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Abstract—Reinforcement learning (RL) methods can be used
to develop a controller for the heating, ventilation, and air con-
ditioning (HVAC) systems that both saves energy and ensures high
occupants’ thermal comfort levels. However, the existing works
typically require on-policy data to train an RL agent, and the
occupants’ personalized thermal preferences are not considered,
which is limited in the real-world scenarios. This paper designs a
high-performance model-based offline RL algorithm for personal-
ized HVAC systems. The proposed algorithm can quickly adapt
to different occupants’ thermal preferences with a few thermal
feedbacks, guaranteeing the high occupants’ personalized thermal
comfort levels efficiently. First, we use a meta-supervised learning
algorithm to train an occupant’s thermal preference model. Then,
we train an ensemble neural network to predict the thermal states
of the considered zone. In addition, the obtained ensemble networks
can indicate the regions in the state and action spaces covered
by the offline dataset. With the personalized thermal preference
model updated via meta-testing, model-based RL is used to derive
the optimal HVAC controller. Since the proposed algorithm only
requires offline datasets and a few online thermal feedbacks for
training, it contributes to a more practical deployment of the RL
algorithm to HVAC systems. We use the ASHRAE database II to
verify the effectiveness and advantage of the meta-learning algo-
rithm for modeling different occupants’ thermal preferences. Nu-
merical simulations on the EnergyPlus environment demonstrate
that the proposed algorithm can guarantee personalized thermal
preferences with a slight increase of power consumption of 1.91%
compared with the model-based RL algorithm with on-policy data
aggregation.

Index Terms—HVAC systems, model-based offline rein-
forcement learning, meta-learning, human-in-the-loop control.

I. INTRODUCTION

T he HVAC systems are important units in buildings to
regulate the indoor temperature, humidity, and air quality
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so that occupants feel comfortable. They are also major energy-
consuming appliances in building systems, of which the energy
consumption makes up almost 40% of the total energy consump-
tion in the United States [1]. On the one hand, with the aim of
reducing greenhouse gas emissions, it is of great significance to
reduce the energy consumption of HVAC systems. On the other
hand, the comfort levels of occupants should also be maintained
while using energy-saving HVAC controllers.

The model predictive control (MPC) is widely used for HVAC
systems. With MPC controllers, future time slots can be con-
sidered when computing the optimal control inputs, and the
constraint requirements are easy to formulate [2], [3]. However,
MPC methods require a sufficiently accurate and computation-
ally tractable system model to find an optimal solution [4]. In
addition, the optimization problem of MPC is not guaranteed to
be convex such that more sophisticated optimization approaches
are needed. Zhao et al. [5] designed an EnergyPlus model-based
predictive control method. They used the exhaustive search
algorithm to find the optimal solution with the assistance of
EnergyPlus simulation. However, this brute-force optimization
strategy is only computationally suitable for simple building
models with discrete state and action variables. The authors
in [6], [7] investigated the multi-objective optimization prob-
lems for building systems in which energy performance and
occupant’s thermal comfort are considered. The genetic algo-
rithm was used to generate the control sequences based on the
EnergyPlus simulation. However, two problems are associated
with the algorithms in [5], [6], [7]. First, it is hard to obtain an
EnergyPlus model for a certain building since the building’s
parameters need to be measured, such as the thicknesses of
the roof and vertical walls, the absorption coefficient of solar
radiation of the roof, etc. Even if we make the measurements,
the simulation-based EnergyPlus models may be still much sim-
pler than the real buildings [8], making the derived controllers
suboptimal. Second, the brute-force method in [5] and genetic
algorithms in [6] and [7] are computationally inefficient. The key
issue is that there is no systematic and computationally efficient
algorithm to solve the optimization problems associated with
these black-box EnergyPlus models.

Reinforcement learning (RL) can be used to derive an optimal
controller in an unknown environment by interacting with it [9],
[10], [11]. Combined with the high function approximation
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capacity of deep neural networks, deep RL techniques have
achieved remarkable performances in Atari 2600 games [12],
chess, shogi, Go [13], [14], and simulated robots [15], [16],
[17]. Some researchers have applied deep RL techniques in
the HVAC control field. Ref. [18] used the deep Q-network for
building HVAC control. The simulation results on EnergyPlus
models showed that the deep RL algorithm consumed less en-
ergy than a rule-based approach. The authors in [19] considered
the non-stationary building environments and developed a deep
Q-network-based RL method that can actively detect the change
points of environments. The algorithms in [18], [19] are model-
free, which directly learn the optimal value functions or policy
from the transition dataset collected in the real environment.
Model-free RL algorithms suffer from low sample efficiency.
The authors in [20] compared some well-known model-free
RL algorithms in the field of HVAC controller design. The
simulation results indicated that SAC [17] is more data-efficient
than TD3 [21], PPO [22], and TRPO [15]. However, it still
requires ten months of online training data with SAC to obtain a
converged indoor temperature if the data are collected every fif-
teen minutes. In contrast, the model-based RL algorithm learns
a dynamics model of the environment during interactions and
utilizes the learned model to derive a control policy [23], [24].
When training the policy, we can generate simulated data via the
learned model. Thus, fewer environment samples are required
compared with the model-free algorithms. Ref. [25] proposed
a model-based RL algorithm for HVAC systems with the zone
thermal dynamics modeled by a recurrent neural network. MPC
with random-sampling shooting and imitation learning were
utilized to determine the best actions under certain states. The
authors in [26] derived a model-based RL strategy for HVAC
systems by directly obtaining a neural network policy from
the MPC sampled trajectories without imitating the results of
random shooting. Note that both model-free and model-based
algorithms in [18], [19], [20], [25], [26] are trained in online
manners; namely, the RL agent has to interact with the envi-
ronment to collect more data. However, these online learning
strategies would cause two issues when they are used to obtain
HVAC optimal controllers. First, the sample-efficient model-
based RL algorithms still require online data collection. During
the initial stage of collection, the non-optimal operation statuses
of HVAC systems would degrade occupants’ thermal comfort
levels and waste energy. Second, insufficient explorations to the
environment may result in a poor-quality RL algorithm. What
is worse, if we use the non-optimal intermediate controller to
explore the environment, the operations of the HVAC systems
might be unsafe [27], [28].

In order to solve the above problem, offline RL methods were
proposed by developing algorithms from an offline dataset with-
out further interactions with the environment [29]. That is, there
is no exploration to the environment during the policy learning,
and we can only focus on exploiting the existing dataset [30].
Since this dataset may not cover all the state and action spaces,
the learning process should be limited to the “known” regions
where there are a sufficient number of data. Refs. [31] and [32]
investigated model-based offline RL methods in which ensemble
neural networks are used to identify the “known” and “unknown”

spaces. The results showed that the model-based offline RL
algorithms outperform the model-free counterparts in most sim-
ulated robot control tasks the authors tested on. In the field of
HVAC control, using a finite number of historical data, Jiang
et al. [33] designed a deep-Q-network-based RL algorithm for
HVAC systems to reduce energy cost. In order to reduce the num-
ber of required samples, the authors used an action processor that
leverages the information of daily electricity price. The authors
in [34] proposed an offline RL algorithm for HVAC systems
in multiple zones, which were modeled as a Markov game.
Neural network black box models were learned to generate
synthetic data for the subsequent policy training. Ref. [35] also
trained an LSTM environment model from the historical HVAC
operational dataset. An RL agent was trained via DDPG [16]
by interacting with the obtained model. However, the learning
procedures in [33], [34], [35] did not include strategies to avoid
the “unknown” regions. In this case, the optimal policy may not
be found [36], as we show in Section VI-C2 for the EnergyPlus
environment we used. The authors in [27] proposed a model-free
offline RL algorithm for HVAC systems by using the conserva-
tive Q-learning (CQL) [37]. Safety exploration is also considered
in [27] when collecting the offline dataset. The model-based
performance evaluation was then utilized to select the best policy
after training. The authors in [28] applied the batch constrained
Munchausen RL algorithm [38], [39] for safe HVAC control.
Regression models based on the predicted mean vote (PMV)
were used to predict occupants’ thermal comfort levels. Note that
the algorithms in [27], [28] are both model-free, which may be
overly conservative since the algorithms learn only on the states
in the offline dataset [40], [41]. In contrast, for model-based
offline RL, the dynamics model of the environment is first
learned to generate synthetic data. The policy is then trained by
interacting with the learned model that has some generalization
capabilities to unseen states in the offline dataset. In addition,
various planning strategies can be used to derive a policy from
the model [42], such as MPC [43] and policy optimization [44].
These planning algorithms give us more flexibility to achieve
high performance in different scenarios. In this paper, we will
investigate the design of model-based offline RL algorithms for
HVAC systems.

Different occupants may have different thermal prefer-
ences [45], [46], [47]. The HVAC controllers in [18], [20], [25],
[26], [27], [28], [33], [34], [35] did not consider the occupants’
personalized thermal preferences. The thermal comfort metric
in these literature, if considered, is the same for all possible
occupants. For example, Ref. [19] utilized the predicted per-
centage of dissatisfied (PPD) as the thermal comfort metric.
The value of the PPD is related to the PMV, which further
depends on many factors such as metabolic rate, insulation,
air temperature, etc. [48]. However, some variables, such as
metabolic rate and clothing insulation, are hard to measure
in practice. Moreover, even if we can assume that the factors
affecting the PPD are available, different thermal preferences
still impact the real comfortable levels of occupants [45], [46],
[47]. In order to solve the issues above, we can provide occupants
a feedback channel to message their thermal feelings, which can
be used to improve the occupants’ thermal comfort levels [49].
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Some researchers have investigated preference learning and its
application in human-in-the-loop control. For example, Ref. [50]
proposed an active preference learning algorithm when a human
decision maker can only express a preference by comparing
the results of two candidate decisions. The algorithm actively
provides suggestions for the next candidate decision consider-
ing the trade-off between exploration and exploitation of the
decision space. The authors in [51] applied the algorithm in [50]
to a path-based velocity planner in robotic sealing tasks. Based
on the pairwise preferences provided by a user, the algorithm
suggests the next set of parameters for the task execution so
that the velocity planner can determine an appropriate value of
reference velocity for the robotic sealing task. The authors in [52]
also utilized the preference learning algorithm to model the
knowledge of the human operator. One merit of the preference
learning algorithm in [50], [51], [52] is its high computational
efficiency since the proposed method only needs to solve a linear
or quadratic programming problem. In addition, it is sample
efficient due to the active learning. However, the preference
learning algorithm in [50], [51], [52] was designed to handle
pairwise preferences, which are essentially qualitative. When
we try to learn the thermal comfort model of an occupant, we
usually provide more selections of feedbacks. For example, a
quantitative 7-point thermal sensation vote is leveraged in the
ASHRAE datasets [53], [54], [55] to indicate different levels
of feeling hot or cold. The authors in [56] proposed a meta-
learning algorithm that can adapt a meta-trained deep neural
network to a new task with a few training data. This paper will
apply the meta-learning method to train the occupant’s thermal
preference model so that only a few feedback data are needed
for a new occupant to identify his/her thermal preference. The
requirement of only a few thermal feedbacks contributes to fewer
interventions in occupants’ lives. Compared with the pairwise
preference learning algorithm in [50], [51], [52], meta-learning
can leverage the information of thermal preferences of different
occupants to improve the thermal comfort model of a specific
occupant. A detailed description of the meta-learning algorithm
we used is provided in Section II-A.

In this paper, we develop an efficient human-in-the-loop con-
trol strategy for HVAC systems by using meta-learning to learn
the occupants’ thermal preferences and offline model-based RL
to regulate the controller. Both meta-learning and offline RL
learning contribute to the fast learning property of the proposed
algorithm. With meta-learning, we can derive the personalized
thermal comfort model with only a few thermal feedbacks. With
offline RL, we can leverage the historically collected dataset to
develop an HVAC controller. In contrast, an online RL algorithm
may require a long-time data collection process before obtaining
a converged controller. The contributions of this paper are listed
as follows.

i) We design an offline model-based RL algorithm for
HVAC systems by modeling the thermal dynamics of a
zone as a partially observable Markov decision process
(POMDP). The proposed algorithm can be trained with
historically collected data via a suboptimal controller
such as a PID controller. This indicates that the designed
controller can be obtained without further interactions

with the building environment, which helps save energy
and shorten the time to deploy for HVAC systems in
practice.

ii) We model the thermal preference learning of different oc-
cupants as different tasks under the meta-learning frame-
work. This allows us to learn a personalized thermal pref-
erence model with a few thermal feedbacks from a specific
occupant. In addition, by combining meta-learning with
model-based offline RL, the designed HVAC controller
can be quickly regulated to accommodate personalized
thermal preferences with only a few thermal feedbacks.

iii) We test the meta-supervised learning algorithm on the
ASHRAE database II [54], [55]. The learned model is
a mapping from indoor air temperature to the 7-point
thermal sensation vote of an occupant. Compared with the
best result in [28], the meta-supervised learning algorithm
reduces the root mean square error (RMSE) ∼ 6.63%.

iv) The effectiveness of the RL algorithm is verified in an
EnergyPlus simulation environment. The results show
that the proposed algorithm can generally guarantee
personalized thermal preferences, with only additional
1.91% power consumption on average compared with the
model-based RL algorithm with on-policy data aggrega-
tion. In addition, the comparisons with the model-free
CQL algorithm also demonstrate the advantage of our
algorithm.

To the best of our knowledge, we are the first to use meta-
learning to learn the personalized thermal comfort model. More-
over, we are also the first to combine meta-learning and offline
model-based RL to derive a personalized HVAC control system.
The experiment results on the ASHRAE database II and in
an EnergyPlus environment demonstrate the superiority of our
algorithm.

The remainder of this paper is organized as follows. Sec-
tion II introduces some preliminaries in this paper. Section III
presents the meta-learning method to learn the occupant’s ther-
mal preference model. Section IV gives the dynamics model
learning based on the offline dataset. The model-based RL
algorithm considering occupant’s thermal preference is pre-
sented in Section V. Section VI demonstrates the effective-
ness of the proposed algorithm via the simulation in an En-
ergyPlus environment, and Section VII concludes this paper.
The appendices, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/10.1109/
TSUSC.2023.3251302, introduce the notations, the summarized
algorithms and the overall algorithm architecture in this paper,
the neural network architectures and hyperparameter settings
of the algorithms, and the statistics of the in-distribution and
out-of-distribution datasets. They are helpful in understanding
this paper.

II. PRELIMINARIES

This section will present some preliminaries in this paper,
including meta-learning, model-based offline RL, and system
model and control. A brief description of the proposed approach
will also be presented.
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A. Meta-Supervised Learning

Meta-learning aims to learn a learning procedure that can
adapt to new tasks quickly with only a few data about the
new tasks. The new tasks, i.e., the meta-testing tasks, should
be drawn from the same task distribution ρ(T ) as the meta-
training tasks. In this paper, we consider the model-agnostic
meta-learning (MAML) algorithm [56]. In MAML, the goal of
the meta-training is to find a good weight initialization of a neural
network, with which a few gradient-based updates can make a
significant adaptation.

For the gradient-based meta-learning, we can formulate it as

min
θ

ET ∼ρ(T )

[
L(Dtest

T ,θ′)
]
,

subject to θ′ = θ − α∇θL(Dtrain
T ,θ), (1)

whereα is the adaptation step size,Dtrain
T andDtest

T are the train-
ing and test data sets, respectively, in the meta-training phase.
L(DT ,θ) presents the loss for task T whose expression depends
on the objective of meta-learning. In practice, the expectation in
(1) can be approximated by the corresponding empirical value.

Remark 1. The minimizer θ∗ to the problem (1) encodes
the internal information that is transferable from one task to
another [56]. In addition, when we adapt the parameter θ∗ to
a specific task using a few gradient steps, the model prediction
should have sufficient changes so that the performance of this
model on the new data is improved significantly. Considering
these aspects, we use a fully-connected neural network as the
model for occupants’ thermal comfort due to its high nonlinear-
ity and function approximation capacity. Note that the Gaussian
process can also be utilized to encode the prior information,
which can be achieved by assigning or learning an appropriate
kernel function [57], [58]. However, a Gaussian process model is
essentially a basic supervised learning model without being opti-
mized to learn new tasks fast using previous learning experiences
of other tasks. Thus, this paper uses the meta-supervised learning
method, i.e., MAML, to learn personalized thermal preference
models.

B. ASHRAE Global Thermal Comfort Database II

The ASHRAE global thermal comfort database II [54], [55]
records 110,070 thermal votes from different occupants under
various environmental and personal conditions1. These condi-
tions include the air temperatures at varying distances (0.1 m,
0.6 m, 1.1 m) above the floor, relative humidity, the subject’s
height and weight, etc. The support of the thermal sensation vote
is {−3,−2,−1, 0, 1, 2, 3}, which represent {cold, cool, slightly
cool, neural, slightly warm, warm, hot}, respectively. Recently,
the subjects’ identities were added to some raw data of the
database. This information enables us to test the performance of
meta-learning on predicting the thermal sensation votes since we
can model the thermal preference learning of different occupants
as different tasks that implicitly share some commonalities.

1.The newly released dataset can be downloaded at https://datadryad.org/
stash/dataset/doi:10.6078/D1F671.

In Section VI-A1, we will use this dataset to show the
advantage of meta-supervised learning in reducing the model
prediction error compared with the traditional simple supervised
learning. Herein, we use the brief name “ASHRAE database II”
for this database.

C. Model-Based Offline Reinforcement Learning

The RL framework is built on a Markov decision process
(MDP) which can be described by a tuple {S,A, p0, p, r, γ}. In
this tuple, S and A denote the spaces of state and action, respec-
tively, p0(s) : S &→ [0, 1] denotes the initial state distribution of
the MDP, p(s′ | s,a) : S ×A× S &→ [0, 1] represents the state
transition probability, r(s,a, s′) : S ×A× S &→ R denotes the
reward function, and γ ∈ [0, 1] is the reward discount factor that
determines the present value of future rewards [9], respectively.

A deterministic policy in RL is function πθπ (s) : S &→ A,
parameterized by θπ , that maps a state to an action. The goal of
RL in this paper is to maximize the expected cumulative reward
in a future horizon T by finding an optimal policy parameter
θπ∗. The corresponding optimal policy is

π∗
θπ = argmax

πθπ

T−1∑

t=0

Es0∼p0(·),st+1∼p(·|st,πθπ (st))

[r(st,πθπ (st), st+1)] , (2)

where we assume γ = 1, since we are considering a finite
horizon task.

Remark 2. The value of the discount factor γ would influence
the algorithm performance and even stability. In the model-free
RL case, γ determines the time scale of the cumulative reward
we would like to maximize [9]. A small γ value will lead to a
myopic objective, while a γ value very close to 1 would cause
instability [59]. In the case of model-based RL, the stability
issue with a large γ would be more obvious since there exist
compounding model errors when a long rollout is sampled from
the model [44], [60]. In order to avoid this issue in our offline
RL algorithm, we intentionally maximize the cumulative reward
over a finite time horizon T , instead of solving an empirical
Bellman equation [37]. Although this would introduce bias to
the optimization objective, the variance of cumulative reward
would decrease, contributing to the stability of the algorithm.

When the action space A is continuous, policy gradient meth-
ods are commonly used to solve the optimization problem (2) [9].
In this paper, we choose the actor-critic framework to derive the
optimal policy. In this framework, the critic’s role is to estimate
the value function of an intermediate/converged policy. Due to
the continuous action space, an actor is trained along with the
critic to find a policy maximizing the value function. During
the training process, the critic and actor converge to the optimal
value function and optimal policy, respectively. In addition, we
use model-based RL strategies [43], [44], [61] to obtain the
optimal policy. That is, we train both a dynamics model and
a policy. The learned dynamics model can generate synthetic
data for policy training.

Interactions with the environment to collect more samples are
required when training an online model-based RL algorithm.
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For instance, during the initial learning period, it is necessary
to explore the state and action spaces sufficiently. However, for
HVAC systems, the actions that are wrongly explored may lead
to an unsafe state, e.g., an unreasonably high indoor air tem-
perature, which makes the occupants extremely uncomfortable.
Offline model-based RL aims to learn a good policy with only
offline data. Since no further interaction with the environment is
allowed, we need to avoid the state entering the region that is not
covered or sufficiently covered by the offline dataset. To this end,
we not only need to use the model to make predictions but also
should estimate the epistemic uncertainties of the predictions.
Different strategies for estimating a neural network model’s epis-
temic uncertainty can be used, such as ensemble networks [62],
[63], Bayesian deep learning [64], [65], and probabilistic neural
networks [60], etc. In this work, we will use ensemble neural
networks to estimate epistemic uncertainty.

Remark 3. For the model-based RL in our paper, the model
to be learned is the joint model of thermal dynamics of the
considered zones and the HVAC systems. After this model is
identified, traditional model-based optimal control techniques
are also candidates to derive the HVAC controllers. However,
these model-based optimal control methods typically require
a simple identified model, e.g., a linear model, or have high
computational complexities, while the real models are typically
complicated and highly nonlinear [18], [25], [66]. For example,
the authors in [67] used the linear quadratic regulator (LQR) [68]
to design a hierarchical optimal controller with the optimization
objective of occupants’ comfort and energy consumption. In
order to use the LQR controller, the authors linearized the
identified model around the equilibrium points of the system. As
Ref. [67] pointed out, this linearization may introduce significant
errors when the range of thermal zone temperature is wide. Based
on the linearization method, the LQR controller in [69] was only
used to generate the event-triggered control actions in the initial
period. The generated control inputs were further utilized for
training a more advanced adaptive critic-based neural network
controller. We can also use more complicated physical-based
models, e.g., EnergyPlus, or a black-box model, e.g., a neural
network, to describe the thermal dynamics of the considered
zones. However, the optimization algorithms would be com-
putationally inefficient. For example, the authors in [5] used
the exhaustive search method, and the authors in [6], [7] used
a genetic algorithm. In contrast, by leveraging deep RL, the
high nonlinearity of the model would not bring about too much
complexity for controller development, since RL algorithms
learn a controller by trial and error and do not exploit the
model structures. In addition, the neural network-based policy is
computationally efficient to obtain the optimal control input after
training. These are the reasons why we do not use traditional
model-based optimal control methods and choose RL in this
paper.

D. System Model and Control

In the RL learning framework, the general thermal dynamics
model of a zone can be described as

st+1 = f(st,at) + ε, (3)

rt+1 = g(st,at, st+1), (4)

where f(·, ·) : S ×A &→ S and g(·, ·, ·) : S ×A× S &→ R are
unknown function, and ε is an unknown additive noise term.
Note that the functions f and g and the noise ε are all re-
lated to the configuration parameters of the considered zone.
In Section VI, we use a two-zone data center in the EnergyPlus
environment to show the algorithm performance in this paper.
However, the proposed algorithm can be used for other zone
configurations.

Remark 4. The reward function is typically related to the
power consumption and occupants’ thermal comfort levels in
the zone. The power consumption is assumed to be known in the
algorithm in this paper. However, since different occupants may
have different thermal preferences, the reward term related to the
thermal comfort level is unknown, although we can assume that
the indoor air temperature is easy to measure and thus known.
The relationship between thermal comfort level and system state,
e.g., indoor air temperature, is learned via meta-learning in this
paper. This is where the human-in-the-loop strategy is used.

If we would like to model the zone thermal dynamics as an
MDP, the state variables may include indoor air temperature
and humidity of the considered zone, outdoor air temperature,
wall temperatures of the zone, and working statuses of heating
sources in the zone, to name a few. Due to the high complexity
and unpredictable disturbances of the zone thermal dynamics,
it is impractical to consider every possible state variable. In this
case, we can model the zone thermal dynamics as a POMDP
and only take some easily measured variables as observation
variables. In order to compensate for the lacking of unmeasured
states, we can use segments of historical observation and action
trajectories to replace the state when training the dynamics
model and policy networks [70]. In the remainder of this paper,
the symbol s is used to represent observation variables when
there is no confusion arising. In this setting, the input of the
thermal dynamics model is ({st}t

′−1
t=t′−H , {at}t

′−1
t=t′−H) and the

policy is a function of the tuple ({st}t
′−1
t=t′−H , {at}t

′−1
t=t′−H , st′),

where H is the length of the historical segment.

E. Proposed Approach

This paper will design an offline model-based RL algorithm
for HVAC systems that can adapt to different occupants’ thermal
preferences with a few thermal feedbacks. We build the HVAC
control algorithm based on the following offline datasets.

– A historical building operation dataset of, for example,
indoor and outdoor air temperatures and operation statuses
of HVAC systems. This dataset can be collected in advance
with a traditional controller such as a PID controller.

– An offline dataset of thermal feedbacks from different
occupants with various thermal preferences.

With the above offline datasets, this paper first considers learn-
ing an occupants’ thermal comfort model via meta-supervised
learning. This model should be able to quickly adapt to dif-
ferent occupants’ thermal preferences with only a few ther-
mal feedbacks from the corresponding occupants. Second, a
thermal dynamics model is learned from the offline historical
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building operation dataset. This model should not only have a
good prediction accuracy in the known region but also provide
indications when predictions are made in the unknown region.
Finally, a model-based RL algorithm is derived based on the
learned zone’s thermal dynamics model and the thermal comfort
model. The designed model-based RL algorithm can regulate the
HVAC systems to meet occupants’ personalized thermal comfort
requirements with low power consumption.

III. META-SUPERVISED LEARNING FOR OCCUPANT’S

THERMAL COMFORT MODEL

In order to guarantee the occupant’s personalized thermal
comfort, an HVAC system needs to adapt to the new thermal
preference quickly. In addition, we would like this aim to be
achieved with occupant feedbacks as few as possible since
more feedbacks not only make the adaptation slower but also
bring inconvenience to occupants. In this section, motivated by
the MAML algorithm [56], we will develop an algorithm that
quickly learns the occupant’s thermal feedback model.

Many factors affect the thermal comfort level of an occupant,
such as air temperature, relative humidity, metabolic rate, cloth-
ing insulation, etc. [71], [72]. In this section and the simulation in
Section VI, we consider indoor air temperature as the only factor
affecting thermal preference level for simplicity. We assume
that each occupant corresponds to a specific indoor temperature
T ref that he/she feels the most comfortable. In order to adapt
the controller to different thermal preferences, the predicted
occupant’s comfort level will serve as a reward term when
designing the RL algorithm. We denote this reward term at time
step t′ as r̂ot′ , which is related to thermal feedbacks. To collect
thermal feedbacks from occupants, we can provide them with
a feedback device with five selections “very uncomfortable,”
“uncomfortable,” “moderate,” “comfortable,” and “very com-
fortable,” for example. These five feedback selections can be
quantified as −2, −1, 0, +1, and +2, respectively,2 which can
be considered as the true reward rot′ at different values of indoor
temperatures, i.e.,

rot′ = f(T in
t′ ), (5)

with f(·) being an unknown function which we can use a neural
network f̂θR(·) parameterized by θR to approximate.

Note that the domain of function f is the discrete set
{−2,−1, 0, 1, 2} while f̂θR is learned to be a continuous func-
tion with respect to T in

t′ . The reasons why we allow f̂θR to
be continuous are stated as follows. An alternative to this
“regression” method is a “classification” approach, where dif-
ferent indoor temperatures are assigned to a thermal feedback
in {−2,−1, 0, 1, 2}. However, although we consider that the
occupant’s thermal feedback is a function of indoor temperature
T in
t′ , the comfort level of an occupant should not be formulated

literally in a “classification” way. First, indoor temperature is

2.Since an RL algorithm is trained to maximize the cumulative reward at
a certain future time horizon, it can only achieve the best cumulative reward
after sufficient training. Thus, although we can provide more detailed feedback
options, for example, cooler or hotter instead of just uncomfortable, the RL
algorithm cannot leverage this information to update its parameters.

Fig. 1. The relationship between thermal feedbacks f(T in) and the approxi-
mation function f̂θR (T

in).

not the only factor affecting an occupant’s thermal sensation.
Second, thermal feedback is subjective where there exists some
randomness. Fig. 1 illustrates the relationship between f(T in),
indicated as cross mark “×,” and f̂θR(T

in), sketched as the
curve. The reference temperature T ref is assumed to be 23◦C.
We might get multiple possible thermal votes at a certain indoor
temperature T in. For example, when T in = 21◦C, we might
have f = −2with probability 0.75 and f = −1with probability
0.25. Similarly, when T in = 22◦C, we might have f = −1,
f = 0, and f = +1 with probabilities 0.25, 0.5, and 0.25, re-
spectively. For the learned function f̂θR , we would like to have
−2 < f̂θR(T

in) < −1 forT in = 21◦C. In addition, whenT in =

21.5◦C, it would be more reasonable to have f̂θR(T
in) ≈ −0.5,

instead of f̂θR(T
in) = 0 or f̂θR(T

in) = −1. Another benefit we
can gain by using a regression model is that the reward space of
the subsequent RL would be continuous. Since our RL agent is
updated with policy gradient, a continuous reward space would
be helpful for policy convergence. Note that both regression
and classification models have been used to predict thermal
sensation votes. Please refer to Ref. [73] for a detailed literature
review and comparison. In Section VI-A, we will show that this
“regression” strategy works effectively with meta-supervised
learning, although the data labels are discrete.

The detailed meta-supervised learning algorithm is shown in
Algorithm 1 in Appendix B.1, available in the online supple-
mental material.

IV. DYNAMICS MODEL LEARNING FOR THE OFFLINE

REINFORCEMENT LEARNING

In the settings of this paper, we consider that only an offline
dataset is available for deriving the model-based RL algorithm.
This section will show what dynamics model should be learned
from the offline dataset to develop an RL algorithm.

Suppose that we have collected an offline dataset3

D of size ND, with each datum in the form of tuple
({st}t

′

t=t′−H+1, {at}t
′

t=t′−H+1, st′+1). On one hand, we
would like to learn a model that performs well for the
in-distribution data. On the other hand, the model should
indicate its inefficiency when required to make predictions

3.This offline dataset can be collected via implementing a low-level controller.
In the numerical simulation in this paper, we use a PID controller to get the
simulated offline data. See the details in Section VI-B.
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on the out-of-distribution data. Motivated by [31], [32],
[60], we learn an ensemble of Nm deterministic networks
{T̂n

θn
({st}t

′

t=t′−H+1, {at}t
′

t=t′−H+1)}
Nm
n=1, with T̂n

θn
:

({st}t
′

t=t′−H+1, {at}t
′

t=t′−H+1) &→ st′+1, n ∈ {1, . . . , Nm},
being the n-th network with parameter vector θn trained
independently of other networks. In practice, we can use
recurrent neural networks and seek θn to minimize the mean
squared error

En(θn) !
1

ND

∑

Dt′ ∈D
‖st′+1

−T̂n
θn

(
{st}t

′

t=t′−H+1, {at}t
′

t=t′−H+1

)∥∥∥
2

2
, (6)

with Dt′ ! ({st}t
′

t=t′−H+1, {at}t
′

t=t′−H+1, st′+1), for each n ∈
{1, . . . , Nm}, independently.

The ensemble networks after training can be used to make
predictions via

ŝt′+1 =
1

N

N∑

n=1

T̂n
θn

(
{st}t

′

t=t′−H+1, {at}t
′

t=t′−H+1

)
. (7)

That is, the final prediction is the average of the predictions of
all individual networks T̂n

θn
, n = 1, . . . , N . Note that using the

average outputs helps to improve the prediction accuracy for
in-distribution states and actions [60].

Note that the trained ensemble networks can not only achieve
performance improvement by averaging over all individual net-
works’ outputs but also capture the epistemic uncertainty via the
disagreement of different networks’ outputs [60]. The epistemic
uncertainty can be leveraged to test if inferences are made
for out-of-distribution inputs. For the in-distribution inputs, all
the networks are well-trained, and the prediction differences
between them are small. However, since different initializations
of neural networks and training processes, the predictions of
different networks for the out-of-distribution inputs may have
large disagreements. We would like to avoid making out-of-
distribution predictions with respect to the offline dataset since
these predictions may have large errors that hurt the subsequent
planning. To this end, we measure the epistemic uncertainty as

rut′+1 ! − 1(N
2

)
∑

n1,n2∈{1,...,N},n1 -=n2

∥∥∥T̂n1
θn1

(
{st}t

′

t=t′−H+1, {at}t
′

t=t′−H+1

)

−T̂n2
θn2

(
{st}t

′

t=t′−H+1, {at}t
′

t=t′−H+1

)∥∥∥
2

2
, (8)

which will serve as a reward term in the planning procedure to
punish the actions leading to the out-of-distribution data region.

Remark 5. The reward term (8) only concerns the epistemic
uncertainty, i.e., the subjective uncertainty due to a lack of data.
Note that the aleatoric uncertainty is intrinsic to the data and
should not serve as a punishment for the RL learning. We are
not sure whether the regions with high data variances, i.e., the
regions with high aleatoric uncertainties, would produce high
expected cumulative rewards or not. If these regions are suffi-
ciently explored in the offline dataset, we can exploit the model

on these regions when training the RL agent. However, modeling
the aleatoric uncertainty may help improve the performance of
the RL agent, especially in the case when the transition dynamics
of the environment is multi-modal [24], [74]. The aleatoric
uncertainty can be estimated via Bayesian deep learning [65],
probabilistic neural networks [60], and quantile regression [75],
etc. In addition, a well-calibrated model may also help when
considering both epistemic and aleatoric uncertainties [76], [77].
In our paper, the learned model is not calibrated since we are
only concerned with whether a region is fully covered by the
offline dataset and thus we can determine whether exploit the
learned model in this region or not. The effectiveness of this
strategy was demonstrated in [31], [32]. Section VI will show
that an ensemble of 3 deterministic networks is sufficient for
learning an offline RL algorithm for the considered two-zone
data center EnergyPlus simulation environment.

V. MODEL-BASED REINFORCEMENT LEARNING WITH

PERSONALIZED OCCUPANTS’ THERMAL PREFERENCES

In this section, we will design a controller for the HVAC sys-
tem considering occupants’ thermal feedbacks. The controller
is developed via planning with the learned thermal dynamics
model in Section IV. In addition, by adding rot in (5) as a
reward term, the controller can adapt to new thermal preference
feedbacks quickly with only a few feedbacks required.

The reward function in RL indicates which actions are good
under a certain state and regulates the controller to achieve higher
cumulative rewards in a certain future horizon. In this paper, we
design the reward function at time step t′ as

rt′
(
{ŝt}t

′−1
t=t′−H , {at}t

′−1
t=t′−H , ŝt′

)

! λ1r
t
t′ (ŝt′) + λ2r

e
t′ (at′−1, ŝt′) + λ3r̂

o
t′ (ŝt′)

+ λ4r
u
t′

(
{ŝt}t

′−1
t=t′−H , {at}t

′−1
t=t′−H

)
, (9)

where λ1, . . . , λ4 denote the weight parameters, rtt′(ŝt′) repre-
sents the reward term which is negative if the state ŝt′ would
typically make occupants uncomfortable, ret′(at′−1, ŝt′) denotes
the power consumption if action at′−1 is taken at time step
t′ − 1 and the new obtained state is ŝt′ , r̂ot′(ŝt′) denotes the
reward term related to the occupant’s thermal preference, and
rut′({ŝt}t

′−1
t=t′−H , {at}t

′−1
t=t′−H), defined as (8), is used to con-

strain the states during planning into the region where the
epistemic uncertainty is low. Section VI-C will show how
these reward terms are designed in a specific application sce-
nario. In this section, we assume that the reward function
rt′({ŝt}t

′−1
t=t′−H , {at}t

′−1
t=t′−H , ŝt′) is known.

We use the method proposed in [26] to derive a model-based
offline RL algorithm. The objective to maximize is the expected
cumulative reward in an MPC prediction horizonT . In this paper,
we design a deterministic policy πθπ : SH ×AH &→ A, which
can be a neural network with parameter θπ . At time step k, we
seek an optimal value of θπ to maximize

Jk ! E
[
Rk | {ŝt}kt=k−H ,πθπ

]
, (10)
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Fig. 2. The architecture of the algorithm.

with

Rk !
k+T−1∑

t′=k

rt′
(
{ŝt}t

′−1
t=t′−H , {at}t

′−1
t=t′−H , ŝt′

)
. (11)

We use the actor-critic architecture to solve the corresponding
optimization problem, in which the actor network isπθπ : SH ×
AH × S &→ A and the critic network, parameterized by θQ, is
Qπ

θQ : SH ×AH × S ×A &→ R, respectively.
The critic network is trained in practice via minimizing the

empirical loss [26]

L̂(θQ) ! 1

N ′

N ′∑

n=1

(
Qπ

θQ

(
{ŝn,t}−1

t=−H , {an,t}−1
t=−H , ŝn,0,

an,0)−
T−1∑

t′=0

rt′
(
{ŝ′n,t}t

′−1
t=t′−H , {a′

n,t}t
′−1
t=t′−H , ŝ′n,t′

))2

,

(12)

where the tuple ({ŝn,t}−1
t=−H , {an,t}−1

t=−H , ŝn,0) can
be sampled from a replay buffer and ({ŝ′n,t}−1

t=−H ,

{a′
n,t}−1

t=−H , ŝ′n,0,a
′
n,0) is set to be ({ŝn,t}−1

t=−H ,

{an,t}−1
t=−H , ŝn,0, ân,0) when t′ = 0. For t′ = 1, . . . , T − 1,

the action arguments of rt′ are obtained from the policy πθπ

and the state arguments follow from the ensemble dynamics
model {T̂n

θn
}Nm
n=1.

Remark 6. The loss (12) is an empirical approximation of the
MSE between the action value function Qπ

θQ and cumulative

rewards
∑T−1

t′=0 rt′ in the futureT horizons. Thus, we can treat the
optimization of θQ as a regression problem. However, the target

∑T−1
t′=0 rt′ is not fixed but related to the current policy, which is

updated during iterations. Thus, we need to alternatively update
the actor and critic during the learning process until both of them
converge.

The empirical policy gradient to maximize Jk in (10) can be
formulated as [26]

∇̂θπJk =
1

N ′

N ′∑

n=1

(
∇aQ

π
θQ

(
{ŝn,t}−1

t=−H , {an,t}−1
t=−H ,

ŝn,0,a)
∣∣∣
a=πθπ ({ŝn,t}−1

t=−H ,{an,t}−1
t=−H ŝn,0)

× ∇θππθπ

(
{ŝn,t}−1

t=−H , {an,t}−1
t=−H , ŝn,0

))
.

(13)

To calculate (12) and (13), we can randomly get samples from
a replay buffer R which stores the recently collected data by
interacting the policy with the learned dynamics model. The de-
tailed algorithm is summarized in Algorithm 3 in Appendix B.3,
available in the online supplemental material. This algorithm
combines the actor-critic method with MPC, with the prediction
horizon being T [26].

The architecture of the algorithm in this paper is presented
in Fig. 2. Two training procedures need to be completed in the
offline learning phase. First, we can find a sufficient number of
volunteers with different thermal preferences to collect thermal
feedback data and use these data to meta-train a thermal pref-
erence model of occupants. Second, the zone thermal dynamics
model will be trained with the offline historical dataset. When
the occupant’s thermal preference needs to be identified, the
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thermal preference model can be updated via meta-testing with
a small number of feedbacks. Then, we can use the zone thermal
dynamics model and the updated occupant’s thermal preference
model to retrain the actor-critic networks so that the personalized
HVAC controller for the occupant can be obtained.

Remark 7. The algorithm designed in this paper can also be
generalized to other domains. For example, in the human-robot
collaboration settings, the authors in [78], [79] used safety-based
fuzzy local controllers to identify the human intentions of motion
so that the robot can assist the human operator in a better way.
In [78], [79], the human intentions of motion were inferred using
the interaction force, the derivative of the interaction force, and
the end-effector velocity. However, human intentions may be too
complicated in many cases, in which we can leverage a learning
algorithm to obtain an intention prediction model. In addition,
we can also possibly use the meta-learning algorithm to adapt
a pre-trained intention prediction model to a new scenario. In
this case, less human-robot interaction data may be required.
Another setting is that we can give a feedback channel to the
human operator and use the collected feedbacks to improve the
performance of assistance the robot provides.

VI. NUMERICAL SIMULATIONS ON ENERGYPLUS

In this section, we will show the effectiveness of the proposed
algorithm in an EnergyPlus environment4. All experiments and
simulations are performed on Ubuntu 20.04 LTS with 32 GB
RAM, 3.7 GHz×10 Intel CoreTM i9-10900 K processor, and
NVIDIA GeForce RTX 3080 GPU. The EnergyPlus testbed
we used is introduced in Appendix C, available in the online
supplemental material. Table VI in Section A.2, available in the
online supplemental material, lists some terms and notations in
this section.

A. Meta-Supervised Learning for Occupants’ Thermal
Feedbacks

This section will show the performances of the meta-
supervised learning algorithm in learning the occupant’s person-
alized thermal comfort model with both the ASHRAE database
II and the synthetic data.

1) Experiments With the ASHRAE Database II: In this sec-
tion, we will use the ASHRAE database II [54], [55] to illustrate
the effectiveness of the meta-supervised learning algorithm, i.e.,
Algorithm 1, in improving the thermal sensation vote prediction
accuracy with only a few personalized thermal feedback data.
We consider the air temperature measured in the occupied zone
as the only feature of the model and leave the multiple feature
cases to our future work. Before using the data for model learn-
ing, we preprocess the database with the following procedures.

i) Since we consider the air temperature in the occupied
zone as the only predictor of the model, the first step of
our data preprocessing is to remove the environmental
and personal conditions other than air temperature for
each raw datum in the database.

4.See https://github.com/NREL/EnergyPlus/tree/v9.2.0.

ii) The ASHRAE database II has 110,070 thermal vote
records from different individuals under different con-
ditions. However, there might be some missed condition
values for a certain record, denoted as “NA” in the original
data file. The second step of our data preprocessing is to
eliminate the raw data for which the value of indoor air
temperature is indicated as “NA”.

iii) In Algorithm 1, we need K +K ′ thermal votes from
each occupant to learn his/her thermal preference. In
our experiment, we set K = 5 and K ′ = 3, respectively.
Thus, if an occupant has less than K +K ′ = 8 thermal
sensation votes in the dataset, then we will not consider
this occupant when training our algorithm. In addition,
if an occupant has more than 8 thermal votes, we use
the first 8 data and eliminate the rest. After this data
preprocessing step, we obtained (5 + 3) data/occupant ×
1, 726 occupant = 13, 808 data5.

iv) The air temperature is normalized with

T in ! T in
0 − mean({T in

0 })
std({T in

0 })
, (14)

with T in
0 being the original air temperature, and

mean({T in
0 }) and std({T in

0 }) being the mean and stan-
dard deviation of T in

0 , respectively, over the dataset after
preprocessing steps i) – iii).
The corresponding thermal sensations are normalized
with

f(T in) ! Original Thermal Sensation Under T in

3
,

(15)
after which we have f(T in) ∈ [−1, 1].

After preprocessing steps i) – iv), we will use 8 tuples in
the form of (T in, f(T in)) for each occupant to train and test
the meta-supervised learning algorithm. In addition, we use
the simple regression model as a benchmark that learns the
relationship between T in and f(T in) but does not consider the
occupants’ identities. That is, the benchmark simply assumes
that there is only one occupant who provides 13,808 thermal
sensation votes under various conditions. This model method
was also used in Sections 4.1 and 4.2 in [28].

Table IX in Appendix D.2, available in the online supplemen-
tal material, presents the hyperparameter settings when using
the meta-supervised learning algorithm to learn the occupant’s
thermal preference model with ASHRAE database II. Note that
we use a 3-layer fully-connected network as the architecture. For
the simple supervised regression algorithm that does not con-
sider the occupants’ identities, we use the same neural network
architecture and learning hyperparameters as shown in Table IX,
expect that there are no concepts of K, K ′, and α.

Fig. 3 shows the training and validation RMSEs of both the
meta-supervised algorithm, denoted as MAML, and the simple

5.There is a tradeoff between the number of occupants and the number of
thermal sensation votes per occupant. More samples from an occupant and more
occupants are both helpful to learn a better model. However, since the ASHRAE
database II is fixed, if we require more thermal votes from an occupant, the
number of occupants would be less after data preprocessing. For example, if we
set K +K ′ = 9, then we can only have 9 data/occupant × 1, 281 occupant =
11, 529 data, which is less than 13,808 in our experiment.
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Fig. 3. The performance comparison of the meta-supervised learning al-
gorithm (MAML) and the basic regression algorithm (non-MAML) on the
ASHRAE database II.

regression algorithm, denoted as non-MAML. The RMSE loss
in Fig. 3 is unnormalized back to the 7-point scale. We imple-
mented both algorithms 5 times with different splits of training
and validation datasets and initializations of neural network
parameters. The curves in Fig. 3 are the means of the losses, with
the shaded regions indicating one standard deviations around
the mean. Fig. 3 illustrates that the meta-supervised learning
algorithm can reduce both the training and validation RMSE
losses from ∼ 1.25 to ∼ 1.00, which is a ∼ 20% decrease
compared with the simple supervised learning without using
K = 5 personalized thermal feedbacks to adapt the model. In
addition, the authors in [28] presented some results of using
different regression models to predict the thermal sensation
votes with the ASHRAE RP-884 thermal comfort dataset [53],
which is a subset of the ASHRAE dataset. The best MSE Liu et
al. [28] reported is 1.147, i.e., 1.071 in the sense of RMSE.
Our meta-supervised learning algorithm reduces the RMSE
∼ 6.63%, compared with the best result in [28].

2) Experiments With Synthetic Data: In Section VI-A1, we
demonstrated that the meta-learning algorithm could reduce the
prediction loss of personalized thermal sensation votes in the
ASHRAE database II. However, the ASHRAE database II does
not provide the most preferred indoor temperatures of different
occupants. Thus, we do not have a metric to test if the HVAC
systems under our RL agent can satisfy different requirements
of thermal preferences. In order to overcome this problem, we
construct a generative model and use it to generate synthetic data
for meta-learning.

According to the analyses in [45], the probability of feeling
comfortable with respect to indoor air temperature is similar to
a Gaussian function. The position of the center and standard
deviation of the Gaussian function differ with different thermal
preference patterns. In this section, we generate the thermal
feedbacks with

f(T in) = clip
(

round
(
4 exp

(
− (T in − T ref)2

2σ2

)

−2 +N (0,σ2
ε )
)
,−2, 2

)
, (16)

where T ref and σ are occupant-specific parameters, which
are sampled according to T ref ∼ U [20.5◦C, 25.5◦C] and σ ∼
U [1.5◦C, 2.0◦C]. When generating samples, we only consider
T in ∈ [19.0◦C, 27.0◦C]. That is, any T in /∈ [19.0◦C, 27.0◦C]
will be considered directly as the indoor temperature making
the occupant uncomfortable.

Remark 8. There are two steps to generate simulated data
for the meta-supervised learning algorithm. In the first step, we
specify the thermal preference parameters, i.e., T ref and σ in
(16), of an occupant. In the second step, for the specific values
of T ref and σ, we generate K samples, which simulate the case
that a specific occupant gives K feedbacks.

Some explanations about (16) are given as follows.
i) The expression (16) is based on the Gaussian function

g(T in) ! 4 exp

(
− (T in − T ref)2

2σ2

)
− 2, (17)

with T ref and σ being parameters. Note that g(T in) is a
continuous function in the range [−2, 2], and reaches its
maximum at T in = T ref .

ii) We sample T ref and σ from their corresponding uniform
distributions in the first data generation step. After that,
the function g(T in) is a deterministic function of T in.
However, according to Section III, we assume that there
are only five thermal feedbacks that are mapped to values
in the set {−2,−1, 0, 1, 2}. In addition, there are some
subjective uncertainties when an occupant provides feed-
backs. To simulate this scenario, we first add a small
zero-mean Gaussian noise N (0,σ2

ε ) to g(T in) in (17),
and then round the function value to the nearest integer.
In this paper, we set σε = 0.1.

iii) Note that the operations of adding Gaussian noise and
then rounding may lead function value being −3 or 3 in
some extreme cases. We finally clip the function value
in the range [−2, 2]. Finally, the range of the function
f(T in) in (16) is {−2,−1, 0, 1, 2}.

In our simulation, we set K = 10, which indicates that we
expect to use 10 feedbacks when making adaptions for the
controller. We use a 3-layer fully connected network as the
model with hyperparameters given in Table X in Appendix D.2,
available in the online supplemental material. Note that in order
to train the model, we need to have 800 volunteers in practice,
from each of whomK +K ′ = 10 + 35 = 45 thermal feedbacks
should be collected at different indoor air temperatures.

In order to test the performance of meta-training, we gen-
erate K = 10 thermal feedbacks from each of the 6 different
scenarios of (T ref ,σ): i. (21.0◦C, 1.5◦C); ii. (22.0◦C, 1.6◦C);
iii. (23.0◦C, 1.7◦C); iv. (24.0◦C, 1.8◦C); v. (25.0◦C, 1.9◦C); vi.
(25.5◦C, 2.0◦C).

The sampling of T ref within a limited interval has an issue
that the meta-testing performance with T ref near the bounds of
the interval will not be as good as that withT ref near the center of
the interval. The reasons are analyzed as follows. Let us consider
our settings in which T ref ’s in the meta-training dataset are sam-
pled from the distribution U [20.5◦C, 25.5◦C]. The meta-testing
performance with a specificT ref depends on how well the model
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Fig. 4. The test performance of the meta-learning algorithm to learn different
occupants’ thermal preference models.

is trained around this specific value ofT ref so that generalization
can be achieved. For example, the meta-training data withT ref ∈
[22.0◦C, 24.0◦C] are helpful to train a model which can adapt
well with T ref = 23.0◦C during meta-testing. However, for the
meta-testing with T ref = 25.5◦C, only the meta-training data
with T ref ∈ [24.5◦C, 25.5◦C] are helpful. In addition, the meta-
training data with T ref ∈ [24.5◦C, 25.5◦C] are in fact biased
when considering T ref = 25.5◦C in meta-testing, which causes
that the model after adaptation in meta-testing will implicitly
identify a value of T ref smaller than 25.5◦C. To compensate for
this bias, after gradient adaptation steps during meta-testing, we
use a grid search-based method to translate T ref so that smaller
losses can be achieved on the training data in meta-testing. Note
that this is an additional step that will not hurt the meta-learning
algorithm since the translation can be found to be zero if there
is no need for this compensation. In addition, there is no re-
quirement for an increased number of data. Fig. 4 shows the
benefits of the compensation. The meta-testing algorithm with
compensations is provided in Algorithm 2 in Appendix B.2,
available in the online supplemental material.

Fig. 4 shows the meta-testing results. With K = 10 thermal
feedbacks from an occupant, the model f̂θ′

R
(T in) can reasonably

predict different patterns of thermal preferences after 5 gradient
adaptation steps and compensations. The compensations to the
model f̂θ′

R
(T in) improve the fitting performance when the T ref

is near to the bounds of the sampling interval [20.5◦C, 25.5◦C] of
T ref for the meta-training data. Note that the thermal preference
model can be further fine-tuned if the occupants would like to
provide more thermal feedbacks. The trained model f̂θ′

R
(T in)

will be used to regulate the RL algorithm in Section VI-C.

B. Thermal Dynamics Model Training With Offline Data

This section will show the performance of dynamics model
learning with the simulated offline dataset generated by the
EnergyPlus environment.

TABLE I
THE COMPARISONS OF THE AVERAGE TOTAL POWER CONSUMPTION AND
AVERAGE PEAK POWER FOR THE PID CONTROLLER WITH AND WITHOUT

EXPLORATIONS (SF)

The offline data are collected with a controller described as
follows. This low-level controller needs to decide which action
to make under a certain state. There are two requirements for
this controller. i) The values of T in

west and T in
east should be in a

reasonable range so that the occupants will typically not feel very
uncomfortable. ii) The state and action spaces should be fully
explored without violating of requirement i). In our simulation,
we use PID controllers6 to generate the actions T set

west and T set
east,

and get Fwest and Feast via

Fwest = (10.0kg/s− 2.5kg/s)× Fwest
0 + 2.5kg/s, (18a)

F east = (10.0kg/s− 2.5kg/s)× F east
0 + 2.5kg/s, (18b)

with

Fwest
0 ∼ Beta(2.0, 8.0), F east

0 ∼ Beta(2.0, 8.0). (19)

Note that the values 2.5kg/s and 10.0kg/s in (18) are in accor-
dance with amin and amax in (26).

Fig. 9 in Appendix E, available in the online supplemental
material, shows the percentage of offline data with respect to
indoor temperatures in the west and east zones. Most indoor air
temperatures for both zones fall within the interval [19◦C, 28◦C].
The weather file associated with the offline data in Fig. 9 is the
one with San Francisco (SF). For the other four cities, the offline
datasets have similar statistics in terms of indoor air temperature.
The simulated time length when generating the offline dataset
is 1 year.

Remark 9. The samplings of Fwest
0 and F east

0 from the beta
distribution (19) serve as explorations to the environment. The
explorations ofFwest andF east would also add the diversities of
T set
west and T set

east, since diverse states would be encountered. If we
do not consider explorations, we can fix Fwest = 4.0kg/s and
F east = 4.0kg/s. In this case, the variations of the offline dataset
would be much smaller since the PID controller is essentially
a deterministic controller. The learned thermal dynamics model
would be only accurate in a small range due to the low variations
of the offline data, which will influence the performance of the
subsequent model-based RL agent. On the other hand, we also
need to consider the safety of explorations. We consider two
metrics in this paper to measure the safety of explorations: 1)
the average power consumption and 2) the average daily peak
power in the offline data. The authors in [27] proposed a safety
criterion, i.e., the performance degradation of the controller with
explorations should not be larger than a threshold ε = 10% than
the baseline controller without explorations. Table I shows the
values of these two metrics for the PID controllers with and

6.See https://github.com/vermouth1992/mbrl-hvac.
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Fig. 5. The training and validation losses of the three individual dynamics
model networks with the offline dataset (SF).

without explorations. Since the explorations (19) are random, we
run the PID controller with explorations 5 times and present the
one standard deviation areas around the means for both metrics.
The performance degradations of both metrics are significantly
less than 10%, which indicates that the explorations are safe.

The architecture of each individual dynamics model network
f̂n
θn

, n = 1, . . . , N , is given in Fig. 7 in Appendix D.1, available
in the online supplemental material. Table XI in Appendix
D.2, available in the online supplemental material, provides the
parameter settings when training the thermal dynamics model.

We independently trained N = 3 deterministic networks by
minimizing the MSE in (6). In order to increase the discrepancies
of predictions for the three networks for the out-of-distribution
datasets, we use different weight decays when training different
networks. To be specific, the weight decay for the n-th network
is set to be (n− 1)× 10−4, n = 1, 2, 3. Fig. 5 presents the
training and validation losses of the three individual dynamics
models with the offline dataset. Both the training and validation
losses decrease as the training epoch increases. In order to
justify the use of the epistemic uncertainty metric (8), we tested
the trained dynamics model on the in-distribution and out-of-
distribution datasets, respectively. The statistics of the indoor
air temperatures of the in-distribution and out-of-distribution are
given as Figs. 9 and 10 in Appendix E, available in the online
supplemental material, respectively. Table II shows the average
discrepancies of the different networks’ predictions defined as

d̄ ! 1

ND′

∑

Dt′ ∈D′

1(N
2

)
∑

n1,n2∈{1,...,N},n1 -=n2

∥∥∥T̂n1
θn1

(
{st}t

′

t=t′−H+1, {at}t
′

t=t′−H+1

)

TABLE II
THE AVERAGE DISCREPANCIES OF THE DIFFERENT MODELS’ PREDICTIONS ON

THE IN-DISTRIBUTION AND OUT-OF-DISTRIBUTION DATASETS

−T̂n2
θn2

(
{st}t

′

t=t′−H+1, {at}t
′

t=t′−H+1

)∥∥∥
2

2
, (20)

with Dt′ ! ({st}t
′

t=t′−H+1, {at}t
′

t=t′−H+1), on these two
datasets. Note that we trained the thermal dynamics model with
ensemble networks five times and took tests on the obtained
ensemble networks. The results show that the value of d̄ in the
out-of-distribution dataset is much higher than that in the in-
distribution dataset. This indicates that the designed uncertainty
metric can punish actions leading to the out-of-distribution data
region.

C. Model-Based Reinforcement Learning With Different
Thermal Preferences

This section will show the performance of the model-based
RL algorithm in Section V with the considerations of different
thermal preferences. In order to obtain different occupants’ ther-
mal preferences, we allow each occupant to provide 10 thermal
feedbacks and adapt the meta-trained model in Section VI-A to
form the final occupants’ thermal preference prediction models.
In addition, we assume that there are two individuals in the two
zones who may have different thermal preferences.

In our simulation, the reward function terms in (9) are defined
as follows. Compared with the reward functions in the existing
literature about RL for HVAC systems, such as [18], [25], [26],
[28], [80], one advantage of this reward function is that it reflects
the personalized thermal preference via the term r̂ot′ .

rtt′ =
∑

l∈{west,east}

([
T in
lower − T̂ in

l,t′

]

+
+
[
T̂ in
l,t′ − T in

upper

]

+

)
,

(21)

ret′ =
∑

l∈{west,east}

(
P̂ITE,l,t′ + P̂HVAC,l,t′

)
, (22)

r̂ot′ =
∑

l∈{west,east}

f̂θl
R

(
T̂ in
l,t′

)
(23)

rut′ = d̄, (24)

where i) we set T in
lower = 19.0◦C and T in

upper = 27.0◦C, ii)
T̂ in
l,t′ denotes the indoor air temperature in the zone l, with

l ∈ {west, east}, at time step t′, iii) P̂ITE,l,t′ and P̂HVAC,l,t′

are defined in the similar manner as T̂ in
l,t′ , iv) the learned oc-

cupant’s thermal preference model f̂θl
R

is related to the zone l
since different thermal preferences are assumed for occupants
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Fig. 6. The indoor air temperatures of west and east zones under the weather
files in five different cities.

in different zones, and v) d̄ is defined in (20). The hats above
variables T̂ in

l,t′ , P̂ITE,l,t′ , and P̂HVAC,l,t′ indicate that these vari-

ables are predicted by the dynamics model {T̂n
θn

}Nm
n=1, instead

of the real values collected from the environment. In addition,
we set λ1 = 1.0, λ2 = 1.0× 10−5, λ3 = 0.25, and λ4 = 0.5,
respectively, in our simulation.

Table VIII in Appendix D.2, available in the online supple-
mental material, shows the combinations of weather files and
occupants with different thermal preferences in our simulations.
The architectures of the critic and actor networks are given in
Fig. 8 in Appendix D.1, available in the online supplemental
material. Table XII in Appendix D.2, available in the online
supplemental material, presents the training configurations.

1) Result Analyses of the Proposed Algorithm: Fig. 6 shows
the indoor air temperatures of west and east zones under the
weather files in five different cities. The shaded areas indicate
the temperature ranges in which the occupants should typically
feel comfortable, which is predefined instead of learned. That
is, if we do not consider the subjective Gaussian noise in (16),
an occupant should give feedback +2 when the indoor air
temperature is in the shaded region. It is shown in Fig. 6 that
the indoor air temperatures are typically within the comfortable
ranges. The dashed lines denote the centers of the preferred

indoor temperature ranges. Note the differences between these
comfortable indoor temperature ranges. Fig. 6 indicates that the
indoor air temperature would be around different values that
reflect different thermal preferences of occupants. This further
illustrates the effectiveness of the reward term r̂o and thus the
meta-learning algorithm with a few thermal feedbacks. The
periodical and occasional violations of the comfortable ranges
are due to the data center CPU power changes, as is presented in
Table VII in Appendix C, available in the online supplemental
material.

In order to show the performance improvement of our algo-
rithm, we compare it with the PID controller without explo-
rations. That is, we use PID controllers to get the actions T set

west

and T set
east and fix both Fwest and F east to be 4.0 kg/s. The target

indoor air temperature varies according to different thermal
preferences in Table VIII. The comparisons of our algorithm
with the PID controller are given in Table V, in which the total
power consumptions, square indoor temperature deviations, and
rewards are the averaged values after the convergence of algo-
rithms under the weather files in November for all the five cities.
Our algorithm achieves 56.11% less average square temperature
deviation with 1.44% less power consumption than the PID
controller.

2) Influences of Reward Weights to the Controller Perfor-
mance: The reward weights λ1, . . . , λ4 have large impacts on
the controller performance since they determine the relative
importance of different factors when training the algorithm.
Table III presents the results of average total power consumption
and average square temperature deviation with different values
of reward weights. We use the weather data in SF and run the
Algorithm 5 times for each combination of weights. Table III
shows the ranges of one standard deviations around the means.
For each weight combination, both power consumption and
square temperature deviation are averaged over the results after
algorithm convergence with the weather data in November. In
addition, the square temperature deviation is also averaged over
the two zones. The base temperature values to calculate the
temperature deviations are 21.5 ◦C and 23.5 ◦C for the west
and east zones, respectively, which are in accordance with Table
VIII. Note that we did not change the value of λ1 since only the
relative importance of these weights matters. The result analyses
are as follows.

i) When we increase the value of λ2 or decrease the value
of λ3, i.e., we care more about energy consumption and
less about occupants’ thermal comfort, there are obvious
increases for the average square temperature deviations.
However, the power consumptions do not drop signifi-
cantly. Likewise, when we decrease the value of λ2 or
increase the value of λ3, i.e., we are more concerned about
the thermal comfort, the power consumptions slightly
increase, while the average square temperature deviations
do not have significant decreases. This indicates that the
weights λ2 and λ3 can reflect the balance between power
consumption and occupants’ thermal comfort. In order to
achieve the best performance of both metrics, we need
to find good combinations of these two hyperparameters.
Note that we used relatively large scaling values when
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TABLE III
THE CONTROLLER PERFORMANCES WITH DIFFERENT REWARD WEIGHTS (SF)

TABLE IV
THE AVERAGE INDOOR AIR TEMPERATURES OF THE WEST AND EAST ZONES

AND AVERAGE SQUARE TEMPERATURE DEVIATIONS WHEN λ4 = 0 (SF)

changing λ2 and λ4 in Table III. During our simulations,
we found that the controller performance is rather robust to
the selections of these two weights. Based on the default
weights λ2 = 1.0× 10−5 and λ3 = 0.25, if we slightly
change the weights, then the final controller performance
would not change too much.

ii) Compared with λ2 and λ3, the scaling of λ4, which pun-
ishes model exploitations in the out-of-distribution region
with respect to the offline dataset, has a larger impact
on the controller performance. If we set it to λ4 = 0,
then there is significant performance deterioration for the
learned controller in both power consumption and temper-
ature deviation aspects. The average indoor temperatures
and square temperature deviations for our 5 runs when
λ4 = 0 are shown in Table IV. In the first and fourth runs,
the indoor air temperatures in the east zone are above
30 ◦C, which are out-of-distribution states according to
Fig. 9 in Appendix E, available in the online supplemental
material. This implies that the reward term ru is necessary
in the offline training case to avoid possible model ex-
ploitations in the out-of-distribution region. In the second
run, even if we do not observe out-of-distribution states,
the indoor air temperature in the west zone is not well
regulated. When λ4 -= 0, we also need to choose an appro-
priate value of λ4. If it is too small, the out-of-distribution
actions will not be punished enough. If it is too large, then
the reward term ru may dominate the whole reward, which
weakens the trade-off between the power consumptions
of HVAC systems and occupants’ thermal comfort levels.
As illustrated in Table III, both the small λ4 = 0.10 and
the large λ4 = 10.0 would increase the average square
temperature deviation.

D. Comparisons With the Model-Based Online and
Model-Free Offline Reinforcement Learning Algorithms

In this section, we will compare our algorithm with the model-
based RL with on-policy data aggregation [26] and a model-free
offline RL algorithm, i.e., conservative Q-learning [27], [37],
respectively.

1) Comparisons With the Model-Based Reinforcement
Learning Algorithm With On-Policy Data Aggregation: One
potential drawback of the offline RL is that the learning is limited
to the “known” region that the offline dataset covers [31], [32].
This limited exploration may lead to a suboptimal policy since
the global optimal policy may be in the “unknown” region [36].
That is, although Fig. 6 shows that the indoor temperatures are
typically within the ranges that occupants should be comfortable
with, these results might come with increased power consump-
tions.

In this section, we compare the power consumption of our
algorithm with its “online version,” i.e., we allow the policy to
collect more data from the EnergyPlus environment and then use
the aggregated dataset to update further the thermal dynamics
model [81]. For the compared algorithm, we first train the
thermal dynamics model with the offline dataset. In the first
35 iterations, only the actor and critic networks are trained.
Then the actor is used to collect more transition data from
the EnergyPlus environment, which will be used to update the
thermal dynamics model in the remaining iterations. In addition,
we let the reward term rut = 0, ∀t, for the compared algorithm
such that the exploration is not limited by the offline dataset.
The number of iterations for the actor and critic networks is
330, while the dynamics model is trained every 7 iterations with
training epochs being 50. The other training hyper-parameters
of the compared algorithm are the same as those in Table XII in
Appendix D.2, available in the online supplemental material.

The comparison results in Table V show that the average
power consumption of our algorithm is only 1.91%, averaged
over the five cities, more than that of the RL algorithm with
on-policy data aggregation. This indicates that with only the
offline dataset, the power consumption of our algorithm is still
similar to that of the counterpart trained after a long time of
on-policy data collection. However, the average square indoor
air temperature deviation of our algorithm is 33.59% smaller
on average than its online counterpart. We hypothesize that this
phenomenon is due to the over-exploration of the online policy
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TABLE V
THE COMPARISONS BETWEEN THE PROPOSED AND SOME EXISTING ALGORITHMS

on the dynamics regions with low power consumptions. Note
that the thermal dynamics model in our algorithm can also be
updated when more on-policy data are collected after deploy-
ment in practice [82], [83]. In addition, we can also leverage var-
ious exploration strategies, such as the upper confidence bound
(UCB) algorithm [84], [85], ε-greedy algorithm [9], during the
process of collecting online data. Thus, for our algorithm, we
can also reduce the increased power consumption further with
more on-policy data available.

2) Comparisons With the Model-Free Conservative Q-
Learning Algorithm: Ref. [27] presented an offline RL strategy
for HVAC systems based on the model-free CQL algorithm [37].
In this section, we compare it with our mode-based offline RL
algorithm to demonstrate the energy efficiency and superiority
in indoor air temperature regulation of our algorithm.

We use the same network architectures (see Fig. 8 in Appendix
D.1, available in the online supplemental material) of both actor
and critic for the CQL algorithm as those in our algorithm. The
settings of hyperparameters of CQL are shown in Table XIII in
Appendix D.2, available in the online supplemental material.
Since the CQL algorithm in [37] is built on the SAC algorithm,
some hyperparameters in Table XIII are adapted from the SAC
algorithm [17]. We tried our best to tune the hyperparameters in
Table XIII for fair comparisons.

The results in Table V show that the performance, especially
the average square temperature deviation, of CQL is significantly
poorer than that of the proposed algorithm. We also tried to
increase the reward weight λ3 from 0.25 to 1.25 to see if the
average square temperature deviation drops. Unfortunately, we
did not observe this result. The reasons are analyzed as follows.

Based on the SAC algorithm, CQL uses an empirical Bellman
equation iteratively and considers a regularization term when
minimizing the Bellman error at each iteration. Thus, the ob-
jective it optimizes is the discounted cumulative reward in an
infinite horizon7 ∑∞

t=1 γ
trt. However, the dynamics of the en-

vironment of HVAC systems is highly stochastic. For example,

7.We omit the policy entropy term introduced by using SAC and regularization
term due to the conservative learning for brevity, which would not influence the
analysis here.

the weather data would be of high randomness. In this case, the
long-term predictions would be unreliable, especially when the
dataset is offline with a limited number of data. This implies that
it is better to optimize the finite discounted cumulative reward∑T

t=1 γ
trt since the term

∑∞
t=T+1 γ

trt would not help but
increasing the variance [60]. When tuning the hyperparameters
of CQL, we found that the discount factor γ has a large impact on
policy performance. If we increase it from γ = 0.85 to 0.95, the
policy performance would be worse. For our model-based RL
algorithm, we can use an MPC planning algorithm with a finite
T . However, the current CQL framework cannot incorporate
this setting. In our paper, we used the MPC prediction horizon
T = 5. It is worth noting that increasing T would also hurt the
final policy performance.

In addition, although the performance of CQL is worse than
the PID controller without explorations, it is much better than
the PID controller with explorations which generates the offline
dataset. The improvement can be found by comparing the av-
erage square temperature deviations in Table V and Fig. 9 in
Appendix E, available in the online supplemental material.

Remark 10. This is a general remark about the nonstationar-
ities of the environment and occupants’ thermal preferences. i)
The thermal dynamics of the environment may be nonstationary
due to various factors, such as seasonal variations. Two strategies
can be used to handle this issue. The first one is to include data
from different conditions in the offline dataset used to train the
dynamics model. The second one is training the dynamics model
with only the data from a specific condition that is considered.
When the environmental conditions have changed, we retrain
the model and policy with a new dataset. In our simulation, we
adopted the first strategy. That is, in order to handle seasonal
variations of the environment dynamics, we collect the offline
dataset with a noisy PID controller for one year. We select this
strategy because it is more robust than the second one. For ex-
ample, the controller specific to a certain condition may perform
poorly when the environment changes unexpectedly. ii) The
occupants’ thermal comfort models may also be nonstationary.
According to Fanger’s PMV model [48], many factors influence
an occupant’s thermal comfort. These factors include air flow
rate, metabolic rate, clothing level, etc. This paper considers
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air temperature as the only factor influencing thermal comfort.
If an occupant’s thermal preference model has changed, then
he/she can provide more feedbacks so that the model can be
updated. One potential future research direction is adding more
factors to the meta-learning framework. When these factors are
not available, we may use some existing models to predict them.
For example, Schiavon et al. [72] proposed a model to predict
the clothing levels of occupants based on the outdoor air and
indoor operative temperatures.

VII. CONCLUSION

This paper designed a human-in-the-loop energy-efficient
HVAC control algorithm via meta-learning and model-based
offline RL. The occupant’s thermal preference model is trained
via meta-learning, and the thermal dynamics model is fitted by
an ensemble neural network. A model-based RL algorithm that
combines MPC and actor-critic framework is used to obtain the
optimal HVAC controller. The proposed algorithm contributes
to a more practical deployment of the RL algorithm to HVAC
systems since it is trained mainly with offline datasets with only
a few online thermal feedbacks required.

We used the ASHRAE database II to demonstrate the effec-
tiveness and advantage of the meta-learning algorithm in pre-
dicting personalized thermal sensation votes. Under the meta-
learning framework, we use K = 5 personalized votes to adapt
the meta-trained model. The obtained result indicates that the
meta-learning algorithm is better than all the 5 regression algo-
rithms in [28]. In addition, by the numerical simulations with
EnergyPlus, we showed that our RL algorithm could guarantee
the occupants’ personalized thermal preferences and consumes
little additional power compared with the model-based RL algo-
rithm with on-policy aggregation. These results indicate that the
use of offline datasets without further on-policy data aggregation
may not introduce too much suboptimality in some scenarios.
However, it gives us the advantage of training the algorithm
much shorter time. In contrast, a long time is typically needed
to collect on-policy data in practical HVAC control situations.

There are some possible directions for future work. First, to
further reduce the required number of thermal feedbacks from
an occupant, we may design a strategy combining meta-learning
and active learning based on uncertain estimates to schematically
acquire thermal feedbacks [50], [51], [86], [87]. Second, hierar-
chical RL may be able to be used to design an HVAC controller
that has different outputs under different scenarios. For example,
in the EnergyPlus environment in this paper, the scheduled CPU
power of the two-zone data center varies at different times in a
day. In this case, a hierarchical RL algorithm might be designed
to use different control strategies at different times so that more
thermal comfort and/or less power consumption can be achieved.
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