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Global Compilation of Deep Mantle Anisotropy Observations
and Possible Correlation With Low Velocity Provinces

Jonathan Wolf! (2, Maureen D. Long! ©/, Mingming Li? (©’, and Edward Garnero?

'Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA, 2School of Earth and Space
Exploration, Arizona State University, Tempe, AZ, USA

Abstract we compile and make publicly available a global digital database of body wave observations of
seismic anisotropy in the D"’ layer, grouped using the method used to analyze deep mantle anisotropy. Using
this database, we examine the global distribution of seismic anisotropy in the D'’ layer, evaluating the question
of whether seismic anisotropy is more likely to be located at the edges of the two large-low velocity provinces
(LLVPs) in Earth's mantle than elsewhere. We show that this hypothesis lacks statistical justification if we
consider previously observed lowermost mantle anisotropy, although there are multiple factors that are difficult
to account for quantitatively. One such factor is the global lowermost mantle ray coverage for different phases
that are commonly used to detect deep mantle anisotropy in shear wave splitting studies. We find that the
global ray coverage of the relevant seismic phases is highly uneven, with LLVP edges and their interiors less
well-sampled than the global average.

Plain Language Summary Seismic waves caused by earthquakes sometimes travel at different
speeds in different directions. This material property, called seismic anisotropy, indicates convective flow and
deformation in the mantle and has been detected in the lowermost mantle. We compile a database of lowermost
mantle anisotropy locations from the previously published literature. Previous studies have reported strong
seismic anisotropy at the edges of large features with lower than average seismic velocities in Earth's mantle,
called large-low velocity provinces. Here, we test whether seismic anisotropy is also more likely at large-low
velocity province edges than elsewhere. Our statistical analysis of our database suggests that this may not be the
case. This analysis, however, did not explicitly account for the fact that the number of seismic waves traveling
through the lowermost mantle is different from region to region.

1. Introduction

Seismic anisotropy, or the directional dependence of seismic wave speed, has been detected at a range of depths
in the Earth. For example, the crust (e.g., Barruol & Kern, 1996; Erdman et al., 2013) and the upper mantle (e.g.,
Savage, 1999; Silver, 1996; Zhu et al., 2020) are anisotropic in many regions. While the bulk of the lower mantle
appears largely isotropic (e.g., Chang et al., 2015; Panning & Romanowicz, 2006), seismic anisotropy has been
found in the lowermost 200-300 km of the mantle (e.g., Asplet et al., 2023; Lay et al., 1998; Nowacki et al., 2010;
Wolf & Long, 2022; Wookey et al., 2005), known as the D’’ layer. Seismic anisotropy can be induced by defor-
mation and alignment of minerals due to mantle convection. Thus, observations of seismic anisotropy are helpful
to infer dynamic processes in Earth's interior (e.g., Long & Becker, 2010). Seismic anisotropy can be detected
through the analysis of shear waves, specifically how they split into fast and slow components in the presence of
anisotropy (e.g., Long & Silver, 2009).

Through analyses of deep mantle anisotropy, better knowledge about flow patterns at the base of the mantle
can be obtained, potentially elucidating several big-picture aspects of mantle dynamics, such as the origin and
evolution of large-low velocity provinces (LLVPs), the fate of subducted slabs, and core-mantle boundary
(CMB) heat flow (e.g., Bercovici & Karato, 2003; Hernlund et al., 2005; Wenk & Romanowicz, 2017; Wolf &
Evans, 2022). Based on several previous regional studies (e.g., Cottaar & Romanowicz, 2013; Deng et al., 2017;
Lynner & Long, 2014; Reiss et al., 2019; Wang & Wen, 2004), it has been suggested that lowermost mantle
anisotropy is particularly strong, and thus easily observable, near LLVP edges (e.g., Reiss et al., 2019; Wenk &
Romanowicz, 2017). This may reflect strong deformation, perhaps due to mantle flow impinging on their sides
(e.g., Li & Zhong, 2017; McNamara et al., 2010), or due to the generation of mantle plumes at LLVP edges (e.g.,
Li & Zhong, 2017; Steinberger & Torsvik, 2012). Subducting slabs likely represent one of the main drivers of
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flow and deformation at the base of the mantle (e.g., Bercovici & Karato, 2003; Chandler et al., 2021; McNamara
et al., 2002; Tackley, 2000), and several studies have identified seismic anisotropy associated with slab remnants
at the base of the mantle (e.g., Long, 2009; Nowacki et al., 2010; Wolf & Long, 2022), in locations away from
LLVP edges. More observations, with increased resolution of anisotropic regions of the lowermost mantle, will
continue to shed light on the patterns and drivers of flow in the deepest mantle, the interactions among different
deep mantle structures (e.g., LLVPs, hotspots, ULVZs, and subducted paleoslabs), and their respective roles in
deep mantle dynamics and evolution.

In this study, we compile a global digital database of seismic anisotropy locations in the D'’ layer that have been
detected to date (Table 1; Figure 1). We make this database openly available on GitHub (https://github.com/
wolfjonathan/Deep_Mantle_Anisotropy_Database) and in a data repository (Wolf et al., 2023c), in the hope that
it will enable future investigations of D'’ anisotropy in the context of deep mantle composition and dynamics.
We use these global data set to investigate whether there is a statistical spatial correlation between D'’ anisotropy
locations and edges of LLVPs, as has been suggested previously (e.g., Wenk & Romanowicz, 2017).

2. Strategies to Analyze Deep Mantle Anisotropy

D’ anisotropy has been explored with different strategies using a variety of seismic body wave phases (Figure 2).
These splitting methods have been refined over time, and their strengths and weaknesses were explored and
different pitfalls were pointed out. We distinguish between these different methods in our database (Table 1;
Figure 2). The increasing availability of computing resources enables detailed assessments of existing methods
to analyze deep mantle anisotropy as well as the development of new strategies (e.g., Komatitsch et al., 2010;
Nowacki & Wookey, 2016; Parisi et al., 2018; Wolf et al., 2022a, 2022b, 2023b).

Many early studies measured differential SV-SH travel times from teleseismic S, ScS and S ;. waves (Figure 2a),
which are interpreted as being due to D'’ anisotropy (e.g., Kendall & Silver, 1998; Pulliam & Sen, 1998; Rokosky
et al., 2004). Recent studies, however, have demonstrated that under some circumstances, differential SV-SH
travel times can also be caused by isotropic structure (e.g., Borgeaud et al., 2016; Komatitsch et al., 2010; Parisi
et al., 2018) for waves that are initially polarized to have both SV and SH energy. Therefore, it is unclear to what
extent previously reported SV-SH differential times conclusively require deep mantle anisotropy.

Additionally, measurements of polarities of S phases that turn in the lowermost mantle (Figure 2b) have been
used to infer deep mantle anisotropy (e.g., Garnero, Maupin, et al., 2004; Maupin et al., 2005). Later studies
expanded polarity analyses to consider D'’-reflected SdS and PdP waves (Figure 2b; e.g., Pisconti et al., 2019;
Thomas et al., 2011). Some of these studies show that changes in polarity are likely caused by the presence
of seismic anisotropy (e.g., Garnero, Maupin, et al., 2004; Maupin et al., 2005), and others use polarities of
reflected waves as an additional constraint on the nature of an anisotropic D'’ region along with a different
method (Pisconti et al., 2019, 2023).

Wang and Wen (2004) and Niu and Perez (2004) were among the first studies to interpret differences in SKS and
SKKS splitting in terms of deep mantle anisotropy. This technique became increasingly useful when applied to
larger data sets (e.g., Deng et al., 2017; Long, 2009). The SKS-SKKS differential splitting technique relies on
the argument that the raypaths of SKS and SKKS are similar in the upper mantle; therefore, large differences in
splitting between these phases can generally be attributed to anisotropy in the lowermost mantle. This assumption
is generally valid if the difference in splitting due to deep mantle anisotropy is sufficiently large (e.g., Tesoniero
et al., 2020), although it has been shown that small differences in SKS-SKKS splitting can be due to upper mantle
structure (e.g., Lin et al., 2014).

Wookey et al. (2005) developed the S-ScS differential splitting technique, which has been widely used since then
(e.g., Asplet et al., 2023; Creasy et al., 2017; Nowacki et al., 2010; Pisconti et al., 2023). This method exploits
the fact that S and ScS waves have very similar raypaths in the upper mantle beneath the source and receiver.
However, only ScS potentially experiences shear wave splitting due to deep mantle anisotropy and this contri-
bution can be extracted by comparison to S splitting. The validity and potential pitfalls of this method have been
thoroughly investigated using full-wave simulations (Nowacki & Wookey, 2016; Wolf et al., 2022a, 2022b). It
has been demonstrated that the initial implementation of the S-ScS differential splitting technique, which does
not explicitly account for the radial component phase shift due to the CMB reflection, can introduce apparent
splitting under certain circumstances even when D'’ anisotropy is not present (Wolf et al., 2022a). Specifically,
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Studies (First Column) That Have Suggested the Presence of Deep Mantle Seismic Anisotropy Based on Body Wave
Analysis
Study Region Modeled flow directions
1. Differential SV-SH travel times (S, S, ScS)
Lay and Helmberger (1983)*°  Caribbean No
Lay and Young (1991) Alaska No
Vinnik et al. (1995) Central Pacific No
Kendall and Silver (1996) Caribbean No
Matzel et al. (1996) Alaska No
Ding and Helmberger (1997) Caribbean No
Garnero and Lay (1997) Alaska No
Vinnik et al. (1998) Central Pacific No
Ritsema et al. (1998) Central Pacific No
Pulliam and Sen (1998) Central Pacific No
Russell et al. (1998) Central Pacific No
Kendall and Silver (1998)%° Central Pacific No
Russell et al. (1999) Central Pacific No
Wysession et al. (1999) Alaska No
Ritsema (2000) Indian Ocean No
Fouch et al. (2001) Alaska No
Thomas and Kendall (2002) North Asia No
Garnero, Moore, et al. (2004)*  Atlantic Ocean No
Rokosky et al. (2004) Caribbean No
Rokosky et al. (2006) Caribbean No
S. R. Ford et al. (2006) South Pacific No
Thomas et al. (2007) Southeast Asia No
Usui et al. (2008) Antarctic Ocean No
Yang et al. (2008) North Asia No
2. Polarities (S, SdS, PdP)
Garnero, Maupin, et al. (2004)  Caribbean No
Maupin et al. (2005) Caribbean No
Thomas et al. (2011) North Asia; Caribbean No
Pisconti et al. (2019) Atlantic Ocean Northeast
Pisconti et al. (2023) Atlantic Ocean East-Northeast
3. SKS-SKKS-S3KS-PKS differential splitting
Wang and Wen (2004) West Africa No
Niu and Perez (2004) Single paths across globe No
Long (2009) Eastern Pacific No
He and Long (2011) Western Pacific No
Vanacore and Niu (2011) Northwest Pacific Ocean Upwelling
Lynner and Long (2012) Central Africa No
Lynner and Long (2014) Africa; South Europe No
Roy et al. (2014) Southeast Asia No
Long and Lynner (2015) East Europe No
H. A. Ford et al. (2015) West Africa Horizontal and upwelling
WOLF ET AL.
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Table 1

Continued

Study Region Modeled flow directions

Creasy et al. (2017) Indian Ocean; Antarctic Ocean Inconclusive; North-northeast/South-southwest

Deng et al. (2017) East Pacific Ocean No

Wolf et al. (2019) North Europe Horizontal, upwelling

Grund and Ritter (2019) Central, Northern Europe; North Asia No

Reiss et al. (2019)° South Europe; Africa Northwest/Southeast; Southwest, upwelling

Asplet et al. (2020) Northeast Pacific Ocean No

Lutz et al. (2020) Western USA ~West

Creasy et al. (2021) North Asia North-Northeast/South-southwest

Wolf and Long (2022) Northeast Pacific Ocean South

Wolf et al. (2023a) Northeast Pacific Ocean; Western USA  No

Asplet et al. (2023) Northeast Pacific Ocean Northwest or Southwest/up-downwelling

Wolf and Long (2023) Southeast Asia Southwest

4. S-ScS differential splitting

Wookey et al. (2005) Northwest Pacific No

Wookey and Kendall (2008) North Asia South

Nowacki et al. (2010) Western USA; Caribbean No

H. A. Ford et al. (2015) West Africa Horizontal and upwelling

Creasy et al. (2017) Indian Ocean; Antarctic Ocean Inconclusive; North-northeast/South-southwest

Rao et al. (2017) Indian Ocean No

Pisconti et al. (2019)*° Atlantic Ocean Northeast

Wolf et al. (2019) Northern Europe Horizontal and upwelling

Creasy et al. (2021) North Asia North-Northeast/South-southwest

Wolf et al. (2022a) East Asia No

Pisconti et al. (2023)° Atlantic Ocean East-Northeast

Asplet et al. (2023) Northeast Pacific Ocean Northwest or Southwest/up-downwelling

5. Regional anisotropic inversions

Kawai and Geller (2010) Central Pacific Ocean No

Suzuki et al. (2021) North Pacific Ocean; Alaska No

Note. The table is primarily ordered by the method used to detect seismic anisotropy, and secondarily ordered by the year

of publication. The second column indicates the region for which deep mantle anisotropy has been suggested, and the third

column lists whether flow directions were modeled, and if so, which directions are considered to be most likely. If iso is

appended to the study name in the first column, this indicates that the authors interpret at least some of their observations as

likely indicative of the absence of D'’ anisotropy. These interpretations are difficult to account for objectively in the context

of our compiled database, but we still report them in this table.
measurements are accurate when the source-side anisotropy contribution is absent or small, or when ScS is
initially (nearly) completely SH-polarized due to the source mechanism. However, artifacts may be introduced
in other circumstances (Wolf et al., 2022a). Furthermore, full-wave (i.e., non-ray theoretical) effects have been
shown to be important for heterogeneous anisotropy (e.g., Nowacki & Wookey, 2016; Wolf et al., 2022b).
Anisotropic inversions that focus on a specific region represent another approach to investigate D'’ anisotropy (Kawai
& Geller, 2010; Suzuki et al., 2021). Such studies have used full seismic waveforms around the S and ScS arrival
times at teleseismic distances to invert for radial anisotropy. These studies, by construction, consider full-wave
effects but are sometimes hard to compare to splitting studies due to the simplified assumption of radial anisotropy.
A relatively recent development is the implementation of S splitting measurements that explicitly consider
the initial source polarization of S ;; (e.g., Cottaar & Romanowicz, 2013; Wolf & Long, 2022) (in the following
abbreviated as S ., splitting measurements). These measurements are compatible with the results of previous
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LLVP

studies that have shown that differential SV-SH times can be accumulated in
an isotropic structure (e.g., Borgeaud et al., 2016; Komatitsch et al., 2010;
Parisi et al., 2018) and have been tested in detail using global wavefield simu-
lations (Wolf et al., 2023b).

This suite of body wave methods to observe D'’ anisotropy is sensitive to
different aspects of anisotropic geometry. For example, the regional aniso-
tropic inversions for D'’ anisotropy that have been conducted to date, by
construction, resolve radial anisotropy. Splitting studies, often resolve more
complex anisotropy with an azimuthal component; however, the sensitivity to
different types of anisotropy depends on the raypath geometry. For example,

# Methods:

SKS, SKKS, and ScS waves generally sample D'’ obliquely, but SKS is often
1 2 3 4 closer to vertical and ScS closer to the horizontal (Figure 2), although the
details depend on the raypath configurations. Similarly, S, splitting results

Figure 1. Locations for which the presence of deep mantle seismic anisotropy  have often been interpreted in terms of radial anisotropy. However, using a

has been suggested in previous studies. The number of methods used to
analyze deep mantle anisotropy in these regions is shown with violet shading
(see legend), using the method categorization from Table 1. Low velocity

single measurement, it is impossible to distinguish whether seismic anisot-
ropy is sampled while S, travels horizontally along the CMB or obliquely

features are shown in gray as determined by regions where at least 3 out of 5 through D"". Therefore, for a single S measurement, it is hard to distinguish
tomography models assigned a particular point to a slow cluster at a depth of between radial anisotropy, sampled at the CMB and more complex seismic
2,700 km in the cluster analysis performed by Lekic et al. (2012). anisotropy sampled on the upgoing (or downgoing) leg through D’’.

3. Compilation of D'’ Anisotropy Locations

We compile and digitize the full set of lowermost mantle locations for which previous studies have suggested the
presence of D'’ anisotropy, as presented in the original publications. These locations are hand-digitized based
mostly on the figures provided in the studies, but also based on information given in text and corresponding
supplementary materials. We present a global map of these previously suggested deep mantle anisotropy loca-
tions in Figure 1 and different sub-data sets for different analysis methods in Figures 2a—2f. The reason for
distinguishing between different splitting strategies is that each of them has distinct strengths and weaknesses,
as described in Section 2. Despite these differences, we chose to incorporate all previous studies in our analysis.
Users of the database can choose themselves which studies they consider relevant for their research purpose. The
full list of studies, grouped using the method used to analyze deep mantle anisotropy, and further grouped by year
of publication, is shown in Table 1. Overall, seismic anisotropy has been found for ~26% of D"’.

4. Statistical Analysis: Is There a Spatial Correlation Between Anisotropy Locations
and LLVP Edges?

We conduct a statistical analysis on the global data set, with the specific goal of testing whether deep mantle seismic
anisotropy is more likely to be found near the edges of LLVPs than elsewhere. For this analysis, we create a regular,
equally spaced, spherical grid with 10,242 grid points, leading to a spacing of 2.5° between grid points (and thus
using equal area bins). For each grid point, we check whether it marks a location at which D'’ mantle anisotropy
has been suggested previously or not. We then calculate the shortest distance of each grid point that indicates deep
mantle anisotropy to the border of the nearest LLVPs in the deep mantle. We determine these borders by defining
LLVP locations as regions where at least 3 out of 5 tomography models show low velocity structures at 2,700 km
depth in the cluster analysis of Lekic et al. (2012). Finally, we calculate the average distance of all grid points mark-
ing deep mantle seismic anisotropy to the nearest edge of an LLVP. The precise LLVP edge locations are used in
these calculations, as defined above, without interpolation to the grid. For comparison, we generate a set of 1,000
random distributions of deep mantle anisotropy by applying 1,000 uniform random spherical rotations of the actual
anisotropy distribution (i.e., maintaining the relative orientation of regions). We then repeat our minimum distance
calculations for each distribution. Finally, we compare our results using the actual distribution with the results
using the distribution of average distances obtained through the random rotations. Unfortunately, reports of null
detections of deep mantle anisotropy are rare in the literature and cannot be usefully incorporated into our analysis.

Our statistical analysis shows that the mean distance of D'’ anisotropy locations to the nearest LLVP regions
approximately agrees with the mean value obtained from the 1,000 random rotations (Figure 3a), suggesting
that there is no global spatial correlation of D'” anisotropy with the edges of LLVPs. We also conducted separate
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Figure 2. Summary of D’ anisotropy distribution, based on different measurement methods and ordered as in Table 1. (a) Top: Cross-section of seismic phases used to
determine differential SV-SH travel times. The source is represented as a black star and stations as red triangles. Middle: Seismic anisotropy locations identified using
differential SV-SH travel times. The plotting conventions are as in Figure 1. Bottom: Real data example after Garnero, Maupin, et al. (2004), showing a differential
arrival time for the S seismic phase in radial and transverse component seismograms (blue shading). The waveforms were recorded at station WHY for an event that
occurred on 8 October 1998. (b) Polarity studies; the real data example is after Garnero and Lay (2003) and shows an anomalous radial component S ;;; polarity (blue
shading). Otherwise, as in all other panels, plotting conventions are the same as in panel (a). (c) *KS differential splitting measurements; the real data example is after
‘Wolf and Long (2022) and shows differential splitting of SKS and SKKS (blue shading). (d) S-ScS differential splitting; the real data example of S and ScS waveforms
is after Wolf et al. (2019) (blue shading). (e) Regional anisotropic inversions; real data example of a seismogram around S and ScS arrivals (orange shading) is as

in panel (d). (f) S, splitting measurements that explicitly consider the wave's initial polarization; the real data example is after Wolf and Long (2023), showing an
example radial and transverse S ;. waveforms that exhibit splitting for a case in which SKS splitting is null (blue shading).

analyses for D'’ anisotropy locations detected using three particularly commonly used methods, including
SKS-SKKS differential splitting, S-ScS differential splitting and S ;. observations (differential travel times and/
or Syt 0 SPlitting measurements). This consideration separately allows us to explicitly consider the global ray
coverage for each method (Section 5), as different epicentral distances are used for each. The results show that
D’ anisotropy is, on average, slightly farther away from the LLVP edges than for a set of 1,000 random rotations
of D" anisotropy for S and S-ScS. For SKS-SKKS differential splitting, D"’ anisotropy is slightly closer to an
LLVP edge than expected for the random distribution. However, these differences are slight and we do not view
them as statistically significant.

5. Discussion

While our straightforward statistical analysis is informative, it does not consider several potential factors influ-
encing the distribution of previously detected deep mantle anisotropy locations. For example, it is immedi-
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Figure 3. Statistical assessment of the spatial correlation between large-low velocity province edges and seismic anisotropy. (a) Histogram (gray) for 1,000 random
spherical rotations of all deep mantle anisotropy locations (Section 4). The mean of the distribution is shown by a solid blue vertical line and the median as a black

line (see legend). (Mean and median are identical for this distribution). One standard deviation of the random distribution is shown on both sides as vertical dashed
black lines. The result of the actual deep mantle anisotropy distribution (Figure 1) is shown as a vertical solid red line. (b) Same as panel (a), for all studies that use S,
to measure deep mantle anisotropy. (c) Same as panel (a), for S, splitting measurements that explicitly consider the wave's initial polarization. (The deviation from

a normal distribution is due to the small number of measurements made with this method, as shown in Figure 2f.) (d) Same as panel (a), for SKS-SKKS differential
splitting. (e) Same as panel (a), for S-ScS differential splitting.

ately apparent in Figure 1 that fewer D'’ anisotropy locations have been identified in the southern than in the
northern hemisphere. This observation is unlikely to be linked to mantle dynamics but is rather caused by the
unequal global ray coverage. To interrogate whether and how ray coverage influences the results of our statistical
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correlation, we consider the ray coverage in the D"’ layer for the different data subsets shown in Figure 3. Expand-
ing upon previous work (e.g., Creasy et al., 2019), we report ray coverage individually for each method that
can be used to diagnose D"’ anisotropy, including S, splitting, using realistic source-receiver configurations.
Because our aim is to illustrate which regions are well-sampled by commonly used splitting methods and where
seismic anisotropy has and has not (yet) been detected, we do not include PdP and SdS polarity measurements
here. Such measurements are usually used as an additional constraint along with complementary splitting data
(e.g., Pisconti et al., 2019, 2023) rather than being interpreted as uniquely indicative of deep mantle anisotropy.
We estimate this ray coverage by considering all events with moment magnitudes 6 or larger (according to the
International Seismological Center Bulletin, International Seismological Centre (2023)) that occurred between
January 1990 and March 2023, and the station distribution covered by most common data request clients (see
Acknowledgments). We use ObsPy (Beyreuther et al., 2010) to calculate the lowermost mantle ray coverage of
S (epicentral distance 103°-125°; Figure 4a), SKS-SKKS (epicentral distance 108°-122°; Figure 4b), and
S-ScS (epicentral distance 60°-85°; Figure 4c) at the epicentral distances used in splitting studies. We combine
these results in Figure 4d for a map of global ray coverage using any of these methods. For each splitting method,
we assign every grid point a number between 1 and 0, based on the number of rays that sample it, normalized to
the maximum number of rays globally for any grid point (Figure 4). Figure 4 shows that D'’ seismic anisotropy
has been suggested in many well-sampled regions, but not in all of them.

This exercise demonstrates that it is essential to consider ray coverage when assessing the spatial distribution
of deep mantle seismic anisotropy. However, ray coverage is difficult to quantitatively account for a statistical
analysis such as that discussed in Section 4. One approach to understanding how well-sampled LLVP edges are
compared to the global average is to compare the mean and median ray coverage of bins that mark LLVP edges
with the global mean and median ray coverage. For the methods investigated in Figure 4, both the mean and
medium ray coverage tends to be ~20% lower at the LLVP edges than for the global average. This discrepancy
may influence the results of our statistical analysis, which implicitly assumes equal ray coverage throughout
the deep mantle. The raypath sampling maps (Figure 4) can be used to determine new target regions with dense
raypath coverage for which seismic anisotropy has not yet been analyzed in past studies.

Another factor potentially influencing our analysis is the difficulty of conclusively identifying the absence of
anisotropy in D’’. While null splitting measurements for deep mantle anisotropy are regularly reported for specific
raypaths (e.g., Asplet et al., 2020; H. A. Ford et al., 2015; Garnero, Maupin, et al., 2004; Reiss et al., 2019), they
are only sometimes interpreted as being indicative of an isotropic D'’ (Table 1). The reason is that a null meas-
urement along a single raypath cannot, by itself, rule out the presence of seismic anisotropy, and confirmation of
the absence of seismic anisotropy in the region under study requires raypath sampling from multiple directions.
Previous studies have handled this issue in different ways: Some explicitly invoke isotropy as a likely explana-
tion if no splitting is observed from a single direction (e.g., Kendall & Silver, 1998; Pisconti et al., 2019; Reiss
et al., 2019), while other studies are more cautious (e.g., H. A. Ford et al., 2015; Wolf & Long, 2023) in their
interpretation. Some studies that measure null splitting for certain sampling directions explicitly consider the
possibility that they have sampled a null direction of the anisotropy (Asplet et al., 2023; H. A. Ford et al., 2015).
While investigators may be aware of this ambiguity, whether they find their observations sufficiently indicative
of isotropy is a matter of interpretation. Therefore, it is very challenging to consider null measurements of D"’
anisotropy in a global analysis.

Apart from uneven ray coverage, there are other potential factors that may influence the results of our statis-
tical analysis. For example, our results are potentially influenced by the fact that after it had been suggested
that D"’ seismic anisotropy may be stronger along LLVP edges based on regional studies (e.g., Cottaar &
Romanowicz, 2013; Wang & Wen, 2004), subsequent studies may have tended to preferentially search for D"’
anisotropy at these edges. Again, this factor is difficult to quantify. Investigations of correlations that include
estimates of anisotropy strength, rather than a binary finding of anisotropy detected/not detected, would be highly
desirable, but are currently extremely challenging. Anisotropy strengths determined using different methods are
not necessarily comparable, as raypaths are different, methods are sensitive to different types of anisotropy (e.g.,
radial or azimuthal anisotropy; see Section 2), and the apparent anisotropic strengths depend on the sampling
direction. Additional uncertainty is added by the subjective definition of exactly where the LLVP edge is located.
Estimates of LLVP edge locations can vary between different tomography models, in some places by as much as
1,000 km (e.g., Garnero et al., 2016; Lekic et al., 2012).
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(a) Sdiff splitting

®>70% ® >40% ©>10% © Seismic anisotropy

©>3% >1% >0.3% }Ray coverage —LLVP edge

Figure 4. Global raypath coverage for (a) S, (b) SKS-SKKS differential splitting, (c) S-ScS differential splitting
measurements, and (d) all these methods together, calculated for all events with moment magnitudes greater than 6 between
January 1990 and March 2023. Ray coverage is reported relative to the maximum bin (100%, see legend). Large-low velocity
province edges are indicated by orange lines. The right column additionally shows locations for which the presence of seismic
anisotropy has been previously suggested (violet color), hinting at which regions with good coverage the different techniques
can be applied to in future studies.

One simple question that we can answer with our compiled database is whether previously suggested locations of
deep mantle anisotropy are primarily located within or outside of LLVPs. Overall, 33% of the sampled area of D"’
outside LLVPs has been found to be anisotropic, while this value is only 21% inside the LLVPs. The significance
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of this observation, however, is influenced by the same caveats as the potential correlation with LLVP edges. In
particular, ray coverage within LLVPs tends to be poorer than outside them (Figure 4); therefore, it is less likely
that seismic anisotropy is detected within LLVPs than elsewhere.

Because of the caveats discussed above, whether D'’ anisotropy preferentially occurs near LLVP edges on a
global scale remains inconclusive. With the increasing availability of D’ seismic anisotropy studies, however,
this question can be more confidently pursued in future work. One way to do this is to apply a uniform meth-
odology to investigate deep mantle anisotropy globally, exploiting all available seismic data (Figure 4). Seis-
mic anisotropy can also be predicted through geodynamic modeling calculations (Chandler et al., 2021; Cottaar
et al., 2014; Walker et al., 2011). Therefore, our understanding of the global distribution of seismic anisotropy in
the D’/ layer and its relation with the lowermost mantle structures and dynamics can also be improved by compar-
ing seismically determined anisotropy models with results of geodynamic modeling experiments.

6. Conclusion

We create and make available a global digital database of locations at which seismic anisotropy in the D"’ layer
has been detected using a variety of body wave phases. We encourage researchers to reach out to the corre-
sponding author to add new data sets and results to the database and plan to regularly update it as new studies
are published. Using this database at the time of writing, we show that on a global scale, deep mantle seismic
anisotropy is not more likely to be found at the edges of the LLVPs than a random distribution would suggest.
One factor influencing our statistical assessment is ray coverage, which tends to be poorer than the global average
at LLVP edges, although this factor is difficult to explicitly account for our analysis.

Data Availability Statement

The compiled database of deep mantle anisotropy locations is available at a data repository (Wolf et al., 2023c)
and https://github.com/wolfjonathan/Deep_Mantle_Anisotropy_Database.
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