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ABSTRACT: The properties of soft electronic materials depend
on the coupling of electronic and conformational degrees of
freedom over a wide range of spatiotemporal scales. The
description of such properties requires multiscale approaches
capable of, at the same time, accessing electronic properties and
sampling the conformational space of soft materials. This could in
principle be realized by connecting the coarse-grained (CG)
methodologies required for adequate conformational sampling to
conformationally averaged electronic property distributions via
backmapping to atomistic-resolution level models and repeated quantum-chemical calculations. Computational demands of such
approaches, however, have hindered their application in high-throughput computer-aided soft materials discovery. Here, we present
a method that, combining machine learning and CG techniques, can replace traditional backmapping-based approaches without
sacrificing accuracy. We illustrate the method for an emerging class of soft electronic materials, namely, nonconjugated, radical-
containing polymers, promising materials for all-organic energy storage. Supervised machine learning models are trained to learn the
dependence of electronic properties on polymer conformation at CG resolutions. We then parametrize CG models that retain
electronic structure information, simulate CG condensed phases, and predict the electronic properties of such phases solely from the
CG degrees of freedom. We validate our method by comparing it against a full backmapping-based approach and find good
agreement between both methods. This work demonstrates the potential of the proposed method to accelerate multiscale workflows
and provides a framework for the development of CG models that retain electronic structure information.

■ INTRODUCTION
Radical-containing polymers, also known as open-shell macro-
molecules, macromolecular radicals, or simply radical poly-
mers, possess intriguing redox, optoelectronic, and magnetic
characteristics that make them appealing for applications
ranging from energy storage and optoelectronics to spintronics
and memory storage.1−6 Nonconjugated, radical-containing
polymers are organic polymers that have a nonconjugated
backbone bearing pendant stable radical sites. They constitute
a class of charge-carrying polymers that do not rely on π-
conjugation to transport charges successfully. The rational
design of radical polymers with enhanced characteristics could
be greatly advanced by deriving relationships that connect their
molecular structure, morphology, and electronic properties.
These relationships are inherently multiscale, involving the
coupling of electronic and conformational degrees of freedom
over a wide range of spatiotemporal scales. New modeling
approaches capable of describing such coupling are needed.
Recent work has shown that coarse-grained (CG) models

can be used to probe polymeric material length and time scales
reaching the mesoscale.7−10 In contrast, explicit quantum-
chemical calculations, usually using density functional theory
(DFT), which are necessary to access electronic proper-
ties,11−13 are extraordinarily demanding and can only capture
picosecond and Angstrom-level processes. To bridge these two

scales, that is, to take into account large-scale morphological
features generated via self-assembly processes (possibly as a
function of processing conditions) when computing electronic
properties, recent e"orts have sought to introduce new
multiscale modeling approaches.12,14 In such approaches, the
soft material morphology generated via CG simulations is
backmapped to the atomistic resolution required for the
quantum-chemical calculations, and such calculations are then
performed on conformations drawn from the backmapped
morphologies. These multiscale approaches have been
primarily developed in the context of organic semiconduc-
tors12,14−17 and provide a means to access the conformational
dependence of electronic properties. However, considerable
computational demands and workflow complexity of such have
limited their applicability for high-throughput computer-aided
materials discovery.
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Computational studies of radical-containing polymers have
been limited.1,2,13,18−24 Kemper et al. performed what appear
to be the first18 and one of the few molecular dynamics (MD)
investigations of radical polymers. They simulated the widely
used p-type radical polymer poly(2,2,6,6-tetramethylpiperidi-
nyloxy-4-yl methacrylate) (PTMA), a polymethacrylate with
pendant nitroxide radical TEMPO (2,2,6,6-tetramethylpiper-
idin-1-oxyl) groups, and provided early insights into some of
PTMA’s molecular-scale dynamics and its coupling to
electronic properties.18−20 More recent e"orts that relied on
coarser models have sought to predict the conductivity of
radical polymers.22,23 Such models require as input molecular-
level information about the specific redox-active unit in order
to be predictive and to di"erentiate between the performance
of di"erent polymers. A di"erent type of e"ort has focused on
molecule-specific characteristics by exploring sets of di"erent
redox-active units with DFT-based methods.13,24 A limitation
of these studies has been the fact that they do not account for
condensed-phase conditions, which may a"ect the resulting
electronic properties.
In this work, we rely on machine learning (ML) to connect

conformational properties to electronic structure properties in
condensed phases. The use of ML techniques to study
polymers has been limited by a variety of inherent
challenges.25−28 These include the complexity of data
representation in systems that are disordered, the dependence
of properties on an ensemble of configurations rather than on a
single one, and the dependence of processes on interactions
that span multiple length and time scales. To the best of our
knowledge, previous work aimed at predicting the electronic
properties of polymers using ML has focused exclusively on
polythiophene-based conjugated polymers.29−33 Jackson et al.,
in particular, introduced the concept of electronic coarse-

graining (ECG),29 a ML-based methodology aimed at the
prediction of electronic properties based on a molecule’s CG
representation, and applied it mostly to prototypical
conjugated polymers and single molecules in vacuum.29,31,34,35
However, no actual CG models, that require not only a CG
mapping but also bonded and nonbonded interaction
parameters, have been developed so far in the ECG framework;
therefore, no validation against traditional backmapping-based
approaches has been made. A comparison against back-
mapping-based approaches has been made by Simine et al.,
where a similar approach to ECG is used to infer the
absorption spectra of a polythiophene system from CG degrees
of freedom. However, significant discrepancies between the
two approaches were reported and ascribed to the back-
mapping protocol.32 Building on the ECG work, in what
follows, we present an e#cient ML-enabled method that can
replace state-of-the-art but demanding backmapping-based
multiscale approaches. We illustrate the method in the context
of nonconjugated, radical-containing polymers, which repre-
sent an emerging class of conducting materials. We begin by
(1) training supervised ML models to learn the dependence of
several electronic properties on molecular conformations at
CG resolution and identifying CG mappings that retain
electronic structure information. For this first part, we take
inspiration from the ECG methodology.29 Next, we (2)
parametrize CG models that retain electronic structure
information using established10,36 coarse-graining techniques.
Finally, we (3) use such CG models to simulate condensed
phases and the trained ML models to predict electronic
properties solely from the CG degrees of freedom. We validate
our method by comparing its results to those obtained via a
standard backmapping-based approach and show that the
proposed method o"ers a 106 speedup with respect to

Figure 1. Schematic representation of the proposed method for nonconjugated radical polymers. (A) PTMA radical polymer: its nonconjugated
backbone localizes electronic structure features, such as the SOMO orbital represented, to the pendant radical groups. Hydrogen atoms are only
shown on the radical group on which the SOMO orbital is localized. (B) Development: starting from an all-atom (AA) model, conformations are
sampled via MD simulations. Quantum-chemical calculations are performed on those conformations to generate the training data set; the data set
serves to train machine learning models, in this case NNs, at di"erent levels of CG resolution. The information gained during training is used to
inform the development of CG models that are built on reference AA data via structure-based coarse-graining techniques. (C) Application: the CG
models permit study of structures over larger spatiotemporal scales; the trained machine learning models are used to predict electronic properties
based on the conformations taken from the CG morphology. The renderings of the morphologies show only polymer backbones for clarity.
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backmapping-based approaches without loss of accuracy. By
exploring di"erent coarse-graining strategies, we are able to
delineate general guidelines for development of CG models
that retain electronic structure information and outline a viable
pathway to accelerate multiscale workflows aimed at predicting
electronic properties while encompassing CG-level spatiotem-
poral scales.

■ RESULTS
Method Overview. Figure 1 shows a schematic of the

proposed method applied to nonconjugated, radical polymers.
Only the main aspects of the method are outlined here, and
readers are referred to the Materials and Methods for
additional details. To illustrate the method, we use the well-
studied, p-type radical polymer PTMA, which bears pendant
TEMPO units (Figure 1A). An all-atom (AA) model is used to
generate condensed-phase conformations of PTMA using MD
simulations. The electronic properties of the resulting
configurations are computed via DFT calculations (Figure
1B). Given the nonconjugated backbone of this class of radical-
containing polymers, the monomers can be treated as
electronically independent (see, e.g., the singly occupied
molecular orbital (SOMO) distribution in Figure 1A). The
data generated in this way, all-atom molecular conformations
with associated electronic properties, are used as training data
to develop supervised ML models. More specifically, we train
feed-forward artificial neural networks (NNs) using the
conformations (in the form of a reciprocal distance matrix)
as input, and the electronic properties as labels. The all-atom
molecular conformations can be mapped onto the correspond-
ing CG configurations and NNs can therefore be trained at
dif ferent CG levels of resolution (Figure 1B). We build two
di"erent data sets: one containing single monomer con-
formations and associated monomer conformation-dependent

properties (SOMO energy level, spin density) and a second
containing dimer conformations and associated dimer
conformation-dependent properties (electronic couplings).
After training, we generate two main outputs: (1) trained
NNs for the di"erent electronic properties (one for each
di"erent resolution) and (2) information on the CG mapping
required for the CG model to retain su#cient information
about specific electronic properties. The latter information,
together with established coarse-graining techniques, are used
to develop CG models for simulation of polymer condensed
phases over larger spatial and temporal scales; the trained NNs
allow one to retrieve electronic properties at the CG level with
only negligible computational demands (Figure 1C), thereby
permitting the investigation of electronic properties over large
ensembles of CG morphologies.

Monomer Conformation-Dependent Electronic Prop-
erties. We first examine the performance of the NN models
for prediction of electronic properties that depend on the
conformation of a single PTMA monomer, using the SOMO
energy level and the spin density as examples of the target
properties to be learned. The SOMO energy level determines
the position of the transport energy level and hence the charge
transport type (p-type vs n-type), while knowledge of the spin
density distribution gives access to the degree of (de)-
localization of the unpaired electron(s). The latter property
contributes to the stability of the radical center. Both energy
levels and spin densities are conformation dependent; the
extent to which they depend on conformation contributes to
the degree of energetic disorder in the system.
Figure 2 shows that SOMO energies and spin densities can

be predicted at CG resolution. Figure 2 shows correlation plots
between the DFT reference SOMO energies and spin
densities, computed at the B3LYP/6-311G(d,p) level of DFT
(Materials and Methods), and the same quantities as predicted

Figure 2. Predictive performance of NN models for monomer conformation-dependent electronic properties at all-atom and coarse-grained
resolutions. Two-dimensional histograms showing the best accuracy achieved by the NNs for di"erent resolutions, the reference all-atom
resolution, united-atom, and CG, when learning (A) SOMO energy levels and (B) spin densities. In the CG case, the mapping used is GBNO1 (see
Figure 3). The R2 scores and RMSE are indicated on each plot and represent the results on the test set. All correlations fit to a linear model with
slope = 1. The NN hyperparameters are optimized for each resolution.
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by the NN model at AA, united-atom (UA), and CG
resolutions. The performance of the NN on the AA
configurations (R2 = 0.978, RMSE = 0.024 eV for SOMO
energies; R2 = 0.932, RMSE = 0.004 for spin densities)
represents the maximum achievable performance for a given
molecular representation, given that all other resolutions
involve a loss of information for the NN model to perform
the regression task on. At UA resolution, the NN also achieves
very good predictive performance (R2 = 0.928, RMSE = 0.044
eV for SOMO energies; R2 = 0.903, RMSE = 0.005 for spin
densities), just below that obtained at AA resolution. At CG
resolution, there is a noticeable drop of performance with
respect to the UA and AA cases, but the NN still provides R2 =
0.793, RMSE = 0.074 eV for SOMO energies and R2 = 0.744,
RMSE = 0.009 for spin densities. To which degree these
increased errors would eventually impact the calculation of
charge transport rates22 is di#cult to estimate and will require
a separate study. The CG mapping used here is “GBNO1” (see
Figure 3B); a detailed investigation of the NN model accuracy
for di"erent CG mapping choices and resolutions is presented
in the next section.
It is useful to investigate the minimum data requirements

needed by the NN to learn monomer conformation-dependent
electronic properties. Figure S1 shows that, after ≈4,000 data
points, the performance of the NN starts to plateau at all
resolutions. This represents a relatively small number of data
points, and calculations at higher levels of theory could
therefore be easily used to train such NNs. We also note that
the required NNs are rather small (e.g., 4 hidden layers with 3
neurons each already maximize the performance at CG
resolutions), and the same performance is achieved for a
relatively wide range of hyperparameters (see Figure S8).
Impact of CG Resolution and Specific CG Mapping.

The CG level of resolution and the specific CG mapping have
considerable influence on the ability of the NN to predict
electronic properties. In this section, we provide an analysis of
resolution that is useful for identifying design principles for CG
models that represent the best compromise between computa-
tional e#ciency and accuracy.

To design CG mappings, we resort to two di"erent
strategies. First, we apply the Graph-Based Coarse-Graining
(GBCG) algorithm of Webb et al. to arrive at a series of
increasingly coarser mappings in a systematic and automated
manner with minimal human intervention.37 Second, we devise
a mapping according to the Martini 3 building-block coarse-
graining strategy.10 All the mappings are shown in Figure 3B;
the atom-to-bead correspondence is given in detail in Figures
S10 and S12. Additional details are provided in the Materials
and Methods and the Supporting Information.
Figure 3A shows how the predictive performance of the NN

model, as quantified by the R2 coe#cient, changes as a function
of the resolution of the molecular representation for the
prediction of the SOMO energy level. We see that GBCG
mappings lead to poor predictive performance (R2 < 0.2), even
at the finest CG resolution level, GBCG1. The same is true for
the Martini 3 CG mapping (CGM3, the resolution of which is
between GBCG1 and GBCG2). Given the high predictive
performance of the UA resolution, these results indicate that
these “standard” CG mappings are missing key degrees of
freedom. Notably, they do not include the nitroxide group
explicitly. As can be seen from Figure 3A (black line), the
explicit inclusion of the nitroxide group (i.e., the positions of
the nitrogen and oxygen atoms are included in the distance
matrix used as the NN input vector) considerably improves the
performance across the di"erent CG mappings, with R2

remaining around 0.8 for GBCG2−GBCG4. Even for
resolution GBCG5, which represents the PTMA monomer
with only 1 site, when expanded to include the explicit
description of the nitroxide group, one can achieve a R2 above
0.6. This result is expected and very recently observed also in
ref 35: the SOMO wave function is localized around the
nitroxide group (see Figure 1A) and, consequently, the
conformation of this group relative to the other atoms in the
TEMPO unit governs the SOMO wave function coe#cients
and associated energy.
Further confirmation of the importance of the nitroxide

group for prediction of SOMO energies comes from a
complementary test, where we exclude either the nitrogen or
the oxygen atom of this group from the UA and AA resolutions

Figure 3. Dependence of the predictive performance of NN models on CG resolution. (A) R2 score on the test set as a function of CG resolution
for prediction of the SOMO energy level: all-atom (AA), united-atom (UA), and CG mappings obtained with the systematic graph-based coarse-
graining approach (GBCGX, with X = [1.5]; blue line, hollow circles) and CG Martini 3 mapping (CGM3, blue triangle). The black data points
(black line, hollow black circles for the GBCG-based mappings, black triangle for the CGM3-based mapping, CGNO) represent mappings where
the nitrogen and oxygen atoms of the nitroxide group are described by an explicit CG site each (represented by semitransparent black circles in the
renderings of (B)). (B) Renderings of the AA, UA, and CG mappings and the underlying atomistic structure. The number of sites that each
resolution entails is also reported. For the detailed atom-to-bead correspondence, see Figures S10 and S12. The NN’s hyperparameters are
optimized for each resolution.
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(Figure S2). Such exclusions lead to a dramatic decrease of
predictive performance at the AA and UA levels, with R2 values
<0.5 (Figure S2). Figure S2 shows that excluding the nitrogen
from the UA and AA representations leads to R2 values of
≈0.42 while excluding the oxygen from the same representa-
tions degrades R2 down to ≈0.1, indicating that the oxygen
position is more informative than that of the nitrogen for
SOMO energy predictions. In the case of strongly localized
radical groups such as the nitroxide in PTMA, the inclusion of
the nitroxide atoms is essential for the NN model to be able to
accurately infer the SOMO energy.
Dimer Conformation-Dependent Electronic Proper-

ties. We now examine the accuracy of NNs for the prediction
of electronic properties that depend on the conformation of a
dimer, using the electronic couplings as the target property to be
learned. Electronic couplings are a key molecular-scale
property that determines charge transport, the latter being in
turn critical for many applications of radical-containing
polymers.1,2 Charge transport in these materials is generally
believed1,2 to occur via a hopping mechanism, where a charge
jumps between a radical site and an adjacent ionized site, in the
case of PTMA, and of p-type transport in general, a cation site.
We approximate the electronic coupling as the orbital overlap
between the SOMO of the neutral radical and the lowest
unoccupied molecular orbital (LUMO) of the cation, ⟨ϕSOMO|
ϕLUMO⟩ (Materials and Methods), and we train NNs to learn
its base 10 logarithm, log10(⟨ϕSOMO|ϕLUMO⟩).
As shown in Figure 4, the logarithm of the electronic

coupling can be learned with good and comparable accuracy at
AA, UA, GBCG1-GBCG2, and CGM3 resolutions. The
predictive performances (on the test set), as quantified by
the R2 coe#cient, are around 0.8−0.81 at AA, UA, GBCG1,
and CGM3 resolutions. The performance gap between AA and
UA resolutions and the best CG resolutions are small,
particularly when compared to the monomer conformation-
dependent properties depicted in Figure 2. Electronic
couplings, however, are significantly more complex, i.e., data-

intensive and requiring larger NNs, and di#cult to learn than
energy levels or spin densities (compare Figures 4A and S1),
across all resolutions. In particular, if a training data set of
≈4,000 data points was su#cient to train good-performing
NNs for the prediction of SOMO energies (Figure S1), at least
≈100,000 data points are necessary for the analogous task on
electronic couplings (Figure 4A). After ≈100,000 data points,
the predictive performance starts to plateau across the di"erent
CG resolutions. Moreover, NNs with 400 neurons per layer are
required (see Table S1). This complexity, both in the data set
size required and NN architecture, is consistent with previous
reports.29,38 Overall, while more demanding, our results
confirm that the task of predicting electronic couplings at
CG resolutions can be accomplished. This is particularly
important given their role in determining charge transport.
Another aspect that di"erentiates electronic couplings from

the monomer-dependent electronic properties is the degree of
chemical detail required by the CG mapping resolution. In
particular, resolving the nitroxide group is not critical in the
case of electronic couplings: adding an explicit description of
the nitroxide group does not improve the results within the
statistical uncertainty of our predictions (compare GBCG1−2
(solid) to GBNO1−2 (dashed) and CGM3 (solid) to CGNO
(dashed) in Figure 4A). This observation can be understood in
terms of the electronic coupling being dominated by the
relative position between the two monomers. The nitroxide
groups do not contribute to the definition of this relative
position, and hence, their explicit representation does not
improve predictions of electronic couplings significantly.

Electronic Properties of Condensed-Phase CG Simu-
lations. We now develop CG models that retain electronic
structure information and apply the trained NNs to predict
electronic properties from condensed-phase CG simulations.
We validate the NN predictions by comparing them against the
electronic properties obtained via the reference, state-of-the-art
approach that requires backmapping and explicit quantum-
chemical calculations.

Figure 4. Predictive performance of NN models for dimer conformation-dependent electronic properties at all-atom and coarse-grained
resolutions. (A) NN performance as a function of training data set size for di"erent resolutions: all-atom (AA), united-atom (UA), GBCG1−2,
GBNO1−2, and CG Martini (CGM3 and CGNO). See Figure 3B for a schematic representation of the mappings. (B) Two-dimensional
histograms showing the best accuracy achieved by the NNs for the di"erent resolutions. The R2 scores and RMSE are indicated on each plot and
represent the results on the test set. The NN’s hyperparameters are optimized for each resolution and data set size.
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To investigate what the most suitable coarse-graining
strategies are when developing CG models that retain
electronic structure information, we first build two CG models
with the same mapping and bonded interactions but di"erent
nonbonded interactions. To realize this, we choose the CGM3
mapping that, as we have seen, allows for good accuracy in
predicting electronic couplings. At the same time, the CGM3
mapping allows us to test two sets of nonbonded interactions
derived via two di"erent CG philosophies, namely, the
building-block CG Martini 3 approach10 and the structure-
based CG IBI method.36 For details on the CG models, see
Materials and Methods and the Supporting Information.
We first consider the results generated with the CGM3 IBI

model (Figure 5A−C). The model is used to produce a
morphology via CG MD, and we then use two methods to
retrieve the electronic couplings of such a CG morphology: the
reference approach that involves backmapping to atomistic
resolution and explicit DFT calculations (taken to be the
ground truth; in red in Figure 5C) and the proposed ML-based
method (in blue in Figure 5C). The agreement between the
two electronic coupling distributions is excellent, with both the
NN-predicted mean (μ) and standard deviation (σ) being
around 1% of the corresponding reference values. We stress
that the trained NN is able to predict electronic couplings of a
CG simulation with an accuracy comparable to that of the
reference approach but at a fraction of the computational cost
(see the next section for a discussion on the computational
e#ciency). Moreover, the NN was trained on CG
conformations mapped from an AA MD simulation and had
not seen conformations drawn from a CG simulation before.

However, the structural accuracy of the CG model (Figure 5B)
is such that the CG model spans a conformational space that is
consistent with the underlying AA structure, and therefore, the
NN is able to make predictions on conformations drawn from
previously unseen CG morphology realizations with excellent
accuracy.
In contrast to the CGM3 IBI model, the CGM3 Martini 3

model leads to unsatisfactory electronic property predictions
(Figure S4). In fact, not only does the electronic coupling
distribution obtained with the Martini model exhibit a
considerably larger standard deviation (+15%, Figure S4C)
than the reference distribution, but also that distribution shows
qualitative discrepancies with respect to the reference
distribution (i.e., it is not a unimodal distribution). These
discrepancies can be rationalized by looking at the structure of
the Martini CG morphology, for example, by analyzing
TEMPO−TEMPO and nitroxide−nitroxide radial distribution
functions (RDFs) (Figure S4B). We see that the RDFs are
qualitatively di"erent, showing, for example, an extra peak at
≈0.4 nm in the case of the nitroxide−nitroxide RDF. These
discrepancies are indicative of molecular conformations
occurring in the Martini CG morphology that have no AA
counterpart and are hence nonphysical. In contrast, structural
accuracy is the parametrization target of structure-based
coarse-graining techniques such as IBI and, therefore, as
shown in the previous paragraph, the resulting CG models
represent the underlying AA structure with high fidelity
(Figure 5B). This structural accuracy appears to be an essential
requirement when developing CG models that retain
electronic structure information.

Figure 5. Application and validation of the proposed ML-based method to PTMA, a prototypical radical polymer. (A) Schematic representation of
the CG model (CGM3 mapping) and the underlying AA structure. (B) Representative AA vs CG RDFs for the CGM3 model with nonbonded
interactions obtained via IBI. (C) Electronic couplings computed with the reference backmapping-based approach (red) and the proposed ML-
based method (blue) starting from a CG morphology generated via CG MD using the CGM3 model. (D) Schematic representation of the CG
model (GBNO2 mapping) and the underlying AA structure; the nitroxide atoms are described by two virtual dummy sites (transparent gray circles;
see text for details). (E) Representative AA vs CG RDFs for the GBNO2 model. (F) Electronic couplings and (G) SOMO energies computed with
the reference backmapping-based approach (red) and the proposed ML-based method (blue) starting from a CG morphology generated via CG
MD using the GBNO2 model. Mean (μ) and standard deviation (σ) of the electronic property distributions are reported in the legends.
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Having settled on IBI as the strategy of choice for
developing CG models that retain electronic structure
information, we now turn to the development of a CG
model that is able to retain information on not only electronic
couplings but also energy levels. Informed by the results of the
previous sections, we know that an explicit description of the
nitroxide group is required for energy level prediction and we
therefore develop a corresponding CG model. We choose the
GBNO2 mapping (Figure 5D), as it represents a good
compromise between NN predictive accuracy, showing
accurate electronic coupling (Figure 3) and energy level
(Figure 4) predictions, and coarse-graining degree. We derive
nonbonded interactions via IBI for all the GBCG2 beads
(Supporting Information). The nitrogen and oxygen atoms of
the nitroxide group are instead described by two virtual
dummy sites that do not interact via nonbonded interactions
with any of the other CG sites. As such, the GBNO2 model is
expected to allow for predictions of both electronic couplings
and energy levels.
As done for CGM3-based CG models, we generate a

morphology via CG MD using the GBNO2 model just
described and predict this time both energy levels and
electronic couplings using the trained NNs (Figure 5D−F).
Again, we compare the NN predictions to the ground truth
taken to be the energy levels and electronic couplings obtained
with the reference, backmapping-based approach (Figure
5F,G). The agreement between the two electronic coupling
distributions is also excellent in this case, with the NN-
predicted μ being within 1% of the reference one and σ
matching the reference value. In contrast, the agreement
between the two SOMO energy distributions is only
satisfactory, with a very good agreement between the NN-
predicted and reference μ (<1%) but a NN-predicted σ that is
22% lower than the reference. We note that, in this case, we are
looking at an electronic property that depends strongly on the
intramonomer degrees of freedom. The degeneracy of the CG
representation, i.e., the fact that multiple AA conformations
correspond to the same CG conformation, is likely
responsible34 for the narrowing of the SOMO distribution
predicted at CG resolution. As discussed later, a recently
proposed34 Deep Kernel Learning approach may remedy this
shortcoming and improve the prediction. Albeit with this
limitation to keep in mind for the SOMO energy predictions,
the GBNO2 model retains information on both energy levels
and couplings and can be used to explore large ensembles of
morphologies at CG resolution and retrieve electronic
structure information with negligible computational costs.
Comparison to Quantum Chemistry Approaches. To

highlight the importance of considering condensed-phase
e"ects in soft materials when predicting electronic properties,
including electronic couplings, we compare our results to some
of the Boltzmann-averaged electronic couplings that have been
used in recent, state-of-the-art quantum-chemical modeling
studies13,24 aimed at understanding transport in radical
polymers. In such studies, the electronic coupling for a given
molecular species is evaluated by first generating gas-phase
dimer structures either randomly24 or with more elaborate
dimer surface sampling algorithms.13 For each of the generated
dimer structures, the electronic coupling is computed with the
level of theory of choice, along with either a total or binding
energy for that structure. The energies, which are indicative of
the relative stability of each structure in the gas phase, are then

used to obtain a Boltzmann-averaged electronic coupling
according to
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where Vi is the electronic coupling of the i-th dimer, Ei is its
binding energy (calculated as the single point energy di"erence
between the dimer E( )i

dimer and the isolated species (Eiradical,
Ei
cation), according to Ei = Ei

dimer − Ei
radical − Ei

cation), kB is the
Boltzmann constant, T is the temperature (300 K), and N is
the total number of dimers.
For a comparison to the method introduced here, we must

compute the Boltzmann-averaged electronic coupling at the
same level of theory used in the present work. Hence, we
randomly generate 10,000 dimer structures following the
procedure by Li and Tabor24 (see the Supporting Information
for details) and compute the ⟨ϕSOMO|ϕLUMO⟩ orbital overlap
for each structure. For the same dimer structure, we also
compute the binding energy (at the ωB97X-D/6-311G(d,p)
level of DFT) and calculate the Boltzmann-averaged electronic
coupling according to eq 1. The resulting coupling is shown
with a vertical dashed line in Figure 5C,F. We can see that the
Boltzmann-averaged coupling overestimates the magnitude of
the mean electronic coupling that arises in condensed phases.
The discrepancy between the two is not surprising, given that
the gas-phase sampling of the dimer structures neglects any
solid-state packing preference dictated by (1) steric constraints
(including the fact that the monomers are attached to a
polymer backbone) and (2) (un)favorable intra- and
interchain interactions. A second intrinsic limitation of
computing Boltzmann-averaged electronic couplings is the
lack of an estimate of the so-called structural39 disorder present
in the system, i.e., the width of the electronic coupling
distribution. This disorder may a"ect the charge transport
landscape and may therefore impact the conductivity of the
material. In contrast, the proposed method, whose accuracy
depends on the structural accuracy of the CG model, gives
access to not only (1) electronic couplings that account for the
packing in the condensed phase but also (2) the full
distributions of electronic couplings, thereby allowing for
quantification of the structural disorder in the system.

■ DISCUSSION
Having demonstrated the feasibility of designing and
developing CG models that retain electronic structure
information and using such models as a more e#cient
substitute for current multiscale approaches that involve
backmapping procedures, we conclude by briefly outlining a
few opportunities for future extensions of the presented
method.
The computational e#ciency is a key advantage of the

proposed method with respect to backmapping-based
approaches and is expected to enable innovative high-
throughput investigations of electronic properties over
ensembles of soft material morphologies (see below). The
upfront cost of the data set generation and ML model training
is (considering both electronic couplings and SOMO
energies): ≈375 × 103 CPU hours for training data generation
and ≈4.2 × 103 CPU hours for training. Note that this
estimation takes into account both the exploration of suitable
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mappings and the hyperparameter grid search performed for all
the NNs. The training data generation dominates the upfront
cost. Computing electronic properties with the backmapping-
based approach requires a total of ≈27 × 103 CPU hours for a
single snapshot (≈2.5 × 103 hours for backmapping and
relaxation and ≈24.5 × 103 hours for the quantum-chemical
calculations). Instead, the NN predictions take ≈1.5 × 10−1

CPU hours per snapshot. See Table S4 for a detailed
breakdown. Therefore, if electronic properties are predicted
for 13 CG frames, we break even with the upfront training cost
(see Figure S25). For any further frame, the proposed method
will provide a speedup of 106 times. Further e#ciency gains
may be realized if more generic ML models, i.e., models
trained on a larger fraction of the (CG) chemical space, will be
developed; see also the discussion below.
The fact that neither the GBCG nor the Martini CG

mappings describe the nitroxide group explicitly makes these
mappings unable to predict the SOMO energy level. Although
it is unsurprising that such fine detail is being averaged out by
the CG mappings, this result highlights the limitation of
current methods to devise CG mappings that retain specific
electronic structure information (e.g., SOMO energy). While
less strongly localized radical units might be less a"ected by
this (i.e., we speculate that, if a radical is more delocalized, a
coarser representation may still be able to capture the
conformational dependence of the SOMO energy), a system-
atic way to identify mappings that preserve specific electronic
properties would be greatly beneficial for automating the CG
mapping step of the proposed method.
We have shown that a structurally accurate CG model is

essential for the proposed method. Hence, in general,
structure-based coarse-graining techniques, such as IBI,36
should be used when deriving interactions for CG models
that retain electronic structure information. However, other
kinds of CG models such as chemically specific, building-block
CG force fields (e.g., Martini10) that do not use the structure
as a target for parametrization may still be valuable. First, while
structural inaccuracies cannot be excluded for Martini-like CG
approaches, they are also not necessarily present in every CG
model developed within such frameworks. In fact, the latest
Martini force field update (version 3)10 has taken structural
accuracy more into account via bonded parameter optimiza-
tion that targets the AA molecular volume and shape and a
wider range of systematically precalibrated nonbonded
interactions; for example, structural accuracy is expected to
improve for conjugated structures.10,40 Hence, more generally,
regardless of how the CG model potentials are obtained, as
long as structural accuracy is preserved, which can be
inspected, e.g., by comparing AA and CG RDFs, we expect a
CG model to be suitable for the proposed method. Second,
given the computational e#ciency of Lennard-Jones-based
models such as Martini as compared to models that use (IBI-
derived) custom nonbonded potentials (Table S5) and the
transferability of CG models developed within building-block
CG frameworks, it is still valuable to investigate how such CG
strategies can contribute to the development of CG models
that retain electronic structure information.
With respect to the ML model and featurization schemes

used here, there is ample room for improvement. Here, we
used NNs due to their simplicity of implementation and
application flexibility. However, recently Gaussian process
regression has been combined with NNs to realize a Deep
Kernel Learning (DKL) approach to ECG.34,35 The approach

allows one to incorporate the distributional nature of the
electronic property predictions resulting from the CG mapping
degeneracy, which, as we have seen in the present work, may
be needed for electronic properties that strongly depends on
detailed intramolecular features (Figure 5G). DKL moreover
provides prediction uncertainties, and it is hence suitable for
active learning strategies. Regarding the input featurization, the
(reciprocal) distance matrices used here constitute one of the
simplest molecular representations that guarantees rotational
and translation invariance. However, a host of more elaborated
featurization schemes, such as representations based on
symmetry functions or graph convolutions, are available.41 In
particular, input representations containing chemical identity
and possibly other physical descriptors are expected to play a
key role in order to explore the question of whether ML
models able to predict electronic properties at CG resolution
and that are transferable across CG chemical space can be
trained. Finally, applications to conjugated polymers, in
contrast to the nonconjugated polymers studied here, need
to consider that electronic states can delocalize along the
polymer backbone. To tackle this problem, long short-term
memory networks combined with a Δ-ML approach have been
shown31 to be a promising strategy to achieve the molecular-
weight transferability necessary to consider conjugation along
polymer backbones.
The proposed method opens up interesting avenues for

applications that require e#cient modeling of radical-
containing polymers and, more generally, in soft electronic
materials. For example, electronic properties could be studied
as a function of morphology processing conditions in a high-
throughput fashion. In particular, charge transport networks
and fluctuations of electronic couplings over CG spatiotem-
poral scales can be studied by the proposed approach.
Electronic couplings thus gathered could be fed into, for
example, kinetic Monte Carlo simulations aimed at computing
conductivities. As discussed before, such high-throughput
studies are made possible by the 106 increase in e#ciency of
the proposed method with respect to current backmapping-
based approaches.
In conclusion, an e#cient ML-enabled method has been

presented that connects electronic properties of soft materials
with the CG spatiotemporal scales required to sample their
phase space. The method is able to replace current
backmapping-based multiscale approaches and directly con-
nect electronic structure information to CG degrees of
freedom. The method has been demonstrated for non-
conjugated, radical-containing polymers, but it is suitable for
any soft material with electronic properties. Overall, the
findings reported underscore the potential of the proposed
strategy to propel the investigation of soft materials’ electronic
properties that depend on conformational degrees of freedom
over a wide range of spatiotemporal scales, a critical step
toward the bottom-up design of soft electronic materials.

■ MATERIALS AND METHODS
AA Models. Initial parameters were obtained for a OPLS-AA/

CM1A force field from the LigParGen server.42,43 QUBEKit44,45 was
subsequently used to derive parameters for bond and angle potentials
from DFT calculations (B3LYP/6-311++G(d,p)) that are tailored to
PTMA. Charges were obtained with Gaussian via the CHELPG
method.46 The resulting force field led to a density for methyl
methacrylate and TEMPO, molecular fragments that make up PTMA
and for which experimental reference densities are available, in good
agreement (within 2.5%) with experiments (Table S2).
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Data Sets. Two data sets were built: one with single PTMA
monomer conformations and associated monomer conformation-
dependent electronic properties (namely, SOMO energy level and
spin density) and a second one with dimer conformations and
associated dimer conformation-dependent electronic properties
(electronic couplings). We refer to these as “monomer dataset” and
“dimer dataset”, respectively. The following protocol was used to
ensure good conformational sampling for the training data generation.
We ran a condensed-phase AA MD simulation at 680 K (i.e., ≈1.3·Tg;
see Figure S9 for the estimation of the glass transition temperature,
Tg, of the AA model) and, after 30 ns of equilibration, we gathered
snapshots every 10 ns. Each snapshot was relaxed at 300 K for at least
20 ns. The relaxed snapshots were then used to extract the
conformations for which quantum-chemical calculations were
performed. Two di"erent procedures were used to extract
conformations for the two data sets, both leveraging the MDAnalysis
python library47,48 and Open Babel.49 For the monomer data set, 4
snapshots containing 3,000 conformations each were used. For each
conformation, coordinates were extracted up to the first carbon of the
backbone (“C01” of Figure S10) and the carbon atom was capped
with 3 hydrogen atoms. For each such conformation, reciprocal
distance matrices at the di"erent resolutions were computed and
stored and an input file for a single point calculation (B3LYP/6-311+
+G(d,p)) was written. The (4·3,000) 12,000 conformations were
filtered to increase the diversity of the data set by removing all
conformations that had a RMSD of less than 0.8 Å with any other
conformation. Gaussian46 was used to obtain the SOMO energy and
Mulliken spin density (B3LYP/6-311++G(d,p)). A final data set of
10,778 data points was obtained. For the dimer data set, 24 snapshots
containing about 9,200 dimer conformations each were used. A dimer
was selected if the distance between the respective nitrogen atoms was
within a cuto" of 10 Å. For each selected dimer, the DFT-optimized
geometry of the monomer was aligned (by minimizing the
RMSD50,51) to each MD monomer structure. In this way, intra-
monomer vibrations were neglected. Intermonomer vibrations are
much faster than the intermonomer motions and negligibly a"ect
intermonomer couplings.52 The electronic couplings were approxi-
mated as the orbital overlap52 between the SOMO of the neutral
radical and the LUMO of the cation, ⟨ϕSOMO|ϕLUMO⟩. For each dimer,
Gaussian46 was used to compute (1) the orbitals of monomer i and
(2) the orbitals of monomer j of the of i−j dimer both by performing
a single point calculation using as starting point the converged orbitals
of the DFT-optimized geometry; (3) the overlap matrix by
performing a calculation that produces only the overlap matrix in
the MO basis set of the dimer; finally, Multiwfn53 was used to
evaluate ⟨ϕSOMO|ϕLUMO⟩ by providing the Gaussian checkpoint files
from the three calculations described above. Note that the average
overlap between the ⟨ϕSOMO,i|ϕLUMO,j⟩ and ⟨ϕLUMO,i|ϕSOMO,j⟩ values
was taken, as the two values are in general di"erent (although, at least
for the present system, they are very similar). A final data set of
221,406 data points was obtained.
Coarse-Graining. GBCG mappings were generated using the

spectral grouping variant of the GBCG algorithm,37 as implemented
at https://github.com/xmwebb/GBCG. The Martini CG mapping
was devised following the Martini 3 guidelines.10,40 Bonded
parameters for the CG models were obtained by fitting standard
bond, angle, and dihedral potentials to reference distributions
obtained from mapped atomistic simulation (Supporting Informa-
tion). Nonbonded parameters for the structure-based CG models
were derived by iterative Boltzmann inversion (IBI)36 as implemented
in the VOTCA package.54 15 and 10 pair interactions were
parametrized for the CGM3 and GBNO2 CG models, respectively.
For more details, see the Supporting Information. Nonbonded
parameters for the Martini model, that is, Martini bead types, were
assigned based on Martini 3 guidelines10,40 (and validated by
computing octanol/water free energies of transfer; see Table S3)
and available models for similar polymers55 (Supporting Informa-
tion).
Backmapping. Backmapping was performed with Backward,56

which relaxes the AA structure with the atomistic force field after an

initial geometrical reconstruction of the AA structure based on the
CG particle positions. The geometrical reconstruction is specified via
CG-to-AA mapping files.

Molecular Dynamics Simulations. Starting configurations for all
polymer simulations were set up with Polyply,55 and MD simulations
were run with Gromacs versions 2021.x or more recent.57 AA
simulations used a time step of 1 fs and the Verlet scheme with a
nonbonded cuto" of 1.1 nm, dispersion correction, and the particle
mesh Ewald (PME) method for long-range electrostatic interactions.
Bonds involving hydrogen atoms were constrained. Temperature and
pressure were controlled by a Nose−́Hoover thermostat (coupling
parameter, τT, of 1.0 ps) and a Parrinello−Rahman barostat (coupling
parameter, τP, of 5.0 ps), respectively. The Berendsen barostat was
used for equilibration purposes (τP = 0.5 ps). For the Martini CG
simulations, the Verlet scheme had a straight nonbonded cuto" of 1.1
nm. Temperature and pressure were controlled by a velocity-rescaling
thermostat (τT = 1.0 ps) and a Parrinello−Rahman barostat (τP = 12
ps), respectively. For the IBI-based CG simulations, the group cuto"
scheme was used in order to use tabulated potentials with a
nonbonded cuto" of 1.5 nm. Note that CG simulations with IBI-
derived nonbonded potentials were run with Gromacs version 2019.5
because tabulated potentials are not available in more recent Gromacs
versions.

ML Model Details. For each monomer or dimer conformation, a
reciprocal distance matrix D between all particles of a particular
resolution was computed. Its elements are = | |D r rkl

i j
k
i

l
j( , ) ( ) ( ) 1 where

r is the position vector, i and j are the monomer indices, and k and l
are the atom indices. For the monomer data set, j = i and hence

= | |D r rkl
i i

k
i

l
i( , ) ( ) ( ) 1. Each matrix was flattened, and the resulting one-

dimensional vector (of dimension N2) was used as the input feature
for the NN. The electronic properties (SOMO energy level, spin
density, electronic coupling) are the labels associated with the input
vectors for the supervised ML regression task. The SOMO energy and
spin density (only the values on the nitroxide nitrogen and oxygen
atoms were considered, given that all other atoms have a spin density
<0.07; hence, two values were passed to the NN) were used as
obtained from the DFT calculations. The base 10 logarithm of
⟨ϕSOMO|ϕLUMO⟩ was used in the case of the couplings. A fully
connected, feed-forward NN with a M-dimensional input layer
followed by 4 batch-normalized hidden layers with the same number
of neurons was used so as to have a NN flexible enough. M is the
dimension of the (flattened) input vector, and it therefore depends on
the molecular resolution (M = N2). Hyperparameters that were
optimized include: the number of neurons in the hidden layers, the
batch size, and the number of training epochs. The default learning
rate of the NAdam optimizer (0.001) was used for training.
Visualizations of the hyperparameter grid search for SOMO energy
prediction for some of the resolutions can be found in Figures S5−S8.
Standard scaling was applied to the input and output features. 10% of
the data sets (1,077 data points for the monomer data set; 22,140 for
the dimer data set) was held out and used as the test set. The
remaining data points were used to build training and validation sets
by using 5-fold cross-validation. Hyperparameters were optimized by
grid search based on the 5-fold cross-validated performance. For the
best performing NN models for each property and molecular
resolution, see Table S1. The final model performance was measured
by applying the best model chosen based on the 5-fold cross-
validation to the held-out test set. When predicting electronic
couplings, as done when generating the dimer data set: (1) couplings
were inferred for dimers for which the distance between the nitrogen
virtual sites (or the beads representing the nitroxide group in the case
of the CGM3 mapping) was within a 10 Å cuto"; (2) the CG-mapped
DFT-optimized structures were aligned to each monomer of the CG
MD simulation snapshot structure, and electronic couplings were
inferred based on the reciprocal distance matrix computed for the
dimer conformation after alignment. All the ML methods were
implemented using the Keras58 and scikit-learn59 libraries.

Data Availability. Data and code to reproduce the findings of this
work are available at https://github.com/ricalessandri/ECG-
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RedoxPoly-Cathode. The developed AA and CG polymer models are
also implemented in the Polyply55 library (https://github.com/
marrink-lab/polyply_1.0). The TEMPO and PTMA monomer
Martini models are also available on the Martini 3 small molecule
library40 (https://github.com/ricalessandri/Martini3-small-
molecules).
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