying about its state (we only
track pages used by the private heap). Inv 2 guarantees that
we can deallocate objects owned by the crashing subsystem
without worrying about accesses from other subsystems (and
hence without implementing reference counting or garbage
collection mechanisms). Finally, Inv 3 allows us to enforce
the safety of accesses to the shared heap. Linearity strikes a
balance between ergonomics and security. Specifically, the
kernel can exchange hierarchical data structures (not just
plain buffers), and yet we can eliminate aliasing attacks.

On cross-subsystem invocations, the IPC subsystem records
the state of the caller thread upon entry into the callee sub-
system, thus allowing us to unwind execution of a thread
from the crashing subsystem.

4.1 Safety in the kernel

While safety and heap isolation are appealing, the real ques-
tion is whether it is possible to adapt them in the kernel in a
practical manner? We argue that there are several ways to
enforce safety of the shared heap by either rewriting isolated
device drivers in a safe language like Rust, or by relying on
modern software fault isolation (SFI) mechanisms [25, 30].

Rust Rust is a programming language that enforces safety
through a restricted ownership discipline allowing only one
mutable reference to each live object in memory [21]. The
compiler leverages restricted ownership to reason about life-
times statically at compile time. Without a managed runtime
Rust approaches the performance of unsafe programming
languages. Rust’s type system enforces safety over the ob-
jects on the shared heap. Moreover, the restricted ownership
model enforces linearity.

Note, device drivers are inherently unsafe due to the fact
that they access an unsafe hardware interface. Unsafe Rust
breaks all safety guarantees similar to any unsafe language.
Fortunately, it is possible to implement a large fraction of
the driver in a safe subset of Rust and rely on a small un-
safe library that encapsulates unsafe mechanisms required
to access the hardware [24, 35]. While this unsafe library
becomes a part of the TCB, its semantics are simple enough
that it can be verified with modern verification tools [20, 23].
Temporal safety with PAC Alternatively, safety of the ob-
jects on the shared heap can be enforced through a com-
bination of modern software fault isolation (SFI) mecha-
nisms [25, 29, 30] or hardware capabilities like Cheri [44].
Systems like LXFI [30], PARTS [29], and PACMem enforce

HotOS ’23, June 22-24, 2023, Providence, RI, USA

checks on all memory accesses to ensure types, bounds, and
liveness of objects (i.e., spatial and temporal safety). Specifi-
cally, PACMem relies on ARM pointer authentication to im-
plement efficient metadata lookups (PACMem uses PAC sig-
nature of a pointer as an index into the metadata table) [25].
To further improve performance of the isolated drivers, it is
possible to leverage Inv 1 and enforce PAC memory safety
only on pointers to the exchange heap. An SFI scheme first
checks if the pointer is local and if so simply ensures that it is
in bounds similar to fast SFI implementations [38]; otherwise
it resorts to a full safety check through the metadata. Similar
to Rust, an unsafe layer is required to encapsulate unsafe
hardware interface of the driver.

Single ownership and linearity Rust enforces single owner-
ship (and hence linearity) through a restricted ownership
discipline. If the device driver is implemented in safe Rust,
we automatically have guarantees of single ownership in-
side the driver (i.e., after passing a pointer to an object on
the shared heap, the driver can no longer access the object).
Similarly, by restricting the types that are allowed on the
shared heap [35] we can enforce acyclic data structures on
the exchange heap.

While re-writing device drivers in Rust is a laudable idea,
majority of kernel device drivers will remain implemented
in C for years to come. At the moment, we do not see a
way of enforcing single ownership in unsafe C due to unre-
stricted pointer aliasing. Potentially, it is possible to combine
PAC-style safety to restrict aliasing dynamically with static
and dynamic ownership analysis. However, subsystem-wide
safety enforcement introduces high overhead due to expen-
sive metadata lookups [25]. Instead, for legacy drivers we fall
back to a practical scheme that checks safety and linearity
only on invocations that cross the isolation boundary. Specif-
ically, for each invocation we leverage an IPC declaration
that explicitly defines object hierarchy passed across subsys-
tems [17, 36]. Automatically generated IPC code walks the
hierarchy, checking safety and linearity along with enforcing
access control rules; i.e., all objects are owned by the sub-
system that passes them while at the same time transferring
ownership and revoking access rights. Depending on the
enforcement mechanism we either update the memory tag
(MTE or MPK) or access metadata similar to LXFI [30].

4.2 Bringing linearity to the kernel

While it is possible to enforce safety and single-ownership
on the isolation boundary, an obvious question is whether
it is possible to integrate linearity with existing kernel code
without disruptive changes? We make a critical observation
that while data structures shared with the driver are used in a
non-linear manner, a subset of fields and memory objects that
are accessed by the driver is small and can be made linear. For

HotOS ’23, June 22-24, 2023, Providence, RI, USA

example, the sk_buff data structure is used in a complex non-
linear manner by the kernel which keeps sk_buffs on multiple
linked lists for retransmission of network packets, auditing
frameworks, etc. However, only a small subset of the sk_buff
fields and objects reachable from these fields are accessed by
the driver. Out of 66 fields of the skb data structure only 20
are used by the ndo_start_xmit() function of the Ixgbe device
driver.

We split the skb into the private (used by the kernel) and
shared (exchanged with the driver) parts. We then change the
kernel to access the shared part of the skb in a linear manner.
Specifically, the xmit_proxy function moves ownership of the
private part along with the data region that holds the actual
packet data to the driver and then consume_skb moves back to
the kernel when DMA transfer is complete.

Interface proxying In many cases the kernel exchanges ref-
erences with the driver to data structures that are mostly
private to the kernel. The driver accesses a small number
of fields (in many cases the pointer is not even used by the
driver but only passed in nested invocations to the kernel).
Such accesses are often not linear as the kernel accesses the
same object from a variety of kernel contexts, e.g., interrupts,
kernel threads and system call invocations. For instance,
a typical network driver has access to the following ker-
nel objects: pci_dev (generic PCI device), pci_dev->dev (generic
representation of a device), and netdevice (generic network
device).

To ensure linearity, instead of sharing a reference to the
kernel object with the driver, we allow the driver to access
an interface of a specific object through a proxy interface.
Proxies implement an object capability pattern [11, 33], effec-
tively providing an access to a subset of fields in a controlled
manner, and even enforcing a specific access protocol, e.g.,
order of proxy invocations, invoke only once, etc. In Rust
we implement proxy objects as Rust traits. For example, the
PCI trait allows the network device driver to access the con-
figuration space of the PCI from the probe function.

pub trait PCI {
fn read_config_dword(where: u32) -> u32;
fn write_config_dword(where: u32, val: u32) -> i32;

3
fn ixgbe_probe(pci: &PCI) {
val = pci.read_config_dword(where);
-
For legacy C drivers we leverage LXDs’ support for exchang-
ing function pointers across isolation boundaries [34].

Discussion Safety and linearity of the shared heap allow us
to protect the kernel from a range of pointer integrity attacks.
We leverage our prior work on KSplit [17] to develop static
analysis algorithms that allow us to identify scalar fields
involved in pointer arithmetic, bounds computations, etc.

Anton Burtsev, Vikram Narayanan, Yongzhe Huang, Kaiming Huang, Gang Tan, and Trent Jaeger

We then utilize KSplit’s IDL to encode and generate proxy
invocation code that sanitizes the risky fields.

Protocol violations is arguably the broadest class of attacks
on the kernel due to its semantic complexity. We developed a
collection of static analyses that allow us to reason about how
scalar fields that are controlled by the driver affect execution
of the kernel, i.e., trigger allocation and deallocation of ob-
jects, enable functionality, etc. We then leverage KSplit’s IDL
to encode kernel-driver interaction protocols and generate
enforcement through proxy trait objects. Moreover, we rely
on the interface interposition to enforce specific ordering
of function invocations. Specifically, we encode a state ma-
chine of a driver-kernel protocol and allow invocations of
the functions that are allowed by transitions of the protocol
state machine.

We further leverage trait objects to enforce fine-grained
access control on access to resources of the system. By wrap-
ping the access to specific objects behind interface pointers,
we provide isolated drivers with the mechanism to invoke
kernel functions but with a predefined subset of arguments,
i.e., limiting the driver to a specific subset of the PCI space, or
limiting an MSR driver to a write of a specific MSR register.

To prevent synchronization attacks, we forbid critical sec-
tions that cross the boundaries of isolated subsystems. In-
stead the driver has to call out into the kernel to synchronize
(fortunately, the cases when synchronization patterns cross
boundary of subsystems are rare in the kernel [17]).

5 Status

Our framework is a work in progress aimed at providing se-
cure extensions in the Linux kernel. To aid decomposition of
data structures into shared and private parts, we developed a
static analysis framework that computes the parts of the data
structure accessed by the driver and an interface definition
language (IDL) compiler that generates IPC bindings and
trait objects for Rust and C device drivers. Our static analysis
utilizes a recent kernel isolation framework, KSplit [17].

6 Conclusions

Our work explores the possibility of isolating the core part of
the kernel from third-party device drivers. We believe that a
combination of heap isolation and single ownership provides
a viable design choice for enforcing security of the isolation
boundary and ensuring clean recovery from driver crashes.

Acknowledgments

We would like to thank HotOS 2023 reviewers for numerous
suggestions helping us to improve this work. This research is
supported in part by the National Science Foundation under
grant numbers OAC-11840197, CCF-1837127, CNS-1816282
and CNS-1801534, and DARPA under HR0011-19-C-0106.

Evolving Operating Systems Towards Secure Kernel-Driver Interfaces

References

(1]

—
[e)
—

—
=)
—

[10

=

[11

—

(12]

(13

[t

(14]

A Technical Look at Intel’s Control-flow Enforcement Tech-
nology. https://www.intel.com/content/www/us/en/
developer/articles/technical/technical-look-control-
flow-enforcement-technology.html.

Memory Tagging Extension: Enhancing memory safety
through architecture. https://community.arm.com/arm-
community-blogs/b/architectures-and-processors-
blog/posts/enhancing-memory-safety.

Morello research program hits major milestone with hardware now
available for testing. https://www.arm.com/company/news/2022/
01/morello-research-program-hits-major-milestone-with-
hardware-now-available-for-testing.

Markuze Alex, Shay Vargaftik, Gil Kupfer, Boris Pismeny, Nadav Amit,
Adam Morrison, and Dan Tsafrir. Characterizing, exploiting, and
detecting DMA code injection vulnerabilities in the presence of an
IOMMU. In Proceedings of the Sixteenth European Conference on Com-
puter Systems, EuroSys *21, pages 395-409, New York, NY, USA, 2021.
Association for Computing Machinery.

Arm. Armv8.5-A Memory Tagging Extension. Whitepaper. https:
//developer.arm.com/-/media/Arm%2@Developer%20Community/
PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf.

Godmar Back and Wilson C Hsieh. The KaffeOS Java Runtime System.
ACM Transactions on Programming Languages and Systems (TOPLAS),
27(4):583-630, 2005.

B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski,
D. Becker, C. Chambers, and S. Eggers. Extensibility Safety and Perfor-
mance in the SPIN Operating System. In Proceedings of the 15th ACM
Symposium on Operating Systems Principles (SOSP’95), pages 267-283,
1995.

Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and
Thomas R Gross. Control-flow bending: On the effectiveness of control-
flow integrity. In 24th {USENIX} Security Symposium ({USENLX}
Security 15), pages 161-176, 2015.

Miguel Castro, Manuel Costa, Jean-Philippe Martin, Marcus Peinado,
Periklis Akritidis, Austin Donnelly, Paul Barham, and Richard Black.
Fast byte-granularity software fault isolation. In Proceedings of the
ACM SIGOPS 22nd Symposium on Operating Systems Principles (SOSP
’09), pages 45-58, 2009.

David Chisnall, Colin Rothwell, Robert N.M. Watson, Jonathan
Woodruff, Munraj Vadera, Simon W. Moore, Michael Roe, Brooks Davis,
and Peter G. Neumann. Beyond the PDP-11: Architectural support
for a memory-safe C abstract machine. In Proceedings of the Twenti-
eth International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’15, pages 117-130. ACM,
2015.

Tom Van Cutsem and Mark S. Miller. Trustworthy proxies: Virtualizing
objects with invariants. In ECOOP 2013, 2013.

Paul Emmerich, Simon Ellmann, Fabian Bonk, Alex Egger, Esau Garcia
Sanchez-Torija, Thomas Giinzel, Sebastian Di Luzio, Alexandru Obada,
Maximilian Stadlmeier, Sebastian Voit, et al. The Case for Writing Net-
work Drivers in High-Level Programming Languages. In Proceedings
of the 2019 ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS), pages 1-13. IEEE, 2019.

Ulfar Erlingsson, Martin Abadi, Michael Vrable, Mihai Budiu, and
George C. Necula. XFI: Software Guards for System Address Spaces.
In Proceedings of the 7th Symposium on Operating Systems Design and
Implementation (OSDI °06), pages 75-88, 2006.

Reza Mirzazade Farkhani, Mansour Ahmadi, and Long Lu. PTAuth:
Temporal Memory Safety via Robust Points-to Authentication. In 30th
USENIX Security Symposium (USENIX Security 21), pages 1037-1054,

[15]
[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

HotOS ’23, June 22-24, 2023, Providence, RI, USA

2021.

Alex Gaynor and Geoffrey Thomas. Linux kernel modules in Rust.
Proceedings of the Linux Security Summit North America, 2019, 2019.
Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John
Criswell, Michael L. Scott, Kai Shen, and Mike Marty. Hodor: Intra-
Process Isolation for High-Throughput Data Plane Libraries. In Pro-
ceedings of the 2019 USENIX Annual Technical Conference (USENLX ATC
’19), pages 489-504, 2019.

Yongzhe Huang, Vikram Narayanan, David Detweiler, Kaiming Huang,
Gang Tan, Trent Jaeger, and Anton Burtsev. KSplit: Automating device
driver isolation. In 16th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 22), pages 613-631, Carlsbad, CA,
July 2022. USENIX Association.

Galen C. Hunt and James R. Larus. Singularity: Rethinking the Software
Stack. ACM SIGOPS Operating Systems Review, 41(2):37-49, April 2007.
Kyriakos K. Ispoglou, Bader AlBassam, Trent Jaeger, and Mathias
Payer. Block oriented programming: Automating data-only attacks.
In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS 18, pages 1868-1882, New York, NY,
USA, 2018. ACM.

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.
RustBelt: Securing the Foundations of the Rust Programming Language.
Proc. ACM Program. Lang., 2(POPL), dec 2017.

Steve Klabnik and Carol Nichols. The Rust Programming Language.
No Starch Press, 2019.

Matthew Kolosick, Shravan Narayan, Evan Johnson, Conrad Watt,
Michael LeMay, Deepak Garg, Ranjit Jhala, and Deian Stefan. Isolation
without taxation: near-zero-cost transitions for webassembly and sfi.
Proceedings of the ACM on Programming Languages, 6(POPL):1-30,
2022.

Andrea Lattuada, Travis Hance, Chanhee Cho, Matthias Brun, Isitha
Subasinghe, Yi Zhou, Jon Howell, Bryan Parno, and Chris Hawblitzel.
Verus: Verifying rust programs using linear ghost types. Proceedings
of the ACM on Programming Languages, 7(OOPSLA1):286-315, 2023.
Amit Levy, Bradford Campbell, Branden Ghena, Daniel B. Giffin, Pat
Pannuto, Prabal Dutta, and Philip Levis. Multiprogramming a 64kB
Computer Safely and Efficiently. In Proceedings of the 26th Symposium
on Operating Systems Principles (SOSP ’17), pages 234-251, 2017.
Yuan Li, Wende Tan, Zhizheng Lv, Songtao Yang, Mathias Payer, Ying
Liu, and Chao Zhang. PACMem: Enforcing Spatial and Temporal
Memory Safety via ARM Pointer Authentication. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’22, pages 1901-1915, 2022.

Zhaofeng Li, Tianjiao Huang, Vikram Narayanan, and Anton Burtsev.
Understanding the overheads of hardware and language-based ipc
mechanisms. In Proceedings of the 11th Workshop on Programming
Languages and Operating Systems, PLOS 21, pages 53-61, New York,
NY, USA, 2021. Association for Computing Machinery.

Jochen Liedtke. Improved address-space switching on pentium pro-
cessors by transparently multiplexing user address spaces. Technical
report, GMD SET-RS, Schlo Birlinghoven, 53754 Sankt Augustin, Ger-
many, 1995.

Hans Liljestrand, Thomas Nyman, Lachlan J. Gunn, Jan-Erik Ekberg,
and N. Asokan. PACStack: an authenticated call stack. In 30th USENIX
Security Symposium (USENIX Security 21), pages 357-374. USENIX
Association, August 2021.

Hans Liljestrand, Thomas Nyman, Kui Wang, Carlos Chinea Perez,
Jan-Erik Ekberg, and N. Asokan. PAC it up: Towards pointer integrity
using ARM pointer authentication. In 28th USENIX Security Symposium
(USENIX Security 19), pages 177-194. USENIX Association, August
2019.

HotOS ’23, June 22-24, 2023, Providence, RI, USA Anton Burtsev, Vikram Narayanan, Yongzhe Huang, Kaiming Huang, Gang Tan, and Trent Jaeger

[30] Yandong Mao, Haogang Chen, Dong Zhou, Xi Wang, Nickolai Zel- 2014 ACM/IEEE 41st International Symposium on Computer Architecture
dovich, and M. Frans Kaashoek. Software Fault Isolation with API (ISCA), pages 457-468, 2014.
Integrity and Multi-Principal Modules. In Proceedings of the 23rd ACM [45] Wei Wu, Yueqi Chen, Jun Xu, Xinyu Xing, Xiaorui Gong, and Wei Zou.
Symposium on Operating Systems Principles (SOSP ’11), pages 115-128, {FUZE}: Towards facilitating exploit generation for kernel use-after-
2011. free vulnerabilities. In 27th { USENIX} Security Symposium ({ USENLX}
[31] Derrick McKee, Yianni Giannaris, Carolina Ortega Perez, Howard Security 18), pages 781-797, 2018.

Shrobe, Mathias Payer, Hamed Okhravi, and Nathan Burow. Preventing
Kernel Hacks with HAKC. In Proceedings 2022 Network and Distributed
System Security Symposium. NDSS, volume 22, pages 1-17, 2022.
Derrick McKee, Yianni Giannaris, Carolina Ortega Perez, Howard
Shrobe, Mathias Payer, Hamed Okhravi, and Nathan Burow. Preventing
kernel hacks with hake. In Proceedings 2022 Network and Distributed
System Security Symposium. NDSS, volume 22, pages 1-17, 2022.

[33] Mark Samuel Miller. Robust Composition: Towards a Unified Approach
to Access Control and Concurrency Control. PhD thesis, Johns Hopkins
University, May 2006.

Vikram Narayanan, Abhiram Balasubramanian, Charlie Jacobsen,
Sarah Spall, Scott Bauer, Michael Quigley, Aftab Hussain, Abdullah
Younis, Junjie Shen, Moinak Bhattacharyya, and Anton Burtsev. LXDs:
Towards Isolation of Kernel Subsystems. In Proceedings of the 2019
USENIX Annual Technical Conference (USENLX ATC ’19), pages 269-284,
July 2019.

Vikram Narayanan, Tianjiao Huang, David Detweiler, Dan Appel,
Zhaofeng Li, Gerd Zellweger, and Anton Burtsev. Redleaf: Isolation and
communication in a safe operating system. In 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 20), pages 21—
39. USENIX Association, November 2020.

Vikram Narayanan, Yongzhe Huang, Gang Tan, Trent Jaeger, and An-
ton Burtsev. Lightweight Kernel Isolation with Virtualization and VM
Functions. In Proceedings of the 16th ACM SIGPLAN/SIGOPS Interna-
tional Conference on Virtual Execution Environments (VEE °20), pages
157-171, 2020.

Soyeon Park, Sangho Lee, Wen Xu, HyunGon Moon, and Taesoo Kim.
libmpk: Software abstraction for intel memory protection keys (intel
MPK). In 2019 USENIX Annual Technical Conference (USENIX ATC 19),
pages 241-254, July 2019.

David Sehr, Robert Muth, Cliff L. Biffle, Victor Khimenko, Egor Pasko,
Bennet Yee, Karl Schimpf, and Brad Chen. Adapting Software Fault
Isolation to Contemporary CPU Architectures. In 19th USENIX Security
Symposium, pages 1-11, 2010.

Michael M Swift, Steven Martin, Henry M Levy, and Susan] Eggers.
Nooks: An Architecture for Reliable Device Drivers. In Proceedings of
the 10th workshop on ACM SIGOPS European workshop, pages 102-107,
2002.

Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O. Duarte, Michael
Sammler, Peter Druschel, and Deepak Garg. ERIM: Secure, Efficient
In-process Isolation with Protection Keys (MPK). In Proceedings of
the 28th USENIX Security Symposium (USENIX Security ’19), pages
1221-1238, 2019.

Thorsten von Eicken, Chi-Chao Chang, Grzegorz Czajkowski, Chris
Hawblitzel, Deyu Hu, and Dan Spoonhower. J-Kernel: A Capability-
Based Operating System for Java. In Secure Internet Programming:
Security Issues for Mobile and Distributed Objects, pages 369-393. 1999.
Thorsten von Eicken, Chi-Chao Chang, Grzegorz Czajkowski, Chris
Hawblitzel, Deyu Hu, and Dan Spoonhower. J-Kernel: A Capability-
Based Operating System for Java. In Secure Internet Programming:
Security Issues for Mobile and Distributed Objects, pages 369-393. 1999.
[43] David Weston. Windows 11. The journey towards default security.
https://www.youtube.com/watch?v=8T6C1X-y2AE.

J. Woodruff, R. N. M. Watson, D. Chisnall, S. W. Moore, J. Anderson,
B. Davis, B. Laurie, P. G. Neumann, R. Norton, and M. Roe. The CHERI
capability model: Revisiting RISC in an age of risk. In Proceedings of the

(32

—

[34

=

(35

[

(36

[l

(37

—

(38

=

(39

-

[40

=

(41

—

(42

—

(44

=

	Abstract
	1 Introduction
	2 Modern isolation mechanisms
	3 Attacks across isolation boundaries
	4 Towards secure boundaries
	4.1 Safety in the kernel
	4.2 Bringing linearity to the kernel

	5 Status
	6 Conclusions
	Acknowledgments
	References

